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Abstract

We study statistical properties of the time series of the exchange rate data generated in
the environment where agents update their savings and portfolio decisions using the
genetic algorithm. The genetic algorithm adaptation takes place within an overlapping-
generations model with two currencies and the free-trade, #exible exchange rate system.
The theoretical model implies a constant exchange rate under the perfect foresight
assumption. Under the genetic algorithm learning, the model's equilibrium dynamics is
not constant but exhibits bounded oscillations. The time series analysis of the data
indicates that the dynamics of the exchange rate returns is chaotic. Out-of-equilibrium
inequality of rates of return on two currencies prompts the genetic algorithm agents to
take advantage of the arbitrage opportunities by increasing the amount of the currency
with higher rate of return in their portfolios. This pro"t seeking results in chaotic patterns
of the exchange rate series. ( 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The genetic algorithm has been increasingly employed to model the behavior
of economic agents in macroeconomic models. A partial list of references
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includes Arifovic (1995,1996,1998), Arifovic et al. (1997), Bullard and Du!y
(1998a,b), Marimon et al. (1990), Dawid (1996). The genetic algorithm learning
has been used both as an equilibrium selection device and as a model of
transitional, out-of-equilibrium dynamics.

When used in economic modeling, the genetic algorithm describes the evolu-
tion of a population of rules, representing di!erent possible beliefs, in response
to experience. In a parallel to population genetics, these rules undergo a selec-
tion process whereby more successful ones become more numerous in the
population. The rules are subjected to random mutations and to recombination
of their parts. In turn, such newly created rules contribute to the diversity of the
population.

There are several advantages in modeling of agents' adaptation in this way.
Genetic algorithms impose low requirement on the computational ability of
economic agents. They allow for modeling the heterogeneity of agents' beliefs.
Survival of decision rules depends on their performance, measured by the payo!
that agents receive by employing them. Genetic algorithm patterns successfully
mimic the behavior of human subjects in controlled laboratory settings
(Arifovic, 1995,1996).1

We study the statistical properties of genetic algorithm learning in the
overlapping-generations environment with two currencies and a free-trade,
#exible exchange rate system. The supplies of both currencies are constant. The
equilibrium exchange rate of this economy is constant and indeterminate. In this
model (Arifovic, 1996) agents use the genetic algorithm to update their decisions
regarding savings and the portfolio composition, i.e. what fraction of savings to
place in each currency. Genetic algorithm simulations resulted in the persistent
#uctuations of the exchange rate. The stability analysis showed that the station-
ary rational expectations equilibria of the two-currency model were unstable
under the genetic algorithm dynamics. The out-of-equilibrium inequality of the
rates of return on the two currencies drives the changes in the fractions of
holdings of the two currencies that in turn drives the exchange rate #uctuations.
At the same time, these exchange rate #uctuations were not accompanied by
large oscillations of the "rst and the second-period consumption values, which
remain close to the Pareto optimal, stationary equilibrium values. In this paper,
we analyze the properties of the exchange rate time series.

The time series properties of the data generated in the genetic algorithm
economies have not been examined using formal statistical tests. Our work
represents the "rst step in devising a methodology for examining the properties

1Arthur et al. (1997) use an arti"cial intelligence algorithm which incorporates genetic algorithm
for generation of new rules to simulate arti"cial stock market. Asset prices and trading volume show
statistical features very similar to the statistical features of actual data. Arthur et al. (1998) has
a detailed discussion of the time series properties of an arti"cial stock market.
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of the data generated in the genetic algorithm simulations. This should eventual-
ly lead to their comparison to the properties of the actual macroeconomic time
series.

The properties of the exchange rate series indicate the existence of a chaotic
attractor. A large number of simulations that we conducted for di!erent sets of
the overlapping-generations model parameter values and the genetic algorithm
values show that this result is robust to changes in the parameter values. We
provide the analysis of why the observed data is chaotic. In the framework that
we study, it is the indeterminacy of the equilibrium exchange rate and exploita-
tion of arbitrage opportunities that generate chaos. Out-of-equilibrium inequal-
ity of rates of return on two currencies prompts the genetic algorithm agents to
take advantage of the arbitrage opportunities by increasing the amount of the
currency with higher rate of return in their portfolios. This pro"t seeking results
in chaotic patterns of the exchange rate series. Our analysis con"rms that these
dynamics do not depend on the speci"c parameter values.

While the model considered in this paper is not the perfect foresight one, the
behavioral assumptions are explicitly laid out. The economic model is a model
of "at money based on microeconomic foundations. In addition, as other
research has shown, the genetic algorithm adaptation generates behavioral
patterns very similar to those observed in the experiments with human subjects.
This sort of behavior performs much better in capturing the main features of the
data generated in the laboratory experiments with human subjects than models
based on the perfect foresight hypothesis or models that use other learning
algorithms.

Other research has demonstrated that the genetic algorithm has very good
global convergence properties. Therefore, the instability of stationary rational
expectations equilibria under the genetic algorithm adaptation of this model is
not the result of the genetic algorithm's general inability to converge. Its source
is in the model's indeterminacy of equilibria that, in interaction with the genetic
algorithm operators, gives rise to the persistent #uctuations of the exchange
rate.2

Thus the driving force of endogenous #uctuations in this model is the
indeterminacy of equilibria. It is interesting to compare this to the other two
classes of models with endogenous #uctuations that have been recently studied.
Brock and Hommes (1997) study a cobweb type of model with heterogenous
strategies in which it is more costly to obtain the rational expectations strategy
than arbitrary prediction rules. They show that the evolutionary competi-
tion among the strategies may result in endogenous price #uctuations, and
chaotic behavior for certain parameter values in an unstable cobweb economy.

2 It is worthwhile to point out again that the savings decisions of the genetic algorithm agents
remain very close to the stationary values after initial adjustment.
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Arthur et al. (1997) study an asset pricing model that has a constant funda-
mental rational expectations equilibrium and a multiplicity of rational expecta-
tions equilibrium paths where prices grow at the risk free rate of return. In their
model, agents are endowed with heterogeneous predictor rules. The survival and
selection of these rules depend on their previous periods' performance. Arthur
et al. (1997) observe occasional complicated price #uctuations. However, they do
not present numerical evidence of chaos.

Brock and Hommes (1998) analyzed the same asset pricing model
with heterogenous beliefs and the evolutionary updating based on past per-
formance. They show that complicated, chaotic price #uctuations can
arise. These #uctuations are characterized by irregular switching between the
constant fundamental rational expectations solution and the exploding bubble
solutions.

The common feature of the above models that can generate endogenous
#uctuations and our exchange rate model is that all of them are based on the
evolutionary updating of agents' decision rules. The di!erences lie in the actual
source of the #uctuations. Thus in the cobweb model with a unique rational
expectations equilibrium, it is the costs of using rational expectations decision
rules that are the source of complicated dynamics. In the asset pricing model, the
multiplicity of rational equilibrium paths can give rise to complicated dynamics.
In case of our exchange rate model, it is the indeterminacy of the rational
expectations equilibria that is the source of the chaotic dynamics.

In Section 2, a two-currency, overlapping-generations economy and the
genetic algorithm application are described. The time series properties of the
genetic algorithm model are presented in Section 3. This section also contains
the analysis and the explanation of why the observed dynamics occurs. We
conclude thereafter.

2. The economy

The economy is a version of Karaken and Wallace (1981) two-country
overlapping-generation model with a #exible exchange rate system and no
restrictions on foreign currency holdings. At each date t, t51, there are born
N young people, in each country, said to be of generation t. They are young at
period t and old at period t#1. Each agent of generation t is endowed with
w1 units of a single consumption good at time t and w2 of the good at time
t#1, and consumes c

t
(t) of the consumption good when young and c

t
(t#1)

when old. Agents in both countries have common preferences given by:
u
t
[c

t
(t), c

t
(t#1)]"c

t
(t) c

t
(t#1).

An agent of generation t solves the following maximization problem at time t:

max c
t
(t)c

t
(t#1) (1)
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subject to

c
t
(t)4w1!
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1
(t)
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1
(t)
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(t)

p
2
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,

c
t
(t#1)4w2#

m
1
(t)

p
1
(t#1)

#

m
2
(t)

p
2
(t#1)

,

where m
1
(t) is the agent's nominal holdings of currency 1 acquired at time t, m

2
(t)

is the agent's nominal holdings of currency 2 acquired at time t, p
1
(t) is the

nominal price of the good in terms of currency 1 at time t, and p
2
(t) is the

nominal price of the good in terms of currency 2 at time t. Agent's savings, s(t), in
the "rst period of life, are equal to the sum of real holdings of currency 1,
m

1
(t)/p

1
(t), and real holdings of currency 2, m

2
(t)/p

2
(t).

The exchange rate e(t) between the two currencies is de"ned as
e(t)"p

1
(t)/p

2
(t). When there is no uncertainty in the model, an equilibrium

condition requires equal rates of return on all assets. Thus, the requirement for
the monetary equilibrium in which both currencies are valued is that the rate of
return on currency 1, and the rate of return on currency 2 have to be equal

R(t#1)"
p
1
(t)

p
1
(t#1)

"

p
2
(t)

p
2
(t#1)

, t51, (2)

where R(t#1) is the gross real rate of return between t and t#1. Rearranging
Eq. (2), we obtain

p
1
(t#1)

p
2
(t#1)

"

p
1
(t)

p
2
(t)

, t51. (3)

It follows from Eq. (3) that the exchange rate is constant over time:

e(t#1)"e(t)"e. (4)

Individual's savings s(t) are derived from the agent's maximization problem
and aggregate savings, S(t), are equal to 2Ns(t). The equilibrium condition in the
loan market requires that the aggregate real world money demand, given by the
aggregate savings, equals real world money supply, i.e. that

S(t)"NCw1!w2
p
1
(t#1)

p
1
(t) D"

H
1
(t)

p
1
(t)

#

H
2
(t)e

p
1
(t)

, (5)

where H
1
(t) is the nominal supply of currency 1 at time t, and H

2
(t) is the

nominal supply of currency 2 at time t. The supply of each currency is kept
constant and thus H

1
(t)"H

1
(0)"H

1
, and H

2
(t)"H

2
(0)"H

2
for all t. Note

that in this economy, the real money demands for individual currencies are not
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well de"ned.3 As a consequence, the exchange rate between the two currencies is
indeterminate.

The indeterminacy of exchange rate proposition (Kareken and Wallace, 1981)
states that if there exists a monetary equilibrium in which both currencies are
valued at some exchange rate e, then there exists a monetary equilibrium at any
exchange rate e3(0,R). Consider an exchange rate e( , e(Oe, and the price
sequences Mp(

1
(t)N and Mp(

2
(t)N, p(

1
(t)Op

1
(t) and p(

2
(t)Op

2
(t) for t51 such that

p(
1
(t)"

(H
1
#e(H

2
)p

1
(t)

H
1
#eH

2

, p(
2
(t)"p(

1
(t)/e( . (6)

The price sequences de"ned in Eq. (6) result in the same sequence of real rates of
return as the price sequences Mp

1
(t)N and Mp

2
(t)N and, in turn, in the same values

of individual and aggregate savings. Solving (6) for p(
1
(t) and substituting into (5)

gives the following equilibrium condition:

S(t)"
H

1
#e(H

2
p(
1
(t)

. (7)

Price levels p(
1
(t) and p(

2
(t) adjust enough to achieve identical values of savings in

a monetary equilibrium with the exchange rate e and in a monetary equilibrium
with the exchange rate e( . Except for the initially old, who experience di!erent
consumption allocations for di!erent initial nominal price levels, all other
generations face the same consumption allocations in the equilibrium with the
exchange rate e as they do in the equilibrium with the exchange rate e( .

For any given exchange rate e, e3(0,R), this economy with constant supplies
of both currencies has a stationary equilibrium in which the price level p

1
(t) (and

p
2
(t)) is constant. Notice that from Eq. (5) we can obtain the expression for the

nominal price level p
1
(t) given by

p
1
(t#1)"

w1

w2
p
1
(t)!

H
1
#eH

2
Nw2

. (8)

In a stationary equilibrium, p
1
(t#1)"p

1
(t)"pH

1
and

pH
1
"

H
w

N(w1!w2)
,

where H
w
"H

1
#eH

2
is the world money supply. The level of pH

1
depends on

the value of the exchange rate e. In a stationary equilibrium, consumption
allocations c1,H"c

t
(t) and c2,H"c

t
(t#1) are Pareto optimal with c1,H"c2,H

for all t.

3 If there were a restriction that residents of each country could use only their country's currencies,
real money demands for currencies 1 and 2 would be well de"ned and equal to the respective real
money supplies of the two currencies.
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2.1. Genetic algorithm

At each time period t51, there are two populations of chromosomes, one
being the new population of generation t, the young, the other being the
population of generation t!1, the old. A population of generation t consists of
N chromosomes that represent decision rules about "rst-period consumption
and portfolio fraction for N agents. A chromosome is a string of "nite length l,
written over the binary alphabet M0, 1N.

A binary string i, i3[1,N], of length l"30 encodes the savings and the
portfolio decision that an agent takes when young. The "rst 20 elements of
a string encode the "rst-period consumption, c

i,t
(t), of agent i of generation t.

The remaining 10 elements encode the portfolio fraction of agent i, f
i
(t), which

determines agent i's real money holdings of currency 1 and real money holdings
of currency 2 at time t. For a string i of length 30 the decoding is performed in
the following way:

xc
i,t
"

20
+
k/1

ak
i,t
2k~1, xf

i,t
"

30
+

k/21

ak
i,t
2k~21,

where ak
i,t

is the value (0, 1) taken at the kth position in the ith string. An integer
number xc

i,t
is obtained by decoding the consumption part of a binary string i of

generation t and an integer number xf
i,t

is obtained by decoding the fraction part
of a string i of generation t. These integer numbers are then normalized in order
to obtain real number values, quantity c

i,t
(t)3[0,w1] that agent i of generation

t decides to consume at time t and fraction f
i
(t)3[0, 1] that is interpreted as

agent i's portfolio decision:

c
i,t
(t)"

xc
i,t

Kc
, f

i
(t)"

xf
i,t

Kf
,

where Kc"(220!1)/10"104,857.5 is a coe$cient chosen to normalize the
value of xc

i,t
and Kf"210!1"1,023 is a coe$cient chosen to normalize the

value of xf
i,t
. The di!erence between w1 and c

i,t
(t) gives the savings decision, s

i
(t),

of agent i at time t:

s
i
(t)"w1!c

i,t
(t). (9)

Agent i places the fraction f
i
(t) of the savings s

i
(t) into currency 1 and the fraction

1!f
i
(t) into currency 2. Aggregate savings, together with the holdings of

currencies 1 and 2 of the members of generation t!1, determine the nominal
price levels of the good that prevail at time t. The prices of the consumption
good in terms of currency 1, p

1
(t), and in terms of currency 2, p

2
(t) are computed

in the following way:

p
1
(t)"H

1N
N
+
i

f
i
(t)s

i
(t), p

2
(t)"H

2N
N
+
i

(1!f
i
(t))s

i
(t). (10)
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The ratio of the nominal price levels yields the exchange rate e(t). Given p
1
(t) and

p
2
(t), the fraction f

i
(t) will determine the nominal holdings of currency 1 of agent

i, i3[1,N], of generation t,

m
i,1

(t)"f
i
(t)s

i
(t)p

1
(t) (11)

and his nominal holdings of currency 2,

m
i,2

(t)"(1!f
i
(t))s

i
(t)p

2
(t). (12)

When old, agents use up all of their holdings of currencies 1 and 2 to purchase
the consumption good. Thus the second-period consumption value of member
of generation t!1 is given by

c
i,t~1

(t)"w2#s
i
(t!1)Cfi(t!1)

p
1
(t!1)

p
1
(t)

#(1!f
i
(t!1))

p
2
(t!1)

p
2
(t) D .

(13)

Finally, "tness values of the members of generation t!1 are computed. The
xtness, k

i,t~1
, of a string i is given by the ex post value of the utility function of

agent i of generation t!1:

k
i,t~1

";(c
i,t
(t), c

i
(t#1))"c

i,t~1
(t!1)c

i,t~1
(t).

New decision rules are generated through the application of the genetic
algorithm operators: reproduction, crossover, mutation and election. The popu-
lation of updated rules is then used by members of generation t#1.

Reproduction makes copies of individual strings. It promotes well-performing
strings over time. The probability that a string will be copied is proportional to
its "tness value. Thus a probability that a string i of generation t!1 will get
a copy C

i,t~1
is given by

P(C
i,t~1

)"
k
i,t~1

+N
i/1

k
i,t~1

, i3[1,N]. (14)

Reproduction operates like a biased roulette wheel. Each string is allocated
a slot sized in proportion to its "tness. The number of spins of the wheel is equal
to the number of chromosomes in a population and each spin yields a reproduc-
tion candidate. When a chromosome is selected, its exact copy is made. Once
N copies are made (the number of strings in a population is kept constant), they
enter into a mating pool to undergo application of other genetic operators.

Crossover exchanges parts of randomly selected strings. First, two binary
strings are selected from the mating pool at random. Secondly, an integer
number k is selected from (1,2, l!1), again at random. Two new strings are
formed by swapping the set of values to the right of the position k. The total
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number of pairs that is selected is N/2 (where N is an even integer). Crossover
takes place on each pair with probability pcross. An example of the crossover
between two chromosomes for l"10 and k"6 is given below:

110010D1000 parent 1

000101D0110 parent 2.

After the application of crossover, two resulting strings are:

1100100110 offspring 1

0001011000 offspring 2.

Two crossover operations are performed for each selected parent pair. One
takes place on the parts of parent strings that decode the values of the "rst-
period consumption. The other takes place on the parts of parent strings that
decode the values of portfolio fractions.

Mutation randomly alters the value of a position within a string to the other
value taken by the binary alphabet: 0P1 and 1P0. The probability of muta-
tion, pmut, is independent and identical across the positions.

The election operator (Arifovic, 1994) tests newly generated o!spring before
they can enter into a population of generation t#1. It is applied in the
following way. First, a binary string i, i3[12N], that belongs to a new
o!spring i is decoded into a real number that represents o!spring i's "rst-period
consumption decision, c

i,t`1
(t#1). Based on this decision and on the rate of

return between periods t!1 and t, a second-period consumption value for
o!spring i is computed. The values of c

i,t
(t) and c

i,t
(t#1) are then used to

compute o!spring i's potential "tness value, k1
i
(t#1).

Second, two o!spring and two parents (recorded at the crossover and muta-
tion stages) are ranked, from the highest to the lowest, on the basis of the "tness
values. The two strings that have the "rst and the second rank are chosen and
placed into the population of a new generation. In case that an o!spring and
a parent have the same "tness value, an o!spring is placed into the population.

Thus a population of chromosomes that will represent decision rules of young
agents at t#1 is generated in the following way: Firstly, the application of the
reproduction operator to the population of rules of generation t yields a popula-
tion of N copies. Secondly, crossover and mutation are applied to generate new
decision rules to be tested. Finally, newly generated o!spring are subjected to
the election operator test. O!spring that pass the test, together with parents that
are more "t than their o!spring, form a new population of decision rules of
agents born at time period t#1.

The genetic algorithm simulations resulted in the #uctuating patterns of the
exchange rate that never settled down to a constant value. The stability analysis
showed that a stationary perfect foresight monetary equilibrium of the
Kareken}Wallace model was not stable under the genetic algorithm dynamics.
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In case that the genetic algorithm economy reaches a stationary equilibrium in
which all agents use identical equilibrium rules, it will not remain there since the
genetic algorithm agents adopt new rules with portfolio fraction values di!erent
from the equilibrium ones.

3. Time series properties

We conducted simulations and analyzed the generated data for two di!erent
sets of the overlapping-generations model parameter values: w

1
"10 and w

2
"

4, and w
1
"10 and w

2
"1. For both of these sets of the endowment patterns,

the supplies of the currencies were given by: H
1
"3000 and H

2
"3600. Each of

these two sets was combined with 8 di!erent sets of the crossover and mutation
rate values. Each combination of the overlapping-generations parameter values
and the genetic algorithm parameter values was simulated for three di!erent
random number seeds. Thus we conducted the total of 48 simulations. Each
simulation lasted for 10,000 time periods.

Our simulations were initialized randomly. Each bit at every position in
a binary string had a 50% chance of being equal to 0 or to 1. This implied that
the average initial values of the "rst-period consumption were equal to w1/2 and
the average initial values of the portfolio fraction was equal to 0.5.

We analyze the statistical properties of the exchange rate returns. The ex-
change rate e(t)"p

1
(t)/p

2
(t) is equal to the ratio of the nominal price levels in

terms of currencies 1 and 2. In the rest of the paper, we use exchange rate returns
and this is calculated by r(t)"log(e(t)/e(t!1)). The dynamics of the exchange
rates for w1"10, w2"4, H

1
"3000, H

2
"3600, pcross"0.6 and pmut"

0.033 are shown in Fig. 1. The dynamics for other combinations of the crossover
and mutation rate parameters are similar in two sets of the overlapping-
generations models.

We analyze the exchange rate returns in three segments. These are the "rst 500
observations, the "rst 5000 observations and the last 5000 observations. In
Table 1, the "rst 10 autocorrelations of the exchange rate returns for these three
data segments are reported for w1"10, w2"4, H

1
"3000, H

2
"3600,

pcross"0.6 and pmut"0.033. The Ljung}Box}Pierce test4 for the "rst 500
observations reject the null hypothesis of identical and independent observa-
tions at the 5% level. For the "rst and the last 5000 observations, the persistence
in these series is stronger and the Ljung}Box}Pierce test values are 879 and
0.108]104, respectively. The autocorrelations of the three data segments follow

4The Ljung}Box}Pierce statistic is distributed s2(10) under the null hypothesis of identical and
independent observations.
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Fig. 1. Foreign exchange return dynamics.

Table 1
Autocorrelations of the foreign exchange returns

Description First 500 First 5000 Last 5000
observations observations observations

o
1

!0.13111 0.16960 0.20714
o
2

!0.08681 !0.24955 !0.21882
o
3

!0.09293 !0.22266 !0.24517
o
4

!0.18620 !0.14192 !0.21861
o
5

!0.09855 !0.07921 !0.10633
o
6

0.02401 !0.02401 0.03396
o
7

!0.08119 0.01858 0.04312
o
8

!0.06479 0.05991 0.05612
o
9

0.01362 0.04776 0.00842
o
10

0.06838 0.04274 !0.00241

Bartlett std. errors 0.0447 0.0141 0.0141

LBP 47.6 879.0 0.108]104

s2
0.05

(10) 18.307

Notes: o
1
,2,o

10
are the "rst 10 autocorrelations of each series. LBP refers to the

Ljung}Box}Pierce statistic and it is distributed s2(10) under the null hypothesis of identical and
independent observations.
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Table 2
BDS tests and the Lyapunov exponents for the foreign exchange returns w1"10, w2"4,
H

1
"3000, H

2
"3600, pcross "0.6, pmut"0.033

Description First 500 First 5000 Last 5000
observations observations observations

BDS (e"0.75p)
m"2 6.09 19.28 24.10
m"3 8.80 32.81 37.36
m"4 8.18 40.12 45.84
m"5 9.66 51.46 57.03

BDS (e"0.50p)
m"2 14.09 26.45 27.02
m"3 18.70 43.38 43.47
m"4 20.42 54.98 56.41
m"5 25.78 75.16 75.61

BDS (e"0.25p)
m"2 21.96 44.15 37.88
m"3 29.25 72.53 63.48
m"4 35.57 104.24 93.97
m"5 46.58 165.85 150.01

Lyapunov exponents
j
1

0.0331 0.1218 0.1773
j
2

!1.0832 !0.1027 !0.1221

Notes: p is the standard deviation of the exchange rates. p is 0.29950, 0.60031 and 0.54968 for the
exchange rates in the "rst, second and the third columns, respectively. m refers to the embedding
dimension. e is the distance parameter and is chosen to be the fraction of the standard deviation of
the data. BDS test is distributed standard normal asymptotically. j

1
and j

2
refer to the largest two

Lyapunov exponents.

similar patterns. The autocorrelations for other combinations of the crossover
and mutation rate parameters are similar in two sets of the overlapping-
generations models and are not reported here.

In addition, we calculated the BDS statistic of Brock et al. (1996).5 The BDS
statistic tests the null hypothesis of identical and independent distribution and it
is shown to have good power against nonlinear alternatives. It is distributed
asymptotically standard normal. The calculations are reported in Tables 2}5 for
two di!erent sets of crossover and mutation values of the two overlapping-
generations models.6 The BDS analysis is carried out in three segments of each

5The BDS test is calculated by the LeBaron (1997) routine.
6The remaining six di!erent sets of crossover and mutation values for two sets of overlapping-

generations models are similar to the ones presented in Tables 2}5 and are not reported here.
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Table 3
BDS tests and the Lyapunov exponents for the foreign exchange returns w1"10, w2"4,
H

1
"3000, H

2
"3600, pcross"0.75, pmut"0.033

Description First 500 First 5000 Last 5000
observations observations observations

BDS (e"0.75p)
m"2 5.02 24.50 25.31
m"3 11.52 41.88 42.31
m"4 13.32 54.93 55.16
m"5 16.75 72.55 73.86

BDS (e"0.50p)
m"2 8.03 26.29 29.22
m"3 16.01 48.56 52.40
m"4 19.55 71.16 76.92
m"5 26.16 106.84 119.24

BDS (e"0.25p)
m"2 13.79 33.03 37.30
m"3 24.86 67.04 73.09
m"4 32.70 115.63 132.51
m"5 47.76 219.33 269.79

Lyapunov exponents
j
1

0.1471 0.1713 0.1474
j
2

!0.8921 !0.9818 !1.2701

Notes: p is the standard deviation of the exchange rates. p is 0.6535, 0.5927 and 0.5645 for the
exchange rates in the "rst, second and the third columns, respectively. m refers to the embedding
dimension. e is the distance parameter and is chosen to be the fraction of the standard deviation of
the data. BDS test is distributed standard normal asymptotically. j

1
and j

2
refer to the largest two

Lyapunov exponents.

data set. For all three segments of each exchange rate series, the BDS statistic
rejects the null hypothesis of identical and independent distribution in all series
except a few cases. Therefore, the Ljung}Box}Pierce statistic and the BDS
statistic results clearly rule out the lack of persistence in the foreign exchange
series.

To investigate the sources of this persistence, the phase diagrams in Figs. 2
and 3 are plotted. Figs. 2(a) and (b) provide the phase diagrams for the last 5000
observations of the exchange rates for the "rst parameter set of the overlapping-
generations model and two combinations of the crossover and mutation rates.
Figs. 3(a) and (b) are for the second parameter set of the overlapping-generations
model and for the two combinations of the crossover and mutation rates. The
interesting aspects of the "gures are that there is a well-de"ned attractor for the
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Table 4
BDS tests and the Lyapunov exponents for the foreign exchange returns
w1"10, w2"1, H

1
"3000, H

2
"3600, pcross "0.6, pmut "0.033

Description First 500 First 5000 Last 5000
observations observations observations

BDS (e"0.75p)
m"2 !1.71 !0.94 1.21
m"3 5.08 23.04 27.54
m"4 6.60 28.60 44.03
m"5 9.83 42.84 70.65

BDS (e"0.50p)
m"2 0.93 7.76 11.30
m"3 9.88 37.62 47.25
m"4 14.38 51.54 86.92
m"5 22.19 83.01 164.59

BDS (e"0.25p)
m"2 5.03 22.06 32.62
m"3 16.96 61.74 104.55
m"4 29.14 102.70 266.55
m"5 56.85 205.75 746.88

Lyapunov exponents
j
1

0.0410 0.2611 0.2971
j
2

!0.9631 !1.1211 !1.0048

Notes: p is the standard deviation of the exchange rates. p is 1.7760, 1.4226 and 1.2446 for the
exchange rates in the "rst, second and the third columns, respectively. m refers to the embedding
dimension. e is the distance parameter and is chosen to be the fraction of the standard deviation of
the data. BDS test is distributed standard normal asymptotically. j

1
and j

2
refer to the largest two

Lyapunov exponents.

foreign exchange rates for all series and the shape of the attractor is robust to the
changes in the overlapping-generations model parameters as well as in the
changes for the crossover and mutation rates.

To verify whether this attractor is chaotic, the largest two Lyapunov expo-
nents are calculated and reported in Tables 2}5. The Lyapunov exponents are
estimated by the Genc7 ay and Dechert (1992) algorithm7 which is a Jacobian-
based Lyapunov exponent algorithm and shown to have good small sample
properties. If the attractor under investigation is dissipative, the positive
Lyapunov exponent is a su$cient condition for the existence of chaotic attrac-
tor. The largest Lyapunov exponent (j

1
) is positive in all segments of each data

7An application of this algorithm with the spot exchange rates is presented in Dechert and
Genc7 ay (1992).
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Table 5
BDS tests and the Lyapunov exponents for the foreign exchange returns w1"10, w2"1,
H

1
"3000, H

2
"3600, pcross "0.75, pmut "0.033

Description First 500 First 5000 Last 5000
observations observations observations

BDS (e"0.75p)
m"2 !0.80 !2.89 0.50
m"3 6.74 23.50 24.33
m"4 8.27 35.61 38.96
m"5 12.15 58.42 64.36

BDS (e"0.50p)
m"2 1.29 3.40 8.93
m"3 10.26 35.89 42.80
m"4 14.71 62.77 79.09
m"5 22.87 116.74 150.20

BDS (e"0.25p)
m"2 5.67 17.54 27.18
m"3 16.78 71.91 89.26
m"4 28.99 168.20 220.71
m"5 57.12 467.16 605.68

Lyapunov exponents
j
1

0.0464 0.1512 0.2226
j
2

!0.8244 !0.8711 !0.9779

Notes: p is the standard deviation of the exchange rates. p is 1.4636, 1.3349 and 1.3986 for the
exchange rates in the "rst, second and the third columns, respectively. m refers to the embedding
dimension. e is the distance parameter and is chosen to be the fraction of the standard deviation of
the data. BDS test is distributed standard normal asymptotically. j

1
and j

2
refer to the largest two

Lyapunov exponents.

set and it is robust to changes in the overlapping-generations model and the
genetic algorithm parameters. The positiveness of the largest Lyapunov expo-
nents in Tables 2}5 con"rm that attractors under investigation are chaotic.

As a further check, the linear structure in the foreign exchange returns is
pre-"ltered and the BDS test is calculated from the residuals. The autoregressive
(AR) model with 10 lags, AR(10), has su$ciently large number of lags to capture
the linear persistence in the series.8 In addition to the AR(10) model, the
AR(10)-GARCH(1,1) model is also estimated and the normalized residuals are
tested with the BDS test. The AR(10)-GARCH(1, 1) model is estimated to
pre-"lter any nonlinearities originating from the potential volatility clustering.

8The AR(10) model improves on the AR(5) model based on information theoretic criteria.
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Fig. 2. (a) Phase portrait of foreign exchange returns for OLG Model I: pcross"0.6, pmut"0.033.
(b) Phase portrait of foreign exchange returns for OLG Model I: pcross"0.75, pmut"0.033.
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Fig. 3. (a) Phase portrait of foreign exchange returns for OLG Model II: pcross"0.6, pmut"0.033.
(b) Phase portrait of foreign exchange returns for OLG Model II: pcross"0.75, pmut"0.033.

J. Arifovic, R. Genc7 ay / Journal of Economic Dynamics & Control 24 (2000) 981}1005 997



Table 6
BDS tests from the AR(10) and AR(10)-GARCH(1, 1) residuals OLG Model I

Description pcross"0.60, pmut"0.033 pcross"0.75, pmut"0.033

AR(10) AR(10)-GARCH(1,1) AR(10) AR(10)-GARCH(1,1)

BDS (e"0.75p)
m"2 25.12 0.34 24.03 3.14
m"3 34.13 2.90 33.85 5.11
m"4 43.06 5.91 45.95 7.73
m"5 55.46 9.91 62.71 11.51

BDS (e"0.50p)
m"2 25.95 4.55 26.42 7.12
m"3 36.61 7.70 40.54 10.16
m"4 50.74 14.23 63.86 16.26
m"5 72.30 21.58 101.94 23.76

BDS (e"0.25p)
m"2 27.22 8.14 29.14 10.30
m"3 40.62 12.88 50.05 15.52
m"4 65.46 22.85 98.28 26.54
m"5 111.54 35.47 204.55 40.54

Notes: p is the standard deviation of normalized residuals. m refers to the embedding dimension.
e is the distance parameter and is chosen to be the fraction of the standard deviation of the
normalized residuals.

The results are presented in Tables 6 and 7 for the two overlapping generations
economies, respectively. The results indicate that there is a substantial amount
of persistence left over in the residuals of the AR(10) model as the BDS test
rejects the null hypothesis of the identical and independent distribution of the
AR(10) residuals. When evaluated with the BDS test, the degree of persistence in
the AR(10)-GARCH(1, 1) residuals are much smaller but still statistically signi"-
cant for both overlapping generations models. Therefore, this further check with
the pre-"ltered data indicate that the persistence in the foreign exchange returns
cannot be captured by a linear AR model or an AR model which accounts for
volatility clustering.

4. The analysis of the dynamics

The exhibited dynamics are robust in regard to the changes in the parameter
values of both the economic model and the genetic algorithm. The observed
persistence in the simulated data is due to the joint e!ects related to the
indeterminacy of equilibria and the dynamics generated by the genetic algo-
rithm operators. Arifovic (1996) demonstrates that a stationary equilibrium of
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Table 7
BDS tests from the AR(10) and AR(10)-GARCH(1, 1) residuals OLG Model II

Description pcross"0.60, pmut"0.033 pcross"0.75, pmut"0.033

AR(10) AR(10)-GARCH(1,1) AR(10) AR(10)-GARCH(1,1)

BDS (e"0.75p)
m"2 14.48 !5.56 10.84 !1.83
m"3 47.21 4.13 40.29 7.55
m"4 72.83 8.49 67.59 11.89
m"5 125.58 16.64 112.26 19.77

BDS (e"0.50p)
m"2 23.43 !2.89 22.11 3.20
m"3 72.00 8.71 69.99 14.49
m"4 142.86 17.22 142.33 23.01
m"5 287.71 31.47 293.49 37.47

BDS (e"0.25p)
m"2 42.87 !0.29 40.94 6.79
m"3 136.87 13.57 137.34 21.55
m"4 392.07 25.76 389.79 35.82
m"5 1210.58 46.80 1218.14 64.71

Notes: p is the standard deviation of normalized residuals. m refers to the embedding dimension.
e is the distance parameter and is chosen to be the fraction of the standard deviation of the
normalized residuals.

this model in which both currencies are valued is unstable under the genetic
algorithm dynamics.

Suppose that the genetic algorithm economy has been in a stationary equilib-
rium in t!1 and t. In a stationary equilibrium, all strings decode to the same
values of the "rst-period consumption and portfolio fraction and the rates of
return on two currencies are equal. When the genetic algorithm is applied at
time t#1, reproduction and crossover have no e!ect. Mutation will bring
diversity into the population, but whether the new strings, di!erent from the
equilibrium ones, become members of the actual populations depends on the
election operator. This operator will admit all those strings whose portfolio
fractions decode to numbers di!erent from the stationary equilibrium ones, but
that still have stationary equilibrium values of the "rst-period consumption.
They pass the election operator test because their "tness is evaluated at the
previous period rates of return on two currencies. Because the economy was in
a stationary equilibrium in the previous two periods, the two rates of return
were equal. This is the reason why the o!spring with stationary values of the
"rst-period consumption and portfolio fractions di!erent from the stationary
ones will have potential "tness value equal to the "tness value of their parents'.
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From the standpoint of the election operator, actual fractions placed in each
currency do not matter since the rates of return were equal. Thus, the "tness
value of these o!spring will be the same as the "tness value of their parents' that
decode to the stationary equilibrium values.

Once the diversity is brought into the populations, the rates of return on two
currencies will no longer be equal. Further adaptation will favor strings that
place higher fractions of savings into the currency with a higher rate of return.
Consequently, even if the economy reaches a stationary equilibrium by chance
or if it is initialized at a stationary equilibrium, the genetic algorithm dynamics
will take it away from that stationary equilibrium.

In general, the out-of-equilibrium heterogeneity of the portfolio fraction
values results in the inequality of the rates of return on two currencies. The
genetic algorithm agents seek to exploit this arbitrage opportunity by placing
larger fractions of their savings into the currency that had a higher rate of return
in the previous period. If the aggregate change of the portfolio fraction is large
enough, the direction of the inequality is preserved and the value of the currency
with the higher rate of return increases. On the other hand, if the aggregate
change is not large enough, the reversal of the inequality of the rates of return
occurs. The reversal will prompt the genetic algorithm agents to place more
savings into the currency whose value was decreasing prior to the reversal. As
a result, the exchange rate changes the direction of movement. These dynamics
bring about the #uctuations in the portfolio fraction and the exchange rate that
persist over time.

While the set of equilibria indexed by the exchange rates in the range (0,R) is
unbounded, our analysis will focus on the bounded set of equilibria in which
both currencies are valued. The value of e(t)"0 implies the equilibrium in
which only currency 1 is valued, and the value of e(t)PR implies the equilib-
rium in which only currency 2 is valued. While these two equilibria are not
a priori ruled out in the algorithm, we never observed them in the simulations,
i.e. the genetic algorithm economies never reached the point where only one of
the two currencies is used.9

9A version of the cash-in-advance model with three types of agents who face di!erent portfolio
restrictions (see King et al. (1992)) could be used in order to get a bounded set of values of the
equilibrium exchange rate. In this model, type 1 can hold only currency 1, type 2 only currency 2,
while type 3 has no restrictions on the portfolio holdings, i.e. type 3 can hold both currencies. The
exchange rate is still indeterminate, but the range of values is bounded and the exchange rate is
positive and "nite for all possible values of the portfolio of type 3. If type 3 agents were endowed with
the genetic algorithm in order to decide on their portfolio, the exchange rate would exhibit similar
dynamics. Again, a perfect foresight equilibrium in this economy would not be stable under the
genetic algorithm dynamics, and the model would exhibit persistent #uctuations of the exchange
rate. The source of instability would be the same as the one described above for our overlapping-
generations model.
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For the purpose of the subsequent analysis, we will assume that there is
a lower bound and an upper bound on the average portfolio fraction, fM (t), such
that e(fM (t)(1!e for all t, where e is arbitrarily small positive value. If
fM (t)"0, currency 1 is not valued and if fM (t)"1, currency 2 is not valued. Thus
this assumption guarantees that both currencies will always be valued, i.e. that
both p

1
(t) and p

2
(t) always take strictly positive, "nite values. In the implementa-

tion of the genetic algorithm, the value of e depends on the length of a part of
a binary string used to decode the portfolio fraction. The smallest positive
number between 0 and 1 that can be encoded is equal to 1/Kf where
Kf"2l!1 and l is the number of bits used to encode the portfolio fraction.
Thus the larger the length, l, the smaller positive real number that can be
encoded. In our simulations l"10 so that Kf"1023. In order to satisfy the
lower bound on fM (t), N!1 agents can have f

i
(t)'s equal to 0 and only one agent

with f
i,t
"1/1023 is required. Likewise, to satisfy the upper bound, N!1 agents

can have f
i
(t)'s equal to 1 and only one agent with f

i
(t)"1!1/1023N is

required. Thus the smallest value that e can take is 1/1023N.
The second assumption is related to the genetic algorithm value of the

"rst-period consumption which is set equal to the stationary equilibrium value.
This assumption is made in order to make the analysis tractable and, in fact, it
captures the main feature of the behavior of the "rst-period consumption values
that, after initial adjustment, remain very close to the stationary values (see
Arifovic, 1996). Then, the rates of return on two currencies are given by

R
1
(t)"

+
i
f
i
(t)s

i
(t)

+
i
f
i
(t!1)s

i
(t!1)

"

fM (t)sH
fM (t!1)sH

,

R
1
(t)"

fM (t)
fM (t!1)

,

R
2
(t)"

+
i
(1!f

i
(t))s

i
(t)

+
i
(1!f

i
(t!1))s

i
(t!1)

"

(1!fM (t))sH
(1!fM (t!1))sH

,

R
2
(t)"

(1!fM (t))
(1!fM (t!1))

.

Notice that e(t)/e(t!1)"R
2
(t)/R

1
(t) and thus r(t)"log (R

2
(t)/R

1
(t))"

logR
2
(t)!logR

1
(t). Let h(t#1) de"ne the ratio between the exchange rate

returns at t#1 and t, r(t#1) and r(t). Then h(t#1) is given by

logR
2
(t#1)!logR

1
(t#1)

log R
2
(t)!logR

1
(t)

.

The values of this ratio depend on the values taken by the average portfolio
fraction. When the absolute value of this ratio is greater than one, the dynamical
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system is expanding and when it is less than one, it is contracting. As noted
earlier, the inequality of the rates of return on the two currencies is driving the
changes in the portfolio fractions. For example, suppose that R

1
(t)'R

2
(t).10 As

long as this direction of inequality is preserved, the genetic operators will work
on increasing fM (t), i.e. crossover and mutation will create strings with increasing
values of f

i
(t)'s that the election operator will admit into the actual population of

decision rules. The preservation of the direction of inequality requires the
sequence of increasing values of fM (t), i.e. fM (t)'fM (t!1) for time periods during
which R

1
(t)'R

2
(t).

Notice that the probability of obtaining larger values of fM (t) is decreasing in
the size of fM (t). In other words, as fM (t) gets larger, the number of bits that can be
changed in order to increase its value gets smaller, and the probability that
exactly those bits will be changed gets smaller. (The same is true of the process
that works in the opposite direction where the values of fM (t) are decreasing since
R

1
(t)(R

2
(t).) If mutation does not bring about su$cient amount of change to

make fM (t)'fM (t!1), the direction of inequality is reversed, i.e. R
1
(t)(R

2
(t), and

the genetic algorithm starts working in the opposite direction, i.e. accepting
strings with lower values of f

i
(t#1).

At time t, there are three possibilities for the relationship between the two
rates of return, R

1
(t)'R

2
(t), R

1
(t)(R

2
(t), and R

1
(t)"R

2
(t). We will discuss

the "rst two since the equality of the rates of return was never observed in our
simulations.11 The direction of inequality at time t together with the direction of
inequality at time t#1 will determine the value of h(t#1).

Consider "rst the case where R
1
(t)'R

2
(t). At time t#1, the population of

generation t!1 is contributing copies and o!spring rules to be included into
the population of generation t#1. Because R

1
(t)'R

2
(t), the result of the

election operator test will be that fM (t#1)5fM (t!1). The relationship between
fM (t#1) and fM (t) will determine the direction of inequality of the rates of return
at time t#1. There are two possible outcomes: that fM (t#1)'fM (t) which implies
R

1
(t#1)'R

2
(t#1), and that fM (t#1)(fM (t) which implies R

1
(t#1)(

R
2
(t#1).
If mutation results in an increase in the average portfolio fraction su$cient to

preserve the direction of inequality, i.e. the outcome is R
1
(t#1)'R

2
(t#1), the

value of h(t#1) is positive. Whether it is greater or less than 1 depends on the
extent of the change in fM (t). Larger changes are more likely at low values of fM (t)
(as larger number of bits can be changed from 0 to 1).

10The higher of the two rates of return is greater than 1, and that the lower of the two is less
than 1.

11Note that there is a positive probability that the system reaches the point where R
1
(t)"R

2
(t).

In this case, a positive rate of mutation will induce changes in the portfolio fractions, increase or
decrease its average value, and the inequality of the rates of return will be restored.
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If mutation fails to generate su$cient increase in the average portfolio
fraction, the direction of inequality is reversed, i.e. fM (t#1)(fM (t) and thus
R

1
(t#1)(R

2
(t#1). In this case, the value of h(t#1) is negative, and whether

the absolute value is greater or less than 1 depends on the extent of the change in
R

1
(t) and R

2
(t), i.e. on the extent of the change in fM (t). If an increase in R

2
(t) is

greater than a decrease in R
1
(t), the absolute value of h(t#1) will be greater

than 1 and vice versa.
Consider now the case where R

1
(t)(R

2
(t) at time t. The result of the

application of the election operator test at t#1 will be fM (t#1)4fM (t!1). The
relationship between fM (t#1) and fM (t) will determine the direction of inequality
of the rates of return at time t#1. There are two possible outcomes at time
t#1: that fM (t#1)(fM (t) which implies R

1
(t#1)(R

2
(t#1), and that

fM (t#1)'fM (t) which implies R
1
(t#1)'R

2
(t#1).

If mutation results in a decrease in the average portfolio fraction su$cient to
preserve the direction of inequality, i.e. the outcome is R

1
(t#1)(R

2
(t#1), the

value of h(t#1) is positive. Again, whether it is greater or less than 1 depends on
the magnitude of the change in fM (t). Larger changes are more likely at high
values of fM (t) because there is a larger number of bits that can be changed from
1 to 0 in order to decrease the value of fM (t).

If mutation fails to generate su$cient decrease in the average portfolio
fraction, the direction of inequality is reversed, i.e fM (t#1)'fM (t) and thus
R

1
(t#1)'R

2
(t#1). In this case, the value of h(t#1) is negative. Whether its

absolute value is greater or less than 1 depends again on the extent of the change
in R

1
(t) and R

2
(t). If an increase in R

1
(t) is greater than a decrease in R

2
(t), then

Dh(t#1)D'1. If an increase in R
1
(t) is less than a decrease in R

2
(t), then

Dh(t#1)D(1.
Convergence to a stationary equilibrium implies the equality of the rates of

return on two currencies as well as the rates of return that are constant over
time. The genetic algorithm economy may get to a stationary equilibrium by
chance, but it will not stay there and there is a positive probability that an
inequality of the rates of return would be restored, resulting in continuing
#uctuations of the exchange rate and consequently, #uctuations in the exchange
rate returns. Thus the values of the returns on the exchange rate do not tend to
settle down to a stationary equilibrium over time. Overall, it is the properties of
the map h(t#1), together with the e!ects of the mutation operator and the
boundedness of the set of values of the returns, that give rise to the observed
chaotic dynamics.

5. Conclusions

We study the overlapping generations economy with two currencies with
genetic algorithm learning and investigate the statistical properties of the
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resulting time series data. The theoretical model implies a constant exchange
rate under the perfect foresight assumption. Under the genetic algorithm learn-
ing, the models equilibrium dynamics is not constant but exhibits bounded
oscillations. The time series analysis of the exchange rate returns indicates that
the dynamics of the data is chaotic. This result is robust in regard to the
parameter values of the economic model and of the genetic algorithm operators.
The analysis shows that these dynamics result from the interaction of the
properties that characterize the theoretical model and the genetic algorithm
adaptation.
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