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In this study bivariate kernel density estimators are considered when a compo-
nent is subject to random truncation. In bivariate truncation models one observes
the i.i.d. samples from the triplets (T, Y, X) only if T�Y. In this set-up, Y is said
to be left truncated by T and T is right truncated by Y. We consider the estimation
of the bivariate density function of (Y, X) via nonparametric kernel methods where
Y is the variable of interest and X a covariate. We establish an i.i.d. representation
of the bivariate distribution function estimator and show that the remainder term
achieves an improved order of O(n&1 ln n), which is desirable for density estimation
purposes. Expressions are then provided for the bias and the variance of the
estimators. Finally some simulation results are presented. � 2000 Academic Press
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1 INTRODUCTION

Truncation is one of the common forms of incomplete data encountered
in survival studies, as well as in insurance, economy and astronomy. When
follow-up studies or life testing situations are considered, left truncation
may arise if the time origin of the study is later than that of the individual
events whereas a right truncation model may be in effect if the termination
of the study takes place before the individuals experience the event of
interest. One of the earliest applications of the left truncation model was
given by Lynden-Bell (1971), where Y corresponds to the brightness of
celestial objects which are only partially observable due to a preventing
variable T. Other well known applications of right truncation model
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include the transfusion related(TR) AIDS data and data arising from the
reporting lags for insurance claims or epidemic surveillance. For the case of
TR-AIDS data, let To be the time when the observation interval terminates
and suppose that the interest is in the incubation period defined as the time
from infection with HIV to the onset of AIDS. The infection times are
determined retrospectively after an individual is diagnosed with AIDS by
tracing back the transfusion dates. This type of data has a sampling bias
however, since only those individuals who are infected and are diagnosed
with AIDS before To can be included in the sample. Letting t and d denote
the time of infection and that of the onset of AIDS respectively, only those
individuals for whom d&t�To&t can be observed, resulting in random
right truncation. Analysis of TR-AIDS data can be found in Wang (1989),
Kalbfleisch and Lawless (1989) and Tsai (1990). The USA Center for
Disease Control (CDC) AIDS surveillance data is also right truncated due
to reporting lags. In particular, the periodic surveillance reports of CDC
are based on the cases that are diagnosed and reported to CDC before a
certain deadline, excluding the cases for which the reporting lags are
longer, which again results in right truncation. CDC publishes reports after
correcting for the bias due to right truncation. Similar data with reporting
lags also arise when the claims arriving to an insurance company are
considered.

In bivariate left truncation models one observes the random triples
(T, Y, X) where the main interest is in the Y variable, while T is a nuisance
variable, preventing the complete observation of the main one and X is the
covariate. Our interest in this study is the estimation of the bivariate
density function of (Y, X). In the AIDS incubation time example, an
important covariate for the incubation time can be the age at infection with
HIV. In reporting lags examples for AIDS surveillance and insurance claims,
demographical factors and the amount of damage may as important
covariates. Hence studying the joint behavior of these related variables
would be important for understanding the nature of such phenomena.
Bivariate models have received considerable attention recently. For
random truncation models Gu� rler (1996, 1997) has proposed non-
parametric estimators for the bivariate distribution and hazard functions
and established large sample properties via strong representations. The
univariate left truncation model, first introduced by Lynden-Bell (1971) in
the context of an application in astronomy is later studied by others
including Woodroofe (1985), Chao and Lo (1988) and Stute (1993) as will
be further discussed below. Recently, van der Laan (1996) introduced
efficient nonparametric estimators for the bivariate distribution function
when both components are truncated. Gu� rler and Gijbels (1997) also
proposed a nonparametric estimator for the bivariate d.f. F( y, x) for left
truncated and right censored (LTRC) data and discuss methods for
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estimating the asymptotic variance. The kernel estimator of the bivariate
density function studied in this paper is based on the bivariate distribution
function estimator proposed by Gu� rler(1997), where the asymptotic
analysis was based on an i.i.d. representation of the empirical distribution
function. In order to allow for appropriate bandwidth selection, improved
asymptotic results for the moments of the remainder term are obtained as
presented in Theorem 1 below. The results of our study are presented for
the left truncation model only; however as will become clear, they are
applicable to the right truncation as well. This extension will be further
discussed in Section 3.

The rest of the paper is organized as follows. In Section 2 preliminary
results and a main theorem are presented. In Section 3 the kernel estimator
for f ( y, x) is introduced and large sample properties are discussed via the
results of the main theorem. Asymptotic bias and variance expressions are
presented, and remarks concerning the independence assumption, modifica-
tions for the right truncation model and extension to the left truncation
right censoring model are made. In Section 4 properties of suggested
methods are illustrated by simulation results. Finally the proofs of the
stated results are provided in the Appendix.

2. PRELIMINARIES AND THE MAIN THEOREM

Let F( y, x) denote the joint distribution function (d.f.) of the random
pair (Y, X) with the corresponding density f ( y, x) which we are aiming to
estimate. In the model explained above where Y is subject to left trunca-
tion, one observes the random vector (Yi , Xi , Ti), i=1, ..., n, for which
Ti�Yi . A common assumption in univariate truncation literature is the
independence of T and Y. However, as noted by Tsai (1990) the results for
the univariate truncation model are valid under the assumption of only
quasi-independence (see Remark 1). Analogously, the results of this paper
are valid under the weaker assumption of quasi-independence of T from the
bivariate random vector (Y, X) which allows the joint distribution of
the observed (Y, X) to be written as given in (2.1). Consequently, the
independence of T and (Y, X) is required only over the observable sub-
space where T�Y. Suppose T has d.f. G and the d.f.'s of the observable
random variables are denoted by W with the subscript(s) indicating the
particular variable(s) involved, so that WY stands for the d.f. of the
observed Y. Let FY and FX denote the marginal d.f.'s of Y and X respec-
tively and for any d.f. F, let aF=inf[t: F(t)>0] and bF=inf[t: F(t)=1]
denote the left and right endpoints of its support. The survivor function
1&F(t) will be denoted as F� (t). Similar to the univariate case (see
Woodroofe (1985)), we assume that F( y, x) satisfies the identifiability
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condition aG�aWY and bG�bWY . The observed variables have the following
bivariate d.f.:

WY, X ( y, x)=P(Y� y, X�x | T�Y)

=:&1 |
x

0
|

y

0
G(u) F(du, dv) (2.1)

where :=P(T�Y), and t 7u=min(t, u), t 6 u=max(t, u). We present
the following functions which will be of interest:

WY, T ( y, t)=:&1 |
y

0
G(t 7 u) FY (du) (2.2)

WY ( y)=:&1 |
y

0
G(u) FY (du)

WY, X (dy, dx)=:&1G( y) F(dy, dx). (2.3)

WY (dy)=:&1G( y) FY (dy). (2.4)

C(u)=:&1G(u) F� Y (u&) (2.5)

a(u)=
F� (u&)
C(u)

(2.6)

The above relations then motivate the following estimator for F( y, x):

Fn( y, x)=
1
n

:
i

an(Y i) I(Yi� y, X i�x), (2.7)

where

F� Y, n( y)= `
i: Yi� y _1&

s(Yi)
nCn(Yi)& an(u)=

F� Y, n(u&)
Cn(u)

and

nCn(u)=*[i: Ti�u�Yi],

with s(u)=[i: Yi=u] for u>0.
Consistency properties of the Lynden-Bell (1971) estimator Fy, n( y)

above are investigated in Woodroofe (1985), Wang et al. (1986), Chao and
Lo (1988) and Stute (1993) among others. An extension to both truncated
and censored data is presented in Tsai et al. (1987), and asymptotic results
are improved in Gijbels and Wang (1993). The bivariate estimator (2.7)
is introduced in Gu� rler (1997) together with a representation by an i.i.d.
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process. Improved asymptotic results for this estimator are obtained as
stated in Theorem 1. Apart from being of theoretical interest, this improve-
ment is beneficial for the choice of a bandwidth sequence with a desirable
order as further discussed in Section 3.2.

Define

Li (Y)=
I(Yi� y)

C(Yi)
&|

y

0

I(Ti�u�Yi)
C2(u)

WY (du)

Then, as in Gu� rler (1997), we have the following representation of Fn( y, x)

Fn( y, x)&F( y, x)

=|
y

0
a(u)[WY, X, n(du, x)&WY, X (du, x)]

&|
y

0

a(u)
C(u)

[Cn(u)&C(u)]&L� n(u) a(u) WY, X (du, x)+Rn( y, x)

#!� n( y, x)+Rn( y, x) (2.8)

The remainder term Rn( y, x) above can be written as

Rn( y, x)= :
5

i=1

Ri, n( y, x)

where

R1, n( y, x)=|
y

0

F� Y, n(u)&F� Y (u)
C(u)

[WZ, X, n(du, x)&WZ, X (du, x)] (2.9)

R2, n( y, x)=|
y

0

F� Y, n(u)[Cn(u)&C(u)]
C2(u)

_[WZ, X, n(du, x)&WZ, X (du, x)] (2.10)

R3, n( y, x)=|
y

0

F� Y, n(u)[Cn(u)&C(u)]2

C2(u) Cn(u)
WZ, X, n(du, x) (2.11)

R4, n( y, x)=|
y

0

[F� Y, n(u)&F� Y (u)][C(u)&Cn(u)]
C(u) Cn(u)

WZ, X, n(du, x) (2.12)

R5, n( y, x)=|
y

0

Rn(u)
C(u)

WZ, X, n(du, x) (2.13)
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and Rn(u) is the remainder term of the following representation of Chao
and Lo (1988):

F� Y, n(u)&F� Y (u)=L� n(u)+Rn(u)

The following Lemmas provide the asymptotic behavior of these remainder
terms, which in turn determine that of Rn( y, x). For the discussion below, it
is assumed that aG<aWY which implies that for u # (0, b) C(u)>= for some
=>0. If aG=aWY , then an order sup( y, x) # Tb |Rn( y, x)|=O(ln3 n�n) can be
obtained as in Gu� rler (1997), however this rate would not be good enough for
the bandwidth choice purposes as discussed in the next section. In the results
provided below K refers to a generic constant that will take different values in
different statements. Let

H(*, :, n, t, p)=n exp(&, :)+(t�50)&2+exp(&*t3)

+exp(&*t)+(n&1) t&2p+exp(*nt2)

+t&2n: exp(n:�2*�t)

where *, and :, are nonnegative constants independent of t and p>0 is an
integer. Lemma 1 below is due to Gijbels and Wang (1993) for LTRC
models which also applies to the left truncation only when the censoring
variable is taken to be infinity:

Lemma 1. If aG<aW then

(i) sup
0� y�b

|Rn( y)|= O(n&1 ln n)

(ii) E[ sup
0� y�b

|Rn( y)| {]=O(n&{)

Lemma 2 below presents one of the main results of this paper, the proof
of which involves methods other than those of Gijbels and Wang (1993).
In particular, the results of Stute (1982) on the oscillation behavior of the
empirical processes are utilized. Let t*=t+=&2, then

Lemma 2. If aG<aWY then

P[n sup
( y, x) # Tb

|R1, n( y, x)|>t]�KH(*, :, n, t, p)

Proof. See Appendix.
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Lemma 3. If aG<aWY

P[n sup
( y, x) # Tb

|R2, n( y, x)|>t]�KH(*, :, n, t, p)

Proof. See Appendix.

Lemma 4. If aG<aWY then

(i) P[n sup
( y, x) # Tb

|R3, n( y, x)|>t]�K[exp(&n:)+exp(&*t)]

(ii) P[n sup
( y, x) # Tb

|R4, n( y, x)|>t]�K[exp(&n:)+exp(&*t)]

Proof. See Appendix.

We can now state the following theorem, regarding the asymptotic
behavior of the remainder term:

Theorem 1. Assume F( y, x) is continuous in both components, b<bWY and
let Tb=[( y, x): 0< y<b; 0<x<�]. Then Fn( y, x) admits the following
representation:

Fn( y, x)&F( y, x)#!� n( y, x)+Rn( y, x)

If aG<aWY , then for any #>0

(i) sup
( y, x) # Tb

|Rn( y, x)|=O(log n�n) a.s.

(ii) E[ sup
( y, x) # Tb

|Rn( y, x)| #]=O(n&#)

Proof. First observe that the order of R5, n( y, x) is obtained from an
application of Lemma 1 above. The results then follow from Lemma's 2�4.

3. KERNEL ESTIMATION OF THE BIVARIATE DENSITY

The strong i.i.d. representation of Fn( y, x) in Theorem 1 can now be used
to obtain a smooth nonparametric estimator of the density f ( y, x) by a
convolution of a kernel function with Fn( y, x). The convolution-type
estimator we propose uses a bandwidth choice which allows for a different
bandwidth choice in the directions of y and x, denoted by by and bx . It is
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well-known that the choice of this smoothing parameter is crucial for the
quality of the resulting estimators and a discussion on bandwidth choice
issues will be provided in the following subsection. We assume that the
kernels employed belong to a certain class of functions. In particular,
K:S � R is a kernel function with compact support S/R2. We also require
the following moment conditions:

1 i+ j=0

|| K(u, v) u iv j du dv={0 i+ j<k

;(i, j)<� {0 for some (i, j): i+ j=k

The bandwidth sequences by=by(n) and bx=bx(n) depend on the sample
size but for brevity in notation we drop the argument n. It is assumed that
bx , by � 0 and nbxby � � which are the standard assumptions regarding
the bandwidth sequences. The bivariate density estimator we suggest is:

fn( y, x)=||
1

bybx
K \y&u

by
,

x&u
bx + Fn(du, dv)

=
1

nbxby
:
i

F� Y, n(Yi)
Cn(Yi)

K \y&Yi

by
,
x&Xi

bx +
Applying integration by parts we write

fn( y, x)=|
1

bxby _K \y&u
by

,
x&v

bx + Fn(u, dv)}
�

u=&�

&| Fn(u, dv) K \d \y&u
by + ,

x&v
bx +&

=&
1

bx by
|| Fn(u, dv) K \d \y&u

by + ,
x&v

bx + (3.14)

Another application of integration by parts and a change of variable results
in:

fn( y, x)=||
1

bxby
Fn( y&by , u, x&bxv) K(du, dv)

We therefore have:

95BIVARIATE DENSITY ESTIMATION



Theorem 2. Under the assumptions of Theorem 1,

fn( y, x)& f ( y, x)

=
1

bxby
|| !� n( y&by u, x&bxv) K(du, dv) (3.15)

+
1

bx by
|| F( y&byu, x&bxv) K(du, dv)

& f ( y, x)+rn( y, x) (3.16)

#Sn( y, x)+Bn( y, x)+rn( y, x) (3.17)

where
sup

( y, x) # Tb

|rn( y, x)|=O(log n�nbxby)

Proof. Follows from the representation of Theorem 1 after applying
Taylor expansion.

In the above decomposition Bn( y, x) corresponds the bias part and Sn

captures the main stochastic component. From these terms we obtain
below the asymptotic bias and the variance of our estimators. Let

f ij ( y, x)=
�i+ jf (u, v)

�u i �v j } (u, v)=( y, x)

Let K(u, v)=K(u) K(v) be a product kernel and let K( } ) be constructed
as in Mu� ller (1988) p. 28 by selecting a K� ( } ) of order (1, 3) with the
relationship: K� =K (1) on [&1, 1]. Then

Theorem 3. Under the assumptions of Section 1

BIAS( fn( y, x))=(&1)k :
i+ j

:
=k

b i
yb j

x

\k
i +

k !
f ij ( y, x) ;(i, j)+o((bxby)k)

+O \ 1
nbxby +

VAR( fn( y, x))=
1

nbxby _A( y)2 �2

�y �x
W( y, x)&_|

1

&1
K2(u) du&

2

+o \ 1
nbxby+

=
1

nbx by

FY ( y)
C( y)

f ( y, x) _|
1

&1
K 2(u) du&

2

+o \ 1
nbxby+
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Proof. See Appendix.

Prewitt and Gu� rler (1999) discuss the bandwidth choice issues and
provide the form of the optimal bandwidths that minimize the asymptotic
MSE derived from the expressions given above. We refer the interested
readers to this paper for further discussion on bandwidth choice.

Remarks. (1) Independence of truncating variable: For the univariate
truncation model, Y and T are said to be quasi-independent (Tsai, 1990)
if the joint distribution of the observed (Y, T ) can be written as in (2.2).
Tsai (1990) introduces a method to test this assumption from the observed
data and Chen, Tsai and Chao (1996) generalize the product-moment
correlation coefficient to measure the association between Y and T over
the observed region. Our results require that the joint distribution of the
observed (Y, X, T ) can be written in the form:

WY, X, T ( y, x, t)=P(Y� y, X�x, T�t | T�Y)

=:&1 |
y

0
|

x

0
G(t 7 u) F(du, dv) (3.18)

which we consider as the quasi-independence in the bivariate set-up and is
less restrictive than requiring independence in the entire space. The empirical
d.f. of the observed (Y, X, T ) is an estimator for the LHS of (3.18) and the
RHS can be estimated by incorporating the nonparametric estimators
available for G and the bivariate F. Hence it is possible to develop a test
statistic for testing the quasi-independence assumption. A complete pursuit of
this idea however is beyond the scope of this work and will not be further
discussed.

(2) Right truncation model: The methods provided in this paper for
the left truncation model are directly applicable to the right truncation
model, where one observes the pairs (Yi , Ti , Xi) only if (Yi�Ti),
i=1, ..., n. Then the foregoing results are still valid with the following
modifications of a(u), an(u) and Tb

a(u)=
FY (u)
C(u)

and an(u)=
FY, n(u)
Cn(u)

with

FY, n(u)= `
i: Yi>u

[1&s(Yi)�nC(Yi)]

nCn(u)=*[i: Yi�u�Ti]
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and

Tb=[( y, x): 0<b< y; 0<x<�]; b>aWY

(3) Extension to LTRC: In the models where Y is subject to LTRC,
the observed data is (Zi , Xi , Ti , $i), i=1, ..., n, for which Ti�Z i ; Zi=
min(Yi , Ci) and $i=I(Yi�Ci) where C is the censoring variable with d.f.
H. It is usually assumed that T and C are independent and they are also
independent of both Y and X. The proposed estimator in (2.7) can be extended
for this model with slight modifications to incorporate the censoring effect. In
particular, let W� Z=(1&FY)(1&H) stand for the d.f. of Z. Then the observed
uncensored variables have the following bivariate sub-distribution function:

W 1
Z, X ( y, x)=P(Z� y, X�x, $=1 | T�Z)

=:&1 |
�

0
|

x

0
|

y 7 c

0
G(u) F(du, dv) H(dx)

where :=P(T�Z). The estimator for the bivariate d.f. can be modified as
follows

Fn( y, x)=
1
n

:
i

an(Z i) I(Zi� y, Xi�x, $i=1), (3.19)

where

F� Y, n( y)= `
i: Zi� y _1&

s(Yi)
nCn(Yi)&

$i

with the previous definitions of an(u) and nCn(u). This estimator can be
used to develop a bivariate kernel estimator for the LTRC model.
However, the resulting estimator may not achieve the best performance for
censored observations, since the information on the X variable is not fully
utilized when the corresponding Y is censored. Some of the simulation
experiments are extended for this estimator for comparison purposes.

(4) Alternative estimators: An efficient estimator for the bivariate
distribution function is provided in van der Laan (1996) when both
components are truncated. Since our model is a special case of the model
introduced there, an alternative density estimator can be obtained by using
the empirical d.f. of van der Laan. The simulation results of Gu� rler and
Keles� (1998) indicates that the two estimators of the bivariate distribution
function proposed by van der Laan and Gu� rler are equally efficient when
a single component is subject to truncation. We therefore do not expect a
superior performance for the density estimator based on this alternative
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empirical d.f.. On the other hand, since our proposed estimator yields
explicit expressions for the asymptotic bias and the variance, it is more
suitable for bandwidth choice considerations.

4. SIMULATIONS

We investigated the behavior of the suggested density estimator under
varying parameters. The performance measure we used is the average
squared deviation of fn( y, x) from f ( y, x) over a set of grid points on the
support of the joint density f ( y, x). That is

MSE=
1

M2 :
M

j=1

:
M

i=1

[ fn( yi , xj)& f ( yi , xj)]2

where M=30 is the number of grid points on each axis and ( yi , xj) are the
points in the Cartesian product. Recall that :=P(T<Y) is the probability
that an observation is not truncated. A generalization of the proposed
estimator for the LTRC model was introduced in (3.19) when both trunca-
tion and censoring are in effect. Let ;=P(Y<C) be the probability that
Y is not censored for the LTRC model. In the simulations various trunca-
tion proportions are considered when approximately 25 percent of the
observations are censored. The censoring only case corresponds to :=1.0
and the case of complete i.i.d. observations corresponding to :=1.0
;=1.0, which are also included. The MSE 's are evaluated for the sample
sizes n=100, 300 for fixed bandwidths. For the bivariate kernel function,
the product of the following univariate (0, 2) order kernel (see Mu� ller
(1988)) is used

K(u)=15�16(1&2u2+u4) I(&1<u<1)

The (Y, X) samples are taken from two bivariate models. In Model 1,
(Y, X) are independent exponential variables with parameter one. In
Model 2, F( y, x) is taken as a bivariate normal d.f. In both models G(t)
and H(c) are taken to be Exponential with parameters {T and {C respec-
tively, where the values of {T and {C are adjusted to achieve the desired
levels of : and ;. For illustration purposes, bandwidths in both directions
are taken the same and we used the notation bw=bx=by in the tables.

The simulation results for the independent exponential model are pre-
sented in Table 1 and those for the bivariate normal model are displayed
in Table 2. From these results we observe once again that the bandwidth
choice has a significant impact on the resulting MSE in both models and
hence further investigations for the optimal choice of these parameters are
desirable. Note also that the estimation for bivariate normal model yields
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TABLE 1

MSE Values for Independent Exponential Model,
N=500, (_103).

n=100 n=300 n=300
; : bw=0.2 bw=0.15 bw=0.25

0.75 0.26 1.54 1.01 1.11
0.75 0.52 1.32 0.86 1.04
0.75 0.75 1.16 0.74 1.00
0.75 1.00 1.05 0.70 0.97
1.00 0.26 1.67 0.89 0.75
1.00 0.50 1.30 0.75 0.69
1.00 0.76 0.98 0.50 0.59
1.00 1.00 0.80 0.44 0.56

generally higher MSE's than the exponential one, which may be attributed
to the fact that the density for the exponential case displays a smoother
behavior.

Since truncation and censoring are two different forms of incomplete
data, it is interesting to note their relative impacts on estimation and to
this end we compare the MSE's of the censored only and truncated only
cases. For the exponential model this corresponds to the comparison of the
results for :=1.0, ;=0.75 vs. :=0.76, ;=1.0. For all three (n, bw)
choices, we observe that censoring has worse effect than truncation and the
improvement as the sample size increases is faster in the truncation only
case. Similar observations are made for the bivariate normal model from
Table 2. Another point worth noting is that relatively larger bandwidths
seems to perform better in heavy truncation. For exponential model, from

TABLE 2

MSE Values for Bivariate Normal Model,

n=100 n=100 n=300
; : bw=0.2 bw=0.3 bw=0.25

0.72 0.25 4.58 2.75 1.80
0.72 0.48 2.60 1.82 1.48
0.73 0.72 2.16 1.60 1.33
0.73 1.00 2.08 1.58 1.32
1.00 0.28 6.86 3.15 1.59
1.00 0.50 2.66 1.40 0.77
1.00 0.71 1.83 0.99 0.62
1.00 1.00 1.62 0.85 0.57
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Table 1 we note that a larger bandwidth reduces the MSE for :=0.26, 0.50
but increases it for :=0.76, 1.0 increases the MSE from 0.5 to 0.59 for
:=0.76. In the bivariate normal model, larger bandwidth results in lower
MSE values for all cases, however this reduction is more significant for the
heavy truncation case of :=0.28.

In order to illustrate the behavior of the estimators for particular realiza-
tions, we present below some examples for n=300. For the exponential
case in Fig. 1, (a) is the true density, (b) is the estimated density from an
untruncated i.i.d. sample. The remaining figures display the estimated
densities with decreasing truncation proportions. The last graph illustrates
the impact of choosing a different bandwidth when :=0.75. Similar results
are provided for the bivariate normal case in Fig. 2.

FIG. 1. Independent exponential model, real density and kernel estimators; n=300,
bw=0.8 (except in (f)), (a) Real density, (b) No truncation, :=1.0, (c) :=0.25, (d) :=0.5,
(e) :=0.75, (f) :=0.75, bw=0.7.
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FIG. 2. Bivariate normal model, real density and kernel estimators; n=300, bw=1.0
(except in (f)), (a) Real density, (b) No truncation, :=1.0, (c) :=0.25, (d) :=0.5,
(e) :=0.75, (f) :=0.75, bw=0.8.

In two dimensions, since the super-imposition of graphs is not convenient,
it is hard to assess visually the impact of the truncation proportion on the
deviations of the estimated density from the true one. The observed average
(over the grid points) squared errors (ASE) of the estimated density could
be indicative for this purpose, which are found to be as below. For Fig. 1, the
ASE values were (_10&5) 5.79, 3.14, 3.09, 2.49 and 2.57 for parts (b) to (e)
respectively. For Fig. 2, the corresponding ASE values were (_10&3 50.62,
2.73, 2.54, and 2.78. These figures agree with the expectation that the
estimation errors increase with the unobserved proportion of the population,
although it is hard to visualize it from the figures. We also observe that
truncation up to 50 percent is reasonably tolerated, while there is a drastic
increase in the ASE for :=0.25.
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5. APPENDIX

We define certain terms which will be used throughout.

An(b)= ,
n

i=1

[ |Cn(Yi)&C(Yi)|� 1
2C(Yi) or Yi � (a, b]] (5.20)

Rn( y) is the remainder term of the representation of Gijbels and Wang
(1993, p. 214 (1.14)).

Proof of Lemma 2. Recall from (2.9) of Section 2

R1, n( y, x)=|
y

0

F� Y, n(u)&F� Y (u)
C(u)

[WY, X, n(du, x)&WY, X (du, x)] (5.21)

Since

F� Y, n(u)&F� Y (u)=L� n(u)+Rn(u) (5.22)

n sup
y�b

|R1n( y, x)|

�n sup
y�b } |

y

0

1
C(u)

L� n(u)[WY, X, n(du, x)&WY, X (du, x)] }
+n sup

y�b } |
y

0

1
C(u)

Rn(u)[WY, X, n(du, x)&WY, X (du, x)] } (5.23)

Then

P _n sup
y�b

|R1, n( y, x)|�
t*
5 &

�P[An(b)c]+P _n sup
y�b } |

y

0

1
C(u)

L� n(u)[WY, X, n(du, x)

&WY, X (du, x)] }> t
10

, An(b)&
+P _n sup

y�b } |
y

0

1
C(u)

Rn(u)[WY, X, n(du, x)&WY, X (du, x)]}
>

t*
10

, an(b)&
=I+II+III (5.24)

I�2n exp[&:n] (5.25)
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by A.1, p. 223 (Gijbels and Wang (1993)), and

III�P[sup
y�b

|Rn(u)|>Kt*]

�K _exp[&*t]+\ t
50+

&2n

+exp[&*t3]& (5.26)

follow from Gijbels and Wang (1993, p. 214 (1.15)), with K, *>0 and n
large enough.

Next we consider II. Note

n sup
y�b } |

y

0

1
C(u)

L� n(u)[WY, X, n(du, x)&WY, X (du, x)]}
�sup

y�b } |
y

0

1
C(u) _|

u

0

C(w)&Cn(w)
C2(w)

WY, n(dw)&
_[WY, X, n(du, x)&WY, X (du, x)] }
+n sup

y�b } |
y

0

1
C(u) _|

u

0

Cn(w)
C 2(w)

[WY, n(dw)&WY (dw)]&
_[WY, X, n(du, x)&WY, X (du, x)] } (5.27)

Using integration by parts and

} | u dv }�2 max { |uv|, } | v du }= (5.28)

with

u=
1

C(u) _|
u

0

C(w)&Cn(w)
C 2(w)

WY, n(dw)& (5.29)

dv=[WY, X, n(du, x)&WY, X (du, x)] (5.30)

du=&
C$(u)
C(u)2 _|

u

0

C(w)&Cn(w)
C2(w)

WY, n(dw)&
+

1
C(u)

C(u&Cn(u))
C2(u)

WY, n(du) (5.31)

v=[WY, X, n(u, x)&WY, X (u, x)] (5.32)

} | v du }�K sup
y�b

|C( y)&Cn( y)| |WY, X, n( y, x)&WY, X ( y, x)| (5.33)
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Applying (5.28) to B1,

B1�2n max {} 1
C( y) |

y

0

C(w)&Cn(w)
C2(w)

WY, n(dw)}
_|WY, X, n( y, x)&WY, X ( y, x)|,

K sup
y�b

|C( y)&Cn( y)| |WY, X, n( y, x)&WY, X ( y, x)|=
�nK sup

y�b
|[WY, X, n( y, x)&WY, X ( y, x)]| |C( y)&Cn( y)|

Consider now B2 where

B2=n sup
y�b } |

y

0

1
C(u) _|

u

0

Cn(w)
C 2(w)

[WY, n(dw)&WY (dw)]&
_[WY, X, n(du, x)&WY, X (du, x)] }

�n sup
y�b }

1
C(u) |

y

0 _|
u

0

Cn(w)&C(w)
C2(w)

[WY, n(dw)&WY (dw)]&
_[WY, X, n(du, x)&WY, X (du, x)] }
+n sup

y�b } |
y

0

1
C(u) _|

u

0

C(w)
C2(w)

[WY, n(dw)&WY (dw)]&
_[WY, X, n(du, x)&WY, X (du, x)] } (5.34)

=B21+B22 (5.35)

Using the same techniques as in the treatment of B1,

B21�sup
y�b

Kn |[WY, X, n( y, x)&WY, X ( y, x)]| |Cn( y)&C( y)| (5.36)

So, B21 and B1 are bounded above by the same term. We therefore look
at one of those probabilities.
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P \B21>
t

20+�P \n1�2 sup
y�b

|[WY, X, n( y, x)&WY, X ( y, x)]|>\ t
20+

1�2

+
+P \n1�2 sup

y�b
K |Cn(u)&C(u)|>\ t

20+
1�2

+
�K exp(&*t) (5.37)

which follows from the DKW result for some constant K, *>0. We can
similarly show

P \B1>
t

10+�K exp(&*t)

Regarding the term B22, we have for some K,

P \B22>
t

20+�P \Kn sup
y�b

|[WY, n( y)&WY ( y)]|

_|WY, X, n( y, x)&WY, X ( y, x)|>
t

40+
+P \Kn sup

y�b } |
y

0

1
C2(u)

[WY, X, n( y, x)&WY, X (u, x)]

_[WY, n(du)&WY (du)]}> t
40+

�K exp[&*t]

+P \n sup
y�b } |

y

0
[WY, X, n(u, x)&WY, X (u, x)]

_[WY, n(du)&Wy(du)]}>Kt+ (5.38)

We now examine the remaining probability in (5.38). The arguments of
Gijbels and Wang (1993) regarding term B3(z) on pp. 225�226 may be
applied (including Lemma 1). By continuity of WY, X it is possible to
partition [0, b] as 0=t1<t2< } } } <tn=b such that

WY, X (t i+1 , x)&WY, X (t i , x)�n&1
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and

P \n sup
y�b } |

y

0

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)]

_[WY, n(du)&WY (du)] }>Kt+
�P \ max

1�i�n&1
n } |

ti

0

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)]

_[WY, n(du)&WY (du)] }>Kt+
+P \ max

1�i�n&1
sup

ti�t�ti+1

n } |
t

ti

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)]

_[WY, n(du)&WY (du)] }>Kt+
� :

n&1

i=1

P \n } |
ti

0

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)]

_[WY, n(du)&WY (du)] }>Kt++P(nVn>Kt)

�(n&1)(Kt)&2p+P(nVn>Kt) (5.39)

The first bound of (5.39) above results from Lemma 1 (Gijbels and Wang
(1993)) after observing that

|
s

0

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)][WY, n(du)&WY (du)]

=|
s

0

1
C2(u) |

u

0
[WY, X, n(dw, x)&WY, X (dw, x)]

_[WY, n(du)&WY (du)]

=|
b

0
|

b

0

1
C2(u)

I(0�u�s) I(0�w�u)

_[WY, X, n(dw, x)&WY, X (dw, x)][WY, n(du)&WY (du)] (5.40)
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Considering the second term on the RHS of (5.39), we have

Vn � max
1�i�n&1

sup
ti�t�ti+1

} |
t

ti

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)] WY, n(du) }
+ max

1�i�n&1
sup

ti�t�ti+1
} |

t

ti

1
C2(u)

[WY, X, n(u, x)&WY, X (u, x)] WY (du)}
�sup

y�b }
1

C2(u)
[WY, X, n(u, x)&WY, X (u, x)]}

_[ max
1�i�n&1

[WY, X, n(ti+1 , x)&WY, X, n(ti , x)]

+ max
1�i�n&1

[WY, X (t i+1 , x)&WY, X (t i , x)]]

�sup
y�b }

1
C2(u)

sup
y�b

|[WY, X, n(u, x)&WY, X (u, x)]| }
_{ max

1�i�n&1
|[WY, X, n(ti+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(t i , x)&WY, X (t i , x)]|+
2
n= (5.41)

Then,

P(nVn>Kt)�P \ n
=2 sup

y�b
|[WY, X, n(u, x)&WY, X (u, x)]|

_ max
1�i�n&1

|[WY, X, n(ti+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(t i , x)&WY, X (t i , x)]|

+
n
=2 sup

y�b
|[WY, X, n(u, x)&WY, X (u, x)]|

2
n

>Kt+
�P \n1�2

=
sup
y�b

|[WY, X, n(u, x)&WY, X (u, x)]|>(Kt)1�2+
+P \n1�2

=
max

1�i�n&1
|[WY, X, n(t i+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(t i , x)&WY, X (t i , x)]|>(Kt)1�2+
+P(n1�2 sup

y�b
|[WY, X, n(u, x)&WY, X (u, x)]|>K� tn1�2)
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�K exp[&*t]

+P(n1�2 max
1�i�n&1

|[WY, X, n(ti+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(t i , x)&WY, X (t i , x)]|>K*t1�2)

+K exp[&*nt2] (5.42)

With respect to (5.42) above, write

W &1
Y, X (si+1 , x)=ti+1 si+1=WY, X (ti+1 , x)

max
1�i�n&1

|[WY, X, n(ti+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(ti , x)&WY, X (t i , x)]|

= max
1�i�n&1

|[WY, X, n(W &1
Y, X (si+1 , x)) WY, X (W &1

Y, X (si+1 , x))]

&[WY, X, n(W &1
Y, X (si , x))&WY, X (W &1

Y, X (si , x))]|

� sup
|u&v|�1�n

|[WY, X, n(W &1
Y, X (u, x))&WY, X (W &1

Y, X (u, x))]

&[WY, X, n(W &1
Y, X (v, x))&WY, X (W &1

Y, X (v, x))]|

and recall that the ti were chosen so that WY, X (t i+1 , x)&WY, X (ti , x)�
1�n. We now apply a result by Stute (1982). For n large enough, we make
the following choices which satisfy the conditions for Lemma 2.4 of Stute
(1982)

s=a1�4 (5.43)

1
n

<a<(K*t1�2)4 (5.44)

K* from (5.42).

a< 1
8 (5.45)

8� 1
9 a&1�2 (5.46)

a&3�4�(1�4)(1�2) x1�2n1�2 (5.47)

where

x1�2 is %
ln(1+x1�2)

x1�2
=

1
2

and C1�2 is a constant depending only on 1�2

(5.48)
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We choose

a&1=t&2K*&4n; ;< 2
3 (5.49)

Notice that for n large enough, conditions (5.44) through (5.48) are
satisfied (i.e. conditions of Stute's lemma 2.4) and his lemma can be applied
with the following result.

P(n1�2 max
1�i�n&1

|[WY, X, n(ti+1 , x)&WY, X (ti+1 , x)]

&[WY, X, n(t i , x)&WY, X (t i , x)]|>K*t1�2)

�P(n1�2 sup
|u&v|�1�n

|[WY, X, n(W &1
Y, X (u, x))&WY, X (W &1

Y, X (u, x))]

&[WY, X, n(W &1
Y, X (v, x))&WY, X (W &1

Y, X (v, x))]|>K*t1�2)

<C1�2a&1 exp[&a&1�2�64]=Kt&2n; exp[&tn;�2*] (5.50)

II�P _B1>
t*
20

, An(b)&+P _B2>
t*
20

, An(b)&
�P _B1>

t*
20

, An(b)&+P _B21>
t*
40

, An(b)&+P _B22>
t*
40

, An(b)&
�K exp[&*t]+K exp[&*t]+[K exp[&*t]+(n&1)(Kt)&2p

+K exp[&*t]+Kt&2n: exp[&tn;�2*]+K exp[&*nt2]] (5.51)

Proof of Lemma 3. Note that we can write

|R2n( y, x)|=|
y

0

L� n(u)[Cn(u)&C(u)]
C2(u)

[WY, X, n(du, x)&WY, X (du, x)]

+|
y

0

Rn(u)[Cn(u)&C(u)]
C2(u)

[WY, X, n(du, x)&WY, X (du, x)]

+|
y

0

F� Y (u)[Cn(u)&C(u)]
C2(u)

[WY, X, n(du, x)&WY, X (du, x)]

(5.52)

110 GU� RLER AND PREWITT



Recognizing

n sup
( y, x) # Tb

|R2n( y, x)|

�Kn sup
( y, x) # Tb

|L� n( y)| |Cn( y)&C( y)|+ sup
( y, x) # Tb

Kn |Rn( y)|

+ sup
( y, x) # Tb

n } |
y

0

F� Y (u)[Cn(u)&C(u)]
C2(u)

_[WY, X, n(du, x)&WY, X (du, x)] } (5.53)

and following Lemma 2,

P \ sup
( y, x) # Tb

n |R2n( y, x)|>
t*
5 +

�P \sup
y�b

n1�2 |L� n( y)| n1�2 |Cn( y)&C( y)|>
t

15K+
+P \sup

y�b
n |Rn( y)|>

t*
15K+

+P \sup
y�b

n } |
y

0

F� Y (u)[Cn(u)&C(u)]
C2(u)

_[WY, X, n(du, x)&WY, X (du, x)]}> t
15+ (5.54)

�K exp[&*t]+K _exp &*t+\ t
50+

&2n

+exp[*t3]&
+(n&1)(Kt)&2p+K exp(&*t)+Kt&2n: exp[&K� t&1n:�2]

+K exp &*2t2n (5.55)

and the result obtains.

Proof of Lemma 4.

P _n sup
( y, x) # Tb

|R3n( y, x)|>
t*
5 &

�P(An(b)c)+P[n sup
( y, x) # Tb

|Cn( y)&C( y)|2>K� t, An(b)]
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2n exp&:n+2P[n1�2 sup
( y, x) # Tb

|Cn( y)&C( y)|>(K� t)1�2]

�2n exp&:n+K exp[&*t] (5.56)

Since the integral below is integrated with respect to the empirical
measure WY, X, n(du, x), 1�Cn(u) is bounded on An(b) and

|n sup
( y, x) # Tb

R4, n( y, x)|

=n } |
y

0

[F� Y, n(u)&F� Y (u)][Cn(u)&C(u)]
C(u) Cn(u)

WY, X, n(du, x) }
�nK sup

( y, x) # Tb

|[F� Y, n(u)&F� Y (u)][Cn(u)&C(u)]| (5.57)

and the result now follows as in Lemma 3.

Proof of Theorem 1(ii). The result follows from applying

E( |W|;)=; |
�

0
u;&1P( |X|�u) du (5.58)

We alter the probability bound for the remainder term in Theorem 1(i) by
replacing the bound for one of the terms with another which is obtained by
a different application of Lemma 2.4 Stute (1982). The probability which
must be bounded is:

P(n1�2 sup
|u&v|�1�n

|[WY, X, n(W &1
Y, X (u, x))&WY, X (W &1

Y, X (u, x))]

&[WY, X, n(W &1
Y, X (v, x))&WY, X (W &1

Y, X (v, x))]|>K*t1�2) (5.59)

Consider two cases (1) K*>3 and (2) K*<3 for large enough n. In the
first case, for t�n, the probability of (5.59) is zero. For #<t<n where
#=(1�K*4)1�3 and a=1�t

(5.59)�C1�2t, exp[&t1�2�64] (5.60)

In the second case with K*<3, (5.59) is zero for t�4(1�K*2) n. For
#<t�4(1�K*2) n with a=4�tK*2, a similar bound is obtained as in (5.60)
with the appropriate resulting expectation order.
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Proof of Theorem 3. Bias

Efn( y, x)& f ( y, x)=ESn( y, x)& f ( y, x)+EBn( y, x)+Ern( y, x)

EBn( y, x)+Ern( y, x)=EBn( y, x)+O \ 1
nbxby+ (5.61)

EBn( y, x)=
1

bxby
|| F( y&by u, x&bx v) K(du, dv)

=
1

bxby
|| K \y&u

by
,

x&v
bx + F(du, dv)

1
bxby

|| K \y&u
by

,
x&v

bx + f (u, v) du dv

=|| K(u, v) f ( y&uby , x&vbx) dy dx

=|| K(u, v) :
i

:
+ j=l

:
k

l=0

\l
i+
l !

f ij ( y, x)(&uby) i (&vbx) j du dv

+O((bx 6by)k+1)

=(&1)k :
i

:
+ j=k

\k
i +

k !
f ij ( y, x) ;(i, j)+O((bx 6by)k+1) (5.62)

Variance

V( fn( y, x))=V(Sn( y, x)+rn( y, x))

=V(sn( y, x))+V(rn( y, x))+2 Cov(Sn( y, x), rn( y, x)) (5.63)

V(rn( y, x))=E[(rn( y, x))]2&(E[(rn( y, x))])2

=O \ 1
(bby bx)2+

|Cov(Sn( y, x), rn( y, x))|=O \ 1
(nby bx)2+
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So, by the results of Prewitt and Gu� rler (1999), the variance of the density
estimator reduces to

(5.63)=\ 1
nbxby+_A( y)2 �2

�y �x
WY, X ( y, x)&_|

1

&1
K2(x) ds&

2

+o \ 1
nbxby++O \ 1

(nbybx)2+
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