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a b s t r a c t

Several approaches have been proposed for evaluating information in expected utility theory. Among the
most popular approaches are the expected utility increase, the selling price and the buying price. While
the expected utility increase and the selling price always agree in ranking information alternatives, Hazen
and Sounderpandian [11] have demonstrated that the buying price may not always agree with the other
two. That is, in some cases, where the expected utility increase would value information A more highly
than information B, the buying price may reverse these preferences. In this paper, we discuss the condi-
tions under which all these approaches agree in a generic decision environment where the decision
maker may choose to acquire arbitrary information bundles.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Information gathering is an essential element of decision making under uncertainty. Expected utility theory states that a decision maker
(DM) is never worse off with additional information in non-strategic decision environments (see, [5]). In fact, empirical studies suggest that
DMs may also seek information that is non-instrumental to their decisions (see, [2,19]). However, even when DMs are assumed to behave
optimally as prescribed by the expected utility theory, their preferences toward information do not necessarily exhibit monotonicity with
respect to the critical attributes in the decision environment such as the initial wealth, risk aversion and action flexibility (see, [10,12]).
Lack of monotonicity between the value of information and risk aversion is also confirmed by the experiments presented in [16].

Other experimental studies offer conflicting insights into how DMs evaluate information in real life settings. For example, when DMs
engage in strategic interactions, they tend to overvalue information (see, [9]). A similar behavior is observed for gathering information
in organizations (see, [8]). In non-strategic settings, however, experiments in [6,14,15] showed that DMs undervalue available information,
sometimes even to the point of discounting ambiguous information (see, [20]). Perhaps, as argued in [7], this kind of behavior is observed
because ‘the valuation of information relies heavily on consequential reasoning’; a cognitive activity in which DMs do not always perform
well (see, [17,18]). Delquié [7] illustrates through a series of experiments that information is valued less than an equivalent option in a
simple two-stage decision environment.

Despite its shortcomings in fully characterizing the real life human behavior in certain decision settings, expected utility theory predicts
preference reversals (see, [11]). Such reversals occur when a DM is willing to pay less to acquire an information alternative that is other-
wise preferred if information is free. There is a vast body of experimental evidence on lottery preference reversals going back to [13]. In this
paper, we investigate the conditions under which two approaches to evaluate information agree in ranking information alternatives: buy-
ing price approach and expected utility increase approach. Following [1], we define information (or in our vocabulary, information bundles)
as algebras of events on the outcome space. Acquisition of an information bundle enables a DM to learn whether a collection of events have
occurred. We consider a problem in which a DM with initial wealth level w has the option of playing one of the multiple lotteries or ignor-
ing this option to remain at wealth level w. The DM holds a prior belief on the lottery’s probability law and obtains information to revise his
beliefs. Such situations arise commonly when an engineering designer must choose among alternate designs in an uncertain environment,
and where information may be obtained regarding, for example, the market size or product performance.
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2. Problem definition

We begin with a DM who has a continuous and monotonically increasing utility function u : R! R. The DM could select among lotteries
Pj : X! R; j 2 f1; . . . ;mg where X denotes the state space. Each lottery is a random variable mapping the states to monetary outcomes. A
lottery Pj is distinguished by the cumulative distribution function Fj (and an associated density fj) over the monetary outcomes, which may
be either positive or negative. The DM may select one of the lotteries or may choose not to play at all.

Before committing a decision, information bundles are available to the DM. Information bundles are generated by a collection of disjoint
events {A1, . . . ,Ak} that satisfy [k

j¼1Aj ¼ X. The information bundle I generated by this collection includes A1, . . . ,Ak and their complements
as well as the finite unions and intersections of the events in {A1, . . . ,Ak}. The expected utility increase2 Vðw; I ;uÞ of information bundle I with
utility function u and initial wealth w is defined as
2 In w
equival
Vðw; I ;uÞ :¼
X

i

PðAiÞ � max
j2f1;...;mg

fuðwÞ; E½uðwþPjÞjAi�g � max
j2f1;...;mg

fuðwÞ; E½uðwþPjÞ�g: ð1Þ
The buying price Bðw; I ; uÞ of information bundle I satisfies the equation
max
j2f1;...;mg

fuðwÞ; E½uðwÞ þPjÞ�g ¼
X

i

PðAiÞ � max
j2f1;...;mg

E½uðwþPj � Bðw; I ; ðuÞÞÞjðAiÞ�;uðw� Bðw; I ;uÞÞ
� �

: ð2Þ
A DM is said to exhibit a preference reversal on information bundles I1 and I2 if he ranks them differently using the expected utility increase
and the buying price approaches; that is Vðw; I1;uÞ > Vðw; I2;uÞ, but Bðw; I1;uÞ < Bðw; I2;uÞ, or vice versa.

After the acquisition of I , the DM may update his initial decision. Let P be the power set of X. We define an optimal decision function
du : R� P! R as follows,
duðw;AÞ ¼
þj; E½uðwþPjÞjA�P uðwÞ and E½uðwþPjÞjA� > E½uðwþPkÞjA� 8k 2 f1; . . . ;mg n fjg;
�1; o:w:

�

The optimal decision function informs us whether the DM chooses to play a lottery Pj at a wealth level w given he knows that A occurs. For
each I , we will group outcomes of the lottery in m + 1 sets. We place an outcome p 2 R into one of these sets depending on the optimal
action on the set among A1, . . . ,Ak that contains p. We define Cjðu;w; IÞ ¼ fp 2 R : duðw;AÞ ¼ þj for A 2 {A1, . . . ,Ak} and p 2 A}. For example,
all outcomes in Aj 2 {A1, . . . ,Ak} is in Cjðu;w; IÞ if the optimal decision given Aj is to play lottery Pj. Note that, [j2f�1;1;...;mgCjðu;w; IÞ ¼ R where
C�1ðu;w; IÞ denotes the set of outcomes on which no lottery is played. In what follows, we consider a single DM with a utility function u and
thus suppress the variable u in Vðw; I ;uÞ;Bðw; I ;uÞ;Cjðu;w; IÞ and du(w,A).

3. Comparison of arbitrary information bundles

For a strictly increasing and continuous utility function u, our first result establishes conditions under which both approaches agree in
ranking of generic information bundles.

Proposition 1. Let u be a strictly increasing, continuous and strictly concave utility function exhibiting decreasing degree of risk aversion. Let I1

and I2 be two arbitrary information bundles. Then if Vðx; I1Þ > Vðx; I2Þ for x 2 [0,w], then Bðw; I1Þ > Bðw; I2Þ.
Proof. The equations for the buying price are,
max
j2f1;...;mg

fE½uðwþPjÞ�;uðwÞg ¼
X

j2f1;...;ng
PðCjðw� Bðw; I zÞ; I zÞÞ � E½uðwþPj � Bðw; I zÞÞjCjðw� Bðw; I zÞ; I zÞ�

þ PðC�1ðw� Bðw; I zÞ; I zÞÞ � uðw� Bðw; I zÞÞ; z ¼ 1;2:
We prove by contradiction. Assume Bðw; I2Þ > Bðw; I1Þ. Using the above equations,
X
j2f1;...;mg

Z
Cjðw�Bðw;I1Þ;I1Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ PðC�1ðw� Bðw; I1Þ; I1ÞÞ � uðw� Bðw; I1ÞÞ

<
X

j2f1;...;mg

Z
Cjðw�Bðw;I2Þ;I2Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ PðC�1ðw� Bðw; I2Þ; I2ÞÞ � uðw� Bðw; I1ÞÞ: ð3Þ
We know that w� Bðw; I2Þ < w� Bðw; I1Þ, which in turn implies C�1ðw� Bðw; I2Þ; I2Þ � C�1ðw� Bðw; I1Þ; I2Þ as u exhibits decreasing de-
gree of risk aversion. Let Cd ¼ C�1ðw� Bðw; I1Þ; I2Þc � C�1ðw� Bðw; I2Þ; I2Þc . Note that on Cd, the decision is to play some lottery at the
wealth level of w� Bðw; I1Þ. This implies,
X
j2f1;...;mg

Z
Cjðw�Bðw;I2Þ;I2Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ ½PðCdÞ þ PðC�1ðw� Bðw; I1Þ; I2ÞÞ� � uðw� Bðw; I1ÞÞ

6

X
j2f1;...;mg

Z
Cjðw�Bðw;I1Þ;I2Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ PðC�1ðw� Bðw; I1Þ; I2ÞÞ � uðw� Bðw; I1ÞÞ: ð4Þ
hat follows, we compare between expected utility increase and buying price, since it has been previously shown that expected utility increase and selling price are
ent for ranking information.
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The left hand side of (4) and the right hand side of (3) are exactly the same. Hence, both (3) and (4) can be combined to yield,

X

j2f1;...;mg

Z
Cjðw�Bðw;I1Þ;I1Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ PðC�1ðw� Bðw; I1Þ; I1ÞÞ � uðw� Bðw; I1ÞÞ

<
X

j2f1;...;mg

Z
Cjðw�Bðw;I1Þ;I2Þ

uðwþ p� Bðw; I1ÞÞ � fjðpÞdpþ PðC�1ðw� Bðw; I1Þ; I2ÞÞ � uðw� Bðw; I1ÞÞ: ð5Þ
A contradiction follows because (5) states that Vðw� Bðw; I1Þ; I2Þ > Vðw� Bðw; I1Þ; I1Þ and w� Bðw; I1Þ 2 ½0;w�. Hence, the proposition is
proved. h

Proposition 1 holds for a fairly large class of utility functions. The caveat is that the DM at a wealth level w should not switch his ranking of
two information bundles in the range [0,w]. As first noted in [13], lottery preference reversals occur as the amount paid for information acqui-
sition may change the risk preferences. The buying price equations evaluate the preferences of the DM at a lower wealth level. Consequently,
if the DM changes his optimal action after paying for information acquisition, Proposition 1 states that a preference reversal may occur.

4. Information about a single event

For information bundles generated by a single arbitrary event, we can relax the condition in Proposition 1 when we restrict ourselves to
evaluation of a single lottery P with a cumulative distribution function F (and density f). We state that for one-switch utility functions, it suf-
fices to check the expected utility increase ranking at two wealth levels. For the general case, imposing a one-switch rule on utility functions
does not yield the result without assuming Vðx; I1Þ > Vðx; I2Þ for all x 2 (0,w). The family of one-switch utility functions admits four different
functional forms: quadratic, sumex, linear plus exponential and linear times exponential (see, [4]). Among these, linear plus exponential is
the only utility function in which the DM’s preferences toward a riskier lottery increase consistently as the DM gets wealthier (see, [3]).

Let A and B be two arbitrary events. Information bundles generated by these events are IA and IB, respectively. In this section, the opti-
mal decision function du(w,A) = +1 when the DM chooses to play P given A occurs, and du(w,A) = �1 if P is not played when A occurs.

Proposition 2. Let u be a strictly increasing and continuous utility function obeying the one-switch rule. Let A and B be two arbitrary events whose
outcomes can be resolved before making a decision. If Vðw; IBÞ > Vðw; IAÞ and Vð�w; IBÞ > Vð�w; IAÞ for some �w 6 0, then Bðw; IBÞ > Bðw; IAÞ.
Proof. The buying price equation for IA is,
max E½uðwþPÞ�;uðwÞf g ¼ PðAÞ �maxfE½uðwþP� Bðw; IAÞÞjA�;uðw� Bðw; IAÞÞg þ ð1� PðAÞÞ �maxfE½uðwþP� Bðw; IAÞÞjAc�;uðw
� Bðw; IAÞÞg:
The equation for IB is similar and can be obtained by substituting B for A in the above equation. We consider four cases.

Case 1: d(w,A) = d(w,B) = �1. The buying price equations are combined to yield,
PðBÞ � uðw� Bðw; IBÞÞ þ
Z

Bc
uðwþ p� Bðw; IBÞÞ � f ðpÞdp ¼ PðAÞ � uðw� Bðw; IAÞÞ þ

Z
Ac

uðwþ p� Bðw; IAÞÞ � f ðpÞdp: ð6Þ
If we assume that Bðw; IAÞ > Bðw; IBÞ, and substitute Bðw; IAÞ with Bðw; IBÞ in Eq. (6), we obtain after a little rearrangement,
PðB� AÞ � uðw� Bðw; IBÞÞ þ
Z

A�B
uðwþ p� Bðw; IBÞÞ � f ðpÞdp < PðA� BÞ � uðw� Bðw; IBÞÞ þ

Z
B�A

uðwþ p� Bðw; IBÞÞ � f ðpÞdp: ð7Þ
The conditions for the expected utility increase approach imply,
PðB� AÞ � uðwÞ þ
Z

A�B
uðwþ pÞ � f ðpÞdp > PðA� BÞ � uðwÞ þ

Z
B�A

uðwþ pÞ � f ðpÞdp;

PðB� AÞ � uð �wÞ þ
Z

A�B
uð �wþ pÞ � f ðpÞdp > PðA� BÞ � uð �wÞ þ

Z
B�A

uð �wþ pÞ � f ðpÞdp:
ð8Þ
Consider lotteries F and G such that F ¼ f0;PðxÞ 2 B� A;p;PðxÞ ¼ p 2 A� B; x; o:w:g for some x 2 R (i.e., F offers 0 when P(x) 2 B � A,
offers p when P(x) = p 2 A � B, and offers some value x otherwise) and G ¼ f0;PðxÞ 2 A� B;p;PðxÞ ¼ p 2 B� A; x; o:w:g for the same
x 2 R. Since u obeys the one-switch rule, and since Eqs. (7) and (8) evaluate and rank lotteries F and G for utility function u at different
wealth levels, we arrive at a contradiction. Note that, since u is strictly increasing and one-switch, Bðw; IAÞ ¼ Bðw; IBÞ is not possible either.
Then, Bðw; IBÞ > Bðw; IAÞ.

Case 2: d(w,A) = d(w,B) = +1. Since Bðw; IAÞ ¼ Bðw; IAc Þ and Bðw; IBÞ ¼ Bðw; IBc Þ, the proof of this case is identical to Case 1.
Case 3: d(w,A) = +1, d(w,B) = �1. Again, if we assume Bðw; IAÞ > Bðw; IBÞ and incorporate this into the buying price equation,
PðAc \ BcÞ � uðw� Bðw; IBÞÞ þ
Z

A\B
uðwþ p� Bðw; IBÞÞ � f ðpÞdp > PðA \ BÞ � uðw� Bðw; IBÞÞ þ

Z
Ac\Bc

uðwþ p� Bðw; IBÞÞ

� f ðpÞdp: ð9Þ
Using the expected utility increase conditions,
PðA \ BÞ � uðwÞ þ
Z

Ac\Bc
uðwþ pÞ � f ðpÞdp > PðAc \ BcÞ � uðwÞ þ

Z
A\B

uðwþ pÞ � f ðpÞdp;

PðA \ BÞ � uð �wÞ þ
Z

Ac\Bc
uð �wþ pÞ � f ðpÞdp > PðAc \ BcÞ � uð �wÞ þ

Z
A\B

uð�wþ pÞ � f ðpÞdp:
ð10Þ
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Define lotteries H and E as follows: H ¼ f0;PðxÞ 2 Ac \ Bc;p;PðxÞ ¼ p 2 A \ B; y; o:w:g for some y 2 R and E ¼ f0;PðxÞ 2 A \ B;

p;PðxÞ ¼ p 2 Ac \ Bc; y; o:w:g for the same y 2 R.
Similarly, evaluation of lotteries H and E and the assumption that u obeys the one-switch rule yields the contradiction. As in Case 1,
Bðw; IAÞ ¼ Bðw; IBÞ does not conform with the one-switch behavior. Hence the conclusion follows in this case.

Case 4: d(w,A) = �1, d(w,B) = +1. Since Bðw; IAÞ ¼ Bðw; IAc Þ and Bðw; IBÞ ¼ Bðw; IBc Þ, this case is identical to Case 3. Hence the proposition
follows. h

5. Illustrative example

In this example, we illustrate the effect of DM’s utility function on information value. We consider a simple lottery rather than a con-
tinuous lottery for analytical convenience,
Outcome
 x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
Probability
 0.25
 0.10
 0.055
 0.045
 0.25
 0.05
 0.10
 0.15

Payoff, $
 30
 �20
 80
 �40
 �70
 90
 10
 �5
Assume that the DM has an initial wealth level w of 130. First, we assume his preferences are represented by the one-switch utility func-
tion u(x) = x � be�cx where b = 20 and c = 0.001. We consider two events: A = {x1,x2,x4,x5} and B = {x3,x4,x5}. If we check the expected
utility conditions of Proposition 2, we observe that
Vð130; IBÞ > Vð130; IAÞ and Vð0; IBÞ > Vð0; IAÞ:
In this case Bð130; IBÞ � 10:25 and Bð130; IAÞ � $9:14, so Bð130; IBÞ > Bð130; IAÞ as well.
If, on the other hand, the DM’s preferences are represented by the n-switch utility function u(x) = ax3 + bx2 + cx where a = 10�7,

b = 2 � 10�7, and c = 3 � 10�7, one can check that,
Vð130; IBÞ > Vð130; IAÞ and Vð�53; IBÞ > Vð�53; IAÞ;
but Bð130; IBÞ � $2:95 and Bð130; IAÞ � 2:98, so
Bð130; IBÞ < Bð130; IAÞ:
As such, Proposition 2 does not hold for n-switch utility functions, and thus one-switch condition is necessary. This example also illus-
trates one aspect of reversals that was encountered in many counterexamples that we generated. When preference reversals occur, we
observed that the decisions with respect to both approaches were close (albeit in different directions). Hence, reversals generally occur
when small changes in wealth level shift preferences with respect to two information bundles. This causes a small difference in the buying
prices of two information bundles as well (i.e., approximately 3¢ in the above example). We expect under expected utility theory that most
information preference reversals should be a result of such slight changes in evaluation of information bundles.

6. Conclusions

In this paper, we present sufficient conditions for agreement between the expected utility increase and the buying price approaches in
ranking information bundles. For an unrestricted class of information bundles, we show that both approaches agree if the ranking using the
expected utility approach does not switch on a bounded range of initial wealth levels. When we restrict our attention to one-switch utility
functions, information bundles generated by single arbitrary events and the choice of a single lottery, we show that it suffices to impose
conditions on ranking using the expected utility increase approach at only two wealth levels to obtain an agreement. We illustrate the role
of the one-switch condition in Proposition 2 with an example. In particular, we show that the result in Proposition 2 does not necessarily
hold for n-switch utility functions and hence one-switch is a necessary condition for the result to hold.

The implications of our results are twofold. First, expected utility theory predicts that risk averse DMs should not reverse their prefer-
ences toward risky lotteries as long as their lottery preferences remain robust to negative changes in wealth level. Preferences at higher
wealth levels do not have any bearing on whether the DM will reverse his preferences at some initial wealth level w. Second, if DMs’ pref-
erences are well-behaved in that their ranking of two risky lotteries change only once as a function of wealth level, then it is sufficient to
check the DM’s preferences at two separate wealth levels. It would be interesting to see how these behavior predictions made by our re-
sults match the real life behavior through future experimental studies. Furthermore, experiments could determine whether, in practice,
information preference reversals occur when slight changes in DMs’ wealth level cause a shift in preferences.
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