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SUMMARY

This paper focuses on the application of NURBS-based isogeometric analysis to Coulomb frictional contact
problems between deformable bodies, in the context of large deformations. A mortar-based approach
is presented to treat the contact constraints, whereby the discretization of the continuum is performed
with arbitrary order NURBS, as well as C0-continuous Lagrange polynomial elements for comparison
purposes. The numerical examples show that the proposed contact formulation in conjunction with the
NURBS discretization delivers accurate and robust predictions. Results of lower quality are obtained from
the Lagrange discretization, as well as from a different contact formulation based on the enforcement of
the contact constraints at every integration point on the contact surface. Copyright � 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Isogeometric analysis, recently presented by Hughes et al. [1], can be regarded as a successful
merging of computer-aided design and the finite element method (FEM). In the last few years
this new computational mechanics technology has been successfully applied to a variety of
problems [2–7].

The potential of isogeometric analysis for contact modeling was already suggested in the orig-
inal paper by Hughes et al. [1]. As NURBS geometries can attain the desired degree of continuity
at the element boundaries, they possess the premises to alleviate all the problems arising partic-
ularly in sliding contact when using conventional Lagrange polynomial elements, which are only
C0-continuous at the interelement nodes. Such problems have often been faced by introducing
smoothing techniques [8–12], some of which involve NURBS interpolation [13, 14]. These proce-
dures generally improve the performance of the contact algorithms by enhancing the continuity
of the contact surfaces, however they do not increase the order of convergence as the higher
order approximation does not involve the bulk behavior of the solids. Temizer et al. [15] applied
NURBS-based isogeometric analysis to thermomechanical frictionless contact problems. Qualita-
tive analyses on large deformation frictionless sliding indicated a superior iterative convergence
behavior of NURBS discretizations over Lagrange ones. The analysis of the classical Hertz problem
demonstrated the superiority of the NURBS discretization in terms of quality and robustness of
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results. It was also pointed out that the enforcement of the contact constraints at each Gauss point
on the contact surfaces delivers unstable results, and therefore a mortar-based formulation must
be pursued.

In this paper, NURBS-based isogeometric analysis is adopted to model 2D large deformation
Coulomb frictional contact problems. Section 2 describes the formulation of the contact problem
using the penalty method for both frictionless and frictional conditions. Section 3 illustrates the
NURBS discretization. Sections 4 and 5 present the contact formulation in detail, up to the full
linearization which is deferred to the Appendix. Finally, in Section 6 some numerical examples
are presented and their results are compared and discussed.

2. LARGE DEFORMATION CONTACT PROBLEM

This section summarizes the theoretical and algorithmic background of the contact between
two deformable bodies undergoing finite deformations, for more details see Laursen [16] and
Wriggers [17].

2.1. Problem description

Two 2D elastic bodies are assumed to come into contact undergoing large deformations. The
bodies are denoted as slave (or non-mortar), Bs, and master (or mortar), Bm. The relation between
the initial (reference) configuration X, the displacement u, and the current configuration x of the
generic point of each body is given by

xi =Xi +ui (1)

where the superscript i ={s,m} denotes, respectively, the slave and master bodies.
The master surface is parameterized via the convective coordinate � that defines the covariant

vector s1 =xm
,�. Using the metric m11 :=s1 ·s1 with inverse component m11, the contravariant vector

s1 :=m11s1 is induced. The curvature follows from k11 =xm
,�� ·n, where n=nm is the normal unit

vector.
In the current configuration, the contact interface is �c :=�s

c =�m
c , �i

c being the current contact
boundary on body Bi . For its determination, a function is introduced which describes the distance
between a given point of position xs on �s

c and an arbitrary point located at xm =xm(�) on �m
c

d :=‖xs −xm(�)‖ . (2)

The projection of each point of the slave surface onto the master one is carried out by minimizing
such distance. This closest point projection defines a residual

f (�)=s1(�) ·[xs−xm(�)] (3)

that vanishes at the projection point corresponding to �, i.e. f (�)=0. The iterative process starting
from an initial guess �̂ requires the tangent

K11 = f,� =xm
,��(�) ·[xs −xm(�)]−m11(�). (4)

The closest projection point and the related variables are often identified in the literature with the
(•) notation, such as xm =xm(�). In the following, to simplify the notation the bar will mostly be
omitted, and all the quantities related to the master surface will be implicitly intended as evaluated
at the projection point.

The contact interface is pulled back to �c0 :=�s
c0 �=�m

c0, where �i
c0 is the contact boundary in

the reference configuration on body Bi . In the present formulation all contact integrals will be
evaluated on �s

c0. This has been shown to exert no appreciable influence on the results in most
cases of interest [18].
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2.2. Contact variables and constraints

The normal gap, gN , and the tangential slip increment, ġT , between the two bodies are defined as

gN = (xs −xm) ·n ġT = �̇s1. (5)

Note that, with this definition, the gap is positive if the contact is open and negative when penetration
of the bodies takes place. The tangential slip is often defined in incremental form, which is suitable
for the time-discretized backward Euler formulation

�̇= (�−�n)/�t −→ ġT = (gT −gTn )/�t = (�−�n)/�ts1. (6)

Here and in the following, all quantities will refer by default to the current time step t = tn+1,
whereas the subscript n as in Equation (6) will be used to refer to the previous time step tn .

The normal contact traction tN and the tangential contact traction tT are defined in terms of the
Piola traction vector t= tm =−ts, which is resolved into its normal and tangential components

t= tN +tT = tN n+ tT1s
1 tN = t ·n. (7)

Considering unilateral contact without adhesion, the Kuhn–Tucker conditions for impenetrability
on �c0 are

gN �0, tN �0, gN tN =0 ġN tN =0 (8)

and the tangential contact constraints are obtained by combining the tangential slip increment and
contact traction with the Kuhn–Tucker conditions for Coulomb friction

�=‖ tT ‖−�tN �0 ġT = �̇
tT

‖ tT ‖ ��0 ��=0 (9)

where � is the coefficient of friction and � is the amount of slip.

2.3. Penalty regularized contact constraints

The contact constraints introduced above are here regularized using the penalty method. The
regularized normal contact constraint reads as

tN =εN 〈gN 〉− 〈gN 〉− =
{

gN if gN �0

0 otherwise
(10)

where εN >0 is the normal penalty parameter. In the tangential direction, the regularized friction
constraint in the time-discretized setting (using Euler backward integration) takes the form

tT1 = tT1n +εT

[
m11(�−�n)−�

tT1

| tT1 |
]

��0 ��0 ��=0 (11)

where εT >0 is the tangential penalty parameter and �= �̇�t is the incremental plastic slip.
Application of the classical return mapping algorithm yields the following algorithmic update

formula for the frictional traction. The trial state is first computed by assuming that �=0

t trial
T1

= tT1n +εT m11(�−�n) �trial =‖ ttrial
T ‖−�tN (12)

and the status of stick or slip is then determined based on

tT1 =

⎧⎪⎪⎨
⎪⎪⎩

t trial
T1

if �trial�0

−�tN
t trial
T1

‖ ttrial
T ‖ =−�εN gN

t trial
T1

‖ ttrial
T ‖ otherwise.

(13)
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2.4. Variations and linearizations of the contact variables

The variations of the contact kinematical quantities are as follows, for details see e.g. [16] and [17],

�gN = (�xs −�xm) ·n �gT =��s1 ��= 1

m11 −gN k11
[(�xs −�xm) ·s1 +gN n·�xm

,�]. (14)

The variation of the frictional traction derives from the presented time integration scheme. After
some manipulations the variations of the tangential tractions are obtained as

�t trial
T1

= εT [m11��+2(x,�� ·s1��+�x,� ·s1)(�−�n)] (15)

�tT1 = −�εN sign(t trial
T1

)

[√
m11�gN + gN√

m11
(x,�� ·s1��+�x,� ·s1)

]
(16)

for the stick and slip cases, respectively. The linearized increments of all the above quantities
are simply obtained by substituting the symbol for virtual variation, �, with that for linearized
increment, �.

Finally, the linearizations of the kinematical quantities are given by

��gN = −(�xm
,���+�xm

,���+xm
,������) ·n

+ gN

m11
(�xm

,�+xm
,����)n⊗n(�xm

,�+xm
,����) (17)

(m11 −gN k11)��� = −s1 ·(���x,�+�x,���)

−(s1 ·s1,�−gN n·s1,��)����+gN (���x,��+�x,����) ·n
−(�x,�+s1,���) ·s1��−(�x,�+s1,���) ·s1��

+(xs −xm) ·(�x,�+s1,���)+(Dxs −�xm) ·(�x,�+s1,���). (18)

2.5. Contact virtual work

The contact contribution to the virtual work is given by

�Wc =
∫

�c0

[tN �gN + tT1��]d�. (19)

Its linearization follows immediately as

��Wc =
∫

�c0

[�tN �gN + tN ��gN +�tT1��+ tT1���]d� (20)

where all quantities, variations, and linearizations can be found in the previous section.

3. NURBS DISCRETIZATION

This section describes briefly the bivariate NURBS discretization used for the continuum and
the ensuing univariate NURBS discretization of the contact surfaces. In what follows, standard
NURBS terminology is employed. For further details and extensive references see Piegl and Tiller
[19] and Cottrell et al. [6].

Let �i be the open non-uniform knot vector associated with the i th dimension of a patch,
i ={1,2}

�i ={�i
1, . . . ,�i

ni +pi +1}. (21)
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The first pi +1 terms in �i are equal, and so are the last pi +1 terms. Here, pi are the polynomial
orders of the accompanying B-spline basis functions, �i

j is the j th knot and ni is the number

of accompanying control points in the i th dimension. If �i has no repeated interior knot �i
j ,

j ∈ [pi +1,ni ], the number of non-zero interior knot spans is ni − pi , and this corresponds to the
number of elements in the same dimension. Every repetition of an interior knot decreases the
number of elements by one. A surface is parameterized by

S(�1,�2)=
n1∑

d1=1

n2∑
d2=1

Rd1d2 (�1,�2)Xd1d2 (22)

where Xd1d2 are the control point coordinates and Rd1d2�0 are the rational B-spline (NURBS)
basis functions. The latter are defined via a tensor product in a three-dimensional space based on
homogeneous coordinates [19]. The projected form in the two-dimensional space is

Rd1d2 (�1,�2)= wd1d2

W (�1,�2)
B1

d1
(�1)B2

d2
(�2) (23)

with Bi
di

as a piecewise polynomial B-spline basis function. The normalizing weight W is given

in terms of the weights wd1d2 and of the functions Bi
di

via

W (�1,�2)=
n1∑

d1=1

n2∑
d2=1

wd1d2 B1
d1

(�1)B2
d2

(�2). (24)

The knot vectors together with the associated control points and the accompanying weights
constitute a patch. The continuity and order of Bi

di
depends on �i only. If �i has no repeated interior

knot �i
j , j ∈ [pi +1,ni ], then the order-pi basis function Bi

di
has continuity C pi −1. Every repetition

of a knot decreases the continuity by one order at this knot. The order of NURBS parameterization
will be denoted by N p in subsequent sections, while the order of Lagrange polynomials employed
will be denoted by L p.

The counterparts of the h- and p-refinement procedures for FEM discretizations based on
Lagrange polynomials are the knot insertion and order elevation procedures in the NURBS setting.
While p-refinement for Lagrange discretizations preserves the number of nodes, order elevation for
NURBS leads to a slight increase in the number of control points. When knot insertion and order
elevation must be conducted together, the k-refinement procedure will be employed where knot
insertion precedes order elevation [6]. This has the advantage that a higher degree of smoothness
can be achieved within the patch across non-repeated knot entries and the final number of control
points is less compared to the case where knot refinement precedes. For the numerical evaluation of
the weak forms emanating from Lagrange or NURBS-based discretizations, 2p Gauss–Legendre
quadrature points will be employed within each element for order-p approximations. This ensures
a converged quadrature. See Hughes et al. [20] for a recent discussion of efficient quadrature
schemes appropriate for isogeometric analysis.

The contact discretized surface is a univariate NURBS curve that is directly inherited from the
bivariate NURBS surface discretization. For instance, let �1

− :=�1
1. By construction [19]

S(�1
−,�2)=

n2∑
d2=1

R−
d2

(�2)X−
d2

(25)

where X−
d2

:=X1d2 and including the weighting factor

R−
d2

(�2) := w1d2 B2
d2

(�2)∑n2
d2=1 w1d2 B2

d2
(�2)

. (26)

Hence, only the knowledge of the knot vector �2 and a reduced set of control points together with
the accompanying weights are sufficient to characterize the surface associated with �1

−. The same

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1278–1300
DOI: 10.1002/nme



APPLICATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS 1283

principle applies for �1
+ =�1

n1+p1+1 and for the other dimension. Hence, in general, a univariate
patch (in particular a contact patch) is directly inherited from the bivariate continuum patch and
has its same parameterization but only with one parametric dimension that corresponds to any of
the two dimensions. The corresponding knot vector is �� with associated B-spline basis functions
B�

d�
and parametric space coordinate �� that is conveniently chosen as the convective coordinate

for contact computations. The surface parameterization is therefore

S(�2)=
n2∑

d2=1
Rd2 (�2)Xd2 . (27)

Adopting the isoparametric concept, an analogous interpolation is used for the unknown displace-
ment field, its variation and the current coordinates. For conciseness, these parameterizations will
be expressed as follows:

S=
ncp∑
A=1

RAXA u=
ncp∑
A=1

RAuA du=
ncp∑
A=1

RAduA x=
ncp∑
A=1

RAxA (28)

where ncp is the number of control points associated with the surface, RA is the rational basis
function corresponding to control point A, whereas XA, uA, �uA, and xA are the related reference
coordinate, displacement, displacement variation, and current coordinate vectors. Equation (28)
can also be used for the Lagrange polynomial discretization, provided that the standard Lagrangian
shape functions are used in place of RA, and points A are interpreted as nodal points.

It is also useful to reconsider the above parameterization as a collection of local mappings, each
defined over one individual element of the contact surface. The parameterization over an element
e is

Se =
nnes∑
a=1

RaXa ue =
nnes∑
a=1

Raua due =
nnes∑
a=1

Radua xe =
nnes∑
a=1

Raxa (29)

where nnes = pi +1 is the number of control points whose basis functions have support on a single
element of the contact surface. Once again, Equation (29) can be also applied to a Lagrangian
interpolation, in which case nnes is simply the number of nodes per element of the contact surface.
As follows, we will refer the above global and local parameterizations to the slave and the master
surfaces by adding the appropriate superscript s or m, respectively.

4. VARIATIONS AND LINEARIZATIONS OF THE CONTACT VARIABLES
IN DISCRETIZED FORM

By substituting the interpolations in Equation (29) into Equation (5a), the normal gap becomes

gN =
[

ns
nes∑

a=1
Rs

a(�s)xs
a −

nm
nes∑

a=1
Rm

a (�)xm
a

]
·n. (30)

In Equation (30), �s is the parametric coordinate of the generic point on �c0, whereas � is the
parametric coordinate of the corresponding projection point on the master surface. The virtual
variation follows from Equation (14a) as

�gN =
[

ns
nes∑

a=1
Rs

a(�s)dus
a −

nm
nes∑

a=1
Rm

a (�)dum
a

]
·n. (31)

By substituting the interpolations in Equation (29) into Equation (14c), the virtual variation ��
becomes

��= 1

m11 −gN k11

[(
ns

nes∑
a=1

Rs
a(�s)dus

a −
nm

nes∑
a=1

Rm
a (�)dum

a

)
·s1 +gN n·

nm
nes∑

a=1
Rm

a,1(�)dum
a

]
. (32)
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The same substitution can be carried out for the other equations in Section 2.4. Defining the vectors

�u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dus
1

...

dus
ns

nes

dum
1

...

dum
nm

nes

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�u=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�us
1

...

�us
ns

nes

�um
1

...

�um
nm

nes

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
1(�s)n

...

Rs
ns

nes
(�s)n

−Rm
1 (�)n

...

−Rm
nm

nes
(�)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
1(�s)s1

...

Rs
ns

nes
(�s)s1

−Rm
1 (�)s1

...

−Rm
nm

nes
(�)s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

N1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

−Rm
1,1(�)n

...

−Rm
nm

nes,1
(�)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

−Rm
1,1(�)s1

...

−Rm
nm

nes,1
(�)s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

−Rm
1,11(�)n

...

−Rm
nm

nes,11(�)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

D1 = 1

m11 −k11gN
[T−gN N1] N̄1 =N1 −k11D1 T̄1 =T1 −s1 ·xm

,��D1 (36)

Equations (31) and (32) (and the similar ones giving the linearized increments) can be cast in
matrix form as

�gN = �uTN ��=�uTD1 (37)

�gN = NT�u ��=DT
1 �u (38)

moreover, Equations (15) and (16) become (in the form of the linearized increment)

�t trial
T1

= εT [m11DT
1 −2T

T
1 (�−�n)]�u (39)

�tT1 = �εN sign(t trial
T1

)

[√
m11NT + gN√

m11
T

T
1

]
�u (40)

for the stick and slip cases, respectively, and the linearizations ��gN and ��� can be expressed as

��gN = �uT
[
− gN

m11
N̄1N̄T

1 −D1NT
1 −N1DT

1 +k11D1DT
1

]
�u (41)
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��� = 1

m11 −gN k11
�uT

[
2(T1DT

1 +D1TT
1 )−(3s1 ·xm

,11 −gN n·xm
,111)D1DT

1

−gN (N11DT
1 +D1NT

11)−NN
T
1 −N1NT − 1

m11
(TT

T
1 +T1TT)

]
�u. (42)

5. MORTAR-BASED CONTACT ALGORITHM

Two different contact algorithms are used in this work. The first (briefly referred to as ‘non-
mortar’) consists in the enforcement of the contact constraints at each of the quadrature points
associated with the contribution �Wc, as done in Fischer and Wriggers [21, 22]. Temizer et al. [15]
already showed for NURBS discretizations that this approach delivers an excessively stiff contact
constraint enforcement, which results in undesirable oscillations of the contact pressures when
using large penalty parameters. The second algorithm is based on the mortar method [15, 23–28].
With this approach, the contact constraints are only enforced at the control points in the NURBS
discretization, and at the nodes in the Lagrange discretization. Like in Tur et al. [27], integration is
here carried out without segmentation of the contact surfaces to avoid the associated computational
cost. For general discretizations this procedure will introduce an error, which can however be
reduced by increasing the number of integration points on the contact surface, see also Fischer
Wriggers [21].

The non-mortar approach implemented in this work is a straightforward extension to the NURBS
discretization of the treatment presented by Fischer and Wriggers [21, 22]. For this reason, only
the mortar algorithm is illustrated as follows. In the spirit of the mortar method, the contact
contribution to the virtual work is expressed as

�Wc =∑
A

(pNA�gNA + tTA��A)AA (43)

where the summation is extended to the active control points. The control point normal gap and
parametric projections are defined as the weighted average of the corresponding ‘local’ quantities,
with the basis functions as weights

gNA =
∫
�c0

RAgN d�∫
�c0

RA d�
�A =

∫
�c0

RA�d�∫
�c0

RA d�
. (44)

An active control point is one for which gNA�0. With the above definition of the slip based on
the parametric coordinate, care must be taken in the event that several NURB domains are merged
to account for the change in the parametric coordinate at the junction. Alternative definitions are
possible to avoid this necessity.

The virtual variation of Equation (44) gives

�gNA =
∫
�c0

RA�gN d�∫
�c0

RA d�
��A =

∫
�c0

RA��d�∫
�c0

RA d�
. (45)

A control point value of the metric

m11A =
∫
�c0

RAm11 d�∫
�c0

RA d�
(46)

is further introduced. Using the penalty method, the control point normal pressure is

pNA =εN gNA. (47)

In the tangential direction, we can define a ‘trial’ control point tangential traction as

t trial
TA = tT An +εT m11A(�A −�An). (48)
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The control point tangential traction will then be

tTA =

⎧⎪⎨
⎪⎩

t trial
TA if | t trial

TA |� |�tNA |

� | tNA | t trial
TA

‖ ttrial
TA ‖ =−�εN gNA

t trial
TA

‖ ttrial
TA ‖ otherwise.

(49)

Finally, the ‘area of competence’ of a control point is defined as

AA =
∫

�c0

RA d�. (50)

Substituting the above definitions into Equation (43) yields

�Wc =∑
A

(
εN gNA

∫
�c0

RA�gN d�+ tTA

∫
�c0

RA��d�

)

=
∫

�c0

[
εN

(∑
A

gNA RA

)
�gN +

(∑
A

tTA RA

)
��

]
d�

=
∫

�c0

[pNint�gN + tTint��]d� (51)

where

pNint =εN
∑
A

gNA RA tTint =
∑
A

tTA RA (52)

are interpolated values of the contact normal pressure and tangential traction, respectively.
The combination of Equations (37) and (51) results in

�Wc =�uT
∫

�c0

[pNintN+ tTintD1]d�. (53)

From Equation (53) the expression of the residual for the Newton–Rapson iterative scheme is
immediately obtained as

R=
∫

�c0

[pNintN+ tTintD1]d� (54)

p

R

(a) (b)

Figure 1. Example 1. (a) Problem scheme. R =1, p=0.001. (b) Close-up
of the mesh (72×48) in the contact region.
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Figure 2. Effect of resolution for linear discretizations: (a) 36×24; (b) 72×48; and (c) 108×48.

As mentioned earlier, numerical integration is conducted directly on �c0 without segmentation of
the contact surfaces, so that the residual in Equation (54) is numerically evaluated as follows:

R=∑
GP

(pNintg Ng + tTintg D1g)wg jg (55)

where the summation is extended to the Gauss points, subscript g refers to the dependence on the
Gauss point coordinate, wg and jg are, respectively, the weight and the jacobian associated to the
gth integration point on �c0, and

pNintg =εN
∑
A

gNA RAg tTintg =∑
A

tTA RAg . (56)

In Equation (56), RAg is the value at the gth integration point of the basis function associated
with control point A. The full linearization and the consequent expression of the consistent tangent
stiffness matrix are reported in the Appendix.

6. NUMERICAL EXAMPLES

This section presents three examples to demonstrate the accuracy and quality of the proposed
contact formulation. For comparison purposes, not only NURBS but also Lagrange discretizations
are employed. In the latter case, generation of the geometry and refinement are first conducted on
the exact NURBS parameterization, and then converted to the Lagrange one.

The first two examples consider infinitesimal deformations in order to allow the comparison
with available analytical solutions. The third example involves large deformations. In the first two
examples, the mesh is refined in the vicinity of the contact region by redistributing the knot vector
entries as already described in Temizer et al. [15]. The legends of the figures indicate the number of
subdivisions used during h-refinement, i.e. the number of non-zero interior knot spans introduced
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Figure 3. Effect of resolution for second-order NURBS and Lagrange discretizations: (a) 36×24;
(b) 36×24; (c) 72×48; (d) 72×48; (e) 108×48; and (f) 108×48.

in the NURBS discretization in each parametric direction, e.g. 36×24. In the NURBS case, the
number of subdivisions coincides with the number of elements in each direction. In the Lagrange
parameterization, the number of elements in each direction is equal to the number of subdivisions
divided by the order of the polynomial. Although the resulting number of control variables (control
points or nodes) is different in the two cases, the resolution of the contact surface, as expressed
by the number of contact facets, is the same and hence a direct comparison of the contact stresses
is meaningful.

6.1. Hertz contact problem on rigid substrate

The first example deals with frictional contact of a cylinder of radius R =1 on a rigid plane.
The material of the cylinder is linearly elastic with Young’s modulus E =1 and Poisson’s ratio
�=0.375. Only a quarter of the geometry is considered, see Figure 1(a). The penalty parameters
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Figure 4. Effect of resolution for third-order NURBS and Lagrange discretizations: (a) 36×24; (b) 36×24;
(c) 72×48; (d) 72×48; (e) 108×48; and (f) 108×48.

are εN =104 and εT =103, the friction coefficient is �=0.8. A large friction coefficient reduces
the error related to the uncoupled approximation in the analytical solution, as explained later.

The cylinder is loaded with a vertical force P =0.001 applied as distributed load on the upper
surface. Three different meshes are considered to evaluate the effect of mesh refinements. In all
cases, the mesh is refined close to the contact region, see Figure 1(b). In all three meshes, the
chosen amount of redistribution of the knot vector entries is such that 75% of the elements is
located within 10% of the total length of the knot vector.

The analytical solution for this problem is not available in closed form. However, a simplified
solution can be obtained by assuming that the normal and tangential contact stresses are uncoupled,
which leads to a slight underestimation of the contact pressures [29, 30].

Figure 2 illustrates the results obtained from linear (Lagrange) interpolations. The dimension-
less contact pressure p/p0 is plotted versus the dimensionless coordinate x/a, p0 and a being,
respectively, the maximum normal pressure and the half-width of the contact area as predicted
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Figure 5. Effect of resolution for fourth-order NURBS and Lagrange discretizations: (a) 36×24;
(b) 36×24; (c) 72×48; (d) 72×48; (e) 108×48; and (f) 108×48.

by the Hertz theory without friction. As already mentioned, the analytical solution is based on
the uncoupling assumption, therefore a certain discrepancy with the numerical results is to be
expected. Nevertheless, the agreement is generally very good. The solution near the edge of the
contact region is affected by the elements that lie across the contact/non-contact zone. This is
a well-known problem for which solutions have been proposed (see e.g. [31]). As the mesh is
refined, the edge region is better resolved and the quality of the solution improves, as seen in
Figure 2(c).

The results obtained with higher order NURBS and Lagrange discretizations are shown in
Figures 3–5. The NURBS discretizations deliver a monotonic improvement of the pressure distri-
bution quality with increasing resolution at a fixed order. For a given resolution, the quality of the
results seems not to be affected by the order to an appreciable extent. Moreover, the oscillations
of the contact pressure at the edge of the contact region are quite limited and all distributions
feature non-negative values, due to the inherent non-negativeness of the NURBS basis functions. It
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Figure 6. Effect of resolution for linear discretizations, using the non-mortar contact
formulation: (a) 36×24; (b) 72×48; and (c) 108×48.

is evident that Lagrange discretizations produce results of inferior quality, especially as far as the
frictional stresses are concerned. Also in this case the quality of the results tends to improve as the
resolution is increased at a fixed order. However, even for the highest resolution, the distribution
of the frictional stresses is highly irregular as a result of the C0 continuity at the inter-element
border, and possibly also of the negative values of the Lagrange shape functions. This problem of
the C0 continuity could be probably alleviated by introducing an averaging of the normal vectors
at the interelement nodes such as done in Yang et al. [32], Puso and Laursen [24], Puso et al.
[25]. This is obviously not needed for NURBS, as they guarantee the desired degree of continuity
between adjacent contact elements. For a given resolution, increasing the order of the Lagrange
discretization is evidently unfavorable, as even larger oscillations are produced. These oscillations,
at the edge of the contact region, may result in high negative values which are not physically
meaningful.

Finally, Figures 6 and 7 illustrate predictions of the ‘non-mortar’ approach for linear and second-
order discretizations. Beside the fact that such predictions are highly sensitive to the value of the
penalty parameter (as shown in Temizer et al. [15]), it is here evident that results of poor quality
are obtained for the frictional stress distributions, with oscillations across the whole contact region
whose size decreases with increased resolution. The mortar approach eliminates these oscillations
through its non-local evaluation of the contact pressures. The same conclusion holds for both
NURBS and Lagrange discretizations.

6.2. Hertz contact problem between deformable bodies

This example considers frictional contact between a deformable body having a cylindrical lower
surface with radius of curvature R =1 and a deformable plane (Figure 8(a)). The cylindrical surface
is treated as slave, and the upper surface of the deformable plane as master. The mesh is refined
close to the contact region, and the chosen amount of redistribution of the knot vector entries
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Figure 7. Effect of resolution for quadratic NURBS and Lagrange discretizations, using the non-mortar
contact formulation: (a) 36×24; (b) 36×24; (c) 72×48; (d) 72×48; (e) 108×48; and (f) 108×48.

is such that 80% of the elements are located within 40% of the total length of the knot vector.
Figure 8(b) shows the resulting configuration. The material of both bodies is linearly elastic with
Young’s modulus E =1 and Poisson’s ratio �=0.3. The penalty parameters are εN =104 and
εT =103, and the friction coefficient is �=0.2. The model is loaded with a vertical displacement,
vmax =0.002, and a horizontal displacement, umax =0.00075, both imposed on the upper surface.
The corresponding total reaction forces on the upper surface are a normal force P =0.0065 and a
tangential force Q =0.001125. The loading history is shown in Figure 9, while Figure 10 shows
the final distribution of the �y stresses.

A closed-form analytical solution is available for this case [30], and is compared in Figure 11
with the results obtained from NURBS and Lagrange discretizations of different orders. The curves
obtained from the NURBS interpolations are in excellent agreement with the analytical predictions.
Once again, oscillations are present at the edge of the contact region, and could be eliminated by
more finely resolving the contact/no contact interface. However, these oscillations are of limited
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Figure 8. Example 2. (a) Problem scheme. R =1, b=0.5, h =0.3.
(b) Close-up of the mesh in the contact region.
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Figure 9. Loading history.

extent and only display non-negative values. Moreover, the quality of the solution is not affected
by the order of the discretization. Conversely, the solution given by the Lagrange discretizations
feature significant oscillations both at the edge of the contact region, where large negative values
are at times predicted, and at the transitional zone between stick and slip conditions. Increasing
the order appears in this case detrimental for the quality of the solution, due to the increasing
incidence of spurious oscillations.

6.3. Ironing problem

In the third example, a cylindrical die is pressed into an elastic slab and then moved in the tangential
direction. The lower surface of the die is treated as slave. Neo-Hookean hyper-elastic material
behavior is assumed for both bodies, with material parameters E =1 and �=0.3 for the slab,
and E =1000 and �=0.3 for the die. The geometric model is depicted in Figure 12(a). For this
problem the penalty parameters are εN =εT =102, whereas the coefficient of friction is �=0.3.
A uniform downward displacement Uy =−0.075 is applied to the upper line of the die in 10 time
steps and then maintained constant while a horizontal displacement Ux =2.0 is applied in a further
140 time steps. The problem is solved using NURBS discretizations for both die and block, as
well as Lagrange discretizations for comparison purposes. Figures 12(b)–(d) show the deformed
mesh in the N2 case at different time steps.
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Figure 10. Distribution of stresses �y at the end of the loading history.

Figure 13(a) shows a plot of the total reaction forces in the horizontal and vertical directions,
computed on the top line of the die as a function of time. Four sets of results are plotted,
corresponding to linear and quadratic Lagrange discretizations, and to second- and fourth-order
NURBS. Lagrange discretizations with orders higher than 2 yield no convergence for the above
number of time steps. The N3 case was calculated but not plotted, its results being quite similar to
those of the N2 case. For the sake of clarity, Figure 13(b) replots only the N4 results, and clearly
shows the remarkable smoothness of both the normal and tangential force curves. The difference
between the analyzed discretizations is visible in the close-ups of Figures 13(c) and (d) for the
horizontal and vertical reaction force, respectively. At this close view the force oscillations due to
the discretization are clearly visible. Similar oscillations for the ironing problem treated with both
node-to-segment and mortar approaches have already been reported in the literature, see e.g. [24].
The parameterization exerts a clear influence on the magnitude and regularity of these oscillations.
Both the linear and the quadratic Lagrange cases yield quite large and irregular force variations,
with the second-order case giving the worst results. The lack of convergence for orders higher
than 2 is probably due to a further increase in the magnitude of the oscillations, which worsens
the iterative convergence performance. Using the second-order NURBS parameterization greatly
improves the quality of results, as visible from the reduced magnitude of the oscillations and
from their more regular pattern. This result stems from the higher degree of smoothness which is
achieved through the higher inter-element continuity in the parameterization of both the bulk and
the contact surface. Unlike for Lagrange discretizations, the results monotonically improve as the
order of the NURBS discretization increases. For instance, passing from N2 to N4 the magnitude
of the oscillations is further reduced, and the resulting curves are already macroscopically smooth
as seen in Figure 13(b). These observations thus extend the general results previously found in the
small deformation examples to the case of large deformations and large frictional sliding.

7. CONCLUSIONS

This work focused on the performance of NURBS-based isogeometric analysis applied to
large deformation Coulomb frictional contact problems, in particular as compared to standard
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Figure 11. Effect of order for NURBS and Lagrange discretizations:
(a) N2; (b) L2; (c) N3; (d) L3; (e) N4; and (f) L4.

C0-continuous Lagrange finite element interpolations. Unlike in earlier works dealing with
NURBS surface smoothing techniques, in this work the contact patches are inherited directly from
the NURBS continuum parameterization. The proposed contact formulation is based on a mortar
approach, extended to NURBS-based interpolations for both normal and frictional contact, and
combined with a simple integration scheme which does not involve segmentation of the contact
surfaces.

Based on the results obtained in this investigation, it can be concluded that the proposed frictional
contact mortar formulation using NURBS-based isogeometric analysis displays a significantly
superior performance with respect to the same formulation using standard Lagrange polynomials.
The contact pressure distributions stemming from the NURBS parameterizations are always non-
negative, are practically insensitive to changes in the interpolation order, and improve monotonically
as the mesh resolution increases. The respective distributions obtained from Lagrange parame-
terizations are highly sensitive to the interpolation order, display significant spurious oscillations
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Figure 12. Example 3. (a) Problem scheme; (b) deformed mesh at time t =10; (c) deformed mesh at time
t =80; and (d) deformed mesh at time t =150.
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Figure 13. Reaction forces. (a) Horizontal and vertical reaction forces—all discretizations;
(b) horizontal and vertical reaction forces—N4; (c) close-up of the horizontal reaction forces;

and (d) close-up of the vertical reaction forces.
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and may attain large non-physical negative values. In large frictional sliding problems the time
histories of the tractions obtained from the NURBS discretizations are remarkably smooth and
improve in quality with increasing order of the parameterization. Conversely, the curves obtained
from Lagrange parameterizations display irregular oscillations whose magnitude increases with
the interpolation order and which may even prevent convergence.

This superiority of the NURBS parameterization over the Lagrange one for contact modeling
is a combined effect of the higher continuity achieved at the inter-element boundaries and of
the inherent non-negativeness of the NURBS interpolation functions. While these two favorable
features may also be individually obtained in different ways (e.g. higher geometric continuity
can be pursued by means of smoothing techniques and inherent non-negativeness is possessed by
other categories of shape functions), NURBS-based isogeometric analysis provides a very simple
framework in which both are simultaneously and naturally achieved. The individual role played by
these two factors could be isolated e.g. by using C0 Berstein polynomials, which are non-negative
and possess the variation diminishing and convex hull properties like the NURBS basis. This is
left as a potential topic for further investigations.

It was also shown that the non-mortar contact formulation delivers results of poor quality
especially as far as the frictional stresses are concerned, due to the enforcement of the contact
constraints at each integration point which leads to an over-constrained problem. Conversely, the
mortar formulation eliminates this drawback by enforcing the contact constraints only at the control
points (or nodal points for Lagrange interpolations).

The extension of the developed frictional contact formulation to the 3D setting and to the
employment of alternative contact algorithms is currently underway.

APPENDIX A

The linearization of Equation (43) yields

��Wc =��Wc,m +��Wc,g (A1)

where

��Wc,m =∑
A

(�pNA�gNA +�tTA��A)AA

=∑
A

εN �gNA�gNA AA + ∑
A,st

�t trial
TA ��A AA + ∑

A,sl
�tTA��A AA (A2)

is the ‘main’ component, and

��Wc,g =∑
A

(pNA��gNA + tTA���A)AA

=∑
A

(εN gNA��gNA + tTA���A)AA (A3)

is the ‘geometric’ component. In the frictional contribution to the main component, the summation
must be conducted separately for the active control points in stick and for those in slip conditions.

By combining Equations (45) and (50) with Equation (A2), the main component ��Wc,m can
be expressed as

��Wc,m =∑
A

(
εN∫

�c0
RA d�

∫
�c0

RA�gN d�
∫

�c0

RA�gN d�

)

+ ∑
A,st

�t trial
TA

∫
�c0

RA��d�+∑
A,sl

�tTA

∫
�c0

RA��d� (A4)
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where, from Equations (48) and (49),

�t trial
TA = εT [�m11A(�A −�An)+m11A��A] (A5)

�tTA = −�εN sign(t trial
TA )

[√
m11A�gNA + gNA

2
√

m11A
�m11A

]
(A6)

and, from the definition in Equation (46),

�m11A =
∫
�c0

RA�m11 d�∫
�c0

RA d�
. (A7)

Substitution of Equations (A5) to (A7) into Equation (A4) and employment of the matrix expres-
sions in Section 4 yields

��Wc,m

=�uT

{∑
A

[
εN∫

�c0
RA d�

∫
�c0

RANd�
∫

�c0

RANT d�

]

+ ∑
A,st

[
εT∫

�c0
RA d�

∫
�c0

RAD1 d�
∫

�c0

RA(m11ADT
1 −2T

T
1 (�A −�An))d�

]

+ ∑
A,sl

[
�εN sign(pTA,trial)∫

�c0
RA d�

∫
�c0

RAD1 d�
∫

�c0

RA

(√
m11ANT + gNA√

m11A
T

T
1

)
d�

]}
�u. (A8)

The geometric component in Equation (A3) can be rewritten as

��Wc,g =∑
A

(
εN gNA

∫
�c0

RA��gN d�+ tTA

∫
�c0

RA���d�

)

=
∫

�c0

[
εN

(∑
A

gNA RA

)
��gN +

(∑
A

tTA RA

)
���

]
d�

=
∫

�c0

[pNint��gN + tTint���]d� (A9)

where the linearization of Equation (45)

��gNA =
∫
�c0

RA��gN d�∫
�c0

RA d�
���A =

∫
�c0

RA���d�∫
�c0

RA d�
(A10)

and Equations (50) and (52) have been employed. Combining Equation (A9) with the matrix
expressions of ��gN and ��� in Equations (41) and (42) yields

��Wc,g = �uT
∫

�c0

{
εN pNint

(
− gN

m11
N̄1N̄T

1 −D1NT
1 −N1DT

1 +k11D1DT
1

)

+ tTint

m11 −gN k11

[
2(T1DT

1 +D1TT
1 )−(3s1 ·xm

,11 −gN n·xm
,111) ·D1DT

1

−gN (N11DT
1 +D1NT

11)−NN
T
1 −N1NT − 1

m11
(TT

T
1 +T1TT)

]}
d��u. (A11)
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Finally, the main and geometric components of the stiffness matrix, Km and Kg , are readily
obtained from Equations (A8) and (A11) as

Km =∑
A

[
εN∫

�c0
RA d�

∫
�c0

RANd�
∫

�c0

RANT d�

]

+ ∑
A,st

[
εT∫

�0
RA d�

∫
�c0

RAD1 d�
∫

�c0

RA(m11ADT
1 −2T

T
1 (�A −�An))d�

]

+∑
A,sl

[
�εN sign(pTA,trial)∫

�0
RA d�

∫
�c0

RAD1 d�
∫

�c0

RA

(√
m11ANT + gNA√

m11A
T

T
1

)
d�

]
(A12)

Kg =
∫

�c0

{
εN pNint

(
− gN

m11
N̄1N̄T

1 −D1NT
1 −N1DT

1 +k11D1DT
1

)

+ tTint

m11 −gN k11
[2(T1DT

1 +D1TT
1 )−(3s1 ·xm

,11 −gN n·xm
,111)

×D1DT
1 −gN (N11DT

1 +D1NT
11)−NN

T
1 −N1NT − 1

m11
(TT

T
1 +T1TT)

]}
d� (A13)

and the tangent stiffness matrix is simply

K=Km +Kg. (A14)

The integrals in Equations (A12) and (A13) are carried out numerically as follows:

Km =∑
A

[
εN∑

GP RAg wg jg

∑
GP

RAg Ngwg jg
∑
GP

RAg NT
gwg jg

]

+ ∑
A,st

[
εT∑

GP RAg wg jg

∑
GP

RAg D1gwg jg
∑
GP

RAg (m11ADT
1g −2T

T
1g(�A −�An))wg jg

]

+ ∑
A,sl

[
�εN sign(pTA,trial)∑

GP RAg wg jg

∑
GP

RAg D1gwg jg
∑
GP

RAg

(√
m11ANT

g + gNA√
m11A

T
T
1g

)
wg jg

]
(A15)

Kg = ∑
GP

{
εN pNintg

(
− gNg

m11g

N̄1gN̄T
1g −D1gNT

1g −N1gDT
1g +k11gD1gDT

1g

)

+
tTintg

m11g −gNg k11g

[
2(T1gDT

1g +D1gTT
1g)−(3s1g ·xm

,11g −gNgng ·xm
,111g)

×D1gDT
1g −gNg(N11gDT

1g +D1gNT
11g)−NgN

T
1g −N1gNT

g − 1

m11g
(TgT

T
1g +T1gTT

g )

]}
wg jg (A16)

where ‘GP’ indicates that the summation is extended to the Gauss points, subscript g refers to the
dependence on the Gauss point coordinate, and wg and jg are, respectively, the weight and the
jacobian associated to the gth integration point on �c0.
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