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INTRODUCTION

Atiyah and Todd [1] determined the smallest positive integer M, such
that ((log(1 + x))/x)* e Z[x] (mod x**'). Motivated by this we define
two invariants d, and ¢, for rational power series with constant term F+1
which are additive and multiplicative measures of their integrality. The
result of [ 1] is then interpreted as e ((log(l + x))/x)=M,.

We prove that d, and e, are divisible by the same set of primes. We
define a power series to be stable mod x* ' iff d;=¢, for 1 <i<k and give
sufficient conditions in Lemma 2.2 for stability.

We then define a class of rational power series called rational D-series
which are dominated by their first non-trivial coefficients with respect
to different primes; ie., the p-components of the denominators whose
coefficients are bounded by an inequality involving the p-component of the
first non-trivial coefficient with respect to p.

Theorem 3.5 which is our main result gives vital information about the
invariant e, of rational D-series and about sufficient conditions for the
stability of strict D-series. The result of [1] follows as a corollary.
Theorem 3.5 is also applied to obtain upper bounds for e, of the series
x/(e*—1) and x/sin x.

In Section 5 the finite quotient group D(a, B; k) of a weak D-series is
defined and Theorem 3.5 is applied to compute the highest invariant of the
p-summand of D(a, fi; k). It would be an interesting problem to determine
the groups D(x, §; k) completely.

In Section 6 analogues of our results are derived when the ring of
rational power series is equipped with the starproduct defined by
x' % x’ = x" instead of the usual product given by x'-x’/=x'*/.
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1. INTEGRALITY OF RATIONAL SERIES

Let Z be the ring of integers and Q the field of rationals. Let z[x] and
Q[x] be the rings of formal power series with coefficients in Z and Q,
respectively. Let Z*[x] = (f(x)e Z[x]/f(0)= F 1) be the group of units of
Z[x]. Similarly, let Q*[x] =(f(x)eQ[x]/f(0)=F1). For any keZ™,
Z[x]/(x** ') is a subring of Q[x]/(x**"). Let

4 QD)
“TZIx] /(T

be their additive quotient group.

The group Z, , of units of Z[x]/(x**") is the image of Z*[x] under the
quotient map Z[x] — Z[x]/(x**").

Let @, y be the image of Q*[x] under the quotient map Q[x] —

OLx]/(x**H).
Let M, =0, x/Z, x be their multiplicative quotient group.

DeFINITION 1.1. For each keZ* we define d, and e, to be the
algebraic order in the additive group A4, and the multiplicative group M,,
respectively; i.e.,

for f(x)e Q[x], d,(f) is the smallest positive integer d, such that
d, f(x)e Z[x] (mod x**+1).

For f(x)e Q*[x], e,(f)} is the smallest positive integer ¢, such that
f(x)%*e Z[x] (mod x**1),

For f(x)e Q*[x], both invariants d,(f) and e,(f) are defined.
LemMma 1.2. For f(x)e Q*[x], d(f) depends only on the equivalence
class of f(x) in M,.

Proof. Let f(x)=F1+3X*_  ax’ (modx**'), hix)=F1+3Tr_  bx
(mod x** 1), where a,€Q, b,e Z (1 <i<k).

Let F(x)=f(x)h(x)= F1+X*_ , c,x' (mod x**1).

We prove by induction on i that d,(F)=d,(F)=d,(f) (0<i<k). It is
true for i=0 since do(F)=d,(f)=1. Let i= 1 and assume it to be true for
(i—1) ¢;=Fa;+a,_ b+ --- +ab,_Fb,.

di—l(f)=di—l(F)/di(F)'
d_(fNa;_\b +a;, b+ - +ab,_Fb)eZ
and hence,

d(F)a;, b, +a, ;b,+ ---+a,b,_,Fb)eZ

481/164/2-12



470 1. DIBAG

Thus d,(F)c,e Z iff d.(F)a,e Z and hence d,(F)=d.(f). Putting i=k we
obtain d,(F)=d.(f). Q.E.D.

Notation. For a rational number g, D(g) denotes its denominator in its
lowest term.

LEMMA 1.3. Let f(x)e Q*[x] and expand
k-1
f(x)(’k—l(/]= Fl+ Z m_,-Xj+bkxk (mod xk+1)’

=1
where mye Z (1 <j<k—1) and b, € Q. Then e,(f)=e,_(f) D(b,).
Proof. e,_(f)ex(f)

flxy = D=F14+ Y nx/+c,x* (mod x**1),
j=1
where n,e Z (1<j<k—1) ¢, =nby +n, for n, e Z. Thus f(x)"*1)e Z[x]
(mod x** 1) iff nb, € Z. If e,(f) =ngpe,_(f) then ngy is the smallest positive
integer such that nyb, € Z; i.e,, no= D(b,).

CoroOLLARY 1.3. If f(x)e Q*[x], then e, f) is finite and is given by
ex(f)=D(b,) D(by) - D(by).

Proof. It follows from Lemma 1.3 by induction on k.

DerINITION 1.4, Let f(x)eQ*[x] and let f(x)=F1+3,% a;x/

(mod x**!). We define S, (f) to be the set of primes dividing the
denominators of the coefficients a, (1 <j<k).

LEMMA 1.5. Let f(x)e Q*[x]. Then d,(f) and e (f) are divisible by the
same set S,(f) of primes.

Proof. By definition d4,(f)=LCD(a,, a,, .., a;) and hence a prime
p/d (f)iff pe S, (f). Let Si(f') be the set of primes dividing the denominators
of by, b,, ..., b, as they are defined in Lemma 1.3. It follows from Corollary
1.3 that a prime p/e,(f) iff p e S(f). We thus prove by induction on k& that
S (N=S(f) Fork=1,a,=5b, and hence S,(f)=S\(f).

Let k > 1 and assume it to be true for (k — 1). Raising f(x) to the e, _,-th
power and equating coefficients we obtain b, = Fe, _,a,+ T, ,, where

Fe, ! o s .
= L, Sl R P B S
T, = Z T 1. g 'alaz ag .,
S0+ - F sk =eg- So- 8- Sk—1°
s14+ 254+ -+ k- =k
€r_1!
ez

Sol s !
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The primes dividing D(a} ---a-}) belong to the set S, _(f). Hence if a
prime p/D(T;_,) then pe S, _,(f).

If peSi(f)— Sk 1(f)=Sf) =S, 1(f) then p/D(b,) and p x D(T ;).
It follows that p/D(e,_,a,) and hence that p/D(a,); i.e., that pe S, (f)—
Sie_1(f).

Conversely, if pe S (f)— S._(f), it follows that p/D(a,). By the induc-
tion hypothesis, p x e, , and hence p/D{e, _,a,), and since p x D(T, _,) it
follows that p/D(b,); ie., pe S(f)—Si_1(f)=S.(f)— S, _(f). We have
thus proved that Si(fY— Si_(f)=S.(f)—Sc_(f). It follows from this
and the induction hypothesis that S;(f)=S,(f). Q.E.D.

2. STABILITY OF RATIONAL POWER SERIES

DEFINITION 2.1. We say that f(x)e Q*[x] is stable mod x**' iff
d(f)=e(f) 1<i<k

Notation. For a rational number ¢ and a prime p, let v,(¢) denote the
exponent of p in the prime factorization of ¢.

LemMma 2.2, Let f(x)=F1+ X" a;x’ € Q¥[x]. If ;e Z, 1 <j<r—1,
then f(x) is stable mod x*'.

Proof. letr<k<2r—1,peS(f)anda=v,(d,(f))= —min, <, v,(a;).

Let a; be the first coefficient r <i<k for which v (a;) = —a. Let
fxy"'=F1+ Y b, X/, b= Y T,(n k,s)
i=1 S0+ o+ 3=pH

S+ o sy =7

for r<j<2r—1, where

(pll)!

Sol---s,!

T (nk,s)=

R Ry
all v aj}_
Given each sequence s= (s, 5,, .., 5;) there exists at most one r << for

which s,>0 and s, is at most one. We claim the following.

Statement. For r<j<i ecither T,(nk,s5})eZ, or v,T,(nk,s)>
u—oa+1 for all sequences other than the sequence s given by s,=1,
so=p“—1, and 5,=0, h#0, i, for which

v, T (nk s)=u—ao

For i<j<k, either T,(n, k,s)e Z, or v, T,;(n, k,s)Zu—a.
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Proof. Let r<j<i If s is the sequence given by s,=1, sq=p"—1,
5,=0, j#0,i, then T,(n, k, s)=p“al---ay-' a; and hence v,T,(n, k,s)=
u—oa. For all other sequences, either s,=0 for t=r in which case
T,(n k,s)eZ,, or there exists precisely one ¢>=r for which s5,=1. Let

6=5y+58,+ - +s,_,. Then

o!
5| St
ay---a’"ha,

T,(n k,s)=p"
f(n S) P SO!"'S !

r—1:+
and hence v, T, (n, k,s)Zu—a+1.
Let i<j<k If s,=0for all t>r then T,(n, k, s)e Z,, and if there exists
only one ¢ > r for which s,=1 then

Sr—1

51
ay---a,-,4,

T, (n k,s)=p"

Soloves, !

r—1
and hence v, T,(n, &k, s) 2 u—o.

From the statement follows the

COROLLARY. b
r<j<k.

eZ, for j<iand v, (b, ,;)=—1and b, ;e Z, for

x—1.j

From this we deduce that v,(e;(f))=x« for i<j<k, and in particular
that v, (e (f)) =a=v,(d,(f)). QED.

COROLLARY 22. Ife, ,(f)/n then f" is stable mod x*".

Notation. Let d, (f)=d,(f") and e, ,(f)=e,(f"). Then f” is stable
mod x** ' iff d, ;(f)=e, (f), 1 <i<k.

3. RATIONAL D-SERIES

Let f{x)=F1+X7, a,x’e Q*[x], p be a prime, and a, be the first
coefficient whose denominator is divisible by p. Let v,(a, )= —f,. If the
p-components of the denominators of all the remaining coefficients are
bounded by the inequality v,(a,)> —B,[k/x,], we say that f(x) is a
rational series dominated by its first non-trivial coefficient with respect to
the prime p. We formalize this in the following

DeriNiTION 3.1, For each prime p, let «,,f,€eZ* and a=(x,),
B=(B,). Wecall f(x)=F1+327, a;x’ e Q*[x] a rational D-series of type
(o, B) iff v,(a,,) = — B, and v (a,) = —f,[k/a,] for k #a,.
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We call f(x) a strict D-series of type (a, f) iff v,(a,)=—§, and
vy(a,)> —B,lk/a,] for k #a,.

We call f(x) a weak D-series of type («, f) iff v,(a,)> —f,[k/x,]
VkeZ™.

DerFINITION 3.2 For each prime p, let a,, f,eZ* and a=(a,),
B=(B,). We define numbers M,(a, #) and N,(x) by
v,(Mi (o, B)y= sup  (B,r+v,(r))

1<r<k/2,]
and

vp(Ne(a)) = sup  (1+0,(r)).
1 <r<[hix,]
The following properties of M (a, f) and N, () immediately follow from
Definition 3.2:
(i) M, (o, B)/M(x, B) and if k#0 (moda,), v,(M(a, B))=
v (M (o, B)).
(i) Ne_(a)/Ny(x) and if k#p'a, for some teZ*, v, (N (a))=
Up(Ny ().
(iil)  Ny(a)/M (2, B).
(iv) For a rational D-series of type (2, ) both numbers M ,(x, ) and
N (2) are defined Yke Z™*.
Let us note that the number M, defined in [1] is M, _ (o, B) in our
notation, where o, =p—1 and ,=1. Then [1, Theorem 1.7] can be inter-

preted to prove that e, ((log(1 + x))/x)=e ((—log(l —x))/x)=M, .
We now improve [ 1, Lemma 6.1].

LEMMa 3.3.  Let p be a prime, s a positive integer, and k = sx,. Suppose
that v,(n) Zv,(Ny_ ((2)). Then v,((}))=v,(n)—uv,(r) (1<r<s)

Proof. For 1<m<s, v,(m)<v,(N,_((2))=5up|gm -, (1+0v,(m)).
Hence if v,(n) 2 v,(N, ,(2)) then v,(m) <v,(n) and thus v,(m) =v,(n —m).
Since ()= (n/r)T1, .}, (n—m)/m, it follows that for 1<r<s, v,())=
v,(n/r)=uv,(n)—v,(r). QED.

Let f(x) be a weak D-series of type (2, ) and let
cexk, Cp = Y T (n k,s),

1 sg+ - FSp=n
S1+ 2504 - Hhksg=k

Sy =F1+
k

IR

where

Fn!

T (nk,s)=
f( ’ ’ ) SO!S|!"‘sk!

S1452 ... gk
al'ay---ap.
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Let p be a prime. The sequences s = (sq, §;, ..., §,) fall into two cases:
Case 1. 5,>0 for some i>0 and i#0 (mod «,,).
Case 11. 1If 5,>0 for i>0 then i=0 (mod «,).

If there exists a sequence s in Case Il then k=3, is;=0 (mod ,,)

If k = sa,, let s, be the distinguished sequence given by so=n—s, Sy, =5,
and 5;,=0 for i#0, «,.

Let M, =M,(a, f) and N, = N (o).

PROPOSITION 34. (i) Let s be as in Casel and f(x) be a weak D-series.
If v(n)zv,(Ny_s), then v, T(n, k,s)Zzv,(n)—v,(M, ;)
(it) Let s be as in Casell and k =
If v,(n)Zv,(N, _ ), then

v, T,(n k,s)
Zv,(n)—(B,5+0,(5)) if f(x) is a weak D-series
>v,(n)—(B,s+v,(s)) if f(x) is a strict D-series and s # s,
=v,(n)—(B,s+v,(s)) if f(x) is a D-series and s =s,.

Proof. By induction on k.
It is true for k=0. Let £ > 1 and assume it to be true for k' < k.

(1) Let s be as in Case I. Then there exists i >0, i#0 (mod «,), and
5;>0. Let ip=o,[i/a,]<i and ip/o,=[i/a,] Let aj=pmmtorlaorcrlan)
aj=a; for j#i,. f(r)— FL+37, 4 'x/. Define the sequence s’ by
Siy=S,+58;,5=05=5, forj;ézo,z Then K=si+ - Figls,+s)+ - +
kse<s;+ - +igsy + - +is,+ - +hs =k

iy

S + S; %o a; " Pt
T/'(n’ k7 S) = ( g >(a, ) (a—/) T/"(na k s § )

S'(x) is a weak D-series by construction and since v,(n)>v,(N, ;)=
v,(N,. ), it follows from the induction hypothesis for &’ (by analyzing
whether s” lies in Case 1 or II) that v,T,(n, k', s')2v,(n)—v,(M,)>
v (n)—v (M, ). (a,/a;)™, (a,./a,o)“eZ by deﬁnmon and hence
v, Ti(n k,s)zv,(n)--v,(M, )

(if) Let s be as in Case II. For all i >0, 5,> 0, we have i=0 (mod x )
Let k=s0,. Put 6=y5, 4+ --- +s,. Then a,0=0a,5, + -+ +a,5,+ -
A8, < 8 1p+ +js+ +ksk—k a<k/:x =s. Smceb(n)>v(Nk,l)
by Lemma 3.3, v,((7))=v,(n) —v,(s). By [1, Lemma 6.2],

gl
v\ Ta) 2y
Sy,! S !
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inf n! n + !
v=inf s;0,( ——— | =v v, | ———
iz 2 PS8! "\o PASsg, !

zv,(n)—v,(0)+v,(c)—v=0,(n)—W

where

Since s=s, + --- + (j/2,) 5;+ --- + 55, it follows that v<wv,(s) and hence
v(nlfse! s - -5, )2 v,(n) —v,(s)
If f(x) is a weak D-series,

o ] k
vplazy ---ag) = —(sapﬂp——”+ +s,ﬁp-j—+ +skﬁp-)
%, a, a,

k
=_—§—p'(aps1p+...+js]+.l'+ksk):.-ﬁ[)—:_ﬁps'
%p %p
Hence v, T,(n, k, s) 2 v,(n)—v,(s)—B,s.

If f(x) is a strict D-series and s #s,, there exists i>a, such that 5,>0
and v,(a;)> —B,(i/x,). Hence

K

. . i k
vplagy - -ait)> —(sapﬁ,,—+ +s,-Bp;-+ e +skﬂp;->= —B,s

x, P P

and thus v, T,(n, k, s)>v,(n) —v,(s)— 5.

Finally, T,(n, k,s,)=(})a, . Since v,(n)=v,(N,_,) it follows from
Lemma 3.3 that v,((}))=v,(n) —v,(s) and if f(x) is a D-series, v,,(a;p)=
sv(a, )= —B,s. Thus, v, T (n,k,s,)=v,(n)—v,(s)—f,s. Q.E.D.

The main result of this paper is the following

THEOREM 3.5. 1. Let f(x) be a weak D-series of type (o, f). Then
el )/ M (o, B) VkeZ™.

2. Let f(x) be a D-series of type (a, B), p a prime, re Z*, and

[log r—log ﬂp]
h=|———"""%].
log p

Then v,(e,(f)=v,(M(a, B))=f,p" +r for pa, <k <(p"+p")a,.
3. Let f(x) be a strict D-series of type (o, ). Then
(i) el f)=M(o, p) VkeZ™.
(ii) If n is divisible by N, _,(2) then f" is stable mod x**'.

Proof. We prove all the statements except Statement 2 by induction on
k. They are true for k=0. Let k> 1 and assume them to be true for (k —1).
LC[ Mk= Mk(a, B) al’ld Nk = Nk(a).
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1. Suppose f(x) is a weak D-series of type (a, f) and that n is
divisible by M. By the induction hypothesis, e, _ {f)/M,_ /M, and thus
f(x)"e Z[x] (mod x*). It follows from Proposition 3.4 that v, T,(nk,s)20
for all sequences s and all primes p. Hence T,(n, k, s) € Z for all sequences
s and thus ¢, € Z. Hence f(x)"e Z[x] (mod x**!) and thus e, (f)/M,.

3. Suppose f(x) is a strict D-series of type (a, ) and that n is
divisible by N, _,. By the induction hypothesis, e, _ (f)=M,_,.d, ._(f)=
enx—1(f), and ‘hence v,(d,,_1)=v,(e, (/) =max(v,(M,_,)—
v,(n);0). Thus df(x)"eZ[x] (modx**') iff v, (d)>max(v,(M, ,)—
v,(n); 0) and that dc, € Z, for all primes p. Let us assume therefore that
v,(d) =z max(v,(M, _,) —v,(n),; 0} for all primes p. By (i) of Proposition 3.4,
dT,(n,k,s)e Z, for all sequences s belonging to Case I. If k #0 (mod a,),
dcye Z,, and if k = sa,,, it follows from (ii) of Proposition 3.4 that dc, € Z,
iff

v,(d) = max(fB,s+v,(s) —v,(n);0).
Hence df(x)"e€ Z[x] (mod x**') iff

max(v,(My ;) —v,(n);0)
if k#0(moda,)

max(v,(My _ 1) —v,(n); B,5+v,(s) —v,(n);0)
if k=usu,;

v,(d) >

ie, iff v,(d) > max(v,(M,)—v,(n); 0) in either case.

Hence v,(d, «(f)) = max(v,(M,) —v,(n); 0). Thus d,,.(f)=1 iff
v,(d, «(f)) =0 for all primes p; i, iff v,(n) =v,(M,) for all primes p and
iff n is divisible by M,. Hence e, (f)=M, and thus v,(e, (/)=
max(v,(M;)—v,(n);0) Vn,ke Z*. It thus follows that if n is divisible by

Nk—l’ dn,k(f)=en,k(f)'

2. Let f(x) be a D-series of type (a, f), re Z*, and p a prime, and
put k=p'a, s=p". Let s be a sequence belonging to Casell and let
o=s5,+ -+, v=inl,, v,(s;).

Since s,,+ -+ + (i/o,) s;+ -+ + 55, =p’, it follows that v=uv,(s)=p” iff
S, =p's so=n—p’, 5;=0 for i#0,a,; ie, il s=s5, Thus for s#s,,
v<u,(s)=r and

n! n + o!
V| ————|=v v, | ———
? SO!Sl!"’Sk! P ag £ Sap!"'sk!
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and hence v, T((n, k, s)>v,(n)—(fB,s+v,(s)) for s#5,, and by the same
argument as in the strict D-case, we prove that

Vo€, (f)) =0, (M, )= B,p"+r.

Now let

he [log r—log ﬁ,,:|_
N log p ’

ie, h is the greatest integer such that §,p"<r and let pa,<k<
(pr+p") e, Let p'<s<[kfa,], p<s<p +p" Then s=p +pu for
O<t<h (puy=1, u<p" "
Bys+vy(sy=B,(p" +pu)+t <P (p"+pu)+B,p'(p" " —u)
=B, p"+B,p"<B,p" +r,
and hence v,(M,)=1v,(M,,,)=B,p"+r. We deduce from Statement 1 that

Up(ek(f)) < vp(Mk) = Bppr +r. AlSO Up(ek(f)) = Up(ep’az,.(f)) = ﬂp pr +r.
Hence v (e (f))=8,p +r. Q.E.D.

Remark 1. Statement 3(ii) of Theorem 3.5 yields much more informa-
tion on the stability of strict D-series than the one given by Lemma 2.2,
which of course is valid for arbitrary rational series.

Remark 2. One can define a rational D-series to be strict at a prime p
and prove a local version of Statement 3 of Theorem 3.5 to the effect that
if f(x) is a rational D-series of type («, ) strict at a prime p then

(1) vylex(f))=v,(M (2 B))VkeZ™.
(i1) If n is divisible by the p-primary component of N, ,(«) then
vp(d, (f))=v,(e, () (1 <i<k).

4. APPLICATIONS

Lemma 4.1, (e*—1)/x is a D-series of type (a, f) where a,=p—1 and
B,=1 for all primes p.
Proof. (e*—1)/x=1+37_,x"/((n+ 1))
v(n+1)1=0 for n+1<p;ie, for n<p—1

v(n+1)=1 for n+1=pjie, for n=p-—1.
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Let n+1=Y*%,a,p, 0<a,<p-1 and a,>0 Then by [2
Lemma 3.17,
k
+1_Zi=0ai< n
p—1 p—1

b (n4 1)1 ="

and thus v,(n+ 1)! < [n/(p—1)], which shows that (e*—1)/x is a rational
D-series of type («, f) where a,=p—1 and §,=1. Q.ED.
PrOPOSITION 4.2, Let M, =M («, ) for x,=p—1 and §,=1. Then

1. ex/(e"—1))=¢e((e"—1)/x)/M,, YkeZ".
2. Let p be a prime, re Z", and h=[log r/log p]. Then

.\’_1
)2 o

Jor p'(p— 1)<k <(p" +p")p—1).

Proof. The results for (e¥—1)/x are immediate consequences of
Lemma 4.1 and Theorem 3.5, and those for x/(e* — 1) follow from those for
(e*—1)/x since e (x/(e*— 1)) =e{(e*— 1)/x). Q.E.D.

ProposITION 4.3, Let M, =M (o, B} for a,=p—1 and B,=1 and let
M =TI, caa """ be the odd part of M. Then

1. ey (x/sin x)=e,(sin x/x)=2¢,, where é,/M,.

2. Let p be an odd prime, reZ*, and h=[logr/logp]. Then
vy(e (x/sin x)) = v,(e(sin x/x)) = v,(M,) = p"+r for p(p—1) < k <
(P +p")(p—1).

Proof. sinx/x=1+X>7_,((—1)" x*/(2n+1)!). As in the proof of
Lemma 4.1, v,(2r+ 1)! < [2n/(p—1)] and it thus follows that sin x/x is a
weak D-series of type (a, ) where a,=p—1 and f,=1. We deduce from
Theorem 3.5 that e,(sin x/x)/M,. e**=1+3Y 7, (2"i"x"/n!). If we expand
n=Y4_,2%,for a;=0, 1 then v,(n")=n—3*_, a,by [2, Lemma 3.1] and
thus v,(2°/n!)y=n—uv,(n!)= Z_;—‘:o a;>0. Hence 2/1 — e or, equivalently,
(1 —e*™)/2e Z,[x]. It thus follows that sin’x=(1—cos2x)/2e Z,[x]
or (sinx/x)’eZ,[x]. Hence uv,(e,(sinx/x))=1; ie, e.(sinx/x)=2¢,
where &,/M,. Statement 2 for sin x/x follows from Theorem 3.5 and the
Proposition for x/sin x follows from that for sin x/x since e,(x/sin x)=

e,(sin x/x).
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5. THE GroOUP D(a, ; k)

_For each prime p let a,, f,eZ" and a=(x,) and B=(f,) and let
D(a, B) be the set of weak D-series of type (a, f§).

Observation 5.1. D(x, B) is a group.

Proof. Let f(x), g(x)e D(a, B) and h(x)=f(x)/g(x). Let f(x)=F 1+
Srax, gx)=FI+Y7,b,x (a,b,€Q), h(x)=Fl+T7, cox*.
We prove by induction on k that v,(c,) = —B,[k/a,]. It is true for k=0.
Let k=1 and assume it to be true for (k—1). f(x)=g(x)h(x) and,
equating coefficients, a,=Fb,+b, ¢, + - +bicp 1 For, va)2
—B,Lk/n,], v(b)=—B,[i/x,], and by the induction hypothesis
vplew. )2 —B,[(k—i)a,] (1<i<k), and thus v (b;c, ;)= —B,[i/x,]—
B,L(k — i)/, ). }

Thus v,(c,) > —B,[k/«,] and hence h(x)e D(a, B). Q.E.D.

D(x, B) contains Z*[x]. Let D(a, ) be the quotient group,
D(a, By = D(a, B)/Z*[x]. Let D(x, B: k) be the image of D(a, f) under the
quotient map Q[x] — Qx]/(x**"). Then D(a, B; k) contains Z,_, which is
the group of units of Z[x]/(x**!). Let D(a, f; k) be the quotient group
D(a, f; k)= D(a, B; k)/Z, . Then D(«, B;k) is a finite subgroup of
M, =0, x/Z; . For each prime p let «”, 87 be the vectors defined by
al=a, Br=B, 25 =B5=0"for p’'#p. Then the p-summand of the finite
abelian group D(z, ; k) is D(a”, f7; k) and the latter can be shown to have
order Hk’gkpﬁp[k//“p]'

PROPOSITION 5.2.  The highest invariant of D(af, B7; k) is ptrtMx(= )

Proof. By Statement 1 of Theorem 3.5, the order of every element in
D(a”, B7; k) divides por™c= ) and D(a”, §7; k) contains strict D-series of
type (a”, p7) whose orders, by Statement 3(i) of Theorem 3.5, are equal to
p'pM* N Thus the cyclic subgroups in the decomposition of D(x?, 87; k)
of highest order have order pMx(= ),

It is of interest to determine the groups D(a, f; k) completely.

6. RATIONAL D-SERIES WITH RESPECT TO THE STAR-PRODUCT

Let Q'V[x] = xQ[x] = (f(x)e Q]x]/f(0)=0). We can define on Q"'[x]
a commutative product called the star product by the equation x' * x/ = x¥;
ie, if flx)=Fx+¥7,ax, gx)=Fx+X7%,bx) (a,beQ) then
fx)*xg(x)=Fx+¥7 ,cx* where ¢, =Y, ,ab. Let Q[x]=
(f(x)e @MIx]/f"(0)= F1). Let Z'"[x] and Z{"[x] be similarly defined.
Let O, , be the image of Q{’[x] under the quotient map Q''[x] —
Q'"V[x]/(x**") and Z, , the image of Z("[x] under the quotient map
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ZMW[x] - ZW[x]/(x**"). Let e¥ be the algebraic order in the quotient
group MX =0\, /Z\',.

We can define rational D-series with respect to the star product and all
our results have their counterparts in this new setting.

DEFINITION 6.1. For each prime p let «,, ,eZ*, a=(a,), f=(B,)
f(x)=Fx+X7 ,ax"eQV[x] is called a rational D*-series of type
(«, ) il v,(a,)=—f, and v,(a,)> —f,[logk/loga,] for k#a,
Similarly, f(x) is called a strict D*-series of type (a, ) iff

log k

vla,)=—p, and v(ag) > —B,,l: ] for k#a,.

log «,

Sf(x) is called a weak D*-series of type («, f) iff v,(a,) = —f,[log k/log 2, ]
VkeZ™.

DEFINITION 6.2. For each prime p, let «,, f,eZ* and o=(a,),
B =(B,). The numbers M *(«, ) and NF(x«) are defined by

vi(M (o, B))=sup(f,r+v,(r)), v (NE(a))=sup(l+v,(r)),

ISrS[logk] lgré[logk]
log «, log a,

and with this terminology the analogue of Theorem 3.5 is the following

THEOREM 6.3. 1. Let f(x) be a weak D*-series of type (a, B). Then
eX(f)/ME(w, B).

2. Let f(x) be a D*-series of type (a, B), p be a prime, re Z*, and
h={[(logr—logf,)/logp]. Then v,(ef(f))=v,(MXa B))=B,p"+r for
alf k<ol t7

3. Let f(x) be a strict D*-series of type (2, ). Then

(i) eX(f)=M¥a« p), VkeZ".
(1) If n is divisible by N}¥_\(a) then f"=fxf%...-xf is stable

k+1

mod x

n
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