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In random truncation models one observes the i.i.d. pairs (Ti�Yi ), i=1, ..., n. If
Y is the variable of interest, then T is another independent variable which prevents
the complete observation of Y and random left truncation occurs. Such a type of
incomplete data is encountered in medical studies as well as in economy,
astronomy, and insurance applications. Let (Y, Y) be a bivariate vector of random
variables with joint distribution function F(y, x) and suppose the variable Y is ran-
domly truncated from the left. In this study, nonparametric estimators for the
bivariate distribution and hazard functions are considered. A nonparametric
estimator for F(y, x) is proposed and an a.s. representation is obtained. This
representation is used to establish the consistency and the weak convergence of the
empirical process. An expression for the variance of the asymptotic distribution is
presented and an estimator is proposed. Bivariate ``diverse-hazard'' vector is intro-
duced whic h captures the individual and joint failure behaviors of the random
variables in opposite ``time'' directions. Estimators for this vector are presented and
the large sample properties are discussed. Possible applications and a moderate size
simulation study are also presented. � 1997 Academic Press

1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction

In survival or reliability studies, incomplete data is frequently encoun-
tered. Random truncation and censoring are two common forms of such
data. In random left truncation model, one observes the i.i.d. pairs
(Yi�Ti ), i=1, ..., n, where Y is the variable of interest and T is another
independent variable which prevents the complete observation of Y. Ran-
dom right truncation is similarly defined by interchanging the roles of Y
and T. One of the earliest applications of the left truncation model was
given by Lynden�Bell (1971), where Y refers to the brightness of celestial
objects, which is only partially observable due to a preventing variable T.
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Random truncation models gained more interest in recent years because it
is conveniently used to model several aspects of AIDS data, such as the dis-
tribution of the incubation time, the reporting lags from the detection of
the incidence to the time it is reported to the officials, or the time from
AIDS to death. Suppose for instance To is the time when the observation
period starts, and let a be the time a person is diagnosed with AIDS and
d is the time of death. If we set Y=d&a and T=To&a, then only those
individuals are observed for whom T�Y and left truncation occurs. This
selection bias becomes more important especially in the early stages of the
epidemics, when sufficient historical data has not accumulated yet. Trun-
cated data could also arise in insurence applications where a liability
claim may arise due to an incidence but a delay occurs until it is reported
to the insurance company. See e.g. Kalbfleisch and Lawless (1989) for such
applications.

In the present study we consider the estimation of the bivariate distribu-
tion function (d.f.) and a different version of a bivariate hazard, namely
diverse-hazard vector, when a component is randomly truncated. Bivariate
d.f. is important in understanding the joint behavior of correlated random
variables, as well as assessing the strength of such relations. Nonparametric
or parametric regression, bivariate density estimation or developing tests of
independence could be cited as some potential applications of the methods
described in this study. Bivariate diverse-hazard vector is defined in analogy
to the hazard vector introduced by Dabrowska (1988) for the censored
observations. The diverse-hazard vector captures the immediate past and
future failure characteristics of the individual variables as well as their joint
failure behavior. Besides being of interest on its own, the functionals of
this vector could be used to develop tests of independence as discussed in
Section 3. Although the estimators presented in the paper can be used for
arbitrary distributions, we assume the continuity of F in both components
for establishing the large sample properties, which in turn inherit such
assumptions from the results adopted from univariate case. Similarly, with-
out loss of generality, the pair (Y, X ) is taken to be nonnegative.

The paper is organized as follows: In the next subsection, main results
for the univariate case are summarized. In Section 2, an estimator for
F(y, z) is proposed and an almost sure (a.s) i.i.d. representation is obtained.
Strong consistency and weak convergence are then established via this
representation. The variance of the limiting distribution is presented and an
estimator for it is suggested. In Section 3, the bivariate diverse-hazard vec-
tor is introduced and estimation procedures are discussed. A decomposi-
tion of an arbitrary bivariate d.f. in terms of the marginal distributions and
a functional of the diverse-hazard vector is introduced in analogy to that
of Dabrowska (1988). Two alternative methods to estimate the integrated
diverse-hazard vector are discussed and their large sample equivalence is
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established together with an i.i.d. representation. A discussion on how to
utilize the results for developing tests of independence is also included.
Finally in Section 4, some simulation results are presented which illustrate
the performance of the bivariate d.f. estimator. In this section some remarks
are also made concerning the possible extensions of the models considered.
Proofs of most of the results are deferred to the Appendix.

1.2. Preliminaries

We now present some preliminary results for the univariate truncation
model. Let Y be the variable of interest and T be the truncating variable
with d.f.'s F and G respectively. The pairs (Y, T ) are observed only if
(Ti�Yi), i=1, ..., n. Under this sampling scheme, Woodroofe (1985) points
out that F and G can be estimated completely only if (F, G) # Ro , where
Ro=[(F, G): aG�aF; bG�bF ] with aW and bW denoting the lower and
upper end points of the support of any distribution function (d.f.) W
respectively. Note that (F, G) # Ro implies :#P(T�Y )>0, which is
assumed throughout. The nonparametric maximum likelihood estimator of
F is first given by Lynden�Bell (1971) as

F� n( y)= `
i: Yi�y _ 1&

s(Yi)
nCn(Yi) & ,

where

nCn(u)=*[i: Ti�u�Yi] s(u)=*[i: Yi=u]. (1)

Consistency of Fn and its right truncation counterpart are studied by
Woodroofe (1985) and Wang, Jewell and Tsai (1986). Chao and Lo (1988)
derived a representation of (Fn&F ) as i.i.d. mean processes. The order of
the remainder term for this representation is improved by Stute (1993) and
Gijbels and Wang (1993) (see Theorem 1 below). Kernel estimators of the
hazard function for truncated�censored data are studied by Uzunog$ ullar@
and Wang (1992). Gu� rler, Stute and Wang (1993), Gu and Lai (1990), Lai
and Ying (1991), and Gross and Huber�Carol (1992) extended the results
for truncated�censored data in various directions. Keiding and Gill (1990)
provided a Markov�Process approach to the model and derived similar
results with martingale methods.

The following theorem summarizes the existing results concerning Fn( y).
Let (Yi , Ti), i=1, ..., n denote the observed variables. Define

Li (z)=: { I(Yi�z)
G (Yi) F� (Yi)

&|
z

0

I(Ti�u�Yi )
G(u) F� 2(u)

dF(u)=
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and

L� n(z)= :
n

i=1

n&1L i (z).

Theorem 1. Suppose F is continuous and b<bF . Then the following
representation holds:

Fn(z)&F(z)=n&1F� (z) :
n

i=1

Li(z)+=n(z)

=F� (z) L� n(z)+=n(z).

(i) (Chao and Lo (1988). Let aG=aF . If limx � 0+ F(x)�G(x)=0 and
� dF�G<�, then

sup
0�z�b

|=n(z)|=o(n&1�2) a.s.

(ii) (Gijbels and Wang (1993)). Let aG<aF . If � dF�G<�, then

sup
0�z�b

|=n(z)|=O(logn�n) a.s.

(iii) (Stute (1993a)). Let aG�aF . If � dF�G2<�, then

sup
aFY

�z�b
|=n(z)|=O(log3n�n) a.s.

Corollary 1. Under the conditions of Theorem 1, the process Wn(z)=
- n (Fn(z)&F(z)) converges weakly to a zero mean Gaussian process on
D[0, b], with covariance structure:

Cov(Wn(z1), Wn(z2))=:F� (z1) F� (z2) |
z1 7 z2

0

F (du)
G(u) F� 2(u)

.

2. BIVARIATE DISTRIBUTION FUNCTION

2.1. Suggested Estimator

We now consider the bivariate truncation model, in which one observes
the triplets (Yi , Xi , Ti), i=1, ..., n only if (Ti�Yi). The purpose is to
estima@te the bivariate d.f. F ( y, x) of (Y, X ). Here T is a nuisance random
variable, which is assumed to be independent of (Y, X ), with d.f. G. All the
variables are assumed to be continuous, nonnegative. The marginal d.f.'s of
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Y and X are denoted by FY and FX respectively. To avoid the identifiability
problems, it is assumed that aFY�aG and bFY�bG , as in the univariate
model. Given this model, the observed triplets can be considered to arise
from the following trivariate conditional distribution H:

HY, X, T ( y, x, t)=P(Y�y, X�x, T�t | Y�T )

=:&1 |
x

0
|

y

0
G (t 7 u) dF(u, v);

here : is as defined before, and t 7 u=min( y, u). The observed pairs then
have the following distributions:

F*Y, X ( y, x)#HY, X,T( y, x, �)=:&1 |
x

0
|

y

0
G(u) dF (u, v)

HX, T (x, t)=:&1 |
x

0
|

�

0
G(t 7 u) dF (u, v) (2)

HY, T ( y, t )=:&1 |
�

0
|

y

0
G(t 7 u) dF (u, v).

The univariate marginals are obtained as

F*Y ( y)=:&1 |
�

0
|

y

0
G(u) dF (u, v)

F*X (x)=:&1 |
x

0
|

�

0
G(u) dF (u, v)

G*T (t)=HY, T (�, t)=:&1 |
�

0
|

�

0
G(t 7 u) dF (u, v).

Assuming the existence of the densities (denoted in lowercase letters), we
have

f *Y, X ( y, x)=:&1G( y) fY, X ( y, x)

f *Y ( y)=:&1G( y) fY( y)

f *X (x)=:&1 |
�

0
G(u) f (u, x) du.
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The following function is of importance in truncation model, and the scaled
empirical countarpart of it defined in (1) is the size of the `risk set' at
time z:

C(z)=:&1G(z) F� Y (z&)

=G*T(z)&F*Y (z). (3)

It is interesting to note here that the conditional density of X given Y in
the truncation model is the same as that of untruncated model. This
implies that inference for the conditional distribution of X given Y can be
based on the observed truncated sample. However the reverse is not true
for Y given X and the procedures proposed in this study can be used to
handle this case.

The estimator considered for F ( y, x) is

Fn( y, x)=
1
n

:
i

F� Y,n (Yi&)
Cn (Yi)

I (Yi�y, Xi�x),

where F� Y, n and Cn are as given in (1). This estimator is motivated by
observing that

f ( y, x)=[:&1G( y)]&1 f *( y, x),

where

[:&1G( y)]&1=
F� Y ( y)
C ( y)

,

which follows from (2) and (3). Fn( y, x) reduces to the product limit
estimator (1) of FY ( y) when x � �. It can easily be verified that Fn ( y, x)
is a bivariate distribution function. Stute (1993, b) proposes an estimator
for the censored case which is analogous to Fn and is a bivariate distribu-
tion function.

In the censored case when both components are subject to censoring,
many of the existing estimators of the bivariate d.f. lack one or more of the
requirements to be a proper d.f., as discussed in Dabrowska (1988). For the
truncation model, there doesn't exist an estimator of F ( y, x) when both
components are truncated, in which case more delicate identifiability
problems arise. Therefore it is not possible to present a direct comparison
of bivariate censoring and truncation methods. However it will become
apparent in the next section that there are obvious similarities in the struc-
tures of the bivariate hazard and d.f. estimators between the present case
and those in the bivariate censored data. Therefore, even though the
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sampling mechanisms of them are quite different, it is not unfair to say that
the technical difficulties involved in singly (only a component) truncated
bivariate data are comparable to those of bivariate censored data.

2.2. An Almost Sure Representation

Observe that Fn( y, x) is a weighted sum of i.i.d. variables, where the
weights are the jump sizes of the truncation product limit estimator FY, n ( y)
at the data points. Therefore theoretical properties of this estimator are
strongly related to those of FY, n ( y). The following theorem provides an
i.i.d. representation of Fn( y, x), the proof of which is given in the appendix.

Theorem 2. Assume F is continuous in both components, b<bFY and let
Tb=[( y, x): 0<y<b; 0<x<�]. Then Fn( y, x) admits the representation

Fn ( y, x)&F ( y, x)=|
y

0

F� (u)
C(u)

[F*n (du, x)&F*(du, x)]

+|
y

0

F� (u)
C2(u)

[C(u)&Cn(u)

+L� n(u) C(u)] F*(du, x)+Rn( y, x)

#!� n( y, x)+Rn( y, x) (4)

and

(i) If aG<aFY , then

sup
( y, x) # Tb

|Rn( y, x)|=O(log2n�n).

(ii) If aG=aFY , and � G&2(u) FY (du)<�, then

sup
( y, x) # Tb

|Rn( y, x)|=O(log3n�n)=o(n&1�2).

Notice here that the order of the remainder term for part (i) is better
than that of Chao and Lo (1988), but not as good as the result of Gijbels
and Wang (1993). It may be another task to further improve this result to
achieve a similar bound. The magnitude of the remainder term for part (ii)
derives from the result of Stute (1993a) and therefore the integrability con-
dition here is more restrictive than that of Chao and Lo (1988). Note
however that, starting with the result of Chao and Lo (1988), one can
obtain the same order of magnitude o(n&1�2) as theirs for the remainder
term, by merely the assuming the conditions of part (ii) of Theorem 1.
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Theorem 2 can also be utilized to establish the weak convergence of
Fn( y, x). Weak convergence of the empirical processes in multidimensional
time is considered in Neuhaus (1971) and Straf (1972). Campbell (1981)
used the results of Neuhaus (1971) to establish the weak convergence of the
bivariate process in the censored case. For the present work also, the con-
struction of Neuhaus (1971) is applicable and therefore only the result will
be stated here. A detailed discussion can be found in the above article.

Define the processes:

F� n( y, x)=- n[Fn( y, x)&F ( y, x)]

C� n ( y)=- n[Cn( y)&C( y)]

W� n ( y, x)=- n[F*Y, X, n( y, x)&F*Y, X,n( y, x)]

L� n( y)=- nL� n( y).

The scaled version of the representation given in Theorem 1 can now be
rewritten in the following form, which rends the covariance structure more
visible. Let

A(u)=
F� (u)
C(u)

.

Then

F� n ( y, x)=W� n( y, x) A( y)&|
y

W� n(s, x) A(ds)

&|
y

0

A(s)
C(s)

C� n(s) F*Y,X (ds, x)

&|
y

0
A(s) L� n ( y) F*Y, X (ds, x)+R*n ( y, x)

#!� *n ( y, x)+R*n ( y, x). (5)

We now present the covariance functions of the above processes:

Lemma 1.

(i) Cov(C� n(u), C� n(v))=C(u 7 v)
F� Y (u 6v)
F� Y (u 7 v)

&C(u) C(v)

(ii) Cov(L� n(u), L� n(v))=|
u 7 v FY (dz)

C(z) F� (z)
#b(u 7 v)
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(iii) Cov(W� n(u1 , u2), W� n(v1 , v2))=F*Y, X (u1 7 v1 , u2 7 v2)

&F*Y,X (u1 , u2) F*Y,X (v1 , v2)

(iv) Cov(C� n(u), L� n(v))=&F� Y (u)
FY (u 7 v)
F� Y (u 7 v)

(v) Cov(C� n(u), W� n(v, x))=
C(u)

F� Y (u)
[F (v, x)&F (u 7v, x)]

&C(u) F*(v, x)

(vi) Cov(L� n(u), W� n(v, x))=
1

F� Y (u 7 v)
[F(u 7 v, x)

&F(v, x) F(u 7 v)].

It follows from standard results that L� n( y) and C� n (y), converge weakly
to mean zero Gaussian processes on D[0, b) with covariance structures
given above. The weak convergence of W� n( y, x) to a mean zero two-time
parameter Gaussian process on the complete seperable metric space
(D2 , d ) defined on [0, 1]_[0, 1] described in Neuhaus (1971) follows
from the arguments in that article. We therefore have the following result
which is immediate from Theorem 2, SLLN and functional LIL.

Corollary 2. Under the assumptions of part (ii) of Theorem 2,

(a) For ( y, x) # Tb

Fn( y, x) � F ( y, x) a.s.

(b) sup( y, x) # Tb | Fn( y, x)&F ( y, x)|=O((logn�n)1�2).

(c) Suppose the conditions of part (ii) of Theorem 3 hold. Then for
( y, x) # Tb , F� n( y, x) converges weakly to a mean zero, two dimentional time
Gaissian process on (D2 , d ).

It is hard to give a compact form for the general covariance function of
the above limiting process. For special cases, it can be obtained from
Corollary 1 and Lemma 1. However for practical purposes an expression
for the limiting variance would be essential. We therefore provide below the
asymptotic variance of the process F� n( y, x), the proof of which could be
found in Gu� rler (1995).
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Corollary 3. The variance of the limiting process is given below,
provided that the integrals appearing exist:

_2( y, x)#Var(!� *n ( y, x))

=|
y

A(u) F(du, x)&2 |
y

[F (y, x)&F (u, x)] _ 1
C(u)

&b(u)& F (du, x).

It can be checked that the above variance reduces to F ( y, x)(1&F ( y, x))
when there is no truncation. This expression allows us to make some
standard inferences, such as hypothesis testing and construction of con-
fidence intervals. For such applications an estimator of the variance is
needed and we provide below a natural nonparametric estimator for it.
However, particularly for the more complicated general covariance func-
tion, bootstrapping can be another option. We can estimate A(u) by

An(u)=
F� Y,n(u&)

Cn(u)
.

Observe also that the jump size of FY, X,n(u, v) at (Yi , x) is

F� Y, n(Yi&)
Cn(Yi)

I (X[i]�x)=An(Yi) I(Xi�x)

Let

V1, n( y, x)=n&1 :
i: Yi�y, Xi�x

A2
n (Yi)

and

V2, n( y, x)=n&1 :
i: Yi�y, Xi�x

An(Yi)[FY, X, n( y, x)

&FY,X, n(Yi , x)][1�Cn(Yi)&bn(Yi)],

where

bn(u)= :
n

=1

I(Yi�u)
C2

n(Yi)
.

Then, an estimator of the asymptotic variace can be given as

_2
n ( y, x)=V1, n( y, x)&2V2,n( y, x).

29RANDOM TRUNCATION OF A COMPONENT



File: 683J 163011 . By:CV . Date:06:01:97 . Time:13:28 LOP8M. V8.0. Page 01:01
Codes: 2685 Signs: 1620 . Length: 45 pic 0 pts, 190 mm

3. BIVARIATE DIVERSE HAZARD

3.1. Characterization

In this section ``diverse hazard'' function will be presented and the iden-
tifiability of a bivariate distribution function via the diverse hazard will be
discussed. This development is motivated by the discussion given in
Dabrowska (1988) for the censored observations. For the univariate data,
the d.f. is expressed in terms of the cumulative d.f. in a unique way. For the
bivariate case however, there is not a single definition of the cumulative
hazard function (see e.g. Marshall (1975), Cox (1972), Johnson and Kotz
(1975)). Dabrowska (1988) provides a nice representation of a bivariate
survival function in terms of her cumulative hazard function which is a
vector of three components that correspond to double and single failures.
In what follows, a different version of the bivariate hazard vector, namely
the diverse-hazard will be presented.

We first introduce the following notation. For a bivariate function ,(u, v),
which is left-continuous in the first, right-continuous in the second compo-
nent, let

,($u, v)=,(u+, v)&,(u, v)

,(u, $v)=,(u, v)&,(u, v&)

,($u, $v)=,(u+, v)&,(u, v)&,(u+, v&)+,(u, v&)

and define the sets

E1(,)=[(u, v): ,($u, v)=,(u, $v)=0]

E2(,)=[(u, v): ,($u, v){0, ,($u, $v)=0]

E3(,)=[(u, v): ,(u, $v){0, ,($u, $v)=0]

E4(,)=[(u, v): ,($u, $v){0].

In the following definitions, the superscripts will refer to the componets for
which the partial derivatives are taken. Let

,(du, v)={,1(u, v)
,($u, v)

(u, v) # E1(,) _ E3(,)
(u, v) # E2(,) _ E4(,)

.

,(u, dv) is similarly defined, so that we have

,1, 2(u, v) (u, v) # E1(,)

,(du, dv)={,2($u, v) (u, v) # E2(,)
.

,1(u, $v) (u, v) # E3(,)

,1, 2($u, $v) (u, v) # E4(,)
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To avoid introducing more notation, the integral of the above functions
will be denoted by simply inserting the integral sign, since the distinction
will be clear from the context. For example it will be understood that

|
E3(,)

,(du, dv)=|
u

:
v

,1(u, $v) du.

Let F� (u, v)=P(Y�u, X�v). We define the bivariate `diverse hazard'
vector 4� (u, v) as

4� (u, v)=[412(du, dv), 41(du, v), 42(u, dv)],

where, with some abuse of the above notation for the ease of the following
presentation, we define

412(du, dv)#&
F� (du, dv)

F� (u, v)
,

41(du, v)#&
F� (du, v)
F� (v, v)

,

and

42(u, dv)#
F� (u, dv)
F� (u, v)

.

Note that the first member of 4� (u, v) corresponds to the failures of both
components at (u, v&), given that the first one is still alive at u&, while
the second is known to have failed at v. In other words, it describes the
conditional probability of double failures, the first in the immediate present
and the second in the immediate past. The other two components have
similar interpretations, which explains the term ``diverse'' hazard. This
diverse-hazard vector is analogous to the bivariate hazard vector given in
Dabrowska (1988) and following her lines, a bivariate distribution function
will presented in terms of this vector and the marginal distributions of Y
and X.

Let

R(y, x)=logF� ( y, x).

Then we can write

|
�

x
|

y

0
R(du, dv)= :

4

i=1

Ri (u, v),
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where

R1(u, v)=|
�

v
|

u

0
I[(s, t) # E1(R)] R(ds, dt)

R2(u, v)=|
�

v
:

s�u

I[(s, t) # E2(R)] R(ds, dt)

R3(u, v)= :
�

t>v
|

u

0
I[(s, t) # E3(R)] R(ds, dt)

R4(u, v)= :
t>v

:
s�u

I[(s, t) # E4(R)] R(ds, dt).

The following identities will be used to calculate Ri (u, v), i=1, ..., 4.

F� (u+, v)
F� (u, v)

=1&41(du, v)

F� (u, v&)
F� (u, v)

=1&42(u, dv)

F� (u+, v&)
F� (u, v)

=1&41(du, v)&42(u, dv)+412(du, dv).

We then have

R1(u, v)=|
�

v
|

u

0
I[(s, t) # E1][41(du, v) 42(u, dv)&412(du, dv)]

R2(u, v)=|
�

v
:

s�u

I[(s, t) # E2]
[1&41(du, v)]

[41(du, v) 42(u, dv)&412(du, dv)]

R3(u, v)= :
t>v

|
u

0

I[(s, t) # E3]
[1&42(u, dv)]

[41(du, v) 42(u, $v)&412(du, dv)]

R4(u, v)= :
t>v

:
s�u

I[(s, t) # E4]

&log _1&
41(du, v) 42(u, dv)&412(du, dv)

(1&41(u, dv))(1&42(u, dv) & .

Define the function 1(u, v) via

1(du, dv)=
41(du, v) 42(u, dv)&412(du, dv)
[1&41(du, v)][1&42(u, dv)]
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and note that by the definition of the sets Ei (R), 41(du, v)=0 for
(u, v) # E1(R) _ E3(R) and 42(u, dv)=0 for (u, v) # E1(R) _ E2(R). There-
fore we have the following unified representation.

Proposition. For ( y, x) such that F� ( y, x)>0, it holds that

F� ( y, x)=F� Y ( y) FX (x) `
4

i=1

Ai ( y, x)

and

F ( y, x)=FX (x) {1&F� Y ( y) `
4

i=1

Ai ( y+, x) ,

where for i=1, 2, 3,

Ai ( y, x)=exp {& |
x
|

y

I[(u, v) # Ei ] 1(du, dv)=
and

A4( y, x)= `
v>x

`
u�y

[1&1(du, dv)].

3.2. Identifiability and Applications with Truncated Data

The representation of the bivariate distribution function as a functional
of the bivariate diverse-hazard is given in the previous section as a general
result. For the truncation model, the identifiability of this hazard vector
follows from the arguments below:

Define

C2( y, x)=HT, X ( y, x)&F*( y&, x) (6)

=:&1G( y) F� ( y, x) (7)

and recall that

F*Y, X ( y, x)#HY, X,T ( y, x, �)=:&1 |
x

0
|

y

0
G(u) F (du, dv)

with

F*Y, X (dy, x)=:&1 |
x

0
G( y) F ( y, dv)

f *Y,X ( y, x)=:&1G( y) fY, X ( y, x).
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Then we can write

4� ( y, x)={F*(du, dv)
C2(u, v)

,
F*(du, v)
C2(u, v)

,
C2(u, dv)
C2(u, v) = .

Note that the quantities above correspond to the observed random
variables with the natural estimates

412,n(du, dv)=
F*n (du, dv)
C2, n(u, v)

41, n(du, v)=
F*n (du, v)
C2, n(u, v)

42, n(u, dv)=
Cn(u, dv)
C2, n(u, v)

,

where

nC2, n(u, v)=*[i: Ti�u�Yi , Xi�v],

where nC2, n( y, x) is the size of the risk set at ( y, x) w.r.t. diverse-hazard
set-up and F*n ( y, x) is the empirical d.f. of observed (Y, X ) pairs.

The representation of the proposition above could in principal be used
to define alternative estimators for the bivariate distribution function by
replacing the marginals and the bivariate hazard with their estimators. This
was done in Dabrowska (1988) when both (Y, X ) were censored. Such an
estimator for the truncated observations would have a similar structure
with that of her estimator. However this approach is not immediately
available with the truncated data since there does not exist a consistent
estimator in the literature for the marginal distribution of X. The X
marginal of Fn( y, x) involves the integration of FY, X, n( y, x) w.r.t. y over an
infinite region and this creates problems to establish the consistency. To
remedy this situation, a smoothed version with a compact support kernel
could be used, albeit at the cost of slower rates of convergence. We will not
further pursue this idea here but suggest another possible application
below. Note that from the proposition we have

Q( y, z)#
F� ( y, x)

F� Y ( y) FX (x)
= `

4

i=1

Ai ( y, x).

If X and Y are independent, the L.H.S. is unity, and we can estimate the
R.H.S., which then could be used to test the independence of Y and X. Two
alternative estimators for the L.H.S. are presented below.
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If F ( y, x) is continuous in both components we can write

Q( y, x)=A1( y, x)

=exp {& _ |
�

x
|

y

0
41(du, v) 42(u, dv)&412(du, dv) &=

#exp[&4( y, x)] .

Similarly, for F ( y, x) discrete in both components we have

Q( y, x)=A4( y, x)

= `
v>x

`
u�y

[1&1(du, dv)].

These two cases induce two possible estimators for F� ( y, x)�F� Y ( y) FX (x),

Q1, n( y, x)=exp[&4n( y, x)],

where

4n( y, x)= :
u�y

:
v>x

[41, n(du, v) 42, n(u, dv)&412, n(du, dv)] (8)

and

Q2, n( y, x)= `
u�y; v>x

[1&1n(du, dv)]

with

1n(du, dv)=
41, n(du, v) 42, n(u, dv)&412, n(du, dv)

[1&41,n(du, v)] [1&42, n(u, dv)]
.

The large sample equivalence of these two estimators are established in the
next section.

3.3. Large Sample Results

Lemma 2. Let a>aFX b>bFY be such that F� (b, a)>0 and Ta, b=
[( y, x): 0<y�b, x�a]. If � F (dy)�G2( y)<�, then

(i) 4n( y, x)&4( y, x)=|
y

0
|

�

x {C2
2(u, v)&C2

2, n(u, v)
C4

2(u, v)
F*(du, v) C(u, dv)

+
C2(u, v)&C2, n(u, v)

C2
2(u, v)

F*(u, v)=+R1, n( y, x)

#!� 4, n( y, x)+R1, n( y, x)

(ii) Q1,n( y, x)&Q( y, x)=&!� 4, n( y, x)+R2, n( y, x),
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where for i=1, 2

sup
( y, x) # Ta, b

|Ri, n( y, x)|=O(log3n�n).

Lemma 3. Let Dn( y, x)=Q2, n( y, x)&Q1, n ( y, x). Then, under the condi-
tions of Lemma 1,

sup
( y, x) # Ta, b

|Dn( y, x)|=O(log3n�n).

The weak convergence of Qi, n( y, x) could be studied similar to the pre-
vious discussion relating to Fn( y, x) but will not be further elaborated here.
This limiting distribution can then be used for hypothesis testing purposes.
However such an application clearly requires more work in terms of
assessing the asymptotic variance and investigating the power properties.
These issues will be addressed elsewhere.

4. SIMULATIONS AND CONCLUDING REMARKS

Large sample results for Fn( y, x) are presented in Section 2. Here, the
results of a moderate size simulation study will be reported to provide
some practical insight. As mention ed by a referee, in regression applica-
tions with censored data, correlation of the covariate and the censoring
variables may create significant problems. To get an idea for the impact of
such dependencies, a case for correlated (X, T ) is also included in the
simulations. Let U1 , U2 and U12 be independent Exponential(exp) random
variables with mean one. The following cases are simulated

(i) (Y, X ): Independent Exponential with means one, T: exp( +),
independent of (Y, X )

(ii) (Y, X ): Bivariate Exponential, Y=min(U1 , U12); X=min(U2 ,
U12) T as in part (i).

(iii) (Y, X ) as in (i), (X, T ): Bivariate Exponential; T=min(U2 , U3)
with U3 : exp({), X: as in (ii)

(iv) (Y, X ) as in (ii), (X, T): as in (ii); T=min(U2 , U3), U3 : exp({)

The parameters { and + are adjusted to obtain light, moderate and heavy
truncation, with corresponding : values of approximately .75 .50 and .25.
The results are displayed in Figures 1 and 2, where the horizontal axis
denotes the average proportion of observed (untruncated) samples.
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. .

Fig. 1. Dependent vs independent (Y, X, T ), n=30.
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. .

Fig. 1.��(Continued)
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. .

Fig. 2. Dependent vs independent (Y, X, T ), n=75.
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. .

Fig. 2.��(Continued)
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Samples of size n=30, 75 are used in 1000 replications. The performance
measure was the estimated Integrated Mean Squared Error (IMSE). This
integral is evaluated over a region covering about 095 of the total prob-
ability. The simulation results suggest that the mean contribution to the
IMSE comes from the variance term, where the squared bias term in the
worst case was in the order of 10&4 which corresponds to :=0.25
approximately. The results are displayed as the profile graphics to render
an easier interpretation. From Figure 1 and 2, it is seen that IMSE of
Fn( y, x) is slightly smaller for the independent (Y, X ) case. The impact of
correlated (X, T ) pairs is seen more clearly on the bias terms where this
correlation creates considerable bias in comparison the the independent
case which is observed better in Figure 2 for n=75. This difference however
disappears in the IMSE since the contribution of the bias to this term is
negligible. The increased bias for the correlated variables would of course
seriously effect the estimates in the regression. These limited results already
suggest that further research is needed to develop methods to handle the
case where truncating variable is not independent (see also remark 4) of the
bivariate vector (Y, X ). Both the bias and the variance reduce with increas-
ing : as would be expected. We conclude this section by pointing out some
extensions of the proposed methods.

Remarks. (1) (Extension to k covariates). If we observe (Yi , X1, i , ...,
Xk, i , Ti), i=1, ..., n only if (Ti�Yi), an extension of Fn( } ) could be
obtained by modifying the indicator function. Such an extension for the
hazard representation of the multivariate d.f. is also possible but would be
quite messy. Interested readers could refer to Dabrowska (1988).

(2) (Extension to double truncation). Let Y9 = (Y1 , Y2) T9 =(T1 , T2)
be random bivariate vectors and suppose we observe (Y9 i , T9 i ) only if
Y9 i�T9 i componentwise, for i=1, ..., n. The results of the present paper are
not directly applicable for this truncation scheme due to further identifi-
ability restrictions. This problem will be addressed elsewhere.

(3) (Right truncation). The estimators suggested in this paper could
be extended for right truncation model in a natural way, with some modifi-
cations. For a related discussion see Gu� rler (1996).

(4) (Correlated variables). In this paper it is assumed that the trun-
cating variable T is independent of the vector (Y, X ). If this assumption is
not true, there is not a straightforward generalization of the methods
presented here, neither in the literature to the best of our knowledge. For
the censored observations, Leurgans (1987) states that the correlation of
the censoring variable and the covariate creates significant problems in the
analysis of linear models. There she suggests grouping w.r.t. the covariate
values, which clearly is also applicable to the present truncation set-up if
the nature of the correlation suggests such a grouping. Another standard
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assumption for truncation model is the independence of Y and T. For the
regression problem with right truncated observations Kalbfleisch and
Lawless (1991) relax this requirement somewhat by assuming that the
response Y and T are conditionally independent given the covariate X. In
particular, they assume that F ( y | t, x)=F ( y | x)�F (t | x) for y�t. How-
ever these approaches can only provide a partial solution to the general
model of correlated (Y, X, T ) and as mentioned earlier this area is open to
more research.

APPENDIX

For the proof of the lemmas and theorems of Section 3, the following
lemmas will be useful:

Lemma A1.

(i) sup
y�b

(Cn( y)&C( y))2

C( y)
=O(logn�n)

(ii) sup
( y, x) # Ta, b

(C2, n( y, x)&C2( y, x))2

C2( y, x)
=O(logn�n).

Proof. Part (i) is Lemma A2 of Chao and Lo (1988) and part (ii) could
be obtained similarly.

Lemma A2.

(i) sup
i

C(Yi)
Cn(Yi)

=O(logn)

(ii) sup
i

C2(Yi , Xi )
C2, n(Yi , Xi )

=O(logn).

Proof. Part (i) is Corollary 1.3 of Stute (1991) and for part (ii) a similar
approach can be used, by defining the process,

H� N ( y, x, t)=N&1 : I (Yi�y, Xi�x, Ti�t),

and showing that N� N ( y, x, t)�F ( y, x) G(t) is a reverse submartingale.

Proof of Theorem 2. To simplify the notation, the arguments of F� Y (u),
F� Y, n(u), C(u), and Cn(u) will be suppressed and the notation �y]x] will be
used to denote the double integral �y

0 �x
0 :
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Fn( y, x)&F ( y, x)

=|
y]x] {

F� Y, n

Cn
F*n (du, dv)&

F� Y

C
F*(du, dv)=

=|
y]x] {

F� Y

C
(F*n (du, dv)&F*(du, dv))+

F� Y (C&Cn)
C 2 F*(du, dv)

+
F� Y, n&F� Y

C
F*n (du, dv)+

F� Y (C&Cn)
C 2 (F*n (du, dv)&F*(du, dv))

+
F� Y (C&Cn)2

C 2Cn
F*n (du, dv)+

(F� Y, n&F� Y) (C&Cn)
CCn

F*n (du, dv)=
#I+II+III+R2, n+R3, n+R4, n .

From the representation in Theorem 1, the term III above is written as

|
y]x] {

F� YL� n

C
F*(du, dv)+

F� Y,n&F�
C

(F*n (du, dv)&F*(du, dv))=+=$n( y)

#|
y]x]

F� YL� n

C
F*(du, dv)+R1, n+=$n( y),

where

sup
(0<y<b)

|=$n( y)|=O( |=n( y)| ).

Hence after evaluating the above integrals w.r.t. v, we obtain the represen-
tation of Theorem 2, with

Rn( y, x)= :
4

i=1

Ri, n( y, x)+O( |=n( y)| ).

The orders of Ri, n , (i=1, ..., 4) can now be obtained from Theorem 1,
Lemma A1 (i), Lemma A2 (i) and the following facts:

(i) For aG�aFY , bG�bFY ,

sup
0�y<�

|Cn( y)&C( y)|=O((logn�n)1�2)
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since Cn is a difference of empirical d.f.'s.

(ii) For ( y, x) # [0, �)_[0, �),

sup |F*n ( y, x)&F*( y, x)|=O(logn�n)1�2).

(iii) For ( y, x) # [0, �)_[0, �),

|
y]x]

F�
C2 F*(du, dv)�: |

y

0

FY (du)
G(u)

.

As an illustration, consider

R3, n( y, x)=|
y F� Y (C&Cn)2

C 2Cn
F*n (du, x).

We have

sup |R3, n( y, x)|�sup
(C&Cn)2

|C| |
y F� Y

C } Cn
F*n (du, x)

�O(logn�n) sup
i

C(Yi)
Cn(Yi) |

y F� Y

C2 F*n (du, x)

=O(logn�n) O(logn) O(1)=O(log2n�n),

by Lemma A1(i) and A2(i).

Proof of Lemma 2. In the following proof, the double integral �y
0 ��

x will
be denoted by �y][x and the arguments of C2( y, x) and its empirical coun-
terpart will be dropped to a void a messy presentation.

(i) The representation is easily obtained with the remainder term

R1, n( y, x)=|
y][x {

C2&C2, n

C 2
2

[F*n (du, dv)&F* (du, dv)]

+
(C2&C2, n)2

C 2
2 C2, n

F*n (du, dv)

+
C 2

2&C 2
2, n

C 4
2

[F*n (du, v) C2,n(u, dv)&F*(du, v) C2(u, dv)]

+
(C 2

2&C 2
2, n)2

C 4
2 C n

2, n

F*n (du, v) C2, n(u, dv)=
# :

4

i=1

R1, i ( y, x), (9)

44 U� LKU� GU� RLER



File: 683J 163026 . By:CV . Date:06:01:97 . Time:13:28 LOP8M. V8.0. Page 01:01
Codes: 2208 Signs: 842 . Length: 45 pic 0 pts, 190 mm

where, for ( y, x) # Ta, b , it follows from L.I.L. and S.L.L.N. that

sup |R1, 1( y, x)|=O(logn�n).

From Lemma A1 and A2 parts (ii), we have

sup |R1, 2( y, x)|=O(log2n�n)

and

sup |R1, 3( y, x)|�cons.sup |C2&C2, n|

_ } |y][x

[F*n (du, v) C2, n(u, dv)&F* (du, v) C2(u, dv)]
C 4

2 }
�O((logn�n)1�2) O((logn�n)1�2).

The last inequality above is obtained by applying the LIL to the sum of
i.i.d. variables represented by the integral there and the relations

F*(du, v)=:&1G(u) F (du, v)

and

C2(u, dv)=:&1[G(u) FX (dv)&G(u) F(u, dv)];

hence,

|
y][x

C &4
2 F*(du, v) C2(u, dv)

=|
y][x

:
F (du, v) FX (dv)

G(u) F� 3 (u, v)
&|

y][x
:

F (du, v) F (u, dv)
G(u) F� 3(u, v)

and it is in absolute value less than

:F� &4(a, b) | FY (du)�G2(u)=O(1).

For R1, 4( y, x), note that by Lemma A2 (ii), and A1 (ii)

(C 2
2&C2

2, n)2

C 4
2C 2

2, n

�sup } (C2&C2, n)2

C2

}
(C2+C2, n)2

C 3
2C 2

2, n }
�O(logn�n).2 max \ 1

C 3
2

,
1

C 2
2, nC2+

=O(logn�n) O(log2n)
1

C 3
2

=O(log3n�n)
1

C 3
2

.
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The bound for R1, 4( y, x) is now obtained from the SLLN, since the
remaining integral represents a sum of i.i.d. random variables with finite
mean, bounded similar to term R1, 3( y, x) (ii) Follows from part (i)

Proof of Lemma 3. After some algebra we can write

|Dn( y, x)|=|Q2, n( y, x)&Q1,n( y, x)|

�|logQ2, n( y, x)+4n( y, x)|

= } :
u�y

:
v>x

log[1&1n($u, $v)]

+41, n($u, v) 42, n(u, $v)&412,n($, $v)|

= } :
u�y

:
v>x

log \C2, n(u, v&) C2, n(u, v)+C2, n(u, v&) F*n ($u, v)
C2, n(u, v&) C2, n(u, v)+C2, n(u, v) F*n ($u, v&) +

&\C2,n(u, v&) F*n ($u, v)&C2, n(u, v) F*n ($u, v&)
C 2

2, n(u, v) +} .
Applying a two term Taylor expansion to the logarithm term and rearrang-
ing the terms, the above expression can be written (up to a term of a
smaller order) as

} :
u�y

:
v>x

C &2
2, n (u, v) F*n ($u, $v) [F*n ($u, v)+F*n ($u, v&)+C2,n(u, $v)]

&
F*n ($u, v&) C2, n(u, $v)
C 2

2, n(u, v) C2,n(u, v&)
[C2, n(u, $v)+F*n ($u, v&)] } .

Now observing that

F*n ($u, v&)
C2, n(u, v&)

�
FY, n($u)

Cn(u)
,

and using Lemma A1, we obtain

sup
( y, x) # Ta, b

|Dn( y, x)|�O(log2n�n) |
F*n ($u, $v)

C2(u, v)

+O(log3n�n) |
FY, n($u) C2, n(u, $v)

C 3
2(u, v)

=O(log3n�n).
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