Singularities of the Modular Curve

Alexander Klyachko and Orhun Kara
Department of Mathematics, Bilkent University, 06533 Ankara, Turkey E-mail: klyachko@fen.bilkent.edu.tr, okara@fen.bilkent.edu.tr
Communicated by Michael Tsfasman

Received April 13, 1999; revised January 4, 2000; published online June 11, 2001

Let $X_{0}(\ell)$ be the modular curve, parameterizing cyclic isogenies of degree ℓ, and $Z_{0}(\ell)$ be its plane model, given by the classical modular equation $\Phi_{\ell}(X, Y)=0$. We prove that all singularities of $Z_{0}(\ell)$, except two cusps, are intersections of smooth branches, and evaluate the order of contact of these branches. © 2001 Academic Press

1. INTRODUCTION

The family of classical modular curves $X_{0}(\ell)$, parameterizing cyclic isogenies of elliptic curves $\rho: E \rightarrow E^{\prime}$ of degree ℓ, provides the first known example which attains the Drinfeld-Vladut bound (see [6], where one can also find another such example based on Drinfeld curves). Since then only one essentially different construction was discovered by Garcia and Stichtenoth [3]. So the modular curves are still interesting for coding theory.

The simplest code associated with the modular curve comes from configuration of its rational points via canonical embedding $X_{0}(\ell) \hookrightarrow \mathbb{P}(\Omega)$. To realize this construction one needs a description of the space of regular differentials Ω. For a plane nonsingular curve $X: F(x, y, z)=0$ of degree d the regular differentials are of the form

$$
\begin{equation*}
\omega=p \frac{x d y-y d x}{F_{z}}=p \frac{y d z-z d y}{F_{x}}=p \frac{z d x-x d z}{F_{y}} \tag{1}
\end{equation*}
$$

where $p=p(x, y, z)$ is a homogeneous polynomial of degree $d-3$. This description may be easily modified for a singular curve X by adding some local restrictions on p at singularities (see Remark 1.1 below).

This observation motivates our interest to singularities of the plane model $Z_{0}(\ell)$ of $X_{0}(\ell)$. It comes from the projection $\pi: X_{0}(\ell) \rightarrow \mathbb{P}^{2}$, given in affine coordinates by $\rho \mapsto\left(j(E), j\left(E^{\prime}\right)\right)$, and may be defined explicitly by the classical modular equation

$$
\begin{equation*}
Z_{0}(\ell): \Phi_{\ell}(X, Y)=0 \tag{2}
\end{equation*}
$$

of degree 2ℓ. Henceforth we suppose ℓ to be a prime, not equal to the characteristic p.

We prove (Proposition 2.2) that for $p \neq 2,3$ the projection $\pi: X_{0}(\ell) \rightarrow \mathbb{P}^{2}$ is immersion outside of two cusps $0, \infty \in X_{0}(\ell)$, and at the cusps the plane model $Z_{0}(\ell)$ has singularities analytically equivalent to that of equation $x^{\ell}=y^{\ell-1}$ at the origin.

Hence all noncuspidal singularities of $Z_{0}(\ell)$ are intersections of smooth branches. The main results of the paper describe them in positive characteristic $p>3$. It may be stated as follows.

Theorem 1.1. Let $\sigma, \rho: E \rightarrow E^{\prime}$ be two nonequivalent isogenies of degree ℓ, $\alpha=\rho^{*} \sigma \in \operatorname{End}(E)$, and $m(\sigma, \rho)$ be the order of contact of the corresponding smooth branches of the plane model at the point $\left(E, E^{\prime}\right) \in Z_{0}(\ell)$. Then

$$
m(\sigma, \rho)= \begin{cases}p^{v}, & \text { if } p \text { splits in } \mathbb{Q}(\alpha) \\ 2+2 p+\cdots+2 p^{v-1}+p^{v}, & \text { if } p \text { is inert in } \mathbb{Q}(\alpha) \\ 2+2 p+\cdots+2 p^{v}, & \text { if } p \text { is ramified in } \mathbb{Q}(\alpha) .\end{cases}
$$

Here $\rho^{*}: E^{\prime} \rightarrow E$ is the dual isogeny, and p^{v} is the p-part of conductor of α (i.e., index of $\mathbb{Z}[\alpha]$ in the ring of integers of the imaginary quadratic field $\mathbb{Q}(\alpha))$.

In the first case, which deals with ordinary elliptic curves, the result is known to a number of experts, see, for example, [5]. ${ }^{1}$ It is also plain that in characteristic zero all singularities of $Z_{0}(\ell)$, except the cusps, are simple nodes.

Remark 1.1. The singularity at an ordinary point $\left(E, E^{\prime}\right) \in Z_{0}(\ell)$ consists of two branches with order of contact equal to p-part of conductor of α. The local equation on differential (1) for such a singularity reduces to vanishing of all derivatives of $p(x, y, z)$ in the tangent direction to the branches up to the order of contact. For a supersingular point the number of branches may be more then two, but the corresponding local equation on p again amounts to vanishing of all derivatives in direction of each branch up to sum of its orders of contact with the other branches.

[^0]
2. GENERALITIES

We first consider the cusps.
Proposition 2.1. Over a field of characteristic $p \neq \ell$ the singularities of the plane model $Z_{0}(\ell)$ at cusps are analytically equivalent to that of equation $y^{\ell}=z^{\ell-1}$ at the origin.

Proof. The two cusps are permuted by Fricke involution, which on $Z_{0}(\ell)$ acts as $\left(j(E), j\left(E^{\prime}\right)\right) \mapsto\left(j\left(E^{\prime}\right), j(E)\right)$. So it suffices to consider the cusp at ∞, with local parameter q and formal series expansion

$$
j(q)=\frac{1}{q}+744+196884 q+\cdots=\frac{1}{q}+\sum_{n \geq 0} c_{n} q^{n}, \quad c_{n} \in \mathbb{Z}
$$

At the cusp $q=0$ the curve $Z_{0}(\ell)$ has parametrization $\left(j(q): j\left(q^{\ell}\right): 1\right)=$ $\left(q^{t-1} u: 1: q^{f} v\right)$ where $u=u(q)$, and $v=v(q)$ are power series with leading term 1. Put $x=q^{\ell-1} u$ and $z=q^{\ell} v$. Then

$$
z^{\ell-1}=q^{\ell(\ell-1)} v^{\ell-1}=x^{\ell} u^{-\ell} v^{\ell-1}=y^{\ell}
$$

where $y=x u^{-1} v^{1-1 / \epsilon}$ is a well defined power series over a field of characteristic $p \neq \ell$. Hence the cusp singularity is analytically equivalent to that of equation $y^{\ell}=z^{t-1}$.

Corollary 2.1. The index of the singularity at a cusp is $(\ell-1)(\ell-2) / 2$.
The structure of the singularity at a noncuspidal point is bounded by the following observation.

Proposition 2.2. Over a field of characteristic $p \neq 2,3$ the projection $\pi: X_{0}(\ell) \rightarrow \mathbb{P}^{2}$ is an immersion outside of two cusps $0, \infty \in X_{0}(\ell)$.

Proof. Let us consider the mapping

$$
\begin{equation*}
\varphi: X_{0}(\ell) \xrightarrow{\pi} Z_{0}(\ell) \xrightarrow{\tau} \mathbb{P}^{1} \tag{3}
\end{equation*}
$$

given at noncuspidal points by $\left(E \xrightarrow{\rho} E^{\prime}\right) \mapsto\left(j(E), j\left(E^{\prime}\right)\right) \mapsto j(E)$. The projection φ is unramified outside the cusps and curves E with nontrivial automorphism group. Hence the differential $d \varphi$ does not vanish for $j(E) \neq 0,12^{3}$, and therefore $d \pi \neq 0$. The remaining case $j(E)=0,12^{3}$ may be treated in a similar way by taking the pull back of the diagram (3) with respect to the moduli space $Y \rightarrow \mathbb{P}^{1}$ of elliptic curves with full structure of level $M \geq 3$. Then the
morphism $\varphi^{\prime}: X \times_{\mathbb{P}^{1}} Y \rightarrow Y$ is étale at all noncuspidal points, and as before gives rise to a smooth parametrization of $Z_{0}(\ell) \times_{\mathbb{P}^{1}} Y$, which in turn may be descent to a parametrization of $Z_{0}(\ell)$ by factorisation over ramification group at $j(E)=0,12^{3}$.

Corollary 2.2. All noncuspidal singularities of the plane model $Z_{0}(\ell)$ are intersections of smooth branches.

3. MULTIPLICITIES

To determine the structure of singularity at $\left(E, E^{\prime}\right) \in Z_{0}(\ell)$ it remains to evaluate the order of contact of the branches through (E, E^{\prime}). A common strategy for this is to perturb the curve in such a way that the singularity splits into simple nodes, and then count the nodes. We apply this geometric idea in the arithmetical setting, treating the modular curve $Z_{0}(\ell)$ in characteristic zero as a generic deformation of $Z_{0}(\ell) \otimes \mathbb{F}_{p}$. The deformation principle works in this situation since the scheme $X_{0}(\ell)$ is flat over \mathbb{Z} (see [1]), and the intersection indices are preserved in flat families.

To proceed we need first the following fact.
Proposition 3.1. All noncuspidal singularities of $Z_{0}(\ell)$ over \mathbb{C} are simple nodes. They are parametrized by similarity classes of lattices $L \subset \mathbb{C}$ with complex multiplication by α, where $\alpha \bar{\alpha}=\ell^{2}$, and α / ℓ is not a root of unity.

Proof. Let $\sigma, \rho: E \rightarrow E^{\prime}$ be two nonequivalent isogenies, corresponding to two points of $X_{0}(\ell)$ with the same projection $\left(E, E^{\prime}\right) \in Z_{0}(\ell)$. Writing $E=\mathbb{C} / L$ and $E^{\prime}=\mathbb{C} / L^{\prime}$ we identify the isogenies with complex numbers σ, ρ such that $\sigma L \subset L^{\prime}$ and $\rho L \subset L^{\prime}$ are different sublattices of index ℓ. Then there exists a basis ω_{1}, ω_{2} of L^{\prime} such that

$$
L^{\prime}=\left\langle\omega_{1}, \omega_{2}\right\rangle, \quad \sigma L=\left\langle\ell \omega_{1}, \omega_{2}\right\rangle, \quad \rho L=\left\langle\omega_{1}, \ell \omega_{2}\right\rangle
$$

Near the point $z_{0}=\omega_{1} / \omega_{2}$ the two branches of $Z_{0}(\ell)$ have parametrizations

$$
(j(\ell z), j(z)) \quad \text { and } \quad(j(\varphi(z / \ell)), j(z)), \quad \varphi\left(z_{0} / \ell\right)=z_{0} \ell
$$

where $\varphi \in \operatorname{PSL}(2, \mathbb{Z})$ is given by the matrix of isomorphism $\rho / \sigma: \sigma L \rightarrow \rho L$. Taking derivatives we get tangent vectors to the branches

$$
\left(\ell j^{\prime}\left(\ell z_{0}\right), j^{\prime}\left(z_{0}\right)\right), \quad \text { and } \quad\left(\frac{\ell \sigma^{2}}{\rho^{2}} j^{\prime}\left(\ell z_{0}\right), j^{\prime}\left(z_{0}\right)\right),
$$

which are noncollinear provided $\sigma^{2} \neq \rho^{2}$, and curves E, E^{\prime} have no extra automorphisms. The curves with automorphisms may be treated in a similar way by taking an appropriate local parameter instead of z (notice that $\operatorname{Aut}(E)=\operatorname{Aut}\left(E^{\prime}\right)$ for any selfintersection point $\left.\left(E, E^{\prime}\right) \in Z_{0}(\ell)\right)$.

Since the whole picture depends only on the ratio σ / ρ, it is convenient to describe the branches by element $\alpha=\sigma \ell / \rho$, which induces a complex multiplication in L.

Let $\alpha=(t+f \sqrt{-D}) / 2$, where $-D=\operatorname{Disc}(\mathbb{Q}(\alpha))$. Then the number of lattices L with complex multiplication by α is equal to $\sum_{d \mid f} h\left(-d^{2} D\right)$, and the number of pairs $(L, \alpha), \alpha \bar{\alpha}=\ell^{2}$ is given by $\sum_{t, m} h\left(\left(t^{2}-4 \ell^{2}\right) / m^{2}\right)$. To get the number of nodes we have to count isomorphism classes of (L, α), depending on the ideal (α), rather then element α, and disregard the ideal $(\alpha)=(\ell)$. As a result we get the formula.

Corollary 3.1. The number of nodes of $Z_{0}(\ell)$ is equal to

$$
\sum_{0<t<2 \ell, t \neq \ell} H\left(t^{2}-4 \ell^{2}\right),
$$

where $H\left(-f^{2} D\right)=\sum_{d \mid f} 2 h\left(-d^{2} D\right) / w\left(-d^{2} D\right)$ is the Hurwitz class function.
The proposition, along with the above deformation principle, gives the following reduction of the multiplicity problem.

Corollary 3.2. The order of contact of two branches of $Z_{0}(\ell) \otimes \mathbb{F}_{p}$, defined by isogenies $\sigma, \rho: E \rightarrow E^{\prime}$, is equal to the number of liftings of the endomorphism $\alpha=\rho^{*} \alpha: E \rightarrow E$ in characteristic zero.

To prove Theorem 1.1 it remains to evaluate the number of liftings of the endomorphism $\alpha: E$.

Proposition 3.2. Let $\alpha: E$ be an endomorphism over $\overline{\mathbb{F}}_{p}$ of discriminant $D(\alpha)=p^{2 v} D_{p}(\alpha)$, where p^{v} is p-part of the conductor. Then the number of its liftings in characteristic zero is equal to

$$
e_{p} \frac{H(D(\alpha))}{H\left(D_{p}(\alpha)\right)}= \begin{cases}p^{v}, & \text { if } p \text { splits in } \mathbb{Q}(\alpha), \\ 2+2 p+\cdots+2 p^{v-1}+p^{v}, & \text { if } p \text { isinert in } \mathbb{Q}(\alpha), \\ 2+2 p+\cdots+2 p^{v}, & \text { if } p \text { is ramified in } \mathbb{Q}(\alpha) .\end{cases}
$$

Here e_{p} is the ramification index of p in $\mathbb{Q}(\alpha)$.
Proof. Let W be a complete valuation ring of characteristic zero with residue field $\overline{\mathbb{F}}_{p}$. We need the following result from [4, Lemma 2.7]. Let $\beta: E$ be an endomorphism over $\overline{\mathbb{F}}_{p}$ of conductor coprime to p. Then the number of
its liftings to an endomorphism $\widetilde{\beta}: \widetilde{E}$ over W is equal to the number of solutions in W of the equation

$$
\begin{equation*}
x^{2}+a x+b=0, \quad x \equiv \beta_{0} \bmod p, \tag{4}
\end{equation*}
$$

where $x^{2}+a x+b$ is the characteristic polynomial of β, and the differential of β is multiplication by $\beta_{0} \in \bar{F}_{p}$. Notice that in [4] the result is stated only for fundamental discriminants, but the proof holds for any conductor coprime to p. For an ordinary curve E this amounts to the Deuring lifting theorem [2].

It is well known [2] that the conductor of the integer closure of $\mathbb{Z}[\alpha]$ in $\operatorname{End}(E)$ is coprime to p. Hence there exists unique ring $\alpha \in \mathbb{Z}[\beta] \subset \operatorname{End}(E)$, with discriminant $D(\beta)=D_{p}(\alpha)$, and any curve over $\overline{\mathbb{F}}_{p}$ with multiplication by α admits also multiplication by β. By ((4)) each endomorphism $\beta: E$ has e_{p} liftings. By calculation similar that of Corollary 3.1, there are $H(D(\beta))=H\left(D_{p}(\alpha)\right)$ curves in characteristic zero with complex multiplication by β; hence there are $H\left(D_{p}(\alpha)\right) / e_{p}$ of such curves over $\overline{\mathbb{F}}_{p}$ (curve E counted with weight $2 /|\operatorname{Aut}(E)|)$. On the other hand the number of curves in characteristic zero with complex multiplication by α is $H(D(\alpha))$, and the result follows.

REFERENCES

1. P. Deligne and M. Rapoport, Schemas des modules de courbes elliptiques, in "Lecture Notes in Math.", Vol. 349, pp. 163-315.
2. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Functionenkörper, Abh. Math. Sem. Hamburg 14 (1941), 197-272.
3. A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining Drinfeld-Vladuţ bound, Invent. Math. 121 (1995), 211-222.
4. B. H. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.
5. F. Hirzebruch, Kurven auf Hilbertschen Modulffächen und Klassenzalrelationen, in "Gesammelte Abhandlungen," pp. 361-393, Springer-Verlag, Berlin/New York, 1987.
6. M. A. Tsfasman and S. G. Vladut, "Algebraic Geometric Codes," Kluwer Academic, Dordrecht, 1991.

[^0]: ${ }^{1} \mathrm{We}$ are grateful to the referee for this remark.

