Integrality of Rational D-Series

I. DIBAG

Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

Communicated by Walter Feit

Received April 27, 1992

Introduction

Atiyah and Todd [1] determined the smallest positive integer M_k such that $((\log(1+x))/x)^{M_k} \in \mathbb{Z}[x] \pmod x^{k+1}$. Motivated by this we define two invariants d_k and e_k for rational power series with constant term ∓ 1 which are additive and multiplicative measures of their integrality. The result of [1] is then interpreted as $e_k((\log(1+x))/x) = M_k$.

We prove that d_k and e_k are divisible by the same set of primes. We define a power series to be stable mod x^{k+1} iff $d_i = e_i$ for $1 \le i \le k$ and give sufficient conditions in Lemma 2.2 for stability.

We then define a class of rational power series called rational *D*-series which are dominated by their first non-trivial coefficients with respect to different primes; i.e., the *p*-components of the denominators whose coefficients are bounded by an inequality involving the *p*-component of the first non-trivial coefficient with respect to *p*.

Theorem 3.5 which is our main result gives vital information about the invariant e_k of rational *D*-series and about sufficient conditions for the stability of strict *D*-series. The result of [1] follows as a corollary. Theorem 3.5 is also applied to obtain upper bounds for e_k of the series $x/(e^x-1)$ and $x/\sin x$.

In Section 5 the finite quotient group $D(\alpha, \beta; k)$ of a weak *D*-series is defined and Theorem 3.5 is applied to compute the highest invariant of the *p*-summand of $D(\alpha, \beta; k)$. It would be an interesting problem to determine the groups $D(\alpha, \beta; k)$ completely.

In Section 6 analogues of our results are derived when the ring of rational power series is equipped with the starproduct defined by $x^i * x^j = x^{ij}$ instead of the usual product given by $x^i \cdot x^j = x^{i+j}$.

This research is supported by TBAG-C2 of the Scientific and Technical Research Council of Turkey.

468

0021-8693/94 \$6.00

Copyright (1) 1994 by Academic Press, Inc. All rights of reproduction in any form reserved.

1. INTEGRALITY OF RATIONAL SERIES

Let Z be the ring of integers and Q the field of rationals. Let z[x] and Q[x] be the rings of formal power series with coefficients in Z and Q, respectively. Let $Z^*[x] = (f(x) \in Z[x]/f(0) = \mp 1)$ be the group of units of Z[x]. Similarly, let $Q^*[x] = (f(x) \in Q[x]/f(0) = \mp 1)$. For any $k \in Z^+$, $Z[x]/(x^{k+1})$ is a subring of $Q[x]/(x^{k+1})$. Let

$$A_k = \frac{Q[[x]]/(x^{k+1})}{Z[[x]]/(x^{k+1})}$$

be their additive quotient group.

The group $Z_{k,X}$ of units of $Z[x]/(x^{k+1})$ is the image of $Z^*[x]$ under the quotient map $Z[x] \to Z[x]/(x^{k+1})$.

Let $Q_{k,X}$ be the image of $Q^*[x]$ under the quotient map $Q[x] \to Q[x]/(x^{k+1})$.

Let $M_k = Q_{k,X}/Z_{k,X}$ be their multiplicative quotient group.

DEFINITION 1.1. For each $k \in \mathbb{Z}^+$ we define d_k and e_k to be the algebraic order in the additive group A_k and the multiplicative group M_k , respectively; i.e.,

for $f(x) \in Q[x]$, $d_k(f)$ is the smallest positive integer d_k such that $d_k f(x) \in Z[x]$ (mod x^{k+1}).

For $f(x) \in Q^*[x]$, $e_k(f)$ is the smallest positive integer e_k such that $f(x)^{e_k} \in Z[x] \pmod{x^{k+1}}$.

For $f(x) \in Q^*[x]$, both invariants $d_k(f)$ and $e_k(f)$ are defined.

LEMMA 1.2. For $f(x) \in Q^*[x]$, $d_k(f)$ depends only on the equivalence class of f(x) in M_k .

Proof. Let $f(x) = \mp 1 + \sum_{i=1}^{k} a_i x^i \pmod{x^{k+1}}$, $h(x) = \mp 1 + \sum_{i=1}^{k} b_i x^i \pmod{x^{k+1}}$, where $a_i \in Q$, $b_i \in Z$ $(1 \le i \le k)$.

Let $F(x) = f(x) h(x) = \mp 1 + \sum_{i=1}^{k} c_i x^i \pmod{x^{k+1}}$.

We prove by induction on i that $d_i(F) = d_i(F) = d_i(f)$ $(0 \le i \le k)$. It is true for i = 0 since $d_0(F) = d_0(f) = 1$. Let $i \ge 1$ and assume it to be true for (i-1). $c_i = \mp a_i + a_{i-1}b_1 + \cdots + a_1b_{i-1} \mp b_i$.

$$d_{i-1}(f) = d_{i-1}(F)/d_i(F).$$

$$d_{i-1}(f)(a_{i-1}b_1 + a_{i-2}b_2 + \dots + a_1b_{i-1} \mp b_i) \in \mathbb{Z},$$

and hence,

$$d_i(F)(a_{i-1}b_1+a_{i-2}b_2+\cdots+a_1b_{i-1}\mp b_i)\in Z.$$

Thus $d_i(F)$ $c_i \in Z$ iff $d_i(F)$ $a_i \in Z$ and hence $d_i(F) = d_i(f)$. Putting i = k we obtain $d_k(F) = d_k(f)$. Q.E.D.

Notation. For a rational number q, D(q) denotes its denominator in its lowest term.

LEMMA 1.3. Let $f(x) \in Q^*[x]$ and expand

$$f(x)^{e_{k-1}(f)} = \mp 1 + \sum_{j=1}^{k-1} m_j x^j + b_k x^k \pmod{x^{k+1}},$$

where $m_j \in \mathbb{Z}$ $(1 \le j \le k-1)$ and $b_k \in \mathbb{Q}$. Then $e_k(f) = e_{k-1}(f) D(b_k)$.

Proof. $e_{k-1}(f)/e_k(f)$.

$$f(x)^{nc_{k-1}(f)} = \mp 1 + \sum_{j=1}^{k-1} n_j x^j + c_k x^k \pmod{x^{k+1}},$$

where $n_j \in Z$ $(1 \le j \le k-1)$ $c_k = nb_k + n_k$ for $n_k \in Z$. Thus $f(x)^{ne_{k-1}(f)} \in Z[x]$ $(\text{mod } x^{k+1})$ iff $nb_k \in Z$. If $e_k(f) = n_0 e_{k-1}(f)$ then n_0 is the smallest positive integer such that $n_0 b_k \in Z$; i.e., $n_0 = D(b_k)$.

COROLLARY 1.3. If $f(x) \in Q^*[x]$, then $e_k(f)$ is finite and is given by $e_k(f) = D(b_1) D(b_2) \cdots D(b_k)$.

Proof. It follows from Lemma 1.3 by induction on k.

DEFINITION 1.4. Let $f(x) \in Q^*[x]$ and let $f(x) = \mp 1 + \sum_{j=1}^k a_j x^j \pmod{x^{k+1}}$. We define $S_k(f)$ to be the set of primes dividing the denominators of the coefficients a_i $(1 \le j \le k)$.

LEMMA 1.5. Let $f(x) \in Q^*[x]$. Then $d_k(f)$ and $e_k(f)$ are divisible by the same set $S_k(f)$ of primes.

Proof. By definition $d_k(f) = LCD(a_1, a_2, ..., a_k)$ and hence a prime $p/d_k(f)$ iff $p \in S_k(f)$. Let $S'_k(f)$ be the set of primes dividing the denominators of $b_1, b_2, ..., b_k$ as they are defined in Lemma 1.3. It follows from Corollary 1.3 that a prime $p/e_k(f)$ iff $p \in S'_k(f)$. We thus prove by induction on k that $S_k(f) = S'_k(f)$. For k = 1, $a_1 = b_1$ and hence $S_1(f) = S'_1(f)$.

Let k > 1 and assume it to be true for (k-1). Raising f(x) to the e_{k-1} -th power and equating coefficients we obtain $b_k = \mp e_{k-1} a_k + T_{k-1}$, where

$$T_{k-1} = \sum_{\substack{s_0 + \dots + s_{k-1} = e_{k-1} \\ s_1 + 2s_2 + \dots + (k-1) \ s_{k-1} = k}} \frac{\overline{+} e_{k-1}!}{s_0! \ s_1! \dots s_{k-1}!} a_1^{s_1} a_2^{s_2} \dots a_{k-1}^{s_{k-1}},$$

$$\frac{e_{k-1}!}{s_0! \dots s_{k-1}!} \in Z.$$

The primes dividing $D(a_1^{s_1} \cdots a_{k-1}^{s_{k-1}})$ belong to the set $S_{k-1}(f)$. Hence if a prime $p/D(T_{k-1})$ then $p \in S_{k-1}(f)$.

If $p \in S'_k(f) - S'_{k-1}(f) = S'_k(f) - S_{k-1}(f)$ then $p/D(b_k)$ and $p \times D(T_{k-1})$. It follows that $p/D(e_{k-1}a_k)$ and hence that $p/D(a_k)$; i.e., that $p \in S_k(f) - S_{k-1}(f)$.

Conversely, if $p \in S_k(f) - S_{k-1}(f)$, it follows that $p/D(a_k)$. By the induction hypothesis, $p \times e_{k-1}$ and hence $p/D(e_{k-1}a_k)$, and since $p \times D(T_{k-1})$ it follows that $p/D(b_k)$; i.e., $p \in S'_k(f) - S_{k-1}(f) = S'_k(f) - S'_{k-1}(f)$. We have thus proved that $S'_k(f) - S'_{k-1}(f) = S_k(f) - S_{k-1}(f)$. It follows from this and the induction hypothesis that $S'_k(f) = S_k(f)$.

Q.E.D.

2. STABILITY OF RATIONAL POWER SERIES

DEFINITION 2.1. We say that $f(x) \in Q^*[x]$ is stable mod x^{k+1} iff $d_i(f) = e_i(f)$, $1 \le i \le k$.

Notation. For a rational number q and a prime p, let $v_p(q)$ denote the exponent of p in the prime factorization of q.

LEMMA 2.2. Let $f(x) = \mp 1 + \sum_{j=1}^{\infty} a_j x^j \in Q^*[x]$. If $a_j \in Z$, $1 \le j \le r - 1$, then f(x) is stable mod x^{2r} .

Proof. Let $r \le k \le 2r - 1$, $p \in S_k(f)$, and $\alpha = v_p(d_k(f)) = -\min_{r \le j \le k} v_p(a_j)$. Let a_i be the first coefficient $r \le i \le k$ for which $v_p(a_i) = -\alpha$. Let

$$f(x)^{p^{\mu}} = \mp 1 + \sum_{j=1}^{\infty} b_{u,j} x^{j}, \qquad b_{u,j} = \sum_{\substack{s_0 + \dots + s_j = p^{\mu} \\ s_1 + \dots + j s_j = j}} T_f(n, k, s)$$

for $r \le j \le 2r - 1$, where

$$T_f(n, k, s) = \frac{(p^u)!}{s_0! \cdots s_j!} a_1^{s_1} \cdots a_j^{s_j}.$$

Given each sequence $s = (s_0, s_1, ..., s_j)$ there exists at most one $r \le t \le j$ for which $s_t > 0$ and s_t is at most one. We claim the following.

Statement. For $r \le j \le i$ either $T_f(n, k, s) \in Z_p$ or $v_p T_f(n, k, s) \ge u - \alpha + 1$ for all sequences other than the sequence s given by $s_i = 1$, $s_0 = p^u - 1$, and $s_h = 0$, $h \ne 0$, i, for which

$$v_p T_f(n, k, s) = u - \alpha.$$

For $i \le j \le k$, either $T_f(n, k, s) \in Z_p$ or $v_p T_f(n, k, s) \ge u - \alpha$.

Proof. Let $r \le j \le i$. If s is the sequence given by $s_i = 1$, $s_0 = p^u - 1$, $s_h = 0$, $j \ne 0$, i, then $T_f(n, k, s) = p^u a_1^{s_1} \cdots a_{r-1}^{s_{r-1}} a_i$ and hence $v_p T_f(n, k, s) = u - \alpha$. For all other sequences, either $s_i = 0$ for $t \ge r$ in which case $T_f(n, k, s) \in Z_p$, or there exists precisely one $t \ge r$ for which $s_i = 1$. Let $\sigma = s_0 + s_1 + \cdots + s_{r-1}$. Then

$$T_f(n, k, s) = p^u \frac{\sigma!}{s_0! \cdots s_{r-1}!} a_1^{s_1} \cdots a_{r-1}^{s_{r-1}} a_t$$

and hence $v_p T_f(n, k, s) \ge u - \alpha + 1$.

Let $i \le j \le k$. If $s_t = 0$ for all $t \ge r$ then $T_f(n, k, s) \in Z_p$, and if there exists only one $t \ge r$ for which $s_t = 1$ then

$$T_f(n, k, s) = p^u \frac{\sigma!}{s_0! \cdots s_{r-1}!} a_1^{s_1} \cdots a_{r-1}^{s_{r-1}} a_t$$

and hence $v_p T_f(n, k, s) \ge u - \alpha$.

From the statement follows the

COROLLARY. $b_{\alpha-1,j} \in Z_p$ for j < i and $v_p(b_{\alpha-1,i}) = -1$ and $b_{\alpha,j} \in Z_p$ for $r \le j \le k$.

From this we deduce that $v_p(e_j(f)) = \alpha$ for $i \le j \le k$, and in particular that $v_p(e_k(f)) = \alpha = v_p(d_k(f))$. Q.E.D.

COROLLARY 2.2. If $e_{r-1}(f)/n$ then f^n is stable mod x^{2r} .

Notation. Let $d_{n,k}(f) = d_k(f^n)$ and $e_{n,k}(f) = e_k(f^n)$. Then f^n is stable mod x^{k+1} iff $d_{n,k}(f) = e_{n,k}(f)$, $1 \le i \le k$.

3. RATIONAL D-SERIES

Let $f(x) = \mp 1 + \sum_{j=1}^{\infty} a_j x^j \in \mathcal{Q}^*[x]$, p be a prime, and a_{α_p} be the first coefficient whose denominator is divisible by p. Let $v_p(a_{\alpha_p}) = -\beta_p$. If the p-components of the denominators of all the remaining coefficients are bounded by the inequality $v_p(a_k) \ge -\beta_p[k/\alpha_p]$, we say that f(x) is a rational series dominated by its first non-trivial coefficient with respect to the prime p. We formalize this in the following

DEFINITION 3.1. For each prime p, let α_p , $\beta_p \in Z^+$ and $\alpha = (\alpha_p)$, $\beta = (\beta_p)$. We call $f(x) = \mp 1 + \sum_{j=1}^{\infty} a_j x^j \in Q^* \llbracket x \rrbracket$ a rational D-series of type (α, β) iff $v_p(\alpha_{x_p}) = -\beta_p$ and $v_p(\alpha_k) \ge -\beta_p [k/\alpha_p]$ for $k \ne \alpha_p$.

We call f(x) a strict *D*-series of type (α, β) iff $v_p(a_{x_p}) = -\beta_p$ and $v_p(a_k) > -\beta_p[k/\alpha_p]$ for $k \neq \alpha_p$.

We call f(x) a weak *D*-series of type (α, β) iff $v_{\rho}(a_k) \ge -\beta_{\rho}[k/\alpha_{\rho}]$ $\forall k \in \mathbb{Z}^+$.

DEFINITION 3.2. For each prime p, let α_p , $\beta_p \in Z^+$ and $\alpha = (\alpha_p)$, $\beta = (\beta_p)$. We define numbers $M_k(\alpha, \beta)$ and $N_k(\alpha)$ by

$$v_p(M_k(\alpha,\beta)) = \sup_{1 \leqslant r \leqslant \lfloor k/x_p \rfloor} (\beta_p r + v_p(r))$$

and

$$v_p(N_k(\alpha)) = \sup_{1 \leqslant r \leqslant \lfloor k/\alpha_p \rfloor} (1 + v_p(r)).$$

The following properties of $M_k(\alpha, \beta)$ and $N_k(\alpha)$ immediately follow from Definition 3.2:

- (i) $M_{k-1}(\alpha, \beta)/M_k(\alpha, \beta)$ and if $k \neq 0 \pmod{\alpha_p}$, $v_p(M_k(\alpha, \beta)) = v_p(M_{k-1}(\alpha, \beta))$.
- (ii) $N_{k-1}(\alpha)/N_k(\alpha)$ and if $k \neq p^t \alpha_p$ for some $t \in \mathbb{Z}^+$, $v_p(N_k(\alpha)) = v_p(N_{k-1}(\alpha))$.
 - (iii) $N_k(\alpha)/M_k(\alpha, \beta)$.
- (iv) For a rational *D*-series of type (α, β) both numbers $M_k(\alpha, \beta)$ and $N_k(\alpha)$ are defined $\forall k \in \mathbb{Z}^+$.

Let us note that the number M_k defined in [1] is $M_{k-1}(\alpha, \beta)$ in our notation, where $\alpha_p = p-1$ and $\beta_p = 1$. Then [1, Theorem 1.7] can be interpreted to prove that $e_k((\log(1+x))/x) = e_k((-\log(1-x))/x) = M_{k+1}$.

We now improve [1, Lemma 6.1].

LEMMA 3.3. Let p be a prime, s a positive integer, and $k = s\alpha_p$. Suppose that $v_p(n) \ge v_p(N_{k-1}(\alpha))$. Then $v_p(\binom{n}{r}) = v_p(n) - v_p(r)$ $(1 \le r \le s)$.

 $\begin{array}{lll} \textit{Proof.} & \text{For} & 1 \leqslant m < s, & v_p(m) < v_p(N_{k-1}(\alpha)) = \sup_{1 \leqslant m' < s} (1 + v_p(m')). \\ \text{Hence if } v_p(n) \geqslant v_p(N_{k-1}(\alpha)) \text{ then } v_p(m) < v_p(n) \text{ and thus } v_p(m) = v_p(n-m). \\ \text{Since } & \binom{n}{r} = (n/r) \prod_{m=1}^{r-1} (n-m)/m, \text{ it follows that for } 1 \leqslant r \leqslant s, & v_p\binom{n}{r} = v_p(n/r) = v_p(n) - v_p(r). \end{array}$

Let f(x) be a weak D-series of type (α, β) and let

$$f(x)^n = \mp 1 + \sum_{k=1}^{\infty} c_k x^k, \qquad c_k = \sum_{\substack{s_0 + \dots + s_k = n \\ s_1 + 2s_2 + \dots + ks_k = k}} T_f(n, k, s),$$

where

$$T_f(n,k,s) = \frac{\mp n!}{s_0! s_1! \cdots s_k!} a_1^{s_1} a_2^{s_2} \cdots a_k^{s_k}.$$

Let p be a prime. The sequences $s = (s_0, s_1, ..., s_k)$ fall into two cases:

Case I. $s_i > 0$ for some i > 0 and $i \neq 0 \pmod{\alpha_n}$.

Case II. If $s_i > 0$ for i > 0 then $i = 0 \pmod{\alpha_p}$.

If there exists a sequence s in Case II then $k = \sum_{i>0} is_i = 0 \pmod{\alpha_p}$ If $k = s\alpha$, let s, be the distinguished sequence given by s = n - s, s = -s

If $k = s\alpha_p$, let s_d be the distinguished sequence given by $s_0 = n - s$, $s_{\alpha_p} = s$, and $s_i = 0$ for $i \neq 0$, α_p .

Let $M_k = M_k(\alpha, \beta)$ and $N_k = N_k(\alpha)$.

PROPOSITION 3.4. (i) Let s be as in Case I and f(x) be a weak D-series. If $v_p(n) \ge v_p(N_{k-2})$, then $v_p(n) \ge v_p(n) - v_p(M_{k-1})$.

(ii) Let s be as in Case II and $k = s\alpha_p$. If $v_p(n) \ge v_p(N_{k-1})$, then

$$v_{\rho}T_{f}(n, k, s)$$

 $\geqslant v_{\rho}(n) - (\beta_{\rho}s + v_{\rho}(s))$ if $f(x)$ is a weak D-series
 $> v_{\rho}(n) - (\beta_{\rho}s + v_{\rho}(s))$ if $f(x)$ is a strict D-series and $s \neq s_{d}$
 $= v_{\rho}(n) - (\beta_{\rho}s + v_{\rho}(s))$ if $f(x)$ is a D-series and $s = s_{d}$.

Proof. By induction on k.

It is true for k = 0. Let $k \ge 1$ and assume it to be true for k' < k.

(i) Let s be as in Case I. Then there exists i > 0, $i \neq 0 \pmod{\alpha_p}$, and $s_i > 0$. Let $i_0 = \alpha_p [i/\alpha_p] < i$ and $i_0/\alpha_p = [i/\alpha_p]$. Let $a'_{i_0} = p^{\min(v_p(a_{i_0}), v_p(a_i))}$, $a'_j = a_j$ for $j \neq i_0$. $f'(x) = \mp 1 + \sum_{j=1}^{\infty} a'_j x^j$. Define the sequence s' by $s'_{i_0} = s_{i_0} + s_i$, $s'_i = 0$, $s'_j = s_j$ for $j \neq i_0$, i. Then $k' = s_1 + \cdots + i_0(s_{i_0} + s_i) + \cdots + ks_k < s_1 + \cdots + i_0s_{i_0} + \cdots + is_i + \cdots + ks_k = k$.

$$T_f(n, k, s) = {s_{i_0} + s_i \choose s_i} {\left(\frac{a_{i_0}}{a'_{i_0}}\right)^{s_{i_0}}} {\left(\frac{a_i}{a'_{i_0}}\right)^{s_i}} T_{f'}(n, k', s')$$

f'(x) is a weak *D*-series by construction and since $v_p(n) \ge v_p(N_{k-2}) \ge v_p(N_{k'-1})$, it follows from the induction hypothesis for k' (by analyzing whether s' lies in Case I or II) that $v_p T_{f'}(n, k', s') \ge v_p(n) - v_p(M_{k'}) \ge v_p(n) - v_p(M_{k-1})$. $(a_{i_0}/a'_{i_0})^{s_{i_0}}$, $(a_i/a'_{i_0})^{s_i} \in Z_p$ by definition and hence $v_p T_f(n, k, s) \ge v_p(n) - v_p(M_{k-1})$.

(ii) Let s be as in Case II. For all i > 0, $s_i > 0$, we have $i = 0 \pmod{\alpha_p}$. Let $k = s\alpha_p$. Put $\sigma = s_{\alpha_p} + \cdots + s_k$. Then $\alpha_p \sigma = \alpha_p s_{\alpha_p} + \cdots + \alpha_p s_j + \cdots + \alpha_p s_k \le \alpha_p s_{\alpha_p} + \cdots + j s_j + \cdots + k s_k = k$, $\sigma \le k/\alpha_p = s$. Since $v_p(n) \ge v_p(N_{k-1})$, by Lemma 3.3, $v_p(\binom{n}{\sigma}) = v_p(n) - v_p(\sigma)$. By [1, Lemma 6.2],

$$v_p\left(\frac{\sigma!}{s_n!\cdots s_k!}\right) \geqslant v_p(\sigma) - v,$$

where

$$v = \inf_{j \geqslant \alpha_p} s_j v_p \left(\frac{n!}{s_0! s_1! \cdots s_k!} \right) = v_p \binom{n}{\sigma} + v_p \left(\frac{!}{s_{\alpha_p}! \cdots s_k!} \right)$$

$$\geqslant v_p(n) - v_p(\sigma) + v_p(\sigma) - v = v_p(n) - v.$$

Since $s = s_{\alpha_p} + \cdots + (j/\alpha_p) s_j + \cdots + ss_k$, it follows that $v \le v_p(s)$ and hence $v_p(n!/s_0! s_1! \cdots s_k!) \ge v_p(n) - v_p(s)$.

If f(x) is a weak D-series,

$$\begin{aligned} v_{p}(a_{\alpha_{p}}^{s_{\alpha_{p}}}\cdots a_{k}^{s_{k}}) \geqslant -\left(s_{\alpha_{p}}\beta_{p}\frac{\alpha_{p}}{\alpha_{p}}+\cdots+s_{j}\beta_{p}\frac{j}{\alpha_{p}}+\cdots+s_{k}\beta_{p}\frac{k}{\alpha_{p}}\right) \\ &=-\frac{\beta_{p}}{\alpha_{p}}(\alpha_{p}s_{\alpha_{p}}+\cdots+js_{j}+\cdots+ks_{k}) = -\beta_{p}\frac{k}{\alpha_{p}} = -\beta_{p}s. \end{aligned}$$

Hence $v_p T_f(n, k, s) \ge v_p(n) - v_p(s) - \beta_p s$.

If f(x) is a strict *D*-series and $s \neq s_d$, there exists $i > \alpha_p$ such that $s_i > 0$ and $v_p(a_i) > -\beta_p(i/\alpha_p)$. Hence

$$v_{p}(a_{\alpha_{p}}^{s_{n_{p}}}\cdots a_{k}^{s_{k}}) > -\left(s_{\alpha_{p}}\beta_{p}\frac{\alpha_{p}}{\alpha_{p}} + \cdots + s_{i}\beta_{p}\frac{i}{\alpha_{p}} + \cdots + s_{k}\beta_{p}\frac{k}{\alpha_{p}}\right) = -\beta_{p}s$$

and thus $v_p T_f(n, k, s) > v_p(n) - v_p(s) - \beta_p s$.

Finally, $T_f(n, k, s_d) = \binom{n}{s} a_{\alpha_p}^s$. Since $v_p(n) \geqslant v_p(N_{k-1})$ it follows from Lemma 3.3 that $v_p(\binom{n}{s}) = v_p(n) - v_p(s)$ and if f(x) is a *D*-series, $v_p(a_{\alpha_p}^s) = sv_p(a_{\alpha_p}) = -\beta_p s$. Thus, $v_p T_f(n, k, s_d) = v_p(n) - v_p(s) - \beta_p s$. Q.E.D.

The main result of this paper is the following

THEOREM 3.5. 1. Let f(x) be a weak D-series of type (α, β) . Then $e_k(f)/M_k(\alpha, \beta) \ \forall k \in \mathbb{Z}^+$.

2. Let f(x) be a D-series of type (α, β) , p a prime, $r \in \mathbb{Z}^+$, and

$$h = \left\lceil \frac{\log r - \log \beta_p}{\log p} \right\rceil.$$

Then $v_n(e_k(f)) = v_n(M_k(\alpha, \beta)) = \beta_n p^r + r$ for $p^r \alpha_n \le k < (p^r + p^h) \alpha_n$.

- 3. Let f(x) be a strict D-series of type (α, β) . Then
 - (i) $e_k(f) = M_k(\alpha, \beta) \quad \forall k \in \mathbb{Z}^+.$
 - (ii) If n is divisible by $N_{k-1}(\alpha)$ then f^n is stable mod x^{k+1} .

Proof. We prove all the statements except Statement 2 by induction on k. They are true for k = 0. Let $k \ge 1$ and assume them to be true for (k - 1). Let $M_k = M_k(\alpha, \beta)$ and $N_k = N_k(\alpha)$.

- 1. Suppose f(x) is a weak *D*-series of type (α, β) and that *n* is divisible by M_k . By the induction hypothesis, $e_{k-1}(f)/M_{k-1}/M_k$ and thus $f(x)^n \in Z[x]$ (mod x^k). It follows from Proposition 3.4 that $v_p T_f(n, k, s) \ge 0$ for all sequences *s* and all primes *p*. Hence $T_f(n, k, s) \in Z$ for all sequences *s* and thus $c_k \in Z$. Hence $f(x)^n \in Z[x]$ (mod x^{k+1}) and thus $e_k(f)/M_k$.
- 3. Suppose f(x) is a strict D-series of type (α, β) and that n is divisible by N_{k-1} . By the induction hypothesis, $e_{k-1}(f) = M_{k-1}$, $d_{n,k-1}(f) = e_{n,k-1}(f)$, and hence $v_p(d_{n,k-1}) = v_p(e_{n,k-1}(f)) = \max(v_p(M_{k-1}) v_p(n); 0)$. Thus $df(x)^n \in Z[x]$ (mod x^{k+1}) iff $v_p(d) \geqslant \max(v_p(M_{k-1}) v_p(n); 0)$ and that $dc_k \in Z_p$ for all primes p. Let us assume therefore that $v_p(d) \geqslant \max(v_p(M_{k-1}) v_p(n); 0)$ for all primes p. By (i) of Proposition 3.4, $dT_f(n,k,s) \in Z_p$ for all sequences s belonging to Case I. If $k \neq 0 \pmod{\alpha_p}$, $dc_k \in Z_p$, and if $k = s\alpha_p$, it follows from (ii) of Proposition 3.4 that $dc_k \in Z_p$ iff

$$v_p(d) \geqslant \max(\beta_p s + v_p(s) - v_p(n); 0).$$

Hence $df(x)^n \in \mathbb{Z}[x] \pmod{x^{k+1}}$ iff

$$v_{p}(d) \geqslant \begin{cases} \max(v_{p}(M_{k-1}) - v_{p}(n); 0) \\ \text{if } k \neq 0 \pmod{\alpha_{p}} \\ \max(v_{p}(M_{k-1}) - v_{p}(n); \beta_{p}s + v_{p}(s) - v_{p}(n); 0) \\ \text{if } k = s\alpha_{p}; \end{cases}$$

i.e., iff $v_p(d) \ge \max(v_p(M_k) - v_p(n); 0)$ in either case.

Hence $v_p(d_{n,k}(f)) = \max(v_p(M_k) - v_p(n); 0)$. Thus $d_{n,k}(f) = 1$ iff $v_p(d_{n,k}(f)) \ge 0$ for all primes p; i.e., iff $v_p(n) \ge v_p(M_k)$ for all primes p and iff n is divisible by M_k . Hence $e_k(f) = M_k$ and thus $v_p(e_{n,k}(f)) = \max(v_p(M_k) - v_p(n); 0) \ \forall n, k \in \mathbb{Z}^+$. It thus follows that if n is divisible by N_{k-1} , $d_{n,k}(f) = e_{n,k}(f)$.

2. Let f(x) be a *D*-series of type (α, β) , $r \in \mathbb{Z}^+$, and p a prime, and put $k = p'\alpha_p$, s = p'. Let s be a sequence belonging to Case II and let $\sigma = s_{\alpha_p} + \cdots + s_k$, $v = \inf_{i \ge \alpha_p} v_p(s_i)$.

Since $s_{\alpha_p} + \cdots + (i/\alpha_p) s_i + \cdots + ss_k = p^r$, it follows that $v = v_p(s) = p^r$ iff $s_{\alpha_p} = p^r$, $s_0 = n - p^r$, $s_i = 0$ for $i \neq 0$, α_p ; i.e., iff $s = s_d$. Thus for $s \neq s_d$, $v < v_p(s) = r$ and

$$v_{p}\left(\frac{n!}{s_{0}! s_{1}! \cdots s_{k}!}\right) = v_{p}\binom{n}{\sigma} + v_{p}\left(\frac{\sigma!}{s_{\alpha_{p}}! \cdots s_{k}!}\right)$$

$$\geqslant v_{p}(n) - v_{p}(\sigma) + v_{p}(\sigma) - v$$

$$= v_{p}(n) - v > v_{p}(n) - v_{p}(s),$$

and hence $v_p T_f(n, k, s) > v_p(n) - (\beta_p s + v_p(s))$ for $s \neq s_d$, and by the same argument as in the strict *D*-case, we prove that

$$v_p(e_{p'\alpha_p}(f)) = v_p(M_{p'\alpha_p}) = \beta_p p^r + r.$$

Now let

$$h = \left\lceil \frac{\log r - \log \beta_p}{\log p} \right\rceil;$$

i.e., h is the greatest integer such that $\beta_p p^h \leqslant r$ and let $p^r \alpha_p \leqslant k < (p^r + p^h) \alpha_p$. Let $p^r \leqslant s \leqslant \lfloor k/\alpha_p \rfloor$, $p^r \leqslant s < p^r + p^h$. Then $s = p^r + p^r u$ for $0 \leqslant t < h$, (p, u) = 1, $u < p^{h-t}$.

$$\beta_{p} s + v_{p}(s) = \beta_{p}(p^{r} + p^{t}u) + t \leq \beta_{p}(p^{r} + p^{t}u) + \beta_{p} p^{t}(p^{h-t} - u)$$
$$= \beta_{p} p^{r} + \beta_{p} p^{h} \leq \beta_{p} p^{r} + r,$$

and hence $v_{\rho}(M_k) = v_{\rho}(M_{\rho' \alpha_{\rho}}) = \beta_{\rho} \, p^r + r$. We deduce from Statement 1 that $v_{\rho}(e_k(f)) \leqslant v_{\rho}(M_k) = \beta_{\rho} \, p^r + r$. Also $v_{\rho}(e_k(f)) \geqslant v_{\rho}(e_{\rho' \alpha_{\rho}}(f)) = \beta_{\rho} \, p^r + r$. Hence $v_{\rho}(e_k(f)) = \beta_{\rho} \, p^r + r$. Q.E.D.

Remark 1. Statement 3(ii) of Theorem 3.5 yields much more information on the stability of strict D-series than the one given by Lemma 2.2, which of course is valid for arbitrary rational series.

Remark 2. One can define a rational D-series to be strict at a prime p and prove a local version of Statement 3 of Theorem 3.5 to the effect that if f(x) is a rational D-series of type (α, β) strict at a prime p then

- (i) $v_p(e_k(f)) = v_p(M_k(\alpha, \beta)) \ \forall k \in \mathbb{Z}^+.$
- (ii) If *n* is divisible by the *p*-primary component of $N_{k-1}(\alpha)$ then $v_p(d_{n,i}(f)) = v_p(e_{n,i}(f))$ $(1 \le i \le k)$.

4. APPLICATIONS

LEMMA 4.1. $(e^x - 1)/x$ is a D-series of type (α, β) where $\alpha_p = p - 1$ and $\beta_p = 1$ for all primes p.

Proof.
$$(e^x - 1)/x = 1 + \sum_{n=1}^{\infty} x^n/((n+1)!)$$
.
 $v_p(n+1)! = 0$ for $n+1 < p$; i.e., for $n < p-1$
 $v_p(n+1)! = 1$ for $n+1 = p$; i.e., for $n = p-1$.

Let $n+1=\sum_{i=0}^k a_i p^i$, $0 \le a_i \le p-1$ and $a_k > 0$. Then by [2, Lemma 3.1],

$$v_p(n+1)! = \frac{n+1-\sum_{i=0}^k a_i}{p-1} \le \frac{n}{p-1}$$

and thus $v_p(n+1)! \le \lfloor n/(p-1) \rfloor$, which shows that $(e^x - 1)/x$ is a rational D-series of type (α, β) where $\alpha_p = p-1$ and $\beta_p = 1$. Q.E.D.

PROPOSITION 4.2. Let $M_k = M_k(\alpha, \beta)$ for $\alpha_p = p - 1$ and $\beta_p = 1$. Then

- 1. $e_k(x/(e^x-1)) = e_k((e^x-1)/x)/M_k, \forall k \in \mathbb{Z}^+.$
- 2. Let p be a prime, $r \in \mathbb{Z}^+$, and $h = \lfloor \log r / \log p \rfloor$. Then

$$v_p\left(e_k\left(\frac{x}{e^x-1}\right)\right) = v_p\left(e_k\left(\frac{e^x-1}{x}\right)\right) = v_p(M_k) = p^r + r$$

for $p'(p-1) \le k < (p'+p^h)(p-1)$.

Proof. The results for $(e^x - 1)/x$ are immediate consequences of Lemma 4.1 and Theorem 3.5, and those for $x/(e^x - 1)$ follow from those for $(e^x - 1)/x$ since $e_k(x/(e^x - 1)) = e_k((e^x - 1)/x)$. Q.E.D.

PROPOSITION 4.3. Let $M_k = M_k(\alpha, \beta)$ for $\alpha_p = p - 1$ and $\beta_p = 1$ and let $\overline{M}_k = \prod_{p \text{ odd}} p^{v_p(M_k)}$ be the odd part of M_k . Then

- 1. $e_k(x/\sin x) = e_k(\sin x/x) = 2\bar{e}_k$, where \bar{e}_k/\bar{M}_k .
- 2. Let p be an odd prime, $r \in Z^+$, and $h = [\log r/\log p]$. Then $v_p(e_k(x/\sin x)) = v_p(e_k(\sin x/x)) = v_p(M_k) = p' + r$ for $p^r(p-1) \le k < (p' + p^h)(p-1)$.

Proof. $\sin x/x=1+\sum_{n=1}^{\infty}\left((-1)^n\,x^{2n}/(2n+1)!\right)$. As in the proof of Lemma 4.1, $v_p(2n+1)!\leqslant \lfloor 2n/(p-1)\rfloor$ and it thus follows that $\sin x/x$ is a weak D-series of type (α,β) where $\alpha_p=p-1$ and $\beta_p=1$. We deduce from Theorem 3.5 that $e_k(\sin x/x)/M_k$. $e^{2ix}=1+\sum_{n=1}^{\infty}\left(2^ni^nx^n/n!\right)$. If we expand $n=\sum_{j=0}^k2^ja_j$ for $a_j=0$, 1 then $v_2(n!)=n-\sum_{j=0}^ka_j$ by $\lfloor 2, \text{Lemma 3.1} \rfloor$ and thus $v_2(2^n/n!)=n-v_2(n!)=\sum_{j=0}^ka_j>0$. Hence $2/1-e^{2ix}$ or, equivalently, $(1-e^{2ix})/2\in Z_2[\![x]\!]$. It thus follows that $\sin^2x=(1-\cos 2x)/2\in Z_2[\![x]\!]$ or $(\sin x/x)^2\in Z_2[\![x]\!]$. Hence $v_2(e_k(\sin x/x))=1$; i.e., $e_k(\sin x/x)=2\bar{e}_k$ where \bar{e}_k/\bar{M}_k . Statement 2 for $\sin x/x$ follows from Theorem 3.5 and the Proposition for $x/\sin x$ follows from that for $\sin x/x$ since $e_k(x/\sin x)=e_k(\sin x/x)$.

5. THE GROUP $D(\alpha, \beta; k)$

For each prime p let α_p , $\beta_p \in Z^+$ and $\alpha = (\alpha_p)$ and $\beta = (\beta_p)$ and let $\tilde{D}(\alpha, \beta)$ be the set of weak D-series of type (α, β) .

Observation 5.1. $\tilde{D}(\alpha, \beta)$ is a group.

Proof. Let f(x), $g(x) \in \widetilde{D}(\alpha, \beta)$ and h(x) = f(x)/g(x). Let $f(x) = \mp 1 + \sum_{i=1}^{\infty} a_i x^i$, $g(x) = \mp 1 + \sum_{j=1}^{\infty} b_j x^j$ $(a_i, b_j \in Q)$, $h(x) = \mp 1 + \sum_{k=1}^{\infty} c_k x^k$. We prove by induction on k that $v_p(c_k) \geqslant -\beta_p [k/\alpha_p]$. It is true for k = 0. Let $k \geqslant 1$ and assume it to be true for (k-1). f(x) = g(x) h(x) and, equating coefficients, $a_k = \mp b_k + b_{k-1} c_1 + \cdots + b_1 c_{k-1} \mp c_k$, $v_p(a_k) \geqslant -\beta_p [k/\alpha_p]$, $v_p(b_i) \geqslant -\beta_p [i/\alpha_p]$, and by the induction hypothesis $v_p(c_{k-1}) \geqslant -\beta_p [(k-i)/\alpha_p]$ $(1 \leqslant i \leqslant k)$, and thus $v_p(b_i c_{k-1}) \geqslant -\beta_p [i/\alpha_p] - \beta_p [(k-i)/\alpha_p]$.

Thus $v_p(c_k) \ge -\beta_p[k/\alpha_p]$ and hence $h(x) \in \widetilde{D}(\alpha, \beta)$. Q.E.D.

 $\tilde{D}(\alpha,\beta)$ contains $Z^*[x]$. Let $D(\alpha,\beta)$ be the quotient group, $D(\alpha,\beta)=\tilde{D}(\alpha,\beta)/Z^*[x]$. Let $\tilde{D}(\alpha,\beta;k)$ be the image of $\tilde{D}(\alpha,\beta)$ under the quotient map $Q[x]\to Q[x]/(x^{k+1})$. Then $\tilde{D}(\alpha,\beta;k)$ contains $Z_{k,X}$ which is the group of units of $Z[x]/(x^{k+1})$. Let $D(\alpha,\beta;k)$ be the quotient group $D(\alpha,\beta;k)=\tilde{D}(\alpha,\beta;k)/Z_{k,X}$. Then $D(\alpha,\beta;k)$ is a finite subgroup of $M_k=Q_{k,X}/Z_{k,X}$. For each prime p let α^p , β^p be the vectors defined by $\alpha_p^p=\alpha_p$, $\beta_p^p=\beta_p$, $\alpha_p^p=\beta_p^p=0$ for $p'\neq p$. Then the p-summand of the finite abelian group $D(\alpha,\beta;k)$ is $D(\alpha^p,\beta^p;k)$ and the latter can be shown to have order $\prod_{k'\leq k}p^{\beta_p}[k'/\alpha_p]$.

PROPOSITION 5.2. The highest invariant of $D(\alpha^p, \beta^p; k)$ is $p^{v_p(M_k(\alpha, \beta))}$.

Proof. By Statement 1 of Theorem 3.5, the order of every element in $D(\alpha^p, \beta^p; k)$ divides $p^{v_p(M_k(\alpha, \beta))}$, and $D(\alpha^p, \beta^p; k)$ contains strict *D*-series of type (α^p, β^p) whose orders, by Statement 3(i) of Theorem 3.5, are equal to $p^v p^{(M_k(\alpha, \beta))}$. Thus the cyclic subgroups in the decomposition of $D(\alpha^p, \beta^p; k)$ of highest order have order $p^{v_p(M_k(\alpha, \beta))}$.

It is of interest to determine the groups $D(\alpha, \beta; k)$ completely.

6. RATIONAL D-SERIES WITH RESPECT TO THE STAR-PRODUCT

Let $Q^{(1)}[\![x]\!] = xQ[\![x]\!] = (f(x) \in Q[\![x]\!]/f(0) = 0)$. We can define on $Q^{(1)}[\![x]\!]$ a commutative product called the star product by the equation $x^i * x^j = x^{ij}$; i.e., if $f(x) = \mp x + \sum_{i=2}^{\infty} a_i x^i$, $g(x) = \mp x + \sum_{j=2}^{\infty} b_j x^j$ $(a_i, b_j \in Q)$, then $f(x) * g(x) = \mp x + \sum_{k=2}^{\infty} c_k x^k$ where $c_k = \sum_{ij=k} a_i b_j$. Let $Q_*^{(1)}[\![x]\!] = (f(x) \in Q^{(1)}[\![x]\!]/f'(0) = \mp 1$). Let $Z_*^{(1)}[\![x]\!]$ and $Z_*^{(1)}[\![x]\!]$ be similarly defined. Let $Q_{k,X}^1$ be the image of $Q_*^{(1)}[\![x]\!]$ under the quotient map $Q^{(1)}[\![x]\!] \to Q^{(1)}[\![x]\!]/(x^{k+1})$ and $Z_{k,X}^1$ the image of $Z_*^{(1)}[\![x]\!]$ under the quotient map

 $Z^{(1)}[x] \to Z^{(1)}[x]/(x^{k+1})$. Let e_k^* be the algebraic order in the quotient group $M_k^* = Q_{k,X}^{(1)}/Z_{k,X}^{(1)}$.

We can define rational *D*-series with respect to the star product and all our results have their counterparts in this new setting.

DEFINITION 6.1. For each prime p let α_p , $\beta_p \in Z^+$, $\alpha = (\alpha_p)$, $\beta = (\beta_p)$. $f(x) = \mp x + \sum_{k=2}^{\infty} a_k x^k \in Q_*^{(1)} \llbracket x \rrbracket$ is called a rational D^* -series of type (α, β) iff $v_p(a_{\alpha_p}) = -\beta_p$ and $v_p(a_k) \geqslant -\beta_p [\log k/\log \alpha_p]$ for $k \neq \alpha_p$. Similarly, f(x) is called a strict D^* -series of type (α, β) iff

$$v_p(a_{\alpha_p}) = -\beta_p$$
 and $v_p(a_k) > -\beta_p \left[\frac{\log k}{\log \alpha_p} \right]$ for $k \neq \alpha_p$.

f(x) is called a weak D^* -series of type (α, β) iff $v_p(a_k) \ge -\beta_p [\log k/\log \alpha_p]$ $\forall k \in \mathbb{Z}^+$.

DEFINITION 6.2. For each prime p, let α_p , $\beta_p \in Z^+$ and $\alpha = (\alpha_p)$, $\beta = (\beta_p)$. The numbers $M_k^*(\alpha, \beta)$ and $N_k^*(\alpha)$ are defined by

$$v_{p}(M_{k}^{*}(\alpha, \beta)) = \sup(\beta_{p}r + v_{p}(r)), \qquad v_{p}(N_{k}^{*}(\alpha)) = \sup(1 + v_{p}(r)),$$

$$1 \le r \le \left\lceil \frac{\log k}{\log \alpha_{p}} \right\rceil \qquad \qquad 1 \le r \le \left\lceil \frac{\log k}{\log \alpha_{p}} \right\rceil$$

and with this terminology the analogue of Theorem 3.5 is the following

THEOREM 6.3. 1. Let f(x) be a weak D^* -series of type (α, β) . Then $e_k^*(f)/M_k^*(\alpha, \beta)$.

- 2. Let f(x) be a D^* -series of type (α, β) , p be a prime, $r \in Z^+$, and $h = [(\log r \log \beta_p)/\log p]$. Then $v_p(e_k^*(f)) = v_p(M_k^*(\alpha, \beta)) = \beta_p p^r + r$ for $\alpha_p^{p^r} \le k < \alpha_p^{p^r} + p^h$.
 - 3. Let f(x) be a strict D^* -series of type (α, β) . Then
 - (i) $e_k^*(f) = M_k^*(\alpha, \beta), \quad \forall k \in \mathbb{Z}^+.$
- (ii) If n is divisible by $N_{k-1}^*(\alpha)$ then $f^n = \underbrace{f * f * \cdots * f}_n$ is stable mod x^{k+1} .

REFERENCES

- M. F. ATIYAH AND J. A. TODD, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342–353.
- G. BACHMANN, "Introduction to p-Adic Numbers and Valuation Theory," Academic Press, New York, 1964.