SOFTWARE - PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2194

Generic windowing support for extensible stream
processing systems

Bugra Gedik* "

Computer Engineering Department, Bilkent University, Ankara 06800, Turkey

SUMMARY

Stream processing applications process high volume, continuous feeds from live data sources, employ data-
in-motion analytics to analyze these feeds, and produce near real-time insights with low latency. One of the
fundamental characteristics of such applications is the on-the-fly nature of the computation, which does not
require access to disk resident data. Stream processing applications store the most recent history of streams
in memory and use it to perform the necessary modeling and analysis tasks. This recent history is often
managed using windows. All data stream management systems provide some form of windowing function-
ality. Windowing makes it possible to implement streaming versions of the traditionally blocking relational
operators, such as streaming aggregations, joins, and sorts, as well as any other analytic operator that requires
keeping the most recent tuples as state, such as time series analysis operators and signal processing operators.

In this paper, we provide a categorization of different window types and policies employed in stream pro-
cessing applications and give detailed operational semantics for various window configurations. We describe
an extensibility mechanism that makes it possible to integrate windowing support into user-defined opera-
tors, enabling consistent syntax and semantics across system-provided and third-party toolkits of streaming
operators. We describe the design and implementation of a runtime windowing library that significantly
simplifies the construction of window-based operators by decoupling the handling of window policies and
operator logic from each other. We present our experience using the windowing library to implement a rela-
tional operators toolkit and compare the efficacy of the solution to an earlier implementation that did not
employ a common windowing library. Copyright © 2013 John Wiley & Sons, Ltd.

Received 5 November 2012; Revised 14 February 2013; Accepted 1 March 2013

KEY WORDS: data stream processing; windowing semantics; windowing library

1. INTRODUCTION

Stream processing applications process high volume, continuous feeds from live data sources,
employ data-in-motion analytics to analyze these feeds, and produce near real-time insights with
low latency. With the explosion in the amount of data available as live feeds, stream computing has
found wide applications in areas ranging from telecommunications to healthcare to cyber security.
The high volume of the data to be processed, the velocity at which the results need to be pro-
duced, and the variety of the data sources involved make stream processing applications unique
and challenging. To address these challenges, many stream computing platforms have been devel-
oped over the last decade, providing languages and runtime systems for developing and deploying
stream processing applications effectively. Examples are many both in academia [1-3], as well as in
industry [4-6].

One of the fundamental characteristics of stream processing applications is the on-the-fly nature
of the computation, which does not require access to disk resident data. This distinguishes stream

*Correspondence to: Bugra Gedik, Computer Engineering Department, Bilkent University, Ankara 06800, Turkey.
TE-mail: bgedik @cs.bilkent.edu.tr

Copyright © 2013 John Wiley & Sons, Ltd.

B. GEDIK

processing systems from traditional databases that adopt the store-and-then-process model of
computation. Stream processing applications store the most recent history of streams in mem-
ory and use it to perform the necessary modeling and analysis tasks in an online manner. This
recent history is often managed using windows. All data stream management systems provide some
form of windowing functionality. Windowing makes it possible to implement streaming versions
of the traditionally blocking relational operators, such as streaming aggregations [7], joins [8],
and sorts.

One of the goals of stream computing platforms is to be general enough so that multi-modal
applications that process data sources of different nature such as text, video, and structured data
can be supported [9]. Furthermore, specific application areas require domain-specific analytic oper-
ators that are specialized for the needs of the particular domain at hand [10]. As a result, some of
the stream processing languages and frameworks allow user-defined operators, such as SPL [11] in
System S [3] and the Microsoft. NET framework LINQ in StreamInsight [12]. For instance, the SPL.
language, which we use as a case study in this work, makes no differentiation between the rela-
tional operators provided by the streaming platform versus the operators that can be developed by
third parties as foolkits. As such, it provides a set of generic capabilities to user-defined operators,
including the ability work with any type (i.e., type genericity), support variable number of ports,
define windows, take expressions as parameters and accept output assignments, and provide custom
aggregation functions to name a few (see [5] for details).

In the presence of user-defined operators as first class citizens, an important issue is the support
for windowing, which is the focus of this paper. In particular, there are three fundamental challenges.
First, syntactic uniformity should be achieved across different operators while supporting operators
with differing levels of windowing support in terms of the window types, policies, and configura-
tions they allow. Second, semantic uniformity should be achieved so that the same syntax has a
consistent meaning across different operator invocations. Last, windowing support in stream pro-
cessing systems become very complex because of a wide variety of window configurations used to
support a large number of use cases. It is a requirement for an extensible stream processing system
to provide runtime implementation support for windowing that is exposed to the operator devel-
opers. However, user-defined operator developers (akin to library developers in general purpose
programming languages) should be shielded from the details of windowing policy implementations
and instead focus on analytic logic implemented by their operators.

In this paper, we provide a categorization of different window types and policies employed in
stream processing applications and give detailed operational semantics for various window config-
urations. This addresses the semantic uniformity challenge. We describe the design of a windowing
library that encompasses a compile-time component used to provide flexible windowing syntax
support for user-defined operators, as well as a runtime component used to provide comprehen-
sive implementation support for all window configurations. The compile-time component addresses
the syntactic uniformity challenge while allowing operators to define the level of windowing sup-
port they aim to provide. The windowing library provides runtime support that decouples plumbing
related to window handling from the details of the operator logic. The former is completely handled
by the windowing runtime, whereas the latter is implemented by the operator developer by reacting
to events from the windowing runtime. In summary, the windowing library runtime adopts a policy-
based design used to configure windows and an event-based interface used to decouple windowing
logic from the operator logic. This addresses the final challenge of saving the operator developers
from having to deal with the details of window handling.

As part of our categorization of windows, we discuss tumbling, sliding, and partitioned windows.
Partitioned windows play a key role in performing multiplexed processing [13] in stream process-
ing applications, which in turn forms the cornerstone of stateful parallelism. We introduce policies
that define the eviction and trigger behavior of windows, including count, time, attribute-delta,
and punctuation-based policies. Punctuations [14] are out-of-band signals carried within streams.
We introduce window punctuations to communicate window boundaries across operators in a flow
graph. We describe punctuation modes for input and output ports of operators and punctuation prop-
agation rules to maintain punctuation semantics in the presence of composition. Finally, we look at
partition eviction policies used to manage unbounded size growth issues in partitioned windows.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

To the best of our knowledge, the window variations presented in this work cover all variations pre-
sented in the literature as part of stream processing systems. We also cover variations that are not
discussed elsewhere. A detailed comparison is given in Section 7.

We describe the interface and implementation of our runtime library, which is designed as a con-
tainer that is configurable with windowing policies and exposes an event-based interface to execute
user-defined actions to facilitate the implementation of operator logic. As part of our discussion,
we cover topics such as threading in the presence of time-based policies, user-defined policies
for selecting partitions to evict, and efficient implementation of incremental computations through
window summarizers. We also describe our compile-time library and how it provides flexible win-
dowing syntax while separating the implementation decisions from the syntax using compile-time
introspection and code generation techniques.

We present our experience using the windowing library to implement a relational operators toolkit
in System S [3] and compare the efficacy of the solution to an earlier implementation that did not
employ a common windowing library.

In summary, this paper makes the following contributions:

e We provide a categorization of different window types and policies and give detailed
operational semantics for various window configurations.

e We describe an extensibility mechanism that makes it possible to integrate windowing support
into user-defined operators, enabling consistent syntax and semantics across different operators.

e We describe the design and implementation of a windowing library that significantly simplifies
the construction of window-based operators by decoupling windowing and operator logic from
each other.

e We present our experience using the windowing library in an industrial strength stream
processing middleware.

The rest of the paper is organized as follows. We provide relevant background on SPL and System
S in Section 2. We formalize windowing concepts in Section 3. In Section 4, we discuss the runtime
design and implementation of our windowing library. We describe our extensibility mechanism in
Section 5. Our experience using the library and its evaluation is presented in Section 6. We discuss
related work in Section 7 and conclude the paper in Section 8.

2. BACKGROUND

In this section, we provide a brief overview of the basic concepts associated with stream processing
applications, using SPL [11] as the language of choice. We also briefly describe the runtime
execution of SPL applications within System S.

2.1. Stream processing applications in SPL

Stream processing applications in SPL are expressed as data flow graphs. An SPL application
is composed of operator instances connected to each other via stream connections. An operator
instance is a vertex in the application’s data flow graph, and a stream connection is an edge. An
operator instance is always associated with an operator. An operator is a reusable stream analytic.
As an example, a Join operator may represent a streaming relational join. Different instances
of a Join operator can process different types of streams, have different kinds of match condi-
tions, or even have different number of outputs (e.g., an outer join may have extra output ports for
non-matched items).

Operator instances can have zero or more input and output ports. Each output port generates a
uniquely named stream, which is a sequence of tuples. Connecting an output port to the input of an
operator establishes a stream connection. Each stream has a tuple type associated with it, which can
be considered as the schema of the stream. Tuples consist of a list of named and typed attributes.
Stream connections implement ordered delivery.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

Operators are often implemented in general purpose languages, using an event-driven interface,
by reacting to tuples arriving on operator input ports. Processing of a tuple often involves updating
some operator-local state and producing result tuples that are sent out to the output ports. A major
example of local state that is updated by an operator is windows.

Operator instances in SPL can be configured via a few clauses. Here, we list the clauses that are
highly relevant for our work.

e Windows are specified on a per-input port basis and describe how tuples received from the port
in question are stored.

e Parameters are used to configure operators. Among many other things, such configurations
may also relate to windows. For instance, in SPL, the partitioning attributes corresponding to a
partitioned window are specified via a parameter.

e Outputs are used to specify how output tuples are to be constructed from the input ones. An
important concept associated with outputs is output functions. Such functions can be used to
specify operations to be performed on windows (such as computing the maximum value of an
attribute across a window).

We illustrate the use of these clauses in more detail when we formally introduce windowing
concepts in the next few sections.

2.2. An example application in SPL

Listing 1 gives the source code for a very simple stream processing application in SPL, with its
visual representation depicted in Figure 1.

Listing 1. SensorQuery: A simple application in SPL.
composite SensorQuery {
type
Location = tuple<float32 x, float32 y>;
Sensor = tuple<uint64 sid, float64 value, Location sloc>;
Query = tuple<uint64 qid, Location qloc, float64 radius>;
Result = Sensor, Query, tuple<float32 distance>;
graph
stream<Sensor> Sensors = SensorSource() {}
stream<Query> Queries = QuerySource() {}
stream<Result> Results = Join(Sensors as S; Queries as Q) {
window Sensors : sliding, time(10.0);
Queries : sliding, count(0);
param match : distance(S.sloc, Q.qloc) <= Q.radius;
output Results : distance = distance(S.sloc, Q.qloc);
}
() as Sink = TCPSink(Results) {
param
role : client;
address : "192.168.0.10";
port : 40000;

The application is named SensorQuery and contains two source operators. Source operators
do not have any input ports. One of the sources is an instance of a SensorSource operator and
generates a stream of sensor readings, namely, the Sensors stream. The other source is an instance
of a QuerySource operator and generates a stream of queries defined over the sensor readings,
namely, the Queries stream. The Sensors and Queries streams are connected to the two input
ports of a Join operator instance. This particular instance of the Join operator is configured such
that it has a sliding window defined on the Sensors stream (its first input port). This window
is used to keep the last 10 s worth of tuples. The operator also defines an empty window on the
Queries stream. This is an example of a one-sided join. For each query tuple it receives, the join
operator will try to match the query tuple against the sensor tuples stored in the window associated
with the Sensors stream, based on a match condition that checks if the sensor reading is within the
region of interest specified by the query. Effectively, the join operator is finding the sensor readings

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

SensorSource
Sensors

TCPSink

Results

QuerySource

Queries

Figure 1. Data flow graph for the SensorQuery application.

from the last 10 s that match the current query. The matches are produced by the Results stream
(the only output port of the join) and are fed into a sink operator. Sink operators do not have any
output ports. In this particular case, the sink is an instance of a TCPSink operator, which writes the
results on a TCP socket.

This example illustrates the role of windows in stream processing, as well as how operator com-
position and parameterization works in SPL. Many generic stream processing operators need to
work with windows. In this application, we have seen a join operator employing windows. Another
common example is relational aggregations. However, the need for windowing is not limited to rela-
tional operators. For instance, a de-duplication operator in a telecommunication application needs
windows to define how much history it should maintain, or a sink operator used to perform batched
writes to a storage subsystem needs windows to define the batch size. Similarly, a correlation oper-
ator that detects similarity across multiple streams need to specify how much of the stream history
is to be kept for the analysis.

2.3. Runtime support

A distributed stream processing middleware, such as System S, executes data flow graphs by par-
titioning them into basic units called processing elements. Each processing element contains a
subgraph and can run on a different host. Stream connections between operators that are contained
within the same processing element are often implemented via efficient mechanisms such as func-
tion calls, whereas stream connections that cross processing element boundaries rely on a transport
subsystem such as TCP/IP. The streaming runtime provides services such as scheduling, placement,
security, and fault-tolerance. Further details can be found elsewhere [5]. In this paper, we focus on
the windowing runtime, which is local to each operator in a processing element.

3. WINDOWING CONCEPTS

In this section, we introduce windowing concepts, illustrate them with SPL syntax, and most
importantly, give detailed semantics for different window configurations.

3.1. Window types

There are two main types of windows employed in stream processing systems. These are tumbling
windows and sliding windows [1, 2, 15]. Both types of windows store tuples in the order they are
received but differ in how they handle evictions and triggers.

3.1.1. Tumbling windows. A tumbling window stores tuples until the window is full. Once the
window is full, it is ready for processing. The processing performed on the window is specific to the
operator at hand. After the window processing is complete, all the tuples in the window are evicted,
effectively emptying the window. We name the policy that defines when a tumbling window is full
as the eviction policy. We will look at various different eviction policies shortly, but the most basic
policy is the count-based one, where a pre-defined maximum size determines when the window
is full.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

Listing 2. Use case for tumbling windows
composite SampleAggregation (
input stream<rstring tid, int64 value> In,
output stream<rstring tid, int64 totalValue> Out) {
graph
stream<Qut> Out = Aggregate(In) {
window In : tumbling, count(100);
param groupBy : In.tid;
output Out : totalValue = Sum(In.value);
}

Listing 2 illustrates the syntax of tumbling windows in SPL using an aggregation scenario. In this
example, tuples are stored in a tumbling window of size 100. Once the window is full, the tuples are
grouped based on their transaction id (tid) attribute and for each unique tid value in the window,
an output tuple with the sum of the value attributes of tuples sharing that tid is generated.

3.1.2. Sliding windows. A sliding window continuously maintains the most recent tuples. When a
new tuple is inserted into a sliding window, zero or more of the oldest tuples that are currently in
the window are evicted. The evictions happen when the window is already full upon a tuple inser-
tion. Similar to tumbling windows, the eviction policy determines when the window is full. Unlike
tumbling windows, only the oldest tuples are evicted to make up room for a new tuple.

Sliding windows also have a trigger policy associated with them, which determines when the
window is ready for processing. Unlike tumbling windows, which are processed when they get full,
sliding windows are processed on the basis of their trigger policy. Different kinds of eviction and
trigger policies can be combined, as we will discuss shortly. A simple combination is a sliding
window with a count-based eviction policy and a count-based trigger policy, which we illustrate
with an example in the succeeding text.

Listing 3. Use case for sliding windows
composite SampleAggregation (
input stream<rstring tid, int64 value> In,
output stream<rstring tid, int64 totalValue> Out) {
graph
stream<Out> Out = Aggregate(In) {
window In : sliding, count(100), count(10);
param groupBy : In.tid;
output Out : totalValue = Sum(In.value);
}

Listing 3 illustrates the syntax of sliding windows in SPL using an aggregation scenario. In this
example, tuples are stored in a sliding window that has a count-based eviction policy of size 100.
What this means is that, at any time, the window keeps the last 100 tuples. The window also has a
count-based trigger policy of 10, which means that the window is processed every 10 tuples. In this
particular example, after every 10 tuples, the last 100 tuples are grouped on the basis of their tid
attribute and for each unique tid value, an output tuple with the summation of the value attributes
of tuples sharing that tid is generated.

One subtle issue with sliding windows is whether their processing should be triggered before a
full window has been seen or not. This may happen during initial phases of the execution. In the
example given in Listing 3, when the application is first launched, after receiving the first 10 tuples,
the trigger policy will initiate window processing, yet, the window does not have 100 tuples in it.
Whether this is acceptable or not depends on the application semantics. The windowing library we
describe in this paper exposes this choice to operator developers. For instance, the Aggregate
operator supports an aggregatePartialWindows parameter that can be used to change the
behavior with respect to partial window processing.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

The eviction and trigger policies for sliding windows are sometimes referred to as the range
and slide of the window, respectively, in the literature [16]. However, this terminology does not
generalize to all combinations of policies that we introduce in this paper.

3.1.3. Notation. We now introduce lightweight notation to represent windows, which we later use
to formally define the semantics of different eviction and trigger policy combinations.

We denote a window as W = {t;|i € [0..|W]| — 1]}, where |W| denotes the window size in terms
of the number of tuples, and ¢; is the ith tuple in the window. #y represents the most recent tuple in
the window, whereas #; represents the oldest tuple in the window (I = |[W|—1). We use . to denote
the current tuple that is received and to be inserted into the window but not yet inside the window.
For a tuple ¢, we use t(¢) to denote its arrival timestamp. The arrival time is defined as the time of
arrival into the window and is used for time-based windowing policies. Windows that are defined
on timestamps attributes carried within tuples are handled via attribute-delta windowing policies.

3.2. Fartitioning

Before we describe the details of eviction and trigger policies, we introduce an important variety
of windows, called partitioned windows. Partitioned windows are central in supporting multiplexed
processing, which we examine first.

3.2.1. Multiplexed processing. In many stream processing applications, streams contain multiple
logical substreams in them. It is often the case that the number of unique substreams multiplexed
in a stream is not known at application development time or changes at runtime. As one example,
consider a stream containing market feed data. In this case, a substream corresponds to the series of
tuples that share their value for the ticker symbol. As another example, consider a stream containing
network protocol information. In this case, a substream corresponds to the series of tuples that share
their IP address attribute value.

Given a multiplexed flow, a common need is to perform a computation on each substream, inde-
pendently. A typical example is computing the volume weighted average price (VWAP) for each
stock ticker in a financial trading application. In other words, the VWAP value is computed over
each substream independent of the others.

We call the attributes that partition a stream into a number of substreams partition-by attributes.
In the VWAP example, the partition-by attribute is the stock ticker attribute. Once partition-by
attributes are defined, a stream can be processed in a multiplexed fashion using stateless operators
or stateful operators that support multiplexed operations.

A stateful operator supports multiplexed processing iff (i) it keeps independent state for each sub-
stream and (ii) for each tuple it receives, it only reads and/or updates the state associated with the
substream the tuple it belongs to. One of the fundamental forms of local state in stream processing
is windows. As such, to support multiplexed processing, windows must support partitioning as well.
For instance, VWAP computation requires computing averages over a window of data. In fact, that
is the only stateful piece of computation involved.

Multiplexed processing is also important because of the role it plays in parallelization [13]. Data
parallelism in the form of splitting data across multiple copies of an operator (or a series of opera-
tors) and merging back the results can be effectively applied when operators are either stateless or
stateful with support for multiplexed processing. In the latter case, the splitting should be performed
by making sure that tuples with the same partition-by attribute value are always assigned to the same
copy of the replicated operator.

3.2.2. Partitioned windows. A partitioned window contains subwindows, each corresponding to a
different substream identified by the value of its partition-by attributes. It is as if there is one window
for each substream, operating completely independent of the windows of other substreams.

Listing 4 extends the example from Listing 3 with a partitioned window. The partitioned nature of
the window is indicated via a partitioned keyword, which in SPL requires a partitionBy
parameter to be specified. In this particular example, the partitioning attribute is state. As a result,

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

Listing 4. Use case for partitioned sliding windows
composite SampleAggregation (
input stream<rstring tid, rstring state, int64 value> In,
output stream<rstring tid, rstring state, int64 totalValue> Out) {
graph

stream<Out> Out = Aggregate(In) {

window In : sliding, count(100), count(10),

partitioned;

param groupBy : In.tid; partitionBy : In.state;

output Out : totalValue = Sum(In.value);
}

the window will keep the last 100 tuples for all unique values of state seen so far. When 10 tuples
are received for a given subwindow, then processing is triggered for that subwindow. Concretely,
the tuples in the subwindow will be grouped on the basis of their tid attribute, and for each unique
tid value, an output tuple with the summation of the value attributes of tuples sharing that tid is
generated. The key difference from the previous example is that, the trigger policy and the eviction
policy apply to each subwindow separately, and the processing is performed on each subwindow
independently.

Partitioned windows apply equally to tumbling and sliding windows. However, there is a funda-
mental difference in terms of how subwindows are created and removed. For a tumbling window,
when a subwindow gets full, it can be discarded after it is processed by the operator. On the other
hand, for a sliding window, a subwindow may never be removed once it is created, as it may never
be empty. Listing 4 is an example where a subwindow exists forever, once it is created. When the
total number of substreams is bounded by a small number, this is often not an issue. But when that
bound is a large number, the window can run out of memory. An example is a network monitoring
application, where the pair of IP addresses form the partitioning attribute. We handle this problem
via partition eviction policies, which we will discuss later in the paper.

3.2.3. Notation. We now extend our windowing notation to partitioned windows.

We denote a partitioned window as W¢ = {We="|v € {t.a|tisatuplein W%}}, where a
denotes the partition-by attribute. We use |W¢| to denote the number of subwindows in W4, and
W4=" denotes a subwindow that is associated with the partition-by attribute value of v. It is defined
as We=v = {ti“=”| i €[0..|We=v |)}. Here, t§~" represents the most recent tuple in the subwindow
Wa=?, whereas ;=" represents the oldest tuple. We use 77~ to denote the current tuple that is
received and to be inserted into the subwindow but not yet inside it.

3.3. Window policies

In this section, we introduce different windowing policies and specify operational semantics for
window configurations that result from application of these policies on tumbling and sliding win-
dows. These policies are divided into four, namely, count, attribute-delta, time, and punctuation-
based policies. The first three can appear as both eviction and trigger policies, whereas the last one
can only appear as an eviction policy.

There are three fundamental operations performed as part of maintaining tuples in a window.
These are insertion, eviction, and trigger. Insertion represents the addition of the current tuple
(tf=”) into its respective subwindow (W4=V) as the most recent tuple. Eviction represents removal
of one or more of the oldest tuples from the window. Trigger represents calling out the opera-
tor logic for processing the window. Note that for tumbling windows, the eviction and trigger
events overlap.

Insertion, eviction, and trigger events are performed in different orders and in different ways
depending on the window type and the eviction and trigger policies being applied. We provide
Tables I and II as reference for the order of these events for tumbling and sliding windows, respec-
tively. The — notation is used to indicate what happens before a relationship between events,
whereas the | notation is used to indicate that the two events happen independently.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

Table I. Order of events for tumbling windows.

Eviction policy Order of execution

Count-based First, insert tuple into window, then perform eviction.
Delta-based First, perform eviction, then insert tuple into window.
Time-based Perform evictions independently of tuple insertions.
Punctuation-based Perform eviction when a punctuation is received.

Table II. Order of events for sliding windows.

Eviction \ trigger Count-based Delta-based Time-based
Count-based evict — insert — trigger trigger — evict — insert evict — insert | trigger
Delta-based evict — insert — trigger trigger — evict — insert evict — insert | trigger
Time-based insert — trigger | evict trigger — insert | evict insert | evict | trigger

3.3.1. Count. A count-based policy is characterized by a size in terms of number of tuples, denoted
by n.

As an eviction policy for tumbling windows, the count-based policy defines the maximum number
of tuples in a subwindow. On the arrival of a new tuple (zg=v), this tuple is inserted into its asso-
ciated subwindow (becomes #§ =" in W4=")_If the number of tuples in the subwindow is equal to
the size specified by the count-based eviction policy (|W*="| = n), then the window is flushed (all
tuples are evicted after window processing is performed).

As an eviction policy for sliding windows, the count-based policy defines the maximum number
of tuples to be kept in a subwindow as it slides. On the arrival of a new tuple (tf=“), if the number
of existing tuples in its associated subwindow is already equal to the size specified by the eviction
policy (|JW4="| = n), then the oldest tuple in the window (tl”=”) is evicted. Once the eviction is
complete (if needed), the newly arrived tuple is inserted into the subwindow.

As a trigger policy for sliding windows, the count-based policy defines the number of tuples
that must be received by a subwindow until an operator’s internal processing is triggered for that
subwindow. Before the operator logic runs, evictions are performed (if needed) first and the new
tuple is inserted next. The particular eviction action to be performed depends on the eviction policy
(which may not be count based). At this point, the trigger counter is reset for the subwindow at
hand, restarting the cycle.

For sliding windows with count-based trigger policies, the order of operation is given as follows
for a newly arrived tuple: eviction, insertion, and trigger. The only exception is when a time-based
eviction policy is involved, in which case eviction is independent of the insertion and trigger, as we
will discuss later.

3.3.2. Attribute-delta. An attribute-delta policy is characterized by a delta threshold value, denoted
by 8, and a delta attribute, denoted by d. The delta attribute refers to an attribute in the tuple type
corresponding to the input port associated with the window in question. The values for the delta
attribute should be non-decreasing. A typical example is a timestamp attribute, which represents the
time associated with the tuple in question as assigned by an external or internal source but different
than the wall-clock time of the tuple’s arrival to the window.

As an eviction policy for tumbling windows, the attribute-delta-based policy defines how far the
oldest and the newest tuples stored in a subwindow can deviate from each other in terms of their delta
threshold value. This is called the delta invariant: ¥ ya=vewa,t§=".d — tl“:”.d < §. A subwindow
is considered full when the next tuple to be admitted would break the delta invariant.

On the arrival of a new tuple (tg=”), if the difference between the new tuple’s value for the delta
attribute and that of the oldest tuple in the window is larger than the delta threshold value, that is
1¢=".d —1=".d > §, then the subwindow is processed and the tuples are evicted. Later, the newly
arrived tuple is inserted into an empty subwindow.

Note that the order of processing is different for attribute-delta-based tumbling windows, com-
pared with the count-based ones, as the eviction is performed before insertion. This is because

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

the newly arrived tuple that breaks the attribute-delta invariant is not part of the closed window.
As a result, the window needs to be processed first in its current state, before the new tuple is
inserted. This has an important implication, that is, a subwindow in a partitioned tumbling win-
dow never becomes empty. This is because, after the subwindow is processed and its contents
evicted, the current tuple is inserted, leaving We=? = {tg=”}. We address this later via partition
eviction policies.

As an eviction policy for sliding windows, the attribute-delta-based policy defines the range of
tuples maintained in the subwindow as it slides, again using the delta invariant. On the arrival of
a new tuple (tf=”), the existing tuples in its associated subwindow (W4=") for which the differ-
ence between the newly received tuple’s value for the delta attribute and that of the existing tuple’s
is greater than the delta threshold values are evicted. This set of tuples is formally represented as
{t|t e W=V At8=V.d —t.d > §}. The newly received tuple is inserted into the subwindow after
the evictions take place (if any).

As a trigger policy for sliding windows, the attribute-delta-based policy defines when the operator
internal logic is executed. Hence, on the arrival of a new tuple, if the difference between the new
tuple’s value for the delta attribute and that of the last tuple that triggered the processing for the
subwindow is greater than the delta threshold, then the subwindow is processed again. Note that this
requires keeping around the last tuple that triggered the processing for the subwindow, even if that
tuple is already evicted. If any tuples are subject to eviction, these evictions are performed after the
window processing is complete. Again, the specifics of the eviction to be performed depends on the
eviction policy being used, which is not necessarily attribute-delta based.

For sliding windows with delta-based trigger policies, the order of operation is given as follows
for a newly arrived tuple: trigger, eviction, insertion. The only exception is when a time-based evic-
tion policy is involved, in which case eviction is independent of insertion and trigger. It is worth
noting that, yet again, the order is different than the one for count-based windows.

To see that this is the expected semantics, one can compare the operation of a sliding window
with a count-based eviction policy with size n (say 2) and a count-based trigger policy with size m
(say 1), to that of a sliding window with a attribute-delta-based eviction policy with threshold n — 1
(say 1) and attribute-delta-based trigger policy with thresholds m — 1 (say 0), assuming that the
delta attribute is a monotonically increasing integer. Assuming partial windows during initialization
are not processed, in the former case, the second tuple will trigger the window processing for the
first time. Although the window is being processed, the second tuple would already be inside the
window (because insertion comes before trigger), thus, the window will contain the first two tuples.
In the latter case, the third tuple will trigger the window processing for the first time. Although
the window is being processed, the third tuple would not be inside the window (because insertion
comes after trigger), thus, the window will still contain the first two tuples. Figure 2 illustrates this
equivalence in terms of the processed windows. This equivalence is important to achieve consis-
tent semantics. In this particular case, we can emulate a window with configuration sliding,
count (n), count (m) using a window with configuration s1iding, delta(id, n-1),
delta(id, m-1),assuming thatid is a monotonically increasing integer attribute with step size
1. The latter configuration showcases the syntax used by SPL for representing attribute-delta-based
windows, where the first parameter to the delta function is the delta attribute name and the second
one is the delta threshold. In general, attribute-delta-based windows cannot be emulated by count-
based ones, but when the delta attribute is monotonically increasing discrete type, the expectation is
that the count-based policy and delta-based policy result in processing the same set of windows.

sliding, count(2), count(1) | sliding, delta(id, 1), delta(id, 0)
tuple 0 tuple 0

tuple 1 — trigger processing, window = (1, 0) | tuple 1

tuple 2 — trigger processing, window = (2, 1) | tuple 2 — trigger processing, window = (1, 0)
tuple 3 — trigger processing, window = (3, 2) | tuple 3 — trigger processing, window = (2, 1)
tuple 4 — trigger processing, window = (3, 2)

Figure 2. Equivalence between two different window configurations.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

3.3.3. Time. A time-based policy is characterized by a period in wall-clock time denoted by p.

As an eviction policy for tumbling windows, the time-based policy defines the period required
to consider that a window is full. When the wall-clock time elapsed because the last time the sub-
window was flushed exceeds the period specified by the eviction policy (p), the operator logic is
invoked and the subwindow is again flushed. Differently from other policies, the processing of the
window and the following eviction event is performed independently of tuple arrivals.

As an eviction policy for sliding windows, the time-based policy defines how long a tuple can stay
in its subwindow. Tuples that have been in the window longer than the period specified by the policy
are evicted. That is, the age invariant is maintained: Vya=vewa, Viewa=v, 1. — t(t) < p where 1,
represents the current time. Again, tuple evictions take place independently of tuple insertions.

As a trigger policy for sliding windows, the time-based policy defines the period between suc-
cessive processing of a subwindow. The arrival of a new tuple is not necessary for the operator to
process the tuples that have been stored so far.

3.3.4. Punctuation. Window punctuations represent boundaries within a stream, which separate the
flow of tuples into a series of windows. Punctuation-based eviction policies only apply to tumbling
windows. A tumbling window with a punctuation-based eviction policy stores tuples until it sees
a punctuation, at which time the window is processed and then the tuples evicted. Window punc-
tuations enable propagating window boundaries across operators. We now look at an example to
illustrate the use of window punctuations.

Consider the example from Figure 1 where a Join operator was used to find the list of sensor
readings matching a stream of queries. For each query, there could be zero or more sensor readings
produced. Let us assume that we would like to compute the minimum distance from the match-
ing sensor readings to the query, say using an Aggregate operator. The particular problem we
run into is that the aggregation needs to be performed over a window, where the boundaries of
the window are defined by the upstream operator based on the content of its input data and are
not known at development time. Window punctuations address this problem. In particular, the join
operator produces a window punctuation after each set of matches it generates, and the downstream
aggregate operator can specify a punctuation-based window to aggregate the sensor readings that
correspond to the same query, in order to compute the minimum distance. Listing 5 gives the SPL
code for this extension. However, for this kind of logic to work, we need to define the behavior
of operators with respect to window punctuations, as well as how these punctuations propagate
across operators.

Listing 5. An extension to SensorQuery application to compute minimum sensor distance.
// continued from Listing 1

stream<Query, tuple<float32 minDistance>> MinDists = Aggregate (Result) {
window Result : tumbling, punct();
output MinDists : minDistance = Min(Result.distance);

}

3.4. Punctuation semantics

Knowing the behavior of operators with respect to window punctuations enables a stream process-
ing language compiler to perform compile-time checks to detect semantic violations. For instance,
this knowledge can be used to ensure that a tumbling window with a punctuation-based eviction
policy is indeed connected to a stream that contains punctuations. If not, this will obviously lead to
infinite memory growth at runtime.

We say that a stream is a punctuated stream if it carries punctuations generated by one and only
one operator. Merging two punctuated streams arbitrarily will result in a stream that is not punctu-
ated, as the window boundaries will be garbled. A data flow graph respects punctuation semantics if
and only if all ports that are expecting window punctuations are connected to a punctuated stream.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

An example of a port that expects window punctuations is one that has a window defined on it with
a punctuation-based policy.

We now define punctuation modes associated with input and output ports of operators to provide
concrete rules for verifying punctuation semantics. These modes are used by the compiler to perform
semantic checks. As we have discussed in Section 2, user-defined operators are often developed in
general purpose programming languages such as C++/Java. Thus, we require the operator devel-
oper to declare the punctuation modes of their operators as part of the operator development. This
way, the application developers are shielded from potential errors in composition that will violate
punctuation semantics. We describe rules for checking punctuation semantics as well.

An operator input port may have one of the following window punctuation modes:

e Oblivious: The input port does not require window punctuations to work correctly.

e Expecting: The input port does require window punctuations to work properly.

e Window-bound: The input port is Expecting when configured with a window that uses
punctuation-based eviction policy, and Oblivious otherwise. Any given instance of the operator
would either be Oblivious or Expecting on this port.

An operator output port may have one of the following window punctuation modes:

e Free: The output port does not carry any window punctuations.

e Generating: The output port does generate its own window punctuations.

e Preserving: The output port preserves the window punctuations it receives from one of the
input ports. In this case, the input port from which the punctuations are being preserved is also
specified.

Given these definitions, we can more formally define a punctuated stream. A stream is punctuated
if and only if one of the following two conditions hold:

e The stream is generated by an output port that has a window punctuation mode of Generating.

e The stream is generated by an output port that as a window punctuation mode of Preserving
and the input port from which the window punctuations are being preserved is connected to a
single punctuated stream.

There are two important things to note here. First, the definition is recursive. A punctuated stream
can go through a number of preserving operators and eventually reach to a punctuation expecting
input port. For instance, in our SPL example from Listings 1 and 5, the output from the join operator
instance is a punctuated stream, because the Join operator’s output port is defined as Generating.
We could have applied some transformation to this output before we feed it to the instance of the
Aggregate operator that has a punctuation-based window on its input port. As long as the operator
that does the transformation preserves the window punctuations in the join output, the punctuation
semantics are still maintained. Second, the definition of the punctuated stream implies that connect-
ing more than one stream to an input port from which punctuations are being forwarded results in
an output stream that is not punctuated. This is because, as we have mentioned earlier, because of
losing punctuation semantics as a result of arbitrarily intermixing window boundaries marked in one
stream with tuples from another one.

Given our definition of a punctuated stream, the compiler can easily compute which streams are
punctuated and verify that all punctuation expecting input ports are connected to a single punctuated
stream.

3.5. Partition eviction

We have seen that all variations of partitioned sliding windows as well as partitioned tumbling
windows with attribute-delta-based eviction policies result in creation of subwindows that are never
removed. We address this problem via partition eviction.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

Partition eviction has two pieces to it. The first is partition eviction policy, which determines the
conditions under which subwindows should be evicted. The second is partition selection policy,
which determines the subwindows to be evicted.

3.5.1. Partition eviction policies. We define three common partition eviction policies, namely, par-
tition count, tuple count, and partition age. Partition eviction policies can be used with both tumbling
and sliding windows.

The partition count policy specifies the maximum number of subwindows that can be present in a
window, say . When the number of subwindows exceeds this threshold (|W 4| > r), one is evicted
to make space.

The tuple count policy specifies the maximum number of tuples that can be kept in a window
across all subwindows. This is reflective of the entire window size and can be more directly related to
memory usage. When the number of tuples in the window exceeds the threshold (Zv [Wae=v] > r),
then one or more subwindows are removed until there is no need for partition eviction.

The partition age policy specifies the maximum amount of wall-clock time a subwindow can
remain in a window without any updates. In other words, we define the age of the subwindow as
the amount of time passed since the last update that modified the subwindow. When the age of a
subwindow exceeds the threshold, it is removed.

Unlike the partition age policy, the partition count and tuple count policies rely on a partition
selection policy to determine the partition to remove.

3.5.2. PFartition selection policies. Partition selection policies can vary in practice and can even be
specific to the operator at hand (user-defined). Here, we list a few common ones, such as the least
recently updated partition (LRU), the least frequently updated partition, and the oldest partition.
Our windowing library implements the LRU policy by default and provides a user-defined option
for operator-specific policies.

Listing 6. Use case for partition eviction policy
composite SampleAggregation (
input stream<timestamp ts, rstring srcIp, rstring dstIp, uint64 traffic> In,
output stream<timestamp ts, rstring srcIp, rstring dstIp, uint64 totalTraffic> Out) {
graph

stream<Out> Out = Aggregate(In) {

window In : sliding, delta(ts, 100.0), delta(ts, 10.0),

partitioned, partitionAge (hour());

param partitionBy: In.srcIp, In.dstIp;

output Out : totalTraffic = Sum(In.traffic);
}

Listing 6 shows an example use case for partition eviction policy in SPL. In this example, we
have an aggregation to be performed on a stream of tuples that contain source and destination IP
addresses. The goal is to perform a summary over a sliding window. The summary to be computed
is the total amount of traffic for each unique IP address pair. The partitionAge clause is used to
specify that a subwindow that has not been updated for more than an hour should be removed. This
addresses the memory growth problem that would have been present otherwise.

4. RUNTIME LIBRARY

In this section, we describe the design and implementation of our runtime library. This library is
used by user-defined operators to implement windowing logic consistent with the semantics we
have described in Section 3.

4.1. Design

The design of the windowing library brings several challenges. First, the library should be generic
enough to work with arbitrary stream types and should support flexible back-ends for tuple storage.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

Our design addresses this challenge by modeling a window as a templatized container of tuples, with
support for customizing the tuple types and data structures used to store them. Second, the library
should separate the windowing semantics from the operator-specific window processing logic. We
address this challenge by using a policy-based window configuration and an event-based interface
for performing processing on the window contents. Last but not the least, the library should support
extensions that allow the operator implementer to decide which tuples are kept in the window. This
enables the creation of advanced synopsis structures that use the familiar windowing semantics we
have outlined earlier. To address this, we introduce the concept of window summarizers, which leave
the decision of what tuples are to be stored in memory to a user-defined routine, while keeping the
window semantics intact, for tumbling windows.

4.1.1. Templatization. We provide two templatized container types: TumblingWindow and Sliding-
Window. They both derive from a common Window container. The reason tumbling and sliding
windows are differentiated is because they provide a non-overlapping set of events, as we will
discuss shortly.

Window containers are templatized on four dimensions. The first is the tuple type they hold. The
second one is the type of the partition-by attributes for the window. This template parameter has a
default and does not need to be specified for windows that are not partitioned. The remaining two
template parameters are used to control the data structures used for the subwindow and the map that
manages the set of subwindows, respectively. We use a double-ended queue for the former and a
hash table for the latter, by default. These template parameters are present for future extensibility of
the library, such as providing a disk-based storage.

4.1.2. Policy specification. The key design point of the library is its policy-based design and event-
based interface. Concretely, to construct a window, the container object is initialized with a set of
policies. These include the eviction, partition eviction, and partition selection policies for tumbling
windows, where the last two are optional. For sliding windows, a mandatory trigger policy has to
be specified as well. Irrespective of what these policies are, the processing logic of the operator
stays the same and has to only deal with reacting to window events. For instance, an operator that
supports a partitioned sliding window with an attribute delta-based eviction policy and a time-based
trigger policy as well as a non-partitioned window with a count-based eviction and trigger poli-
cies is implemented the same way for both configurations, except the initialization of the window
container, where the windowing policies are specified.

4.1.3. Window events. Window events are fired as a result of changes in the window that are rele-
vant from the perspective of the operator implementation. Window events are created in response to
insertion of tuples into the window, as well as due to passage of time (as time-based policies do not
depend on tuple insertions).

All window events are grouped together in a WindowEvent interface as a set of event handlers.
Operators that wish to have windowed logic implement this interface and override event handlers of
interest. They also register to receive the events they are interested in. The registration enables the
runtime to avoid the overhead of tracking and delivering events that are not going to be used by the
operator implementation.

We define the following events:

o [nsertion events. These events are fired before and after a tuple insertion. They provide a handle
to the tuple participating in the insertion, the value of the partition-by attribute corresponding
to the subwindow we are inserting into (this parameter can be ignored for non-partitioned
windows) and a handle to the window object itself (because multiple windows can be used by
an operator that has multiple input ports). These events are available for both tumbling and
sliding windows.

e Flush events. These events are specific to tumbling windows, and they fire before and after a
tumbling window is flushed. They provide the partition-by attribute value for the subwindow
that is being flushed and a handle to the window.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

e Eviction events. These events are specific to sliding windows, and they fire before and after
a tuple is evicted from the window. They provide the same set of parameters as the insertion
events, that is, the tuple, the partition-by attribute value, and the window handle.

e Trigger event. This event is specific to the sliding windows and is fired when the window is
triggered for processing. It provides the partition-by attribute value for the subwindow that was
triggered and a handle to the window.

e [nitial full event. This event is specific to the sliding windows and is fired when the window
is full for the first time. It provides the partition-by attribute value for the subwindow that
became full and a handle to the window. Recall from Section 3.1.2 that this event is required to
implement the option of not executing the window processing for partially full windows during
initialization.

e Fartition eviction event. This event is fired when subwindows are being evicted from the
window. It provides an iterator that can be used to inspect the subwindows before they are
evicted. It is available for both tumbling and sliding windows.

o Fartition selection event. This event is fired when one or more subwindows are to be selected
for eviction but only when a user-defined partition selection policy is used. It provides an iter-
ator that can be used to inspect the subwindows and mark some of them for eviction. It is
available for both tumbling and sliding windows.

4.1.4. Window access. The windowing library also provides access APIs so that the contents of
the window can be inspected as part of the event handler processing. This includes iterating over
the subwindows and their associated partition-by values, as well as iterating over the tuples within
subwindows. These APIs are safe to use within event handlers. However, to access these APIs
from outside of event handlers, the developers need to acquire the window lock, as the poten-
tial presence of time-based events may result in concurrent modifications to the window. The
acquiring of the window lock is managed through a scoped object, which makes sure that the lock-
ing cost is not incurred when the particular instance of the window object at hand does not use any
time-based policies.

Scoped window locks come in handy when the window contents are to be processed as a result of
some event other than the events generated by the window itself. An example is operators that have
more than one input port and thus more than one window (one per input port). Such windows can
have independent configurations and one of them may need to be processed when an event fires on
another. An example for this is the join operator, which is further detailed in Section 6.1.2.

4.1.5. Putting it all together. The steps involved in using the windowing library from within a
user-defined operator can be summarized as follows. The window object, which is a container,
is templatized with the relevant types and is instantiated with the policies that are borrowed
from the invocation of the operator instance at hand. Relevant window events are registered and
corresponding handlers are implemented. As tuples are received, they are inserted into the window,
which results in the firing of the various event handlers. The operator performs its logic as part of
the event handlers. This is often achieved by using the window access APIs to inspect the contents
of the window and carry out operator-specific processing.

As an example, consider an Aggregate operator using a tumbling window to implement a com-
putation that involves averaging the tuples in the window. The operator can register for the before
window flush event and compute the average by going over the tuples in the window before the
tuples are evicted.

This example also brings up an important issue: There are various computations that do not neces-
sarily require keeping all the tuples in the window. A good example of this is incremental aggregates,
such as sum, average, and standard deviation. Furthermore, there are other computations that may
not require the full contents of the window but only a sample of them, such as aggregations that
provide probabilistic guarantees on their accuracy and the amount of space they use [17].

There are two problems with physically storing all the tuples in the window, irrespective of
whether the processing needs them all at once or not. The first one is an issue of memory usage.
For large windows, we will run out of memory, even though an incremental computation would not.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

The second one is an issue of computation. Without incremental computation, we end up with peri-
ods of little per-tuple processing (tuple insertion) followed by a period where a single tuple takes a
long time to process, as it triggers the window processing. This results in stop-and-go behavior in
an asynchronous stream processing system.

We address these issues with window summarizers.

4.1.6. Window summarizers. A window summarizer is a piece of user-defined logic and state that
determines what information needs to be kept in a subwindow. When a tumbling window is con-
figured with a window summarizer, it only keeps enough data to implement its policies and does
not store the individual tuples in the subwindows. Instead, it creates a window summarizer for each
subwindow and delivers the tuples that arrive at the window to the summarizers. It is up to the sum-
marizer to determine the amount of state to keep. The windowing library provides APIs to access
window summarizers associated with subwindows, which can be used to retrieve the summarizer
from within window events (such as a window flush).

All window summarizers implement an interface called WindowSummarizer and override the
three following basic event handlers as follows:

e Open window event. This event is fired when a new subwindow is created and thus immediately
after a new window summarizer is created. This event provides the partition-by attribute value
that corresponds to the subwindow.

e Tuple insertion event. This event is fired when a tuple is logically inserted into the window. The
window container will not keep this tuple physically inside the window. This event provides
a handle to the tuple and it is up to the summarizer to decide whether it is to be kept around
or not.

e Close window event. This event is fired when a subwindow is flushed and thus immediately
before an existing window summarizer is destroyed.

The window summarizer events provide complete control over what needs to be stored in a
tumbling window. It is possible to implement algorithms that require constant state (such as an
incremental aggregation), logarithmic state (such as approximate frequency counting [17]), or com-
plete state (such as Fast Fourier Transform (FFT)). However, keeping a complete state is not a good
use case for window summarizers, as that is the default behavior without the use of window sum-
marizers. In general, window summarizers are useful when the state to be kept is sublinear in the
size of the window.

4.1.7. An end-to-end example. Listing 7 provides an example use of window summarizers. We
assume that this is an operator that uses a partitioned tumbling window to compute an average
over an attribute called value, where an attribute called partition is used as the partition-by
attribute. We further assume that the window is a count-based one with size 1,000,000.

The code is given in C++. The first function we see is the operator initializer, which creates the
window object (a member variable) with a count-based eviction policy. It also registers for the
window flush event, asking the window to deliver this event to an instance of WindowHandler,
which is called windowHandler (another member variable). Finally, it registers a window
summarizer class, named SummarizerHandler, with the window.

The second function we see is the tuple process function of the operator. This function is called
on the operator whenever a tuple is received. The operator uses this tuple to call the insert func-
tion on the window__ object, passing it the tuple, as well as the partition it belongs to. The latter
is used to associate the tuple with the right subwindow. Because the window is configured with a
summarizer, the insert operation does not necessarily keep the tuple inside the window.

The third function we see is the before window flush handler, which is called on the
windowHandler object when the window is ready to be processed. As part of handling
this event, we ask the window object to retrieve the summarizer for the subwindow at hand,
using the partition-by value provided by the event handler. This is performed using the
getWindowSummarizer function. Then, we ask the window summarizer to give us the average

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

Listing 7. Use of window summarizers for computing averages
void Operator::init() {
window_ = new TumblingWindow (CountBasedPolicy (1000000)) ;
windowHandler_ = new WindowHandler (this);
window_->registerOnWindowFlush (windowHandler_) ;
window_->registerWindowSummarizer <SummarizerHandler>();
}
void Operator::process(Tuple & tuple, Port const & port) {
window_->insert (tuple, tuple.get_partition());
}
void WindowHandler::beforeWindowFlush(Partition const & part, Window const & window) {
SummarizerHandler & handler = (SummarizerHandler &) window.getWindowSummarizer (part);
float average = handler.getAverage();
// ... submit a tuple with sum

}

void SummarizerHandler::onOpenWindowEvent (Partition const & part) {
n_ = 0; // n_ is a member variable keeping the number of tuples seen
average_ = 0.0; // average_ is a member variable keeping the current average

}

void SummarizerHandler::onTupleInsertion(Tuple const & tuple) {
float value = tuple.get_value();
average_ += (value - average_) / (n_ + 1);
n_++;

}

void SummarizerHandler::getAverage() {
return average_;

}

value. The assumption is that the window summarizer have already computed this value incremen-
tally, as tuples were delivered to it in the past. The operator can then use the average value to create
and submit an output tuple, which is not shown in the code listing.

The fourth function we see is the open window event handler for the window summarizer. The
summarizer simply initializes a count (n_) and an average (average) member variable when the
window is opened. The fifth function we see is the tuple insertion event handler for the summarizer,
which is used to incrementally update the count and average variables, using a numerically sensitive
method for computing the average. Finally, the last function we see is the getAverage function,
a user-defined function on the summarizer, which is used by the window flush handler to retrieve
the average.

4.1.8. Summarizers and sliding windows. For sliding windows, the eviction of a tuple requires
updating the summary an operator may be maintaining for the current window and thus has to be
delivered to the operator logic. This implies that the sliding window has to keep all the tuples around,
rendering window summarizers ineffective for reducing the memory usage even for aggregations
that can be incrementally maintained.

This does not mean that operators implementing summarizations on sliding windows cannot be
used with very large windows. In many cases, the summarizations to be computed are associative.
This enables decomposing an operator with a large sliding window into two operators: one with a
tumbling window feeding and another one that has a sliding window. The goal is to reduce the win-
dow sizes and thus the memory requirement. This is best illustrated with an example. Assume that
we have an aggregation operator, computing an average over a sliding window with a time-based
eviction policy of 1 h and a trigger policy of 1 min. This operator will generate a summary result
over the last 1 h’s worth of data every 1 min. Keeping the tuples for the last hour could be pro-
hibitive for high input data rates. This operator can be rewritten into two. The first one will compute
the average using a tumbling window with a time-based eviction policy of 1 min, which matches the
trigger policy of the original sliding window. The results from this operator can be fed into a second
operator that is configured with a sliding window with a count-based eviction policy of 60 and a
count-based trigger policy of 1. In effect, the second operator would be aggregating 60 of the 1 min
summaries. The net result is the same as the summarization being applied (average in this case) is
associative. Yet, this rewritten flow uses only 60 tuples plus 1 min’s worth of tuples, as opposed to
1 h’s worth of tuples.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

4.2. Implementation

The main challenge involved in the windowing library implementation is the handling of large
number of window configurations, especially in the case of sliding windows. We tackle this
problem as follows.

First, the partitioned windows are used as the default implementation, where a non-partitioned
window is represented as a partitioned window with a single subwindow and a default partition-by
attribute value. Implementation of partition eviction policies is piggybacked on insertions, which
means age-based partition eviction policies are handled lazily. The only complication with partition
evictions is the need for cleaning up eviction and trigger policy specific state when subwindows
are removed because of partition eviction. The cleaning of such state is handled by the individual
eviction and trigger policy implementations (see succeeding text).

Second, and more importantly, each trigger and eviction policy variation has an implementation of
its own, where the eviction policy implementations handle both the insertion and eviction function-
ality. To implement a sliding window with a combination of eviction and trigger policies, a lookup
table that corresponds to Table II is used to decide on the order in which the insertion, eviction, and
trigger operations are to be executed. In effect, six policy implementations (three for eviction, three
for trigger) are used to support the nine combinations with respect to eviction and trigger policies.

Finally, time-based policies rely on independent threads to implement their functionality. The
time-based eviction policies are implemented by maintaining a priority queue on the deadlines of
the oldest tuples in subwindows. Windows with time-based eviction policies are subject to becoming
empty (if no insertions are performed for a prolonged time), in which case the eviction thread will
wait for the future insertions to continue its operation. Time-based triggers are implemented via
periodic timers. When the time taken by the operator processing associated with the window trig-
ger is longer than the trigger policy duration, the library will trigger the window in succession to
catch up.

5. EXTENSIBILITY

Different stream processing operators have different levels of support for windowing. Not all win-
dow configurations are supported by all operators. For instance, a relational join supports sliding
windows only, and typically, the trigger policy is always count-based and of size one (tuples are pro-
cessed as they arrive). A sort operator typically operates on tumbling windows. At the other extreme,
an aggregate operator supports all possible windowing configurations. Finally, some operators have
no support for windows such as a simple filter.

We support syntactic flexibility via two mechanisms: operator models and code generation.

5.1. Operator models

An operator model describes syntactic and semantic properties of a reusable stream operator. We
require operator developers to specify this model, as part of their operator implementation. With
respect to windowing syntax, the operator model defines the window configurations supported by
the operator. With respect to semantics, the operator model specifies the window punctuation modes
for the input and output ports of the operator.

The operator model is used by the compiler to verify that a particular instance of a stream operator
is syntactically correct. Furthermore, the punctuation modes are used to ensure correct punctuation
semantics across the graph, as outlined in Section 3.4.

5.2. Code generation

We provide a code generation framework for the development of reusable and generic operators.
This framework provides a templating mechanism through which an operator developer can cus-
tomize the code of an operator instance based on its invocation configuration. A compile-time
introspection API is provided for this purpose, which can be used by the operator developer to
inspect the configuration of the particular operator instance at hand, and specialize the operator code

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

based on that. For instance, the entire window configuration is available through the compile-time
introspection API. There are several advantages to this scheme.

First, the compile-time introspection can be used to perform programmatic checks on the correct-
ness of the configurations, especially those checks that are not possible to express using the operator
model. An example related to window processing is to check for values of particular policy parame-
ters (such as making sure that a join operator’s trigger policy is of size 1) or checking the existence of
a parameter that must co-exist with a particular windowing configuration (such as partitionBy
with a partitioned window).

Second, code generation provides the ability to optimize the performance of the code for the
specific operator instance at hand. As an example, a one-sided join is a very common use case in
streaming, as we illustrated in Listing 1. It can be optimized by avoiding the insertion of the tuples
to the zero-sized window altogether. Of course, such optimizations can also be applied at runtime,
at the cost of runtime checks that are executed for each tuple.

Finally, the separation of the syntax from the implementation provides the option not to use our
windowing library for the implementation of the windowing logic. We promote the use of our run-
time library due to its flexibility and its strict adherence to the operational semantics outlined in
this paper. Furthermore, our library also includes a compile-time component to help with the code
generation for the window configuration, to automate the step of configuring windows based on
the SPL operator invocation. Despite all these, it may still be desirable, from the perspective of an
operator developer, to use their own implementation. This is more applicable to operators that only
support a very narrow range of window configurations that may benefit from highly specialized
implementations such as an FFT operator that only supports count-based windows.

6. EVALUATION

We have implemented the windowing library outlined in this paper in both C++ and Java languages.
Our experience implementing operators using it has been mostly on the C++ version of the library,
which we report here. The C++ library is around 3800 lines of code (LOC), not counting comments
and non-statements.

We have used the library to implement a relational operators toolkit, a time-series toolkit, and
an approximate summarization toolkit. Here, we report our experience from the relational operators
toolkit, as it stretches the boundaries of the windowing support in full.

We perform our evaluation in two parts. We first review the list of relational operators and how
they make use of the windowing library. As part of this review, we also compare the LOC informa-
tion for the implemented operators and compare them to the LOC information for the same set of
operators that were implemented without the windowing library. The latter numbers are taken from
InfoSphere Streams [5] v1.0 product code that uses the SPADE [15] language, where relational
operators have the special status of being part of the language itself and implement the windowing
logic on their own, without the use of a common library exposed to operator developers.

In the second part of our evaluation, we compare the runtime performance of the window-
ing library employed in SPL to the SPADE implementation that mixes operator and windowing
library code.

6.1. Relational operators

We look at the aggregate, join, and sort operators. The selection and projection operations do not
use windows.

6.1.1. Aggregate operator. The aggregate operator performs windowed aggregations. It has a sin-
gle input port with a window punctuation mode of WindowBound and a single output port with
a window punctuation mode of Generating. It implements all available window configurations,
including different window types (tumbling versus sliding), different eviction and trigger policies
(count, time, attribute-delta, and punctuation based), partitioned windows, and different partition

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

eviction policies (partition count, tuple count, and age-based). In total, 52 possible variations are
supported with respect to windowing configuration.

The aggregate operator registers for the window flush event for tumbling windows. For sliding
windows, it registers for the window trigger event, before tuple eviction event, and initial full event.
Furthermore, it relies on window summarizers for incremental computation and memory savings.
The operator is implemented using 1988 LOC for SPADE versus only 924 LOC* for SPL. The
windowing library cuts the implementation effort by more than half (54%) in terms of the code size.

6.1.2. Join operator. The join operator matches tuples across two streams, within specified win-
dows. It has two input ports, each having its own window configuration. Both input ports have
a window punctuation mode of Oblivious. The join windows are always sliding and the trigger
policy is always fixed as count-based with size 1. This is because the join operator implements
streaming join semantics, where each new tuple arriving on a stream results in checking for matches
within the window defined on the opposing stream. The join operator has a single output port with
a window punctuation mode of Generating. It also supports optional output ports for implementing
outer joins.

The join operator fully supports partitioned windows and multiplexed processing, as long as the
types of the partition by attributes match for the two input ports, if present. A popular configura-
tion is to have a one-sided partitioned join, where one of the windows has size 0, which is useful
for implementing hash lookups. The join operator also supports outer joins, where tuples that are
evicted from their windows without ever being matched during their stay are output as well (on a
separate output port or on the single output port, depending on the choice). In total, 90 possible
variations are supported with respect to window configuration.

The join operator registers for the after tuple insertion event (needed for indexing), window trig-
ger event (needed for running the matching logic), and before tuple eviction event (needed for outer
joins). The operator is implemented using 1167 LOC for SPADE versus only 667 LOC for SPL.
Again, the windowing library cuts the implementation effort by almost half (43%) in terms of the
code size.

6.1.3. Sort operator. The sort operator implements windowed sorting. The sort operator has a single
input port with a window punctuation mode of WindowBound and a single output port with a window
punctuation mode of Generating. It supports two modes of operation: batch and progressive. The
batch mode of operation sorts one tumbling window at a time and supports all tumbling window con-
figurations. The progressive mode performs a sort over a sliding window, where each newly arriving
tuple on a full window results in outputting the next tuple in the window that is first in the sort order.
This kind of progressive sort is useful for ordering streams that are unordered with a bound. In this
mode, the sort operator supports only sliding windows with count-based trigger policies of size 1.
In total, 44 possible variations are supported with respect to window configuration.

The sort operator registers for the before window flush event in the batch mode. For progressive
sort, it registers for the after tuple insertion (to perform incremental sort) and before tuple eviction
events (to produce the next result). The operator is implemented using 410 LOC for SPADE versus
284 LOC for SPL. In this case, the windowing library cuts the implementation effort by 30% in
terms of the code size.

6.2. Runtime evaluation

We use an aggregate operator to compare the performance of SPL-based windowing library imple-
mentation to that of SPADE’s hand-coded windowing logic that is intermixed with the operator
implementation.

Figure 3 plots the throughput of SPL relative to SPADE as a function of window size for a tum-
bling window with different eviction policies for both partitioned and non-partitioned variants. The

#The SPL version of the aggregate operator uses numerically sensitive methods for computing summaries, which takes
an additional 500 lines of code and is excluded from the LOC count for SPL, as this capability is not present in SPADE.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

with non-incremental aggregation function

100
—@— count(x), count(1)

—ao— delta(x-1), delta(0)
count(x), count(1),
partitioned

—a— delta(x-1), delta(0),

partitioned

SPL throughout relative to SPADE
>
1

T A\
1 10 100 1000 10000
window size

Figure 3. Throughput for aggregation using a tumbling window and an incremental aggregation (average).

with incremental aggregation function

SPL throughout relative to SPADE

o —8—count(x) |
—o— delta(x-1)

14 count(x), partitioned | ...
—A— delta(x-1), partitioned

0 T T T 1
1 10 100 1000 10000
window size

Figure 4. Throughput for aggregation using a sliding window and a non-incremental aggregation
(percentile).

aggregation that was used for this experiment is Average, which is an incrementally computable
one. The results are surprising, as the windowing library implementation performs around five times
better in general. After investigating the code for the SPADE implementation, we have found that
the operator implementers have opted for a design that avoids the code variation involved in sup-
porting time-based and non-time-based policies by reducing all cases to the former. In this design,
the window processing is always performed by a different thread than the one that performs tuple
ingestion. On the other hand, our windowing library only uses this kind of separation for time-based
policies and employs a streamlined solution that does not involve threads for the other cases.

Figure 4 plots the throughput of SPL relative to SPADE as a function of window size for a
sliding window with different eviction policies for both partitioned and non-partitioned variants. The
aggregation that was used for this experiment is Percentile, which is a non-incrementally com-
putable one. We see that SPL’s windowing library implementation shows significant improvement,
but the gap narrows down eventually to zero as the window gets larger. We picked a non-incremental
aggregation to show that no matter what the windowing library does, for aggregations that require
processing the entire window the operator logic eventually dominates the overall cost.

The goal of these experiments is to show that separating the operator logic and windowing logic
via the use of an event-based interface and policy-driven design does not introduce overhead. While
a coupled implementation like SPADE’s have the potential to be more efficient, in practice the

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. GEDIK

complications that result from supporting a large number of window configurations in a coupled
setup makes it difficult to optimize the code properly.

7. RELATED WORK

To our knowledge, there is no previous published work on the design and implementation of a gen-
eral purpose windowing library for data stream processing systems. This can be attributed to the lack
of extensibility in many of the existing systems with respect to creating new operators that are as
capable as the so called ‘built-in’ ones. However, there is a large body of related work dealing with
the semantics of windows as well as query evaluation techniques to implement select windowed
operators.

It has been shown recently that not only is the windowing behavior significantly different across
stream processing systems (exemplified by research [1-3,18,19] and commercial systems [4—6, 12]),
but also the semantics are not always well-defined [20]. In particular, a descriptive model is
introduced in [20], in order to analyze the behavior of stream processing systems, understand
the results of windowed queries, and explain the key differences in windowing behavior across
different systems.

To illustrate the subtle differences, we give two examples. As one example, some systems process
partial windows whereas some systems only process full windows. Partial windows happen during
start up. Our windowing library supports both options and leaves it to the operators to expose this
as a parameter. As another example, different systems use differing techniques for assigning times-
tamps to tuples (system timestamps vs source timestamps). Our windowing library does not make
any assumptions about this, and instead enables one to specify the attribute over which the delta
based windows are defined. In summary, the subtleties of different systems can easily be supported
on top of our windowing library.

The minor differences between the windowing semantics across various systems is so vast [20]
that, it is beyond the scope of our work to characterize all such differences. It is important to note
that none of these systems have decoupled the windowing functionality from the operator imple-
mentations. We make this decoupling in this work and provide windowing as a service to operators,
so that user-defined operators with windowing support can be built.

Many of the stream processing systems that are based on SQL, exemplified by STREAM [1],
Gigascope [18], and TelegraphCQ [19], provide various forms of windows to deal with the stream-
ing versions of the traditionally blocking relational operators. Windows are represented via syntax
extensions to SQL, and query semantics are extended to take into account windowed processing.
Previous work has also looked at formally defining the semantics of streaming queries in the pres-
ence of windows [21,22], but they do not cover windowing semantics independent of the operations
performed as part of the query processing. The windowing library presented here covers all the win-
dow variations discussed in previous works (and more), while at the same time decoupling operator
logic from the window management.

One exception is the work presented in [16], which clearly defines windowing semantics and
then uses it to develop efficient techniques to evaluate aggregation queries. The various window
configurations covered in [16] are also covered by our work. However, there are a few fundamental
differences. First, our work provides operational semantics for windows, providing details on the
windowing events and the order in which they are delivered. This is important for our work, as we
aim at providing a general purpose library, where the main design point is the event-based inter-
face used to decouple windowing logic from operator logic. The work presented in [16] focuses on
domain-driven window semantics, providing a mapping between tuples and window ids. Second,
our work defines windows in terms of eviction, trigger, and partition eviction policies. We are not
aware of previous work that have looked at partition eviction policies. SQL-based systems often use
the range and slide concepts in place of eviction and trigger policies and the coverage of semantics
in the presence of mixed polices is limited in the literature. Finally, although punctuations [14] and
their semantics [23] have been discussed in the literature, our definition of window punctuations,
rules for their propagation in the presence of multi-input and multi-output operators, and their rela-
tionship to punctuation-based windows is unique. Our window punctuations can be seen as a special

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A WINDOWING LIBRARY FOR EXTENSIBLE STREAM PROCESSING SYSTEMS

case of the more general definition used for punctuations in the literature (an ordered set of patterns
[23]). Although they represent a structurally simple type of punctuation, our window punctuations
have unique semantics that are associated with window processing and have been used successfully
in a commercial stream processing language [11].

Various existing works address efficient implementation of windowed operators, such as joins
[8,24] and aggregations [7,25]. These are complimentary to our work, which focuses on a general
purpose windowing library for stream processing.

8. CONCLUSION

We presented the design and implementation of a windowing library for extensible stream pro-
cessing systems. We described windowing types and policies commonly used in stream processing
applications and provided operational semantics for all window configurations. Our windowing
library facilitates the implementation of user-defined operators with windowing logic by decou-
pling the operator logic from the details of window handling, through an event-driven interface and
policy-based design. We showed the efficacy of the library based on our experience of using it in a
commercial grade stream processing middleware to implement stream relational operators.

REFERENCES

1. Arasu A, Babcock B, Babu S, Datar M, Ito K, Motwani R, Nishizawa I, Srivastava U, Thomas D, Varma R, Widom
J. STREAM: The Stanford stream data manager. [EEE Data Engineering Bulletin 2003; 26(1):19-26.

2. Abadi D, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M, Hwang J-H, Lindner W, Maskey A, Rasin A, Ryvk-
ina E, Tatbul N, Xing Y, Zdonik S. The design of the Borealis stream processing engine. In Innovative Data Systems
Research Conference (CIDR), Asilomar, CA, USA, 2005; 277-289.

3. Jain N, Amini L, Andrade H, King R, Park Y, Selo P, Venkatramani C. Design, implementation, and evaluation of the
linear road benchmark on the Stream Processing Core. In International Conference on Management of Data (ACM
SIGMOD), Chicago, IL, USA, 2006; 431-442.

4. StreamBase Systems. (Available from: http://www.streambase.com) [retrieved October, 2011].

5. Gedik B, Andrade H. A model-based framework for building extensible, high performance stream processing
middleware and programming language for IBM InfoSphere Streams. Software: Practice and Experience 2012;
42(11):1363-1391.

6. S4 stream computing platform. (Available from: http://www.s4.i0/) [retrieved October, 2011].

7. Golab L, Bijay KG, Ozsu MT. Multi-query optimization of sliding window aggregates by schedule synchroniza-
tion. In Conference on Information and Knowledge Management (ACM CIKM), Arlington, Virginia, USA, 2006;
844-845.

8. Gedik B, Wu K-L, Yu PS, Liu L. GrubJoin: an adaptive, multi-way, windowed stream join with time correlation-
aware cpu load shedding. Transactions on Knowledge and Data Engineering (IEEE TKDE) 2007; 19(10):1363-1380.

9. Wu K-L, Yu PS, Gedik B, Hildrum K, Aggarwal CC, Bouillet E, Fan W, George D, Gu X, Luo G, Wang H. Chal-
lenges and experience in prototyping a multi-modal stream analytic and monitoring application on System S. In Very
Large Data Bases Conference (VLDB), Vienna, Austria, 2007; 1185-1196.

10. Turaga D, Andrade H, Gedik B, Venkatramani C, Verscheure O, Harris D, Cox J, Szewczyk W, Jones P. Design prin-
ciples for developing stream processing applications. Software: Practice and Experience 2010; 40(12):1073-1104.

11. Hirzel M, Andrade H, Gedik B, Kumar V, Losa G, Mendell M, Nasgaard H, Soulé R, Wu K-L. SPL language
specification. Tecnical Report RC24897, IBM, Yorktown Heights, New York, USA, 2009.

12. Ali MH, Chandramouli B, Raman BS, Katibah E. Spatio-temporal stream processing Microsoft StreamlInsight. [EEE
Data Engineering Bulletin 2010; 33(2):69-74.

13. Andrade H, Gedik B, Wu K-L, Yu PS. Processing high data rate streams in System S. Journal of Parallel and
Distributed Computing 2011; 71(2):145-156.

14. Maier D, Tucker PA. Punctuations. In Encyclopedia of Database Systems. Springer, 2009; 2216-2217.

15. Gedik B, Andrade H, Wu K-L, Yu PS, Doo M. Spade: The System S declarative stream processing engine. In
International Conference on Management of Data (ACM SIGMOD), Vancouver, Canada, 2008; 1123—-1134.

16. LiJ, Maier D, Tufte K, Papadimos V, Tucker PA. Semantics and evaluation techniques for window aggregates in data.
In International Conference on Management of Data (ACM SIGMOD), Baltimore, Maryland, USA, 2005; 311-322.

17. Aggarwal CC. A survey of synopsis construction in data streams. In Data Streams. Springer, 2007; 169-207.

18. Cranor CD, Johnson T, Spatscheck O, Shkapenyuk V. Gigascope: a stream database for network applications. In
International Conference on Management of Data (ACM SIGMOD), San Diego, CA, USA, 2003; 647-651.

19. Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ, Hellerstein JM, Hong W, Krishnamurthy S, Madden S,
Raman V, Reiss F, Shah MA. TelegraphCQ: continuous dataflow processing for an uncertain world. In Innovative
Data Systems Research Conference (CIDR), Asilomar, CA, USA, 2003; 269-280.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

20.

B. GEDIK

Botan I, Derakhshan R, Dindar N, Haas L, Miller RJ, Tatbul N. SECRET: a model for analysis of the execution
semantics of stream processing systems. In Very Large Data Bases Conference (VLDB), Singapore, 2010; 232-243.

21. Arasu A, Babu S, Widom J. The CQL continuous query language: semantic foundations and query execution. Journal
on Very Large Databases (VLDBJ) 2006; 15(2):121-142.

22. Kramer J, Seeger B. Semantics and implementation of continuous sliding window queries over data streams.
Transactions on Database Sytems (ACM TODS) 2009; 34(1):1-49.

23. Tucker PA, Maier D, Sheard T, Fegaras L. Exploiting punctuation semantics in continuous data streams. Transactions
on Knowledge and Data Engineering (IEEE TKDE) 2003; 15(3):555-568.

24. Srivastava U, Widom J. Memory-limited execution of windowed stream joins. In Very Large Data Bases Conference
(VLDB), Toronto, Canada, 2004; 324-335.

25. Arasu A, Widom J. Resource sharing in continuous sliding-window aggregates. In Very Large Data Bases Conference
(VLDB), Toronto, Canada, 2004; 336-347.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)

DOI: 10.1002/spe

