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SUMMARY

We propose a bounding technique for the equilibrium probability distribution of continuous-time Markov
chains with population structure and infinite state space. We use Lyapunov functions to determine a finite set
of states that contains most of the equilibrium probability mass. Then we apply a refinement scheme based
on stochastic complementation to derive lower and upper bounds on the equilibrium probability for each
state within that set. To show the usefulness of our approach, we present experimental results for several
examples from biology. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Markov population models (MPMs) are continuous-time Markov chains that describe the dynam-
ics and interactions of different populations. They have important applications in the life science
domain, in particular in ecology, epidemics, and biochemistry. Depending on the system under study,
a member of a population represents an individual that belongs to a certain biological species, an
organism that suffers from an infectious disease, or a certain type of molecule in a living cell. Thus,
if n is the number of distinct populations, the state space of the MPM is a subset of ZnC, that is, a
state is a vector x D Œx1, : : : , xn� of nonnegative integers, where the entry xi is the size of the i th
population. Typically, the transitions of an MPM are induced by a finite set of change vectors [1–3],
here called transition classes [4,5] such that each class specifies a possibly infinite number of edges
in the underlying transition graph. For instance, we may have one class to represent the death of
individuals. In biochemistry, each chemical reaction describes a transition class in the associated
MPM. Often, the corresponding transition rates are state dependent, for example, the rate at which
individuals of a certain population die depend on the population size.

The structural regularities of MPMs often enable accurate approximations of the model behav-
ior. One such example is the widely used deterministic approximation of the dynamics of chemical
reaction networks [6] representing the originally discrete state space as a continuum. If, however,
one or more populations are small, a discrete representation of the population sizes becomes cru-
cial because continuous approximations are often inaccurate [7]. This effect has also been observed
experimentally in the context of chemical reactions [8–10]. The analysis of such MPMs is difficult
because closed-form solutions are only possible in very particular and simplistic cases [11], whereas

*Correspondence to: Verena Wolf, Computer Science, Saarland University, Saarbrücken, Germany.
†E-mail: wolf@cs.uni-saarland.de

Copyright © 2011 John Wiley & Sons, Ltd.



932 T. DAYAR ET AL.

numerical solution techniques suffer from the problem that a very large or even infinite state space
has to be explored. Therefore, Monte Carlo simulation is in widespread use [12] to estimate transient
or equilibrium measures of MPMs.

Recently, progress has been made on numerically approximating the transient probability distri-
bution of an MPM at particular time instants [13–15]. These approaches provide an approximate
solution of the Kolmogorov differential equations and exploit the fact that only a relatively small
subset of the state space is necessary for an accurate approximation. They concentrate on the most
relevant states and perform a dynamical truncation of the state space that is found during the com-
putation. For the long-run behavior of the system, however, a truncation of the state space is only
possible if it is a priori known where the system stabilizes. Otherwise, attracting regions with a
significant amount of probability might be neglected due to the truncation.

In this paper, we consider the problem of computing an accurate approximation of the equilibrium
probability distribution of an ergodic MPM. We first derive geometric bounds for the equilibrium
distribution, that is, we find those regions of the state space, where most of the probability mass
is located in the limit. Then we perform a local refinement for these regions in order to bound the
probabilities of individual states.

Let fX.t/, t > 0g be an ergodic MPM with state space S � ZnC. The first step of our
approach relies on the analysis of a drift function d that maps to each state x the expected change
d.x/ D d

dt
EŒg.X.t// j X.t/ D x� with respect to a specific function g, assigning to each x a

nonnegative real number. If the function g, called Lyapunov function, is a witness of ergodicity,
then the drift is close to zero near attracting regions. We illustrate this by means of an example.
Figure 1 shows the phase plot of the equilibrium distribution of an MPM that describes a gene reg-
ulatory network. The variables M and P represent the number of mRNA molecules and protein
molecules, respectively. The higher the probability of a state, the darker its color in the plot. The
system is monostable, that is, in the long-run the probability mass is mainly concentrated at one
distinct region in S . In this region, the drift d.x/ is close to zero. For higher values of M and P ,
say M > 800 and P > 500, the drift is much smaller than zero. We determine geometric bounds
(here depicted as a dashed line) by using a simple threshold on the drift, that is, we consider the set
W � S of all states where the drift is greater than a certain negative threshold. In other words, W
contains those states, where most of the probability mass is located in equilibrium.

In the second step of our approach, we consider the stochastic complement of W [16], which
allows us to derive bounds for the probabilities of individual states within W . The stochastic com-
plement is a finite Markov chain with state space W , where each outgoing transition leading to a
state not in W is redirected to W . This redirection is defined in such a way that the equilibrium
probability distribution of the stochastic complement gives the conditional equilibrium probabilities

Figure 1. The equilibrium distribution of an MPM that describes a gene regulatory network and geomet-
ric bounds (dashed line) enclosing a subset W of the state space S with an equilibrium probability larger

than 0.95.
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for the states in W . Because the exact redirection probability can only be obtained from a complete
solution of the infinite system, we compute upper and lower bounds on the conditional equilibrium
probabilities based on the results developed by Courtois and Semal [17]. For this, we derive a num-
ber of linear equation systems that we solve using LU factorization. We exploit the structure of
the MPM to reduce the number of equation systems to be solved. Together with the first step of
the approach, this yields upper and lower bounds for the equilibrium probabilities of all states in
W . To the best of our knowledge, this is the first technique that provides accurate bounds for the
equilibrium probabilities of MPMs.

The paper is structured as follows: in the next section, we present the geometric bounding tech-
nique to compute a set W of states where most of the equilibrium probability mass is located. We
then introduce the stochastic complement for MPMs in Section 3 and adapt the state-wise bounding
technique in Section 4. We present a detailed case study from biology in Section 5 and give further
exemplary numerical results in Section 6. We conclude the paper with Section 7.

Throughout this paper, we use capital letters for sets and boldface capital letters for matrices. We
define matrices and vectors by square brackets. We indicate entries of matrices and vectors using
subscripts. The lowercase letters x,y, ´,w represent state vectors. Probability vectors are row vec-
tors. Furthermore, I is the identity matrix, 0 is the zero matrix, e is the column vector of 1s, ei is the
i th unit column vector, and T denotes matrix transposition.

2. GEOMETRIC BOUNDS

We describe the transitions of an MPM by transition classes. A transition class � is a pair .˛, v/,
where ˛ W S ! R>0 is a function that determines the (time-independent) transition rate and v 2 Zn

is a change vector that determines the successor state of the transition. Thus, if x 2 S and ˛.x/ > 0,
then there is a transition from state x to state .x C v/ with rate ˛.x/. We assume that v has at least
one nonzero entry and that ˛.x/ is a polynomial in x D Œx1, : : : , xn�. A MPM may be specified by
a set f�1, : : : , �J g of transition classes.

When the MPM represents a network of chemical reactions, each reaction corresponds to one
transition class. Chemical reactions are usually specified by stoichiometric equations of the form

s1P1C � � � C snPn
�
�! r1P1C � � � C rnPn,

where the components of s D Œs1, : : : , sn�, r D Œr1, : : : , rn� 2 ZnC are stoichiometric coefficients,
P1, : : : ,Pn represent types of chemical species (or molecules), and � > 0 is the reaction rate con-
stant. The coefficients si and ri respectively denote the number of Pi species that is consumed and
produced by the reaction for i 2 f1, : : : ,ng. If x D Œx1, : : : , xn� is the current state of the underlying
MPM, then the rate ˛.x/ at which this reaction occurs is proportional to the possible number of
reactant combinations, that is, if si 6 xi for all i 2 f1, : : : ,ng, then

˛.x/D �

nY
iD1

xi Š

si Š.xi � si /Š

and ˛.x/D 0 otherwise. The corresponding transition class .˛, v/ has the change vector v D r � s.

Example 1
We present a network of chemical reactions where a gene is transcribed into mRNA (species M )
and the mRNA is translated into a protein (species P ) [8]. Both species can degrade. The corre-
sponding stoichiometric equations and the transition classes are listed in Table I. The state space is
given by S D ZnC with n D 2, where for a state x D Œx1, x2� 2 S the entry x1 encodes the number
of molecules of type M and x2 encodes the number of molecules of type P .

For a given set of transition classes f�1, : : : , �J g, we define the infinite infinitesimal generator
matrix Q underlying the MPM fX.t/, t > 0g such that the entry Qx,xCv equals

P
fj jv.j/Dvg ˛j .x/,

where �j D .˛j , v.j // and j 2 f1, : : : ,J g. Moreover, we let the diagonal entries of Q be equal to the
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Table I. Transition classes of the gene expression model.

j Stoichiometric equation �j ˛j .x/ v.j /

1 ;
�
�!M .˛1, v.1// � eT1

2 M
�
�!M CP .˛2, v.2// �x1 eT2

3 M
ıM
�! ; .˛3, v.3// ıM x1 �eT1

4 P
ıP
�! ; .˛4, v.4// ıP x2 �eT2

negative row sum of the off-diagonal entries. The matrix Q has only finitely many nonzero entries
in each row and in each column, that is, Q is a row-/column-finite infinite matrix [18]. Note that
supx jQx,xj may be infinite and that the number of states reachable from a given initial state may be
infinite.

The following well known theorem characterizes the ergodicity of X in terms of the drift with
respect to the Lyapunov function g (see, for instance, [19]).

Theorem 1
The MPM X is ergodic iff there exists a function g W S ! R>0, a finite subset W � S , and a
constant � > 0 such that

(i) d
dt
EŒg.X.t// j X.t/D x�6 �� for all x 2 S nW ,

(ii) d
dt
EŒg.X.t// j X.t/D x� <1 for all x 2W , and

(iii) fx 2 S j g.x/6 lg is finite for all l <1.

The value d.x/ D d
dt
EŒg.X.t// j X.t/ D x� is called the drift in state x and can be expressed

directly as

d.x/D

JX
jD1

˛j .x/.g.xC v
.j //� g.x//.

The drift can be used to derive bounds on the equilibrium probability of being in a certain subset of
states.

Let us assume that g is as in Theorem 1, that is, g is a witness for the ergodicity of X . Because
X is ergodic, it has a unique equilibrium probability distribution � , which satisfies �QD 0 subject
to �e D 1. Moreover, there exists a positive real number c with c > maxx2S d.x/. Let the scaled
Lyapunov function be

g�.x/D
g.x/

cC �
.

Then for the scaled drift function d� we have

d�.x/D
d

dt
EŒg�.X.t// j X.t/D x�D

d.x/

cC �
.

Thus, the first two conditions of Theorem 1 are now equivalent to

d�.x/6 c

cC �
� N�W .x/, (1)

where N�W .x/ is the characteristic function of the set S nW , that is, N�W .x/ D 1 if x 62 W and 0
otherwise. Now we multiply Equation (1) with �x and sum over x. Then the left-hand side becomes
zero and we arrive at X

x 62W

�x 6
c

cC �
.
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Thus, equation (1) provides an upper bound on the probability mass outside W and, therefore, also
a lower bound on the equilibrium probability mass inside W . Let us assume we seek a subset W ,
which satisfies

P
x2W �x > .1�	/ for 	 2 .0, 1/. Then, we need to choose an appropriate Lyapunov

function g.x/, derive the drift d.x/ and let � > 0 be such that 	 D c
cC�

. From this, we can compute
the scaled drift d�.x/D �

c
d.x/ and finally choose

W D fx 2 S j d�.x/ > 	 � 1g. (2)

Of course, the choice of the original Lyapunov function g is crucial for the approach presented in
the aforementioned equattion. The function g must be a witness for ergodicity. Moreover, its choice
may drastically influence the size of W and, therefore, also the tightness of the probability bounds.
In this paper, we restrict the choice of g to multivariate polynomials on R>0 that obey condition (iii)
of Theorem 1. This implies that if in each state x 2 S the drift is lower than or equal to a constant
c, then the set W of all states where the drift is at least �� must be finite. Thus, in that case, we can
conclude that X is ergodic. Our experimental results indicate that the squared Euclidean norm often
suffices to witness the ergodicity ofX and to provide tight probability bounds (see Sections 5 and 6).

3. STOCHASTIC COMPLEMENTATION

In the following, we extend the theory of stochastic complementation, originally proposed for finite
discrete time Markov chains (DTMCs) [16], to infinite continuous-time Markov chains (CTMCs).
We assume that the CTMC fX.t/, t > 0g, with state space S , is ergodic and has an irreducible row-/
column-finite infinite infinitesimal generator matrix Q. For a finite subsetW � S , we partition Q as

QD

"
A B

C D

#
,

where the square submatrix A contains all transitions within the finite set W , and the possibly infi-
nite matrices B, C, and D contain all transitions from W to W D S nW , from W to W , and within
W , respectively.

Definition 1 (Embedded Markov Chain)
The transition probability matrix E of the embedded DTMC associated with X is given by

ED IC dinv.Q/QD

" eA eBeC eD
#

,

where dinv.Q/ is a diagonal matrix with

dinv.Q/x,y D

� 1
jQx,x j

if x D y,
0 otherwise.

Note that the product dinv.Q/Q of the two infinite matrices is well-defined because both fac-
tors are row-/column-finite infinite matrices. By dinv.D/ we denote the block of dinv.Q/ that
corresponds to block D in Q.

Definition 2 (Stochastic Complement)
The stochastic complement Q of A is defined as

QD ACB
1X
iD0

eDieC.

Note that the infinite series
P1
iD0

eDi in Definition 2 is meant to be element-wise convergent. The
stochastic complement for a finite block of an infinite generator matrix has already been defined
in [20] (cf. page 22). However, in this definition, the matrix inverse of the infinite block �D is used,
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but no proof of well-definedness is given. Our definition of the stochastic complement circumvents
this problem by using embedding. This allows us to prove well-definedness of Q as presented in the
following.

Theorem 2
The stochastic complement Q of A is a well-defined infinitesimal generator matrix and it is
irreducible.

Proof
For Q to be well-defined, we need to ensure that

P1
iD0

eDi converges element-wise. Now, because
Q is ergodic and therefore irreducible, E is irreducible as well. Consequently, we can follow [21] to
reason that eD is strictly substochastic, and with Corollary 2 of Lemma 5.4D of [22], we have thatP1
iD0

eDi is element-wise finite.

To prove that Q is an infinitesimal generator matrix, we will show that

(i) Q e D 0 and
(ii) Qx,y > 0 for x ¤ y.

Now, observe that eD eCeC e D e
can be rewritten as eC e D .I�eD/ e.

We use this equality to show that
P1
iD0

eDieC is a stochastic matrix. Obviously it is nonnegative
and we are left to show that the row sums converge element-wise and equal one. We begin with
considering the finite sequence

NX
iD0

eDieC e D .ICeDCeD2C � � � CeDN /.I�eD/ e D .I�eDNC1/ e D e �eDNC1 e
and have to show limN!1

eDNC1 e D 0, that is, the sequence eDNC1 e converges element-wise to
the zero vector. For that, we will reason about the kth row sum of eDN , that is, we have

eTk
eDN e D .eTk eDN e/T D eT .eDT /N ek D jj.eDT /N ekjj1, (3)

which holds because eD and, therefore, also eDN are row/column-finite for all N . Now, we observe
that limN!1.eDT /N ek D 0 element-wise because all entries of eDN tend to zero. By Schur’s
Theorem [23] (cf. also [24], page 137) according to which in the sequence space

`1 WD fx D .
i /
1
iD1 j jjxjj1 WD

1X
iD1

j
i j<1g,

convergence in the 1-norm coincides with element-wise convergence, we have that limN!1 jj.eDT /N
ekjj1 D 0 element-wise for all k. Therefore, in combination with Equation (3), we also have
limN!1

eDNC1 e D 0 which finally results in
P1
iD0

eDieC e D e. Consequently, for the row sums of
Q we have

Q e D A eCB
1X
iD0

eDieC e„ ƒ‚ …
e

D .ACB/ e D 0.

The nonnegativity of the off-diagonal entries of Q follows from B > 0,
P1
iD0

eDieC > 0, and
Ax,y > 0 for x ¤ y.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:931–946
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To show the irreducibility of Q, we notice that if A is irreducible, Q is trivially irreducible as
well. Otherwise, A can be symmetrically permuted into a block lower-triangular form in which the
diagonal blocks are irreducible [25]. Without loss of generality, consider partitionings of A and Q
with two diagonal blocks as in

QD

26664
A.11/ 0 B.1/

A.21/ A.22/ B.2/

C.1/ C.2/ D

37775 QD

24 Q
.11/

Q
.12/

Q
.21/

Q
.22/

35 .

In this partitioning, A.11/ and A.22/ are irreducible, and therefore, Q
.11/

and Q
.22/

are irreducible
as well. Let P rŒxÝy� denote the probability of reaching state y from state x independent of time.
Obviously, there exist states x,w 2W and y, ´ 2W such that

B.1/x,y > 0,eC.2/´,w > 0, and P rŒyÝ ´� > 0,

otherwise Q must have been reducible. Here,eC.2/ corresponds to the block C.2/ of Q in E assuming
the same partitioning. Moreover, there exists an i > 0 such thateDi .y, ´/ > 0

because P rŒyÝ ´� > 0. Consequently, we have

Q
.12/

x,w D

 
B
1X
iD0

eDieC!
x,w

> 0.

If A.21/ D 0 or there are more than two irreducible diagonal blocks, similar arguments can be used to
prove that appropriate off-diagonal blocks in the block upper-triangular part of Q are nonzero. �

Theorem 3
Let N�W be the unique equilibrium probability distribution that corresponds to the generator matrix
Q. Then for x 2W , we have that

N�Wx D
�xP
y2W �y

.

Proof
First, let us prove the identity"

A B

C D

#"
I 0P1

iD0.
eD/ieC I

#
D

"
ACB

P1
iD0.

eD/ieC B

0 D

#
. (4)

We observe that

.I�T/
1X
iD0

Ti D I

for any strictly substochastic row-/column-finite infinite matrix T where the infinite series
P1
iD0 Ti

is meant to converge element-wise. Now, we choose T D eD D I C dinv.D/D for which strict
substochasticity has been shown in the proof of Theorem 2, and we obtain

.I� .IC dinv.D/D//
1X
iD0

.IC dinv.D/D/i D I,

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:931–946
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which reduces to

dinv.D/D
1X
iD0

.IC dinv.D/D/i D�I.

Now, let the infinite matrix diag.D/ be defined as

diag.D/x,y D

8<: jDx,y j if x D y,

0 otherwise.

Then, multiplying the previous equality on both sides by diag.D/ from the left gives

D
1X
iD0

.IC dinv.D/D/i D�diag.D/

because diag.D/dinv.D/D I. Exploiting this equality finally yields

CCD
1X
iD0

�eD�i eCD CCD
1X
iD0

.IC dinv.D/D/i .dinv.D/C/

D CC .�dinv.D//dinv.D/„ ƒ‚ …
�I

CD 0.

Note that the multiplications involved in taking the powers of eD and in the product of dinv.D/
and diag.D/ are well-defined because these matrices are row-/column-finite. Now, letting � D
Œ�W �W � we have

�W QC �W 0D 0

if we multiply Equation (4) with � from the left. With Theorem 2, Q is irreducible and, therefore,

�W is the unique solution of �W QD 0 up to unit 1-norm. Thus, N�W D �W
�P

y2W �y

��1
. �

4. STATE-WISE BOUNDS

To derive upper and lower bounds for the equilibrium probability of each state in the finite subset
W , we adapt the results in [17] and [26] to our setting. As in Section 2 and 3, we assume that Q is
the generator matrix of an ergodic MPM, and that W � S is a finite subset of the state space. Let
the substochastic matrix C be defined as

CD IC
1

u
A,

where u > maxx jAx,xj. We define the transition probability matrices Cy for y 2 W as Cy D
CC .e � Ce/eTy , that is, we increase the elements of the column corresponding to state y in C to
obtain a stochastic matrix.

We remark that A, and hence, C may be reducible. In that case, the quality of the bounds com-
puted using Cy deteriorate [27, Section 6]. However, in all problems we considered, A turned out to
be irreducible, implying the irreducibility of Cy . Therefore, in the following derivations we assume
that A is irreducible.

Theorem 4
Let the unique equilibrium probability distribution of Q be partitioned according to the state space
partition as in � D Œ�W �W �, and let Cy be irreducible. Then for all x 2W

min
y2W

�
Cy
x 6

�WxP
y2W �y

6 max
y2W

�
Cy
x ,

where �Cy is the unique equilibrium probability distribution of the DTMC associated with Cy .

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:931–946
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Proof
From Theorem 2, we know that Q is well-defined and irreducible. Furthermore, Theorem 3 ensures
that � conditioned on W is identical to the equilibrium distribution of Q, which also coincides with
the equilibrium probability distribution of

CD IC
1

u
Q.

Note that

u > max
x2W
jA.x, x/j> max

x2W
jQ.x, x/j

implies that C is a stochastic matrix. The same arguments as in [17] can be used to conclude that
the equilibrium distribution of C is contained in the convex hull of the unit 1-norm Perron vectors
of the irreducible matrices Cy (see also [26, 28]). �

From Equation (1), we know that W can be determined such that

1� 	 <
X
x2W

�x 6 1.

Consequently, Theorem 4 allows us to bound the (unconditional) individual equilibrium probabili-
ties for states x 2W as

.1� 	/ min
y2W

�
Cy
x < �x 6 max

y2W
�

Cy
x . (5)

Equation (5) above implies an algorithmic procedure for the computation of lower and upper bounds
on the equilibrium probabilities. We determine the set W as suggested in Section 2. Then, for each
y 2 W , we construct Cy and, provided it is irreducible, compute the distribution �Cy . Finally, for
every x 2 W , we derive bounds according to Equation ((5)). For the states x 2 W , we have the
trivial bound 0 < �x 6 	. The computational effort of this approach can be decreased by exploiting
the structure of Q and by ignoring matrices Cy for which y is a state that has no incoming transi-
tions from W , that is, that have zero columns in C. For a given set of transition classes, it is easy to
compute the set H �W of states that have incoming transitions from W , because

H D fx 2W j 9j 2 f1, : : : ,J g W ˛j .x � v
.j // > 0, .x � v.j // 2W g.

The use of similar arguments as in [17] and again, provided that Cy is irreducible for each y 2 H ,
we have

.1� 	/ min
y2H

�
Cy
x < �x 6max

y2H
�

Cy
x .

To compute the equilibrium probability distributions �Cy of Cy for y 2H efficiently, we consider
�CyCy D �Cy subject to �Cye D 1. Because this equation needs to be solved jH j times for Cy that
differ from each other in two columns, we uncouple the slack probability mass added to column y
and, assuming that A is irreducible, obtain the irreducible stochastic matrix

Py D

"
C e �Ce

eTy 0

#
of order jW j C 1. Now, let py D ŒpC

y p
0
y � denote the equilibrium probability distribution of Py ,

that is, pyPy D py subject to pye D 1. Multiplying .Py � I / on the left-hand side with py
and equating to 0, we obtain pC

y .C � I/ D �p0ye
T
y , which can be solved subject to pC

y e D 1 for
y 2 H . We remark that the coefficient matrix does not depend on y and, therefore, can be LU fac-
torized once. Consequently, the time complexity of the whole procedure of computing conditional
bounds reduces to that of a sparse LU factorization of a matrix of order jW j plus jH j forward and
backward substitutions.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:931–946
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5. CASE STUDY: EXCLUSIVE SWITCH

We developed a prototypical tool called Geobound [29] written in Java 6. It implements both the
computation of geometric bounds via Lyapunov functions and the computation of the conditional
probabilities using the approach presented in this section.

Geobound takes as input a transition class description of an MPM and tries to prove ergodicity
using a user-specified Lyapunov function. If a multivariate polynomial g.x/ is chosen as Lyapunov
function, then the drift is a multivariate polynomial as well. If the latter tends to �1 with increas-
ing distance to the origin, then only finitely many states have a nonnegative drift and the first two
conditions of Theorem 1 hold.

To determine the maximum drift, we restrict the domain of the search for the extrema to Rn>0. We
compute all extrema by equating the gradientrd.x/with the zero vector. This alone would not yield
all local extrema. Therefore, we additionally solverd.x/D 0 for every projection of d.x/ onto each
subspace of Rn by setting all combinations of variables xi with i 2 f1, : : : ,ng to zero, to obtain all
the local extrema located at the borders of the domain. Finally, we filter out all extrema outside of
Rn>0. The resulting nonlinear equation systems are solved using the HOM4PS-2.0 package [30], an
implementation of the polyhedral homotopy continuation method.

The global maximum c as the maximum over all local extrema found in the previous step is used
to retrieve the scaled drift polynomial d�.x/ (see Section 2). Note that traditional global optimiza-
tion techniques such as gradient descent or simulated annealing cannot be used because we need to
guarantee that the found maximum is indeed the global maximum. Moreover, we also need the local
maxima as initial points when we determine W in the next step. More precisely, we start with the
local maxima and recursively add all neighboring points of the integer grid that satisfy the condition
in Equation (2) for the scaled drift.

To compute H , we calculate for each x 2W and each transition class .˛j , v.j // the predecessor
.x � v.j //. If .x � v.j // 62 W and ˛j .x � v.j // > 0, then we add x to H . Next, we compute the
nonzero entries of the finite matrix A and compute the conditional bounds of �x for x 2 W as
explained in the previous text. For this, the tool employs the SuperLU [31] package for LU fac-
torization. All computations are performed on a dual-core 2.66 GHz machine with 3 gigabytes of
memory under Ubuntu 10.04.

In the following, we consider a case study from biology called exclusive switch. In previous work,
the equilibrium distribution of this gene regulatory network has been approximated by Monte Carlo
simulations [32], but no execution times are reported. Here, we present a direct method to trun-
cate the state space using the Lyapunov approach presented in Section 2, and we approximate the
equilibrium by computing state-wise bounds as explained in Section 4.

5.1. Model

The exclusive switch is a gene regulatory network consisting of two genes that share a promotor
region (cf. Figure 2). The state of the promotor region determines whether the genes are used to
produce proteins or not. Let P1 be the product of the first gene, and let P2 be the product of the sec-
ond gene. Each of the proteins can bind to the promotor region and thereby inhibit the production
of the other protein. More precisely, if the promotor region is free, both P1 and P2 are produced.

Figure 2. Illustration of the exclusive switch in section 5. The picture has been adapted from [32].
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Otherwise, if P1 (P2) is bound to the region, only the first (second) gene is active and thus only
P1 (P2) is produced, respectively. The overall system consists of five species, hence, the state space
S � Z5C. In a state x D Œx1, : : : , x5� 2 S , x1 (x2) represents the number of P1 (P2) molecules.
The entry x3 is one if the promotor region is free and zero otherwise. Similarly, x4 (x5) is one if
a molecule of type P1 (P2) is bound to the promotor region, respectively, and zero otherwise. We
describe the exclusive switch by the set of stoichiometric equations in Table II. Additionally, we list
the corresponding transition classes. Note that species G represents both genes.

5.2. Geometric bounds

For the sake of simplicity, we choose the squared Euclidean norm as the Lyapunov function for
our case study. Note that this choice influences the accuracy of the probability bounds. Obviously,
it is possible to take as Lyapunov function a multivariate polynomial and optimize over the coeffi-
cients. Our experimental results, however, indicate that for the models that we consider the squared
Euclidean norm performs well. Thus, the Lyapunov function g.x/ is defined as

g.x/D x21 C � � � C x
2
5 .

The drift function d.x/ then becomes

d.x/D

10X
jD1

˛j .x/.g.xC vj /� g.x//

D�x3.2x1C 1/C �x3.2x2C 1/C ıx1.�2x1C 1/C ıx2.�2x2C 1/

C ˇx1x3.�2x1 � 2x3C 2x4C 3/C ˇx2x3.�2x2 � 2x3C 2x5C 3/

C �x4.�2x4C 2x1C 2x3C 3/C �x5.�2x5C 2x2C 2x3C 3/

C �x4.2x1C 1/C �x5.2x2C 1/.

With the initial condition x D Œ0, 0, 1, 0, 0�, it is easy to see that xk 2 f0, 1g for k 2 f3, 4, 5g and
x3 C x4 C x5 D 1, that is, at any time the promotor region is either free, a molecule of type P1 is
bound, or P2 is bound. For each state of the promotor, we consider one drift function:

d3.x1, x2/D d.x1, x2, 1, 0, 0/D�2.ıC ˇ/.x21 C x
2
2/C .2�C ıC ˇ/.x1C x2/C 2�

d4.x1, x2/D d.x1, x2, 0, 1, 0/D�2ı.x21 C x
2
2/C ı.x1C x2/C 2.�C �/x1C �C �

d5.x1, x2/D d.x1, x2, 0, 0, 1/D�2ı.x21 C x
2
2/C ı.x1C x2/C 2.�C �/x2C �C �

Table II. Chemical reactions and transition classes of the exclusive switch.

j Stoichiometric equation �j ˛j .x/ v.j /

1 G
�
�!G CP1 .˛1, v.1// �x3 eT1

2 G
�
�!G CP2 .˛2, v.2// �x3 eT2

3 P1
ı
�! ; .˛3, v.3// ıx1 �eT1

4 P2
ı
�! ; .˛4, v.4// ıx2 �eT2

5 G CP1
ˇ
�!G.P1 .˛5, v.5// ˇx1x3 .�e1 � e3 C e4/

T

6 G CP2
ˇ
�!G.P2 .˛6, v.6// ˇx2x3 .�e2 � e3 C e5/

T

7 G.P1
�
�!G CP1 .˛7, v.7// �x4 .�e4C e1C e3/

T

8 G.P2
�
�!G CP2 .˛8, v.8// �x5 .�e5C e2C e3/

T

9 G.P1
�
�!G.P1CP1 .˛9, v.9// �x4 eT1

10 G.P2
�
�!G.P2CP2 .˛10, v.10// �x5 eT2

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:931–946
DOI: 10.1002/nla



942 T. DAYAR ET AL.

After fixing the model parameters to � D 0.05, ı D 0.005, ˇ D 0.01, and � D 0.008, it turns out
that the global maximum drift c Dmaxx2S d.x/D 0.42465 is in states

x.m1/ D Œ6.05, 0.25, 0, 1, 0� and x.m2/ D Œ0.25, 6.05, 0, 0, 1�.

Note that the coefficients of the highest order terms are negative, which implies that W D fx 2
S j d.x/> � �g is finite. We choose 	 D 0.1, which yields a set of states that contains at least 90%
of the equilibrium probability mass. We derive the scaled drift functions

d�k.x/D
	

c
dk.x/ with k 2 f3, 4, 5g

and finally compute

W Dfx 2 S j d�.x/ > �0.9g

D f.x1, x2, 1, 0, 0/ 2 S j d�3.x1, x2/ > �0.9g

[ f.x1, x2, 0, 1, 0/ 2 S j d�4.x1, x2/ > �0.9g

[ f.x1, x2, 0, 0, 1/ 2 S j d�5.x1, x2/ > �0.9g.

We illustrate the set W in Figure 3, left, with respect to the state space projected on P1 and P2. The
set W contains 1,680 states altogether.

5.3. Conditional probabilities

We apply Theorem 4 to bound the individual equilibrium probabilities conditioned on being in W .
For an illustration of the conditional lower bounds, we refer to Figure 3, left. To compute uncondi-
tional bounds, the lower bounds should be multiplied by .1�	/D 0.9. We list further results for the
exclusive switch in Table III where we vary 	 (cf. first column). The columns ‘jW j’ and ‘jH j’ list
the size of the sets W and H . In the two columns with heading ‘Time (s)’, we give the execution
time in seconds that was needed to determine the setsW andH , as well as the execution time for the

examples/exswitch5.tcm [epsilon = 0.1]

0 5  10  15  20  25  30

P1

0

5

 10

 15

 20

 25

 30

P
2

0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

Figure 3. State-wise lower bounds of the conditional equilibrium distribution of the exclusive switch and a
set that contains at least 90% of the probability mass (left). The dashed lines confine the three sets whose

union is W . The right plot shows the difference between state-wise lower and upper bounds.

Table III. Numerical results for the exclusive switch.

Time (s)

	 jW j jH j Computing W and H Computing bounds Memory (MB) �

1.0e-1 1,680 108 1.0 5.0 43.5 2.9e-3
5.0e-2 2,934 144 1.4 5.7 64.2 1.4e-3
1.0e-2 11,994 297 1.4 83.2 304.6 2.8e-4
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LU factorization that was used to compute the bounds on the conditional probabilities. Moreover,
we list our memory requirements (in MegaBytes) in the column ‘Memory (MB)’. Finally, in the last
column we give the maximum absolute difference of the bounds of the unconditional equilibrium
probabilities, �, that is,

�D max
x2W

.max
y2H

�
Cy
x � .1� 	/ min

y2H
�

Cy
x /.

In Figure 3, right, we illustrate the difference between upper and lower bounds of the conditional
probabilities. Note that the maximum absolute difference of the conditional probabilities is smaller
than �. To compute bounds on the unconditional probabilities, each lower bound of the conditional
probability is multiplied by .1� 	/, whereas the upper bound remains the same.

6. NUMERICAL RESULTS

In this section, we list further numerical results for various models from biology. All models
have previously been analyzed using the Monte Carlo simulations, and execution times are not
reported [8, 32, 33]. Here, we approximate their equilibrium distribution using the techniques
presented previously. Unless stated otherwise, we again use the squared Euclidean norm

g.x/D

nX
iD1

x2i

as a Lyapunov function.

6.1. Toggle switch

The toggle switch [34] is a gene regulatory network that is similar to the exclusive switch. Instead
of a single promotor, it consists of two promotor regions. If the first promotor NRB is free (variable
x1), the production of protein A (variable x3) is enabled. The other promotor NRA (variable x2) con-
trols the production of protein B (variable x4). Both proteins can repress the expression of the other
protein by binding to the promotor of the corresponding gene. In the repressed state, the promotors
are represented by the species RA and RB . Proteins bound to the promotor can unbind and protein
molecules can degrade over time. We list the stoichiometric equations in Table IV (cf. [33]) as well
as the transition classes. We choose parameters �A D �B D 6.0, ıA D ıB D 0.4, ˇ0 D 1.0, and
ˇ1 D 0.5. The results are presented in Table V. The global maximum drift c D 124.225 was found
at x3 D x4 D 8.375, where both promotor regions are free.

For this system we could verify tristability, that is, in addition to the two regions with a high num-
ber of protein molecules of one of the two species, we could identify another peak in the equilibrium

Table IV. Transition classes for the toggle switch model.

j Stoichiometric equation �j ˛j .x/ v.j /

1 NRB
�A
�! NRB CA .˛1, v.1// �A.1� x1/ eT3

2 A
ıA
�! ; .˛2, v.2// ıAx3 �eT3

3 NRACA
ˇ0
�!RA .˛3, v.3// ˇ0.1� x2/x3 eT2 � e

T
3

4 RA
ˇ1
�! NRACA .˛4, v.4// ˇ1x2 eT3 � e

T
2

5 NRA
�B
�! NRACB .˛5, v.5// �B .1� x2/ eT4

6 B
ıB
�! ; .˛6, v.6// ıBx4 �eT4

7 NRB CB
ˇ0
�!RB .˛7, v.7// ˇ0.1� x1/x4 eT1 � e

T
4

8 RB
ˇ1
�! NRB CB .˛8, v.8// ˇ1x1 eT4 � e

T
1
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Table V. Numerical results for the toggle switch model.

Time (s)

	 jW j jH j Computing W and H Computing bounds Memory (MB) �

1.0e-1 7,964 292 1.5 29.0 227.3 1.9e-3
5.0e-2 14,016 384 1.9 65.8 433.2 9.7e-4

distribution in a region with a low number of protein molecules. In [33], the authors explained that
peak by a deadlock situation were caused by both promotor regions being bound simultaneously.

6.2. Gene expression

Next, we consider the gene expression in Example 1 with the parameters � D 100.0, � D 0.01,
ıM D 0.2, and ıP D 0.02. These parameters are chosen such that the attracting regions are located
far from the origin. This implies that the state space must be truncated from above and additionally
from below because otherwise the number of states in the set W becomes intractably large. In the
examples presented so far, the setW always included the origin. The reason is that all states ‘below’
an attractor have positive drift if the squared Euclidean norm is used. If we take as a Lyapunov func-
tion the distance to attracting regions, it is possible to derive a setW that does not include the origin.
The reason is that a state that is located far ‘below’ an attractor may have a negative drift. In general,
it is difficult to guess attracting regions. One possibility is to first consider the multi-dimensional
drift function

Qd.x/D
d

dt
EŒX.t/ j X.t/D x�

and find regions where it is maximal. Then, another Lyapunov function is used to bound the equi-
librium probability, namely, the function that measures the distance to these regions. Thus, we set
Qd.x/ to zero and obtain

�� ıMx1 D 0 �x1 � ıPx2 D 0,

which has the unique solution . Qx1, Qx2/D
�
�
ıM

, ��
ıM ıP

�
. Next we consider the Lyapunov function

g.x/D a.x1 � Qx1/
2C b.x2 � Qx2/

2,

that is, the weighted squared distance to the possible attractor . Qx1, Qx2/ computed before. We tested
different weights and found that in the choice a D 1.0, b D 20.0 provides good numerical results,
which we list in Table VI. Note that for a D b D 1.0 and 	 D 0.1, the set W contains 52,316
states (vs 23,770 for aD 1.0, b D 20.0) and the results are slightly more accurate (not shown). This
indicates that the choice of the Lyapunov function is particularly important if the attracting regions
must be bounded from below as well.

We have applied our technique to several other models from systems biology, for example, pro-
tein synthesis [35], and could achieve bounding precisions up to a magnitude of 10�6 at moderate
computation times of less than 8 s depending on the model structure.

Table VI. Numerical results for the gene expression model.

Time (s)

	 jW j jH j Computing W and H Computing bounds Memory (MB) �

1.0e-1 23,770 515 0.7 19.0 605.2 1.6e-4
5.0e-2 47,517 728 1.3 90.1 866.3 4.6e-8
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7. CONCLUSION

This paper has set the algorithmic ground for the computation of state-wise equilibrium probability
bounds for Markov population models, a general class of structured infinite-state continuous-time
Markov chains. This is achieved by combining Lyapunov theory with numerical approximation and
bounding techniques. Special attention has been paid to the rigorous derivation of the results in the
context of the infinite state space setting especially when extending the theory of stochastic comple-
mentation to Markov population models. The presented results have been successfully implemented
in a software tool, which is particularly suited to problems originating from the systems biology. It
is the first tool of its kind, and empirical results show its computational strengths.

The Lyapunov function used as a witness for ergodicity plays an important role in the approach
we follow. Thus far the function is constructed manually. As we have discussed, often the Euclidean
norm works well, but more elaborate multivariate polynomials give better results with respect to
both tightness of the bounds and computational effort. For future work, we will investigate the
automated synthesis and coefficient optimization of the polynomial based on the transition class
description. This seems a very promising direction to further improve the runtime and the quality of
the computed bounds.
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