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On the use of phase-type distributions for
inventory management with supply disruptions
Barış Balcıog̃lua∗† and Ülkü Gürlerb

Maintaining the continuity of operations becomes increasingly important for systems that are subject to disruptions due to various
reasons. In this paper, we study an inventory system operating under a (q, r) policy, where the supply can become inaccessible for
random durations. The availability of the supply is modeled by assuming a single supplier that goes through ON and OFF periods
of stochastic duration, both of which are modeled by phase-type distributions (PTD). We provide two alternative representations
of the state transition probabilities of the system, one with integral and the other employing Kolmogorov differential equations.
We then use an efficient formulation for the analytical model that gives the optimal policy parameters and the long-run average
cost. An extensive numerical study is conducted, which shows that OFF time characteristics have a bigger impact on optimal policy
parameters. The ON time characteristics are also important for critical goods if disasters can happen. Copyright © 2011 John Wiley
& Sons, Ltd.
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1. Introduction

Hurricanes in the U.S.A., tsunami in Asia, and terrorist attacks are some examples from recent years which have caused
serious disruptions in trade transactions and supply of materials. When Silver [1] and Nahmias [2] first pointed out the need
of studying supplier unavailability, disruptions in the context of inventory models were usually considered to be arising due to
strikes, shut down plants under preventive maintenance, or vendors committed fully to the contracts of other patrons. While
these factors still deserve full attention, the unavoidable natural disasters or unwanted social tragedies have worsened the
severity of problems when supply is inaccessible. When the problem involves non-essential consumer goods, the demand of
which can display certain levels of variation due to prices set and existence of competitors, managerial tools become crucial
to safeguard the continuity of high service levels until the supply chain is retained. In cases of disasters, the humanitarian
concerns about providing affected people effectively with basic needs, such as water, food, heating energy, and medicine
come forward. Unlike the former case, the demand for most of the items in this category hardly shows variation due to their
role in our lives. Under this scenario, it is reasonable to assume that as soon as physical connections are set up, the demanded
basic items can be transferred, which implies that an additional lead time may not be observed.

In this paper, we study an inventory problem with deterministic demand where supply can be disrupted at random times
for random durations. In particular, we consider a single product, single location inventory system operating under the (q,r )
policy. Unlike the common assumption that the inventory can be replenished any time an order is placed, we now assume
that the supplier goes through ON (or is accessible) and OFF periods (or is inaccessible) of stochastic durations. Hence,
when the inventory level drops to the reorder point r , if the supplier is not available or cannot be reached, the supply chain
is interrupted for random durations.

The fundamental difficulty in this problem is obviously due to the uncertainty about when the supply chain will be
broken and for how long the disconnect will continue. In some cases, including natural disasters like recurring hurricanes,
historical data could be used to fit underlying distributions for the ON and OFF periods of the supplier. Otherwise,
hypothetical distributions could be considered for examining worst-case scenarios. When general distributions are fit
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for modeling ON and OFF periods, resulting models become analytically intractable. As a remedy, in our study we
model the ON and OFF periods of the supplier by phase-type distributions (PTD) to obtain the optimal inventory policy
parameters. The rationale behind this assumption is the fact that the family of PTD is sufficiently rich to cover most
of the commonly used distributions in stochastic systems, such as Exponential, Erlang, and Coxian. Their flexibility
and the Markovian structure also allow the use of these distributions for approximating general distributions, resulting
in analytically more tractable models. Although the use of PTD is detailed in the context of an inventory problem in
this study, the methods offer a more general application in other areas, such as production planning, scheduling, and
reliability.

Supplier uncertainty problems of this nature have been studied by several authors. Parlar and Berkin [3] and Berk and
Arreola-Risa [4] analyze the supplier uncertainty problem for the classical deterministic (EOQ) model with a single supplier
whose ON and OFF periods follow an Exponential distribution. Further extensions are considered in Parlar and Perry [5],
Parlar [6], Özekici and Parlar [7], Parlar [8] and Gürler and Parlar [9]. In a more recent work, Xia et al. [10] consider
disruption management in a production and inventory problem and minimize the deviations from the original plan. Mohebbi
[11] analyzes a supply uncertainty model with compound Poisson demand. The basic difference of his work from ours is
that Mohebbi considers compound Poisson demands that will always have a non-zero positive variance. Hence, his model
cannot simply reduce to our model of deterministic demand, which has a variance of zero. Mohebbi [11] assumes that if there
is an outstanding order accepted before the supplier enters its OFF period, this order will continue being processed. Thus,
during OFF periods only newly placed orders will be put on hold until the supplier becomes available again. Mohebbi and
Hao [12] revise this assumption such that processing outstanding orders stops as soon as the OFF period starts and resumes
from the point of interruption when the supplier enters its ON period. Mohebbi and Hao [13], on the other hand, consider
that when the supplier becomes available again if processing an order was stopped during the OFF period, the production
for that order has to start from scratch. Ross et al. [14] assume that the probability of disruption and demand intensity are
time dependent. They model the ON and OFF periods by PTD, however, since the demand is assumed to be Poisson and
the unmet demand is lost instead of being backordered, their model cannot be transformed to handle our problem. On top
of supplier disruption, Schmitt et al. [15] consider yield uncertainty as well in a system operating under periodic inventory
review and approximate base-stock levels. Among models considering constant demand rate, Parlar [6] studies a supplier
unavailability model where the ON periods of the supplier follow an Erlang distribution. The Erlang family can be used to
model random variables with coefficient of variations (variance to the squared-mean ratio) less than one. Hence, a significant
subset of the distribution functions is excluded from his analysis.

In previous research [5, 6, 9], analysis was focused on modeling the supplier ON periods, where the OFF periods were
either taken to be exponential, or even if it were considered to be general, the remaining OFF time was approximated by the
limiting forward recurrence time at the instance when the reorder point was crossed. Hence, the real impact of the OFF period
distribution was not elaborated, which by nature is a crucial component of the disruption models. Another contribution in our
paper is, therefore, to incorporate the exact distribution of the remaining OFF period, if we face a disruption at the instance
when we aimed at placing an order. When the OFF time is arbitrary, it is not analytically possible to establish exact results,
and time-consuming simulation–optimization approaches should be resorted to. In our study, to circumvent this difficulty,
we assume that the OFF periods follow the rich class of PTD and demonstrate how one can make use of the special structure
of PTD to yield analytical results.

As discussed in Section 3, our analytical model uses the state-transition probabilities of the continuous-time Markov
chain (CTMC) representing the ON/OFF states of the supplier. In the literature (see for instance Gürler and Parlar [9]),
these probabilities are obtained by employing techniques such as the trapezoidal rule that approximate the integral equations
relating the transition probabilities to one another. However, this results in big sparse matrices, which need to be inverted
for each candidate inventory policy. Since the search procedure described in Section 4 evaluates the costs of a large number
of candidates until the optimal policy and cost are obtained, i.e. inverts huge sparse matrices for many times, the traditional
approach is highly time-consuming. Although it is not one of our primary goals in this study, we provide an alternative,
yet more efficient numerical approach to obtain the state-transition probabilities. Instead of approximating the integrals, we
take their Laplace transforms and then numerically invert them via an efficient approach by Jagerman [16]. This helps us
by-pass inverting big matrices and obtain the state-transition probabilities consuming less time.

Our numerical findings indicate that modeling OFF periods correctly results in significant cost reductions. In particular, if
suboptimal EOQ parameters are used for replenishment, the resulting costs are unacceptably high compared to the optimal
policy parameters. Similarly, if suboptimal policy parameters, such as the ones obtained from a model assuming Exponential
OFF period, are used for problems with non-Exponential OFF periods, costs again increase significantly, especially for
moderately reliable suppliers. As the supplier availability increases or decreases, the impact of suboptimal parameters
becomes less notable, which is discussed in further detail in Section 4. Yet, computing the corresponding suboptimal cost
still remains as a problem if the actual OFF period distribution is not incorporated into the model.

The paper is organized as follows: Section 2 presents a brief review of the PTD. In Section 3, the model is introduced
and the long run average cost function is derived and alternative methods to compute the transition probabilities of the
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supplier status are presented. Numerical results are presented in Section 4. Finally, in Section 5 concluding remarks are
stated.

2. PTD

A PTD of order k is considered to be the distribution of the time until absorption in a CTMC with states {1, . . . ,k+1},
(k+1)st (or state 0) being the single absorbing state. The general structure of PTD is depicted in Figure 1, where c0,i denotes
the initial branching probabilities, �i is the rate of the sojourn time in state i , and ci, j denotes the transition probability from
state i to state j satisfying ci,1 +·· ·+ci,k +ci,k+1 =1 for i =1, . . . ,k.

A PTD r.v. can be expressed in matrix notation as well. Let Ĉ= (C,0) with C= (c0,1,c0,2, . . . ,c0,k) be the initial prob-
ability vector satisfying CE=1 with E being a k×1 column vector of 1. The (k+1)×(k+1) infinitesimal generator Ĝ of
this CTMC chain is then

Ĝ=
(

G G0

0 0

)
, (1)

where G is a k×k matrix with entries as Gii =−�i for i =1, . . . ,k and Gij =ci, j�i for i �= j and the k×1 G0 vector satisfies
GE+G0 =0 (Neuts [17, Section 2.2]). The pair (C,G) is called a representation of the PTD.

Two special PTDs, namely the Coxian and the Hyper-exponential distributions will be considered in this study due
to their popularity in modeling underlying distributions. In a Coxian distribution, once the sojourn time in phase i with
exponential rate �i is over, the only possible transition types are either to the next state i +1 with probability ci,i+1 =ai or
to the absorbing state k+1 with probability ci,k+1 =1−ai for i =1, . . . ,k−1 and ck,k+1 =1. The graphical representation
of a Coxian distribution is provided in Figure 2. In many cases, the probability a0 is usually assumed to be 1.

Two-stage Coxian distributions with a1�1 are practical for modeling or approximating distributions with squared-
coefficient of variation (variance to the squared-mean ratio) c2�0.5. Another special case of the Coxian distribution is the
generalized Erlang distribution with ai =1 for i =1, . . . ,k. In case �i =�, the generalized Erlang reduces to the well-known
k-stage Erlang distribution. For the two-stage Coxian distribution to be focused on in Sections 3.3 and 4, we have C= (1,0)
and from Equation (1),

Ĝ=

⎛⎜⎝
−�1 a1�1 (1−a1)�1

0 −�2 �2

0 0 0

⎞⎟⎠ .

Figure 1. A k-stage Phase-type distribution.

Figure 2. A k-stage Coxian distribution.
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Figure 3. A k-stage Hyper-exponential distribution.

A k-stage Hyper-exponential random variable, on the other hand, is a proper mixture of Exponential random variables (see
Figure 3). With an initial branching probability of c0,i = pi , it enters state i to stay for an exponential duration with rate �i ,
where p1 + p2 +·· ·+ pk =1. Once the sojourn time in that state is over, it enters the absorbing state. The Hyper-exponential
r.v. is popularly used to model or approximate distributions with squared-coefficient of variation c2�1. In many practical
settings, the special case of two-stage Hyper-exponential is deemed sufficient for accurate modeling.

3. The model and the cost function

We consider a continuous review inventory system with constant demand and negligible delivery lead times, where the
demand per unit time is denoted by D. The holding cost per unit per unit time is assumed to be h and an ordering cost of K is
incurred per order. Furthermore, we assume that supply disruptions of random durations can occur due to the unavailability
or inaccessibility of the supplier, which goes through ON and OFF periods of stochastic durations. Although, the delivery
lead times are assumed negligible, due to the possibility of disruptions with random durations, a modified (q,r ) ordering
policy is employed as follows: (i) when the inventory position (IP) hits the reorder point r , and the supplier is ON, q units
are ordered to bring the IP immediately to R =q +r and (ii) if the supplier is OFF when the IP drops to reorder point r ,
an amount is ordered to bring the IP to the target level R as soon as the supplier becomes ON again. Obviously, the order
quantity in the second scenario becomes a random variable. In this case, unsatisfied demands can occur if the inventory level
drops below zero before the supplier becomes available again and such orders are fully backordered at a cost of b per unit.

The objective of the study is to minimize the average cost rate function in reference to the renewal reward theorem.

3.1. The CTMC and the average cost function

The ON/OFF status of the supplier is an alternating renewal process and from the point of view of the retailer, which cannot
observe at which ON or OFF phase the system is, the supplier status appears as a semi-Markov process. However, using
PTD, we are able to model the ON/OFF status of the supplier as a CTMC. Before introducing it, let us assume that the
representation of the ON PTD is (C,G) as given in Equation (1). We will assume that the OFF period follows a d-stage PTD
such that the sojourn time in any OFF state 0n is exponentially distributed with rate �n , n =1,2, . . . ,d . The representation of
the OFF PTD is denoted by (B,H), where B= (c0,01,c0,02, . . . ,c0,0d ) is the initial probability vector and H is a d ×d matrix
with entries as Hnn =−�n for n =1, . . . ,d and for n �=m, Hnm =c0n,0m�n with c0n,0m denoting the transition probability
from state 0n to state 0m satisfying c0n,01 +·· ·+c0n,0d +c0n,0 =1, for n,m =1, . . . ,d . And finally, BE′ =1 and the d ×1 H0
vector satisfies HE′+H0 =0, where E′ is a d ×1 column vector of 1. Accordingly, the absorbing state 0 (k+1) for the OFF
PTD (ON PTD) is an ON (OFF) phase and from state 0n (i), with probability c0n,0 (ci,k+1) the system enters an arbitrary
ON (OFF) phase.

Now we can introduce {�(t), t�0} representing the supplier’s status, where �(t)=0n corresponds to the nth stage of the
OFF period and �(t)= j indicates that the supplier is at the j th stage of the ON period. Thus, Pxw(t)= P{�(t)=w|�(0)= x},
x,w=1,2, . . . ,k,01,02, . . . ,0d denotes the transition probability of CTMC being in state w at time t given that it was in
state x at time 0.

Considering a typical realization (see Figure 4) of the system under study, one would see that every time the IP reaches
R right after the completion of an OFF period, the system regenerates itself. In other words, the time between instances of
IP reaching R at the end of OFF periods are considered to be a regenerative cycle. Then, the renewal reward theorem [18,
p. 78] can be exploited to construct the long run average cost rate function, which would be the ratio of the expected cost of
a regenerative cycle to its expected length.

We identify two types of subcycles within a cycle. The first type, referred to as the standard subcycle, starts each time
the IP is raised to R during an ON period, and has a length of q/D. Standard subcycles repeat themselves until the IP drops
down to r during an OFF period. This leads to the last subcycle, which will continue until the supplier becomes ON again.
A regenerative cycle is composed of a random number, Ñ (q)−1, of standard subcycles and a last one of length q/D+ T̃0,
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Figure 4. Regenerative cycles of the inventory position.

where T̃0 refers to the waiting time until the supplier becomes ON again. Let the cumulative distribution function (CDF)
and the probability density function (PDF) of T̃0 be denoted by G(y) (Ḡ(y)=1−G(y)) and g(y), respectively.

Let Ñi (q) be the number of subcycles needed to complete the cycle with an expected value of Ni (q), if �(t) is in the ON
state i , i =1,2, . . . ,k when the inventory is raised to R =q +r at the beginning of a cycle. Since the state of �(t) when a new
cycle starts will be i with probability c0,i (irrespective of which OFF state was preceding, hence 0 denotes any OFF state),
we can write the expected number of subcycles N (q) within a cycle as

N (q)=
k∑

i=1
c0,i Ni (q)=CN,

where as before C= (c0,1,c0,2, . . . ,c0,k) and NT = (N1(q), N2(q), . . . , Nk(q)). Depending on the state of �(t) when the inven-
tory drops to r for the first time after the cycle starts, we can write

Ñi (q)= I (�(q/D)=0)+
k∑

j �=i, j=1
(1+ Ñ j (q))I (�(q/D)= j)+(1+ Ñ∗

i (q))I (�(q/D)= i),

where Ñ∗
i (q) has the same distribution as Ñi (q), i =1,2, . . . ,k and I (·) is the indicator function, which is used to imply that

the reorder point is down-crossed in one of the ON or OFF state. Taking the expectation of both sides and arranging the
terms give the expected number of standard subcycles as

N (q)=C(I−P)−1E,

where P={Pij(q/D)}i, j =1,2, . . . ,k is the probability transition matrix between ON states over the interval (0,q/D) and
I is the k×k identity matrix, and as in Section 2, E is the k×1 column vector of 1. Hence, the expected length of a cycle
will be

T (q)= q

D
C(I−P)−1E+T0,

where T0 = E[T̃0].
The expected total cost within a cycle consists of ordering, inventory holding, and backordering costs. Let c(q,r ) be the

expected cost of a standard subcycle given as

c(q,r )= K +h

[
q2

2D
+ rq

D

]
.

The cost incurred during the waiting time in the last subcycle depends on the length of T̃0. The expected holding cost HC
during the waiting time is

HC =h

{∫ r/D

0

(
ru− u2 D

2

)
g(u)du+ r2

2D
Ḡ(r/D)

}
, (2)
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whereas the expected backordering cost is

BC = Db
∫ ∞

r/D
(u−r/D)g(u)du. (3)

The summation of the two gives the expected cost, C(q,r )= HC + BC , that the system incurs during the waiting time.
Now, invoking the renewal reward theorem, the long run average cost rate function K(q,r ) is obtained as

K(q,r )= N (q)c(q,r )+C(q,r )

T (q)
. (4)

The cost rate function given above does not provide closed-form solutions and the optimization should be done by numerical
methods. However, to implement the numerical methods, we first need to obtain the state transition probabilities, Pxw(t), of
the CTMC {�(t), t�0}, which we will discuss next.

3.2. State-transition probabilities

Let Fi (t)=1−e−�i t , t�0 be the CDF of the sojourn time in ON state i with rate �i , (F̄i (t)=1− Fi (t)) and fi (t) be its
density function, i =1, . . . ,k. Similarly, let Gn(t)=1−e−�nt , t�0 be the CDF of the sojourn time in OFF state 0n with rate
�n , (Ḡn(t)=1−Gn(t)) and gn(t) be its density function, n =1, . . . ,d .

One way to obtain Pxw(t) x,w=1, . . . ,k,01, . . . ,0d is exploiting the integral equations as given below.

Theorem 1
The state-transition probabilities Pxw(t), t�0 of the CTMC representing the supplier availability whose ON and OFF times
follow a k-stage and a d-stage PTD, respectively, are the solutions of the following integral equations:

Pii(t) = F̄i (t)+
k∑

m=1,m �=i
ci,m

∫ t

0
Pmi(t −x) fi (x)dx +ci,k+1

d∑
n=1

c0,0n

∫ t

0
P0n,i (t −x) fi (x)dx, i =1, . . . ,k, (5)

Pij(t) =
k∑

m=1,m �=i
ci,m

∫ t

0
Pmj(t −x) fi (x)dx +ci,k+1

d∑
n=1

c0,0n

∫ t

0
P0n, j (t −x) fi (x)dx, i, j =1, . . . ,k, i �= j, (6)

Pi,0n(t) =
k∑

m=1,m �=i
ci,m

∫ t

0
Pm,0n(t −x) fi (x)dx

+ci,k+1

d∑
l=1

c0,0l

∫ t

0
P0l,0n(t −x) fi (x)dx, i =1, . . . ,k, n =1, . . . ,d, (7)

P0n,0n(t) = Ḡn(t)+
d∑

l=1,l �=n
c0n,0l

∫ t

0
P0l,0n(t −x)gn(x)dx +c0n,0

k∑
m=1

c0,m

∫ t

0
Pm,0n(t −x)gn(x), n =1, . . . ,d, (8)

P0n,0�(t) =
d∑

l=1,l �=n
c0n,0l

∫ t

0
P0l,0�(t −x)gn(x)dx +c0n,0

k∑
m=1

c0,m

∫ t

0
Pm,0�(t −x)gn(x),n, �=1, . . . ,d, n �=�, (9)

P0n, j (t) =
d∑

l=1,l �=n
c0n,0l

∫ t

0
P0l, j (t −x)gn(x)dx +c0n,0

k∑
m=1

c0,m

∫ t

0
Pm, j (t −x)gn(x), n =1, . . . ,d, j =1, . . . ,k. (10)

Proof
We will only derive Equation (6), since the others are similar. Note that the probability of making a transition from ON
state i in the interval (x, x +dx) is fi (x)dx . With probability ci,m (see Figure 1) the transition from state i will be into ON
state m. Pmj(t −x) gives the probability of transition into ON state j during the remaining t −x time units from ON state
m. Similarly, with probability ci,k+1 ×c0,0n , upon leaving ON state i , CTMC enters OFF state 0n. P0n, j (t −x) gives the
probability of transition into ON state j during the remaining t −x time units from OFF state 0n. The final equation is
obtained by considering all possible values of m and n via the summation. Equation (7) is very similar except this time we
find the probability of starting from an ON state i and ending at an OFF state. Equations (8)–(10) are the probabilities of
starting from an OFF state. �

The set of integral equations such as the ones in Theorem 1 has been used, e.g. by Gürler and Parlar [9], Parlar [6] to
obtain the transition probabilities. This set of integral equations can be approximated by employing techniques such as
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the trapezoidal rule before inverting, but this usually yields huge sparse matrices, which are difficult to invert (Gürler and
Parlar [9]).

Another approach is to exploit the Kolmogorov equations as presented below.

Theorem 2
The transient probabilities of the CTMC representing the supplier’s ON/OFF status are obtained as the solution of the
following Kolmogorov equations:

P′(t)= ÂP(t), P(0)=I′, (11)

where P(t)= [Pxw(t)], t�0, x,w=1, . . . ,k,01, . . . ,0d is the (k+d)×(k+d) matrix of finite time transition probabilities,
I′ is the (k+d)×(k+d) identity matrix, and Â is the (k+d)×(k+d) infinitesimal generator of the CTMC, given as

Â=
(

G G0B

H0C H

)
, (12)

the rows and columns of which are indexed as 1, . . . ,k,01, . . . ,0d .

Proof
By definition, the matrix G gives the transition rates of flow balance equations among ON states. Similarly, the matrix H has
the same rates among OFF states. Since the vector G0 contains the rates of entering an arbitrary OFF state from each ON
state, the product G0B yields the matrix of transition rates of entering a given OFF state from a given ON state. Similarly,
the product H0C is the matrix of transition rates of entering a given ON state from a given OFF state. �

The solution of Equation (11) is

P(t)=etÂP(0), (13)

and one can approximately compute etÂ by following techniques in the literature [19].
From P(q/D) one can obtain Pxw(q/D) for x,w=1, . . . ,k, namely, transition probabilities between ON states and form

P to compute N (q) and T (q), which are finally used in Equation (4). Note that the expected wait time T0 that is needed
for T (q) and Ḡ(t) with g(t) that are needed in Equation (2) (g(t) for Equation (3) as well) have to be obtained considering
the OFF PTD. To do this, we define P̄i,0n(m,q/D) as the steady-state probability that a cycle starting with ON state i ends
after m subcycles when the IP down-crosses r in state 0n. Note that P̄i,0n(m,q/D) goes rapidly to zero when m gets large.
Hence, the steady-state probability of down-crossing r in state 0n of the OFF period in an arbitrary cycle, P̄0n , is given as
follows by adding over m, for n =1, . . . ,d ,

P̄0n =
k∑

i=1
c0,i

∞∑
m=1

P̄i,0n(m,q/D), (14)

where for m>1 we find the required probabilities by conditioning on the ON state where the CTMC is found at the end of
the first subcycle:

P̄i,0n(m,q/D)=
k∑

j=1
Pij(q/D)P̄j,0n(m−1,q/D) (15)

and P̄i,0n(1,q/D)= Pi,0n(q/D) for i =1, . . . ,k and n01, . . . ,d, which are readily available from either the solution of
Theorem 1 or Equation (13).

Letting Rn(t) denote the CDF of the waiting time of the last subcycle if r is down-crossed in state 0n of the OFF period,
we have

G(t)=
d∑

n=1
P̄0n Rn(t)

from which its derivative g(t) and its expected value, namely, T0 can be obtained. Obviously, Rn(t) depends on the underlying
OFF PTD. For instance, if a k-stage Erlang is the underlying OFF period distribution, the waiting time will be a k−n−1-
stage Erlang r.v. if r is down-crossed in state 0n of the OFF period.

Although we summarized two alternative approaches by Theorems 1 and 2, obtaining Pxw(t) becomes difficult especially
when the number of PTD phases increases. Thus, similar to earlier work in the literature we will restrict ourselves to simpler
yet highly versatile PTDs in Section 3.3. Due to its flexibility in modeling distributions with c2�0.5 while providing a small
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state space with only two different stages, we have chosen two-stage Coxian distribution for modeling the supplier ON
time. In similar vain, a two-stage Hyper-exponential OFF period is considered, with 01 and 02 as the possible OFF period
states. The model studied in Section 3.3 will be employed in our numerical examples presented in Section 4 while testing
the impact of different ON/OFF time distributions.

3.3. The case with two-stage Coxian on times and two-stage Hyper-exponential off times

In this special case, the supplier ON period is modeled by Coxian (a1,�1,�2) and the supplier OFF period follows
H2(p,�1,�2) distribution with p (1− p) being the probability of entering OFF state 01 (02). Observe that when a1 =1 and
�1 =�2, the ON period distribution becomes a two-stage Erlang distribution and when p=1, the OFF period distribution
is Exponential with rate �1. We will consider both these distributions in numerical examples in Section 4 as well.

The state-transition probabilities Pxw(t), t�0 of the CTMC modeling the supplier status are the solutions of the integral
equations from Theorem 1. In particular, we need the transition probabilities among ON states for constructing the matrix
P={Pij(q/D)} i, j =1,2, which are

P11(t) = e−�1t +a1

∫ t

0
P21(t −x)�1e−�1x dx +(1−a1)p

∫ t

0
P01,1(t −x)�1e−�1x dx

+(1−a1)(1− p)
∫ t

0
P02,1(t −x)�1e−�1x dx,

P12(t) = a1

∫ t

0
P22(t −x)�1e−�1x dx +(1−a1)p

∫ t

0
P01,2(t −x)�1e−�1x dx

+(1−a1)(1− p)
∫ t

0
P02,2(t −x)�1e−�1x dx,

P21(t) = p
∫ t

0
P01,1(t −x)�2e−�2x dx +(1− p)

∫ t

0
P02,1(t −x)�2e−�2x dx,

P22(t) = e−�2t + p
∫ t

0
P01,2(t −x)�2e−�2x dx +(1− p)

∫ t

0
P02,2(t −x)�2e−�2x dx .

(16)

Direct method of solving the integral equations such as the ones above is based on approximating an integral using one of
many classical formulae, such as the trapezoidal rule, the Simpson’s rule, or the Bode’s rule. For instance, Gürler and Parlar
[9] employ the trapezoidal rule towards this end. However, this approach results in large sparse matrices to be inverted for
different (q,r ) values during the search process described in Section 4.

Alternatively, one can exploit the Kolmogorov equations of this system following Theorem 2, for which

Â=

⎛⎜⎜⎜⎜⎝
−�1 a1�1 p(1−a1)�1 (1− p)(1−a1)�1

0 −�2 p�2 (1− p)�2

�1 0 −�1 0

�2 0 0 −�2

⎞⎟⎟⎟⎟⎠
to be used in Equation (13) to obtain the required transition probabilities.

In this paper, we have chosen to exploit the integral equations from Theorem 1 to obtain Pxw(t), t�0 but employed a
different approach as explained in Appendix A from approximations such as the Trapezoidal rule. Our approach requires
having the Laplace transforms of the integral equations, which are numerically inverted. This approach turns out to give
quick and accurate computations. With these probabilities found in Appendix A, the matrix P={Pij(q/D)} i, j =1,2 and
then N (q) in Section 3.1 can be obtained. In order to obtain the expected cycle length T (q), one must keep track of the
OFF state that has initiated the waiting time in the last subcycle. Noting that each cycle starts with ON state 1, for m>1 we
need P̄1,0n(m,q/D), n =1,2 from Equation (15) to be substituted in Equation (14) to compute P̄01 and P̄02(=1− P̄01). For
m =1, as noted before, P̄1,0n(1,q/D)= P1,0n(q/D). In Appendix A, we also explain how P1,0n(q/D) can be computed.

With P̄01 and P̄02, which are the steady-state probabilities of starting the waiting time of an arbitrary cycle in OFF state
01 or 02, respectively, we can write the expected length of a cycle as

T (q)= q

D
C(I−P)−1E+T0 = q

D
C(I−P)−1E+ P̄01

�1
+ P̄02

�2

due to the fact that in either of the OFF states, the remaining time will be exponential with the appropriate sojourn rate.
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Similarly, we can also obtain the respective expected holding and backordering costs during the waiting time using
Equations (2) and (3),

HC = h

{
P̄01

�1r − D+ De−�1r/D

�2
1

+ P̄02
�2r − D+ De−�2r/D

�2
2

}
,

BC = Db

{
P̄01

e−�1r/D

�1
+ P̄02

e−�2r/D

�2

}
.

4. Numerical results

In this section, we present the results of our numerical study, which aims to elaborate (i) the significance of exact modeling
of the OFF time distribution and (ii) the impact of different ON and OFF distributions on the cost figures.

Defining the unavailability rate as E(OFF)/[E(ON)+ E(OFF)], we considered three cases: (i) a reliable supplier with
11% overall unavailability, (ii) a highly reliable supplier with 5% overall unavailability, and (iii) an unreliable supplier
with 40% overall unavailability. In each case, we conducted tests using four pairs of ON/OFF time distributions: (a)
two-stage Erlang (Erlang(2,�)) ON times with a c2

ON =0.5 and Exponential(�) OFF times with a c2
OFF =1, (b) two-stage

Coxian (Coxian (a1,�1,�2)) ON times with a c2
ON =10 and Exponential(�) OFF times, (c) Erlang (2,�) ON times and

two-stage Hyper-exponential (H2(p,�1,�2)) OFF times with a c2
OFF =32.87, and finally (d) Coxian(a1,�1,�2) ON times

and H2(p,�1,�2) OFF times. In the numerical analysis, the demand is taken as D =100 per unit time, holding cost is set to
h =1 and several ordering and back order costs are considered.

As stated earlier, the expected cost rate function does not yield a closed-form expression, hence numerical optimization
methods are used to find the optimal (q∗,r∗). We applied adaptive random search (ARS) [20] method, which is proven
to be effective and simple. The algorithm to compute the optimal (q∗,r∗) values is summarized next, where C is used for
K(q,r ):

Step 0. Set C to a high positive initial value.
Step 1. Start with a feasible (q,r ) in a set that is known to contain the optimal pair.
Step 2. Evaluate Pij(q/D)
Step 3. Generate the P matrix, compute the expected cycle length and the expected cycle cost using Equation (4).
Step 4. Evaluate C. If it is smaller than the previous one, keep the corresponding (q,r ). If the improvement is negligible,

stop. Otherwise go to the next step.
Step 5. Generate a new feasible q value as follows: If q∗ is known to be in the interval [ql ,qh] and if qold refers to the

previous point, generate the new point qnew =qold +(qh −ql )(2�−1)v , where � is a random number between 0
and 1 and v is an odd integer. Similarly find a new feasible r value. Go to Step 2.

We next summarize our results. In Tables I–VIII, the first two columns show the K and b parameters assumed for the
numerical examples. In all tables, except Table II, we present the economic order quantity qEOQ =√

2K D/h in the third

Table I. Erlang(2,1) ON, Exponential(4) OFF times with 11% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
EOQ (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
EOQ−K(q∗,r∗))

K(q∗,r∗)

25 165.04 124.07 13.68 145.41 13.5%
50 232.79 103.28 45.49 163.67 42.2%

50 150 100 503.78 141.48 75.85 193.4 160.5%
300 910.27 141.56 76.47 207.33 339%
500 1452.3 135.74 95.53 219.73 560.9%

25 187.14 187.06 1.21 180.99 3.4%
50 235.6 148.53 43.93 198.45 18.7%

100 150 141.42 429.44 143.3 64.59 224.54 91.3%
300 720.2 143.3 64.59 246.21 192.5%
500 1107.9 244.57 67.27 266.47 315.8%

25 304.41 282.84 0 304.41 0%
50 328.74 285.59 12.44 312.77 2.2%

400 150 282.84 426.03 282.87 50.18 349.67 21.8%
300 571.96 282.87 50.18 369.27 54.9%
500 766.54 264.75 107.77 395.01 94.1%
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Table II. Coxian(0.05,1,0.05) ON, Exponential(4) OFF times
with 11% overall supplier unavailability.

K b q∗ r∗ K(q∗,r∗)

25 124.07 13.68 144.71
50 103.28 45.49 163.17

50 150 141.48 75.85 193.17
300 141.56 76.47 206.82
500 135.74 95.53 219.3

25 187.06 1.21 180.55
50 148.53 43.93 198.21

100 150 143.3 64.59 224.17
300 143.3 64.59 245.41
500 244.57 67.27 266.16

25 282.84 0 304.27
50 285.59 12.44 321.59

400 150 282.87 50.18 349.55
300 282.87 50.18 369.03
500 264.75 107.77 394.98

Table III. Erlang(2,1) ON, H2(0.95, 47.5, 0.2174) OFF times with 11% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
Er/Exp (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
Er/Exp−K(q∗,r∗))

K(q∗,r∗)

25 320.17 143.47 1.18 315.06 1.6%
50 540.07 215.91 15.29 526.61 2.6%

50 150 100 1272.86 385.95 334.3 1009.29 26.1%
300 2376.58 895.53 230.63 1464.52 62.5%
500 3735.19 963.46 300.86 1856.93 101.1%

25 343.76 187.14 0.33 343.43 0.1%
50 562.34 269.35 13.55 544.9 3.2%

100 150 141.42 1320.27 577.09 256.06 1030.43 28.1%
300 2452.06 800.94 282.53 1443.81 69.8%
500 3619.1 895.3 241.37 1988.53 82%

25 451.51 282.84 0 451.51 0%
50 641.82 390.91 1.93 620.68 3.4%

400 150 282.84 1330.12 813.77 176.93 1088.89 22.2%
300 2352.34 918.75 208.61 1515.71 55.2%
500 3721.17 915.48 141.48 2227.08 67.1%

Table IV. Coxian(0.05,1,0.05) ON, H2(0.95, 47.5, 0.2174) OFF times with 11% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
Er/H2 (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
Er/H2−K(q∗,r∗))

K(q∗,r∗)

25 318.26 143.47 1.18 318.26 0%
50 529.95 237.89 7.91 528.99 0.2%

50 150 100 1009.77 385.98 384.48 1006.67 0.3%
300 1457.73 895.56 280.81 1423.77 2.4%
500 1846.99 640.44 461.43 1754.9 5.2%

25 345.56 187.14 0.33 345.56 0%
50 546.93 313.59 6.22 545.82 0.2%

100 150 141.42 1028.57 577.12 306.24 1025.96 0.31%
300 1438.07 800.97 332.7 1407.21 2.2%
500 1977.3 958.6 331.2 1813.46 9.0%

25 452.34 282.84 0 452.34 0%
50 620.94 458.93 11.04 620.46 0.1%

400 150 282.84 1085.33 809.11 203.45 1083.75 0.1%
300 1508.53 643.56 335.68 1471.66 2.5%
500 2212.98 915.51 191.66 2096.56 5.6%
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Table V. Erlang(2,1) ON, Exponential(9.5) OFF times with 5% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
EOQ (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
EOQ−K(q∗,r∗))

K(q∗,r∗)

25 112.51 100 0 112.51 0%
50 125.72 124.07 13.68 121.32 3.6%

50 150 100 178.2 91.35 21.14 132.49 34.5%
300 256.9 91.31 37.26 142.04 80.9%
500 361.89 91.31 37.26 145.38 148.9%

25 150.18 141.42 0 150.18 0%
50 159.45 150.25 4.49 157.06 1.5%

100 150 141.42 196.57 224.47 12.33 179.6 9.4%
300 252.24 217.67 24.68 185.99 35.6%
500 326.47 148.53 43.93 187.7 73.9%

25 286.97 282.84 0 286.97 0%
50 291.6 282.84 0 291.6 0%

400 150 282.84 310.18 285.59 12.44 303.23 2.3%
300 338.04 285.59 12.44 311.69 8.5%
500 375.18 285.59 12.44 322.97 16.2%

Table VI. Erlang(2,1) ON, H2(0.9954, 13, 0.1603) OFF times with 5% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
Er/Exp (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
Er/Exp−K(q∗,r∗))

K(q∗,r∗)

25 135.32 100 0 135.32 0%
50 173.86 143.49 3.42 172.66 0.7%

50 150 100 296.29 115.16 22.93 294.96 0.5%
300 474.73 110.44 24.2 468.18 1.4%
500 700.74 200.15 33.74 691.54 1.3%

25 173.58 141.42 0 173.58 0%
50 206.98 150.25 4.49 206.98 0%

100 150 141.42 334.14 185.37 8.13 328.97 1.6%
300 500.41 217.67 24.68 500.41 0%
500 724.36 219.95 50.39 717.08 1%

25 308.78 282.84 0 308.78 0%
50 338.02 282.84 0 338.02 0%

400 150 282.84 451.94 329.83 5.11 449.11 0.6%
300 612.03 391.23 7.91 605.62 1.1%
500 825.48 456.41 12.85 798.89 3.3%

Table VII. Erlang(2,1) ON, Exponential(0.75) OFF times with 40% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
EOQ (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
EOQ−K(q∗,r∗))

K(q∗,r∗)

25 773.78 134.49 223.04 391.69 97.5%
50 1475.6 175.55 282.07 479.28 207.9%

50 150 100 4283.1 184.49 434.17 623.91 586.5%
300 8494.2 187.07 503.89 716 1086.3%
500 14109 169.84 592.95 783.09 1701.7%

25 718.6 257.07 169.36 411.67 74.6%
50 1330.4 210.97 276.49 499.81 166.2%

100 150 141.42 3777.5 206.55 429.88 644.62 486%
300 7448.3 189.16 529.57 737.25 910.3%
500 12343 228.58 556.38 803.82 1435.5%

25 634.42 368.53 109.88 495.22 28.1%
50 1030.8 364.76 256.85 590.19 74.7%

400 150 282.84 2616.6 370.96 353.96 727.74 259.6%
300 4995.1 391.4 446.47 819.91 509.2%
500 8166.6 409.14 505.84 888.34 819.3%
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Table VIII. Erlang(2,1) ON, H2(0.015, 0.0225, 1.4775) OFF times with 40% overall supplier unavailability.

K b qEOQ (=CEOQ) C A
Er/Exp (Actualized) q∗ r∗ K(q∗,r∗) %

(C A
Er/Exp−K(q∗,r∗))

K(q∗,r∗)

25 721.78 201.94 81.06 678.07 6.4%
50 1225.98 148.44 168.44 1180.1 3.9%

50 150 100 3076.58 201.27 262.59 3057.81 0.6%
300 5688.19 959.72 481.69 5636.04 0.9%
500 9061.7 942.49 481.69 8834.09 2.6%

25 734.4 206.89 90.96 697.04 5.4%
50 1248.12 183.42 133.97 1199.78 4.0%

100 150 141.42 3094.65 223.33 258.29 3074.46 0.7%
300 5698.22 961.81 418.31 5632.78 1.2%
500 9083.42 879.31 553.06 8796.9 3.3%

25 795.79 371.64 32.27 779.09 2.1%
50 1335.96 409.52 140.4 1286.59 3.8%

400 150 282.84 3153.89 567.52 184.96 3138.43 0.5%
300 5751.73 931.43 463.5 5649.79 1.8%
500 9113.28 949.17 522.87 8821 3.3%

column. Note that because of the cost parameters we have chosen, the cost rate CEOQ satisfies CEOQ =qEOQ, hence the same
column also gives the EOQ cost that would be incurred if the supplier were always available.

4.1. Sensitivity and the benefit of modeling the OFF time distribution

We first discuss a more realistic case of 11% overall unavailability, for which the results are presented in Tables I–IV.
Table I shows the results when ON time is Erlang(2,1), with E[ON]=2 and OFF time is Exponential(4) with E[OFF]=

0.25, where columns 5–7 display the optimal inventory policy parameters q∗, r∗, and the resulting cost K(q∗,r∗).
As expected, we observe that as the backorder costs increase, both the (q∗,r∗) values and the corresponding costs increase,
however, the rate of these increases become less for higher ordering costs. We also observe that as the ordering costs
increase, the order quantity approaches EOQ. If supplier unavailability were ignored, one would have to resort to the
suboptimal EOQ parameters (q,r )= (qEOQ,0) (see column 3 for qEOQ), incurring a cost of C A

EOQ given in column 4. The
percentage increase in the cost by using suboptimal parameters are given in the last column. These error terms indicate
that severity of using EOQ policy instead of the optimal policy is felt more for higher backordering costs, which indicate
the criticality of the goods under study. On the other hand, higher ordering costs slightly mitigate the cost discrepancy,
which implies that if less frequent but larger orders are placed, the impact of missing the optimal policy is lessened to an
extent.

In Table II, ON times are taken as Coxian(0.05,1,0.05) with the same E[ON]=2, whereas the OFF times are the same
as given in Table I. We see that the optimal policy parameters presented in columns 3 and 4 are the same as those of the
parallel cases in Table I. The optimal costs in the last column of Table II are slightly less than those with Erlang(2,1)
ON times. At first glance, this looks surprising since Coxian(0.05,1,0.05) ON times with a c2

ON =10 is obviously more
variable than Erlang(2,1) ON times. On the other hand, we should consider the failure (or hazard) rate function of a vari-
able defined as r (t)= f (t)/F̄(t), where f (t) and F̄(t) are the probability density and complementary distribution func-
tions, respectively. Coxian(0.05,1,0.05) has a decreasing failure rate (DFR) function, which makes the supplier with such
ON time distributions more reliable than the one with Erlang(2,1) ON times, which has an increasing failure rate (IFR)
function.

In Table III, the OFF time is taken as H2(0.95, 47.5, 0.2174) which preserves E[OFF]=0.25 of Table I, but results in
a c2

OFF =32.87, and the ON time is the same Exponential distribution of Table I. The optimal policy parameters and the
resulting cost are given in columns 5–7. Except the case with K =400,b=25, policies from Table I are no more optimal (in
fact, for this case EOQ is still the optimal policy). We observe in general that the costs have increased significantly when
the OFF time has Hyper-exponential (H2) distribution and optimal parameters no longer get close to the EOQ parameters
as K increases. This can be explained by the fact that H2(0.95, 47.5, 0.2174) has a DFR function, as opposed to the constant
failure rate of the Exponential distribution. Note that the specific H2 OFF time structure provides a good model to account
for extremely rare disaster cases. Here, only with 5% probability, the system will experience a long recovery time with a
mean of 1/0.2174=4.6 more than twice as much as an average ON period.

If it is assumed that OFF times are Exponential when in fact they are H2(0.95, 47.5, 0.2174), the optimal policy parameters
of Table I would be obtained which would result in costs as given in Column 4 of Table III. We observe that not using the
optimal policy costs us more as backordering cost increases, whereas higher ordering costs slightly decrease the penalty.
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This can be traced from the last column, which lists the percent error of C A
Er/Exp with respect to K(q∗,r∗). We observe that

the loss due to wrongly assuming an Exponential OFF distribution may result in as much as 101.1%.
In Table IV, ON times are taken as Coxian(0.05,1,0.05), which is the only difference from Table III. We observe that

using Coxian ON times as opposed to Erlang does not have a monotone impact on costs and in most of the cases the optimal
cost difference in the two models are not significant. However, using the suboptimal parameters of the Erlang ON times still
may cause significant increases in the cost, especially with high backorder costs. Note for example in the last column that
for the cases where b=500, using suboptimal parameters increases the costs by 5.2, 9.0 and 5.6% for K =50,100,400,
respectively, which may be highly significant in nominal terms. As a summary of the reliable supplier case with 11% overall
unavailability, we see that OFF time characteristics are more crucial on the optimal policy than those of ON time, although
the latter is also important for critical goods.

We next examine the highly reliable supplier case with a 5% overall unavailability:
Table V presents the results with Erlang(2,1) ON times and Exponential(9.5) OFF times with E[OFF]=0.105. Increase in

availability obviously has reduced the optimal costs significantly, and in comparison to Table I the cost increase as backorder
increases is less emphasized in this case. We observe that EOQ policy (q,r )= (qEOQ,0) is optimal when backordering cost
is low and ordering cost is high. When backordering cost increases, on the other hand, EOQ policy is not optimal anymore.
Note that, using the suboptimal EOQ policy becomes unacceptably costly for higher backorder costs, even with a supplier
which is available 95% of the time (see column 8).

Assuming Coxian(0.05,1,0.05) distribution for modeling ON times instead of Erlang(2,1) distribution has not changed
the optimal policies. Similar to our comparison of Tables II and I, we have detected a slight decrease in optimal cost when
Coxian(0.05,1,0.05) with DFR function is considered. Hence, the table for this scenario is not presented.

The impact of changing the OFF time distribution is given in Table VI, which differs from Table V in its H2(0.9954, 13,
0.1603) OFF times with a c2

OFF =32.37. Comparing these two tables, we observe that H2 OFF distribution results in much
higher costs and increase in backorder costs result in steep increase in the optimal costs, whereas increase in ordering costs
has relatively less impact. The costs with suboptimal parameters of Exponential OFF times are given in Column 4 and the
percentage difference with the optimal costs are provided again in the last column. When the supplier is highly available,
these cost differences appear to be tolerable. However, the impact of wrong modeling of the OFF time distribution on cost
estimation is further discussed below.

Our numerical results with Coxian(0.05,1,0.05) ON times and H2(0.9954, 13, 0.1603) OFF times were almost the same
as the results in Table VI. Hence, we have chosen not to present that table here.

We close our discussion by presenting the analysis of the unreliable supplier with a 40% overall unavailability:
Table VII shows the results when ON times follow Erlang(2,1) distribution and OFF times are Exponential(0.75) with

E[OFF]=1.334. As expected, when the supplier is highly unavailable, in general the costs increase significantly and become
more notable as higher backorder costs are incurred. We observe that EOQ policy (q,r )= (qEOQ,0) is not acceptable since
its implementation costs, C A

EOQ, provided in column 4 are drastically higher than the optimal costs.
Assuming Coxian(0.05,1,0.05) distribution for modeling ON times instead of Erlang(2,1) distribution has changed the

optimal policies in a few cases. However, the optimal costs were almost the same as the costs presented in column 7 of
Table VII, which leads us to the conclusion that ON time characteristics do not play a crucial role when supplier is 40%
unavailable, hence results are not presented.

In Table VIII, results with H2(0.015, 0.0225, 1.4775) OFF times with a c2
OFF =32.84 are presented, which differ from

Table VII in this OFF time distribution. In this case also, the OFF time distribution makes a drastic difference in the optimal
costs. If the suboptimal parameters of the Exponential OFF time model were used, the cost differences get as high as 6.4%
and the minimum differences are observed for the cases with moderate backorder costs.

As in the previous cases, our numerical results with Coxian(0.05,1,0.05) ON times and H2(0.015, 0.0225, 1.4775) OFF
times were almost the same as the results in Table VIII. Hence, they are not presented.

In light of the above discussions, we observed that modeling the OFF time distribution correctly results in significant
savings and its importance is more notable when the supplier is unavailable about 11% of the time. This result is intuitive,
since when the supplier is highly reliable, the impact of OFF times is naturally not very important, hence its modeling is
also not a crucial issue. When unavailability is very high on the other hand, the costs increase so drastically that correct
modeling of the OFF time period falls short of improving the costs.

4.2. Impact of correctly modeling the off period in estimating costs

Next we would like to discuss the practical significance of modeling the ON and OFF periods correctly, when estimation
of the cost figures is needed in advance to allocate funds for operations and investments. In our numerical studies, we have
observed that in some cases, the optimal parameters of different models turn out to be close, which might lead to the wrong
conclusion that using the right model is not indispensable when it comes to computing inventory cost correctly. To be more
specific, let us examine the case with K =50,b=25 in Tables V and VI. We see that the optimal policy parameters are the
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same as those of the EOQ model. Based on this observation, if we conclude that we can use the EOQ model when the supplier
is highly reliable and the backorder cost is low, we would be in fact making a gross error since we would report the EOQ
cost (which is 100 in this case) although the optimal policy parameters are set correctly. In the case of Exponential(9.5) OFF
times, this corresponds to a 12.51% error, and in the H2(0.9954, 13, 0.1603) OFF times scenario, we would underestimate
the cost by 35.32%.

Similar caution should apply if it is claimed that it will be sufficiently accurate to model the ON and OFF times by mean
preserving Exponential r.v. even when the actual distributions are non-Exponential. In particular, by ignoring the fact that
the actual OFF times are two-stage Hyper-exponential and instead assuming a mean preserving Exponential r.v. may lead to
significant cost estimation errors. In comparison of parallel cases in Tables V and VI, this corresponds to using the subop-
timal policy parameters presented in columns 5 and 6 of Table V when in fact OFF times follow H2(0.9954,13,0.1603).
This implies that we would have to report the costs displayed in column 7 of Table V irrespective of the original OFF time
distribution. Our mistake in reporting (computing) the costs would be realized only when the suggested policy were imple-
mented and the cost figures C A

Er/Exp in column 4 of Table VI were witnessed. In summary, reported costs of policies from
Table V would be on the average 114.4% less than their actualization costs when OFF times follow H2(0.9954,13,0.1603).
A similar comparison of Tables I and III dictates the same precaution. If one chooses to consider the Exponential OFF times
in modeling, i.e. running the system with parameters presented in columns 5 and 6 of Table I when the actual OFF times
follow H2(0.95, 47.5, 0.2174), the average error of reporting wrong costs will be 551.8%.

Hence, we would like to emphasize once more that, even when they might not have a serious impact on the optimal policy
parameters, the ON and OFF time distributions should be correctly reflected into the model in order to compute the system
costs correctly.

5. Conclusion

In this study, an inventory problem is considered where the supplier may become unavailable at random times for random
durations, which is modeled as a stochastic process going through ON and OFF periods. Both the ON and OFF periods are
assumed to follow PTD. Assuming constant demand and negligible lead time, the exact long run average cost function is
derived, the optimization of which is done by numerical methods.

Unlike the earlier research works that concentrate on ON time modeling, we point out the difficulty of incorporating the
OFF time distribution into the analysis, yet successfully complete the model. In obtaining the state-transition probabilities,
we propose using a more efficient numerical approach.

Extensive numerical studies demonstrate that on the extremes of the range of the supplier availability (highly reliable or
unreliable), OFF time characteristics are important to obtain the costs correctly. When the supplier is reliable, both ON and
OFF time distributions should be included in the analysis in order to obtain the correct optimal policy. Otherwise, much
higher system costs would be incurred.

Appendix A: The solution of the integral equations

In this section, starting with the integral equations of the system studied in Section 3.3, we will obtain the Laplace trans-
forms of the transition probabilities and eventually invert them numerically. To solve Equation (16), we need the following
probabilities that appear on the right-hand side of Equation 16

P01,1(t) =
∫ t

0
P11(t −x)�1e−�1x dx,

P01,2(t) =
∫ t

0
P12(t −x)�1e−�1x dx,

P02,1(t) =
∫ t

0
P11(t −x)�2e−�2x dx,

P02,2(t) =
∫ t

0
P12(t −x)�2e−�2x dx .
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Defining the Laplace transform (LT) of a function f (t) as f̃ (s)=∫∞
0 e−st f (t)dt and observing that they are convolutions,

we take the LT of Equation (16) and the equations above

P̃11(s) = 1

�1 +s
+ �1

�1 +s
{a1 P̃21(s)+(1−a1)[pP̃01,1(s)+(1− p)P̃02,1(s)]},

P̃12(s) = �1

�1 +s
{a1 P̃22(s)+(1−a1)[pP̃01,2(s)+(1− p)P̃02,2(s)]},

P̃21(s) = �2

�2 +s
{pP̃01,1(s)+(1− p)P̃02,1(s)},

P̃22(s) = 1

�2 +s
+ �2

�2 +s
{pP̃01,2(s)+(1− p)P̃02,2(s)},

P̃01,1(s) = �1

�1 +s
P̃11(s),

P̃01,2(s) = �1

�1 +s
P̃12(s),

P̃02,1(s) = �2

�2 +s
P̃11(s),

P̃02,2(s) = �2

�2 +s
P̃12(s),

the four equations of which further reduce to

P̃11(s) = 1

�1 +s

1

1− �1

�1 +s
g̃(s)

[
a1

�2

�2 +s
+(1−a1)

] ,

P̃12(s) = a1

�2 +s

�1

�1 +s

1

1− �1

�1 +s
g̃(s)

[
a1

�2

�2 +s
+(1−a1)

] ,

P̃21(s) = �2

�2 +s
g̃(s)P̃11(s),

P̃22(s) = 1

�2 +s
+ �2

�2 +s
g̃(s)P̃12(s),

where g̃(s)= p�1/(�1 +s)+(1− p)�2/(�2 +s) is the LT of the two-stage Hyper-exponential OFF time density function. We
can now exploit some numerical LT inversion techniques such as the one by Jagerman [16] to obtain Pij(q/D), i, j =1,2,
which are used in the probability transition matrix P and compute the expected number of subcycles N (q).

We further need the following probabilities to compute P̄1,0n(1,q/D)= P1,0n(q/D) to be used in Equation (15) to even-
tually obtain P̄0n in Equation (14).

P1,01(t) = a1

∫ t

0
P2,01(t −x)�1e−�1x dx +(1−a1)p

∫ t

0
P01,01(t −x)�1e−�1x dx

+(1−a1)(1− p)
∫ t

0
P02,01(t −x)�1e−�1x dx,

P1,02(t) = a1

∫ t

0
P2,02(t −x)�1e−�1x dx +(1−a1)p

∫ t

0
P01,02(t −x)�1e−�1x dx

+(1−a1)(1− p)
∫ t

0
P02,02(t −x)�1e−�1x dx,
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P2,01(t) = p
∫ t

0
P01,01(t −x)�2e−�2x dx +(1− p)

∫ t

0
P02,01(t −x)�2e−�2x dx,

P2,02(t) = p
∫ t

0
P01,02(t −x)�2e−�2x dx +(1− p)

∫ t

0
P02,02(t −x)�2e−�2x dx,

P01,01(t) = e−�1t +
∫ t

0
P1,01(t −x)�1e−�1x dx,

P01,02(t) =
∫ t

0
P1,02(t −x)�1e−�1x dx,

P02,01(t) =
∫ t

0
P1,01(t −x)�2e−�2x dx,

P02,02(t) = e−�2t +
∫ t

0
P1,02(t −x)�2e−�2x dx .

Similar to what we have done before, by taking the LT of these convolutions and carrying out simplifications, we arrive at

P̃1,01(s) = �1

�1 +s

p

�1 +s

{
a1�2

�2 +s
+(1−a1)

}
1

1− �1

�1 +s
g̃(s)

[
a1

�2

�2 +s
+(1−a1)

] ,

P̃1,02(s) = �1

�1 +s

(1− p)

�2 +s

{
a1�2

�2 +s
+(1−a1)

}
1

1− �1

�1 +s
g̃(s)

[
a1

�2

�2 +s
+(1−a1)

] .

Now we can again use the numerical LT inversion technique by Jagerman [16] to obtain P1,0n(q/D), n =1,2.
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