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A duality is established between left and right ideals of a finite dimensional
Grassmann algebra such that if under the duality a left ideal J and a right ideal J
correspond then 3 is the left annihilator of J and J the right annihilator of <.
Another duality is established for two-sided ideals of the Grassmann algebra where
two ideals that correspond are annihilators of each other. The dual of the principal
ideal generated by an exterior 2-form is completely determined.  © 1996 Academic
Press, Inc.

INTRODUCTION

In a finite dimensional Grassmann algebra we define the left (right)
annihilator of a right (left) ideal as the set of elements whose products on
the left (right) with elements of the ideal are zero and it is a left (right)
ideal. Theorem 1.1.5 establishes a duality between left and right ideals of
the Grassmann algebra such that if under the duality a left ideal ¥ and a
right ideal J correspond then ¥ is the left annihilator of J and J is the
right annihilator of . We define the annihilator of a two-sided ideal to be
the intersection of its left and right annihilators and it is a two-sided ideal.
Theorem 1.2.3 establishes a duality between two-sided ideals of the Grass-
mann algebra such that if under the duality two ideals correspond then
they are annihilators of one another. We define an ideal to be proper if its
left and right annihilators coincide and are equal to its annihilator and
prove that a homogeneous ideal is proper.

A knowledge of the annihilator K(3J) of an ideal 3 enables us to
characterize I by means of exterior equations. If k, ...k, are generators
for K(I)then I ={vce AV |t Ak, = - = Ak, = 0}. For this reason
we compute the annihilator of the ideal generated by a linearly indepen-
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dent set of vectors in the underlying vector space and relate it to the
factorization problem of an exterior form into a wedge product of k
vectors and an exterior form. The second section of the paper is devoted to
the determination of the annihilator of the principal ideal generated by an
exterior 2-form. As a consequence given a 2-form w and a form o, we
obtain a system of exterior equations whose satisfaction by » is a neces-
sary and sufficient condition for « to factor into w = 7 A u for some
exterior form 7. The global version of this factorization problem is briefly
discussed.

1. ANNIHILATORS OF IDEALS IN THE GRASSMANN
ALGEBRA

1.1. Left and Right Annihilators

Let I be an n-dimensional vector space over a ground field k& with dual
space V* and AV =& _, A’V and A= AV*= " APV* the
corresponding Grassmann algebras.

1.1.1. DerFINITION. Let ¥ be a right ideal. Then K, (3) ={k e AV |
k A v=0 V. e 3} is defined to be the left annihilator of J. It is readily
verified that K, () is a left ideal. The right annihilator K,(J) of a left
ideal J is analogously defined and is a right ideal.

1.1.2. Left and right duality operators. Let x € AVand L.: AV —> AV
be left multiplication by x and 8-: A*V — A*V be its dual and let
Qe A"V* be a fixed dual volume element. We then define the left
duality operator #-: AV — A*V by =-(x) = §-(Q). If (,) is the dual
pairing between AV and A*V then (u, =" (x)) = (x Au, Q) Vx,u € AV.

If {el,... } is the basis for V7, {ef,..., e’} the dual basis for A*V,
{e; n- ;10 <i; <i, < -+ <i, <n}the induced basis for A} and
{e1 A A e* |0 <i; <i, < -+ <i, <n} the corresponding dual basis
for /\*V and if Q=ef A Aef, it can be verified that (e, A

e, N Ne; )—( 1)%n ”e* A /\ ej . where (iJz -+ Ju-p) is the set
of complementary indices and o= (z1 i,y J,—p) is @ permutation of
(12 ... n). =% is thus an isomorphism. We can also define the right
duality operator R using the right multiplication R, instead of Lx and
obtain analogous equations (u, xR (x)) = (w A x, Q) and =R(e; A -

e; ) =(=D¥"7ef A Aef whereT=(ji...j,_,i...0,)isa permuta—
tion of (12 ... n) We note that sgn 7= (—1)P"~Psgn & and hence if e:
AV - A V is the automorphism of A 1V defined by €| »y = (—1)P" =P
then =R L R

= sl oeand #- = xR oe.
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1.1.3. PROPOSITION. Let I be a right ideal. Then
(i) dim K (J) + dim ¥ = dim AV = 2"

(iii)  There exist commutative diagrams

rest.” rest.”

/\V—> AV — 3* /\V—> AV — K¥(J)

AV/K(J) AV/I

Proof. Leti: I c AV and j: K (J) c AV be the inclusions and i*:
AV = KF(I) and j*: A*V — K¥(3J) be the restriction maps. Since -
is an isomorphism and i* is onto it follows that the composite i*o %t is
onto. u € Ker(i*e =) iff (x, *"(u)) =(u Ax,Q)) =0Vx e, which
clearly shows that K, (3J) c Ker(i*o =) and if u ¢ K, (J) then there

exists x € J such that u A x # 0. Let us choose a basis {e,,...,e,} for I
and express u A x = XA, Ly A . Since u A x # 0 it follows that
A, .., # 0 for some (zl,.. i ) Let (]1,...,jn ,) be the set of comple-

mentary indicesand 7 =e¢; A -+ Ae; .Then y =x A TeE Jsince I isa
right ideal and (y, = S (w) = (u Ax A Q) = ..i, # 0 and this gives
a contradiction. Hence Ker(x" «i*) = K,(J) and thls proves the first part
of (iii). If we take dimensions of both sides under the isomorphism,
AV/K (J) = I* we obtain (ii). By reasoning analogous to that used to
prove the first diagram we deduce that J c Ker(j*o xR ) = K (K, (J))
and we obtain an isomorphism AV/Kg(K () > K{(J). Hence
dim Kg(K (J) + dim K, (3) = dim AV = dim K (J) + dim I by ().
Thus dim Kg(K,(3)) = dim I and this gives equality, i.e., Kg(K (J)) =
¥, which proves both (i) and the second diagram in (iii).

1.1.4. PROPOSITION. Let I be a left ideal. Then

(i) dim Kx(J) + dim J = dim AV = 2"
(iii)  There exist commutative diagrams

rest.” rest.”

/\V—> AV — I* /\V—> A*V — KE(S)

AV /K () AV/S
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Proof. ldentical with that of Proposition 1.1.3.

1.1.5. THEOREM. There exists a duality between left and right ideals of the
Grassmann algebra such that if under the duality a left ideal I and a right
ideal J correspond then S = K (J) and J = Kg(3J).

Proof. Let A4 and B be the set of left and right ideals of the Grass-
mann algebra, respectively. We define mappings T: A - Band U: B - A
by T(3) = Kx(I) VI €4 and U(J) = Kx(J) VJ € B. Then TU = 1 by
Proposition 1.1.3 and UT = 1 by Proposition 1.1.4.

1.1.6. COROLLARY. Let 3 be a two-sided ideal. Then the automorphism
e: NV — AVinterchanges K () and Kg(3).

Proof. Let i: 3 c AV be the inclusion and i*: A*V — J* be the
restriction maps. Then by Propositions 1.1.3 and 114, K (3J) =
Ker(i*o == o €) = e[Ker(i*o R ] = (K (J)).

1.2. The Annihilator of a Two-Sided Ideal

From now onward when we say ideal we shall mean a two-sided ideal.

1.2.1. DerINITION. The annihilator K(3J) of an ideal I is defined by
K(3) = K (J) N Kx(J).

1.2.2. PROPOSITION.

()  K() is an ideal left invariant under the automorphism e.
(i) K(K(I) = 3.

Proof.

(i) Let k€eK(JI), we AV,and x € J. Then (w A k) Ax = o A
(k Ax)=0since k € K(J) and hence w A k € K (J). Also, x A (0 A
k)=(xAw) ANk=0since x A w e I and k € Kg(J) and thus o A k
€ Kx(3J). Hence w A k € K (J) N Kx(J) = K(I). This shows that K(J)
is a left ideal. Similar argument shows that K(3) is also a right ideal.
Hence K(3) is an ideal. The fact that € leaves K(3) invariant follows
from Corollary 1.1.6.

(i) K(K(JI)) = K (K(JI) N Kg(K(I)) € K (Kg(JI)) N
Kr(K (3)) =3 NI =7, by Propositions 1.1.3 and 1.1.4 the other inclu-
sion trivially holds, and hence we have equality, i.e., K(K(J)) = 3.

1.2.3. THEOREM. There exists a duality among ideals of the Grassmann
algebra. Two ideals that correspond under this duality are annihilators of each
other.
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Proof. Let S be the set of ideals of the Grassmann algebra and define
a mapping ¢: S = S by ¢(JI) = K(I) VI € S. Then, ¢? = 1 by Proposi-
tion 1.2.2.

The annihilator K() of an ideal I will be called the dual ideal of 3.
This is not to be confused with the vector space dual I* of .

1.2.4. DeFINITION.  An ideal J is called proper iff K(J) = K (J) =
KR(3). Note that if an ideal is proper then dim K(J) + dim 3 = dim A
V=2"

1.2.5. OBSERVATION. A necessary and sufficient condition for an ideal
J to be proper is that the automorphism e leave either K () or Kx(3)
invariant.

Proof. 1t follows from Corollary 1.1.6.
1.2.6. OBsERVATION. If an ideal J is proper so is K(J).

Proof. K (K(J)) = K (Kg(J)) =3 and Kg(K(3J)) = Kg(K (JI)) =
3 by Propositions 1.1.3 and 1.1.4 and thus K (K(3J)) = Kx(K(J)) = 3.

12.7. LEMMA. Let 3, and I, be proper ideals. Then I, N 3, and
3, + 3, are also proper and

() K3, N3, =K, + K(S,)
() K3, +3,) = K(3,) N K(,).

Proof. Let k; e K(I) (i =1,2), k=k, +k,, eI, NJ, Then . €
3, and k; A v=0 and similarly k, A « = 0. Hence k A « = 0 and thus
ke K (3, N3,). Hence 1. K(J,) + K(J,) € K (J; N J,). Replacing
J; by K(3,) (i = 1,2) and using Proposition 1.2.2 we obtain J; + J, C
K (K(J,) N K(J,)). Taking dimensions of both sides gives dim J; +
dim J, — dim(3; N J,) < 2" — dim[K(3J,) N K(J,)], ie, 2" —
dim(3;, N J,) < 2" — dim J,) + 2" — dim J,) — dim[K(J,) N
K(3,)], dim K;(3; N J,) < dim K(J,) + dim K(J,) — dim[K(J,) N
K(3,)], and dim K,(3; N J,) < dim[K(3J,) + K(3,)]. We deduce from
this and inclusion 1 that K(J,) + K(3J,) = K, (3, N J,). Similarly K(J,)
+ K(3J,) = Kg(3; N J,) and hence I, N3, is proper and K(J,) +
K(3,) = K(3, N 3,), which proves (i). Replacing J; by K(J3,) (i = 1,2)
and taking K of both sides yield (ii).

1.2.8. OBSERVATION. If an ideal J is multiplicatively generated by
generators which lie in A (V) = @/ A% I/ then 3 is proper.

Proof. Let g; € A® (V) be the multiplicative generators (1 <i < r). If
ke K(3), ggNk=kANg =01 <i<n)since g lies in the center of
AV and thus k € Kx(J). Hence K, (J) € Kx(J) and the reverse inclu-
sion symmetrically follows.
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1.2.9. LEMMA. A homogeneous ideal is proper and its dual ideal is also
homogeneous and proper.

Proof. Let I be a homogeneous ideal. Then I = &_ 3, where
JS,=3NANV. Let k=Y ok, €K (J)fork,e A’V and x, €3,
Then 0 =k Ax, = X)_ok, Ax, and since AV = @&_ AV is a direct
sum decomposition, it follows that k, A x, = 0. Varying x, over Sq for
all 0 < g <n we see that k, € K (J) and K,(3) is thus a homogeneous
ideal. The automorphism e hence leaves K, (%) invariant and hence J is
proper by Observation 1.2.5. K(3J) = K,(3J) is homogeneous and hence
also proper.

1.2.10. Remark. Proposition 1.2.2 enables us to characterize proper
ideals of the Grassmann algebra by means of exterior equations. Suppose
J is a proper ideal and K(3) is multiplicatively generated by generators
ki, ..., k,. Then by (ii) of Proposition 1.2.2, S={we AV | oAk, ==
w A k, = 0}. This if course presupposes that K(J) is known. The determi-
nation of K(J) may be a formidable problem, as we shall see in Section 2.

1.2.11. LEMMA. Let 0 = x € V. Then K[(x)] = (x).

Proof. Let U be a complementary subspace in V' to the 1-dimensional
subspace generated by x. There is an isomorphism, AU S (x) given by
A —>x AA. Thus dim(x) =dim AU = 2""1 Clearly (x) < K[(x)] and
dim K[(x)] = 2" — dim(x) = 2" — 2"~ = 2""1 Hence dim K[(x)] =
dim(x) and thus K[(x)] = (x).

1.2.12. CorROLLARY. Let 0 #x € Vand w € AV. Then w = 7 A x for
someT€ AViff o Ax=0.

1.2.13. PrRoPOSITION.  Let {x;,...,x,} be a linearly independent set of
vectors in V. Then K[(xy, ..., x )l = (x; A =+ A xp).

Proof. Let U be a complementary subspace in I to the k-dimensio-
nal subspace generated by x,,...,x,. Then there is an isomorphism,
AU S (x; A - Axp)givenby A - x; A == Ax, A A and thus dim(x; A
- Ax,)=dim AU =2""% Also we have a direct-sum decomposition,
AV =AU® (x; A -+ Axy) and hence dim(x; A -+ Ax,) =2" — 2"k
Clearly (x; A - Ax,) CK[(x; A - Axp] and dim K[(x; A - Ax,)] =
2" —dim(x; A - Axy) =2" =25 =dim(x; A - Axy). Thus K[(x; A
e Ax I = (g A Axy).

1.2.14. CoROLLARY. Let {xy,...,x,} be a linearly independent set of
vectors in Vand w € AV. Then w =1 Axy A - ANx; for some 1€ AV
ffx,Now=...=x, AN w=0.

As a further corollary we recover [1, Theorem 1], e.g.,
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1.2.15. THEOREM. Let w € AV and R,: ANV — AV be right multipli-
cation by w. Then o factors into the wedge product of k l-vectors and an
exterior form iff dimKer R > k.

1.3. Abelian Ideals

1.3.1. DerINITION. A proper ideal J is called an abelian ideal iff
J C K().

1.3.2. DEfFINITION. An abelian ideal J is called a maximal abelian
ideal iff I = K(3J). Note that the dimension of a maximal abelian ideal is
%dim AV =201

1.3.3. Types of maximal ideals

Let {e,,...,e,} be a basis for V' and I = @ _, A’V the unique
maximal ideal of AV. Let J, = (e, ...,e,,_,) be the ideal in AV
multiplicatively generated by e,,...,e,,_, (1 <k < [(n + 1)/2]). Then its
kth-power, J% is a maximal abelian ideal. Jf and its images under
automorphisms of 1V are called maximal abelian ideals of type k. Two
maximal ideals of types k and [ are isomorphisms iff k = [. Thus classes of
different types of maximal abelian ideals form the non-isomorphic classes
of maximal abelian ideals in A V. Also, 3% = U, c auir, 7(I).

2. THE DUAL OF THE PRINCIPAL IDEAL GENERATED
BY AN EXTERIOR 2-FORM

2.1. The Principal Ideal ()

Let u be an exterior 2-form in V. Since u € A® (V), it follows from
Observation 1.2.8 that the principal ideal () generated by w is a proper
ideal.

2.2. The Ideal 6( )

Suppose rank( ) = 2s. Then there exists a linearly independent set
{x;,..., %, y5,...,y of vectorsin V' such that w =x; Ay, + - +x, Ay,
Define w; =x; Ay, 1 <j<n) so that uw = p; + -+ +u,. Then
(i = p) ACpy + p)) = Cuy + p) A (py — py) = 0 and

e I . L
(.,ul.. - ,uj). = —2m A py = 2x§ AV NXj A Y Takg all possml.e partitions
Gpjp) G j Xkyky kg _p,), iy < A<k <r), iy < oo <y kg < oo
<k, ,, forall 0 <r</[s/2] and let 6( ) be the homogeneous ideal
multiplicatively generated by generators g, = (p; — p;) A (e, — p;)

J2
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A ANQug, = ) Ao A Ao in ATV, where o s either x,or
Vi, (1 <j<s—2r). 6( M) is a homogeneous ideal and is thus proper by
Lemma 1.2.9. Also, 6( ) < K[( w)].

2.2.1. LEMMA. Every element o € 6( ) has an expression of the form

®=2 A A&
for A, € AV.
Proof. Every element o € 0(u) by definition has an expression o =
Zaaa/\ga/\ba’ a? ae /\V ga (/‘Ltl )/\(I‘Liz_:u’jz)/\‘“/\

(i = i) ANog A Ao . Let b, =X, o1, ,, where 7, , € APV,
Then Gu N Ty, = (= 1)1’(“2’)7- » A&, Define b, = L _(=1)PC~2r
Then g, Ab,=X) 08 A Top —Z( 1re- Zr)a Ng,=b,Ng, and
hence a, A g, ANb, =a, N D, /\ga Putting A, = a, A D), yields the re-
sult.

2.2.2. Equivalence classes of generators

We define an equivalence relation on the set of generators. Let g, =
Cogy = ) A gy, = ) A e Ay, = ) A A s Ay, and gy =
Cor, = ) A Qi = ) Ao A Qi = ) Ay A Ay, be two
generators Then g, ~g, iff r=1 (ij; - i;j;) is a permutation of
(iyjy -+ i,j,), ki =k; and iy = Uy, (1 <j <s —2r). The equivalence
classes are denoted by Ay, ,uk o ) for 0 <r <[s/2] and v, I
either X, OF Y. If s is even, A(¢) denotes the equivalence class of
generators, ga = (py, =) A Qo — ) A A (g, e T M, /2) Let

Ay vy, - ,) be an equivalence class and let u,, be the comple-
ment of Uk in the 'set ooy ien {og,ue ) = (g, v} A<j<s—2r).
Then A(ukl, Up,o - oo uk.\»z;-) is called the “dual” class of
A(Ukl’ Ukz’ Tt Uk;—Zr

2.23. LEMMA. Let g, and gg be two generators for (). If their
equivalence classes are not dual then g, \ g = 0.

Proof.  Since g, and g, do not belong to dual equivalence classes there
exists k; such that WLG x, |g, but y, + gz If x; |g, then obviously
8« N g = 0. Suppose there exists k, # k; such that (u, — )| g Thus
8. N gp contains x, A (py — py,) = —x; Ay, as a factor. If g, has
either x,, or y, at the k,th-place then g, A g, contains the wedge
product of this with x, A w, , which is zero and hence g, A g5 = 0. So let
us assume WLG that there exists k, # k, such that g, contains (u, —
m,) as a factor. Then g, A g contains —x, A py A (g — py ) =
X, A My, N\ py, as a factor, which would be zero if ky = k;. We thus
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assume that (kq, k,, k3) are all distinct. Continuing in this manner, we find
either that g, A g, = 0 or that there exist distinct integers ky, k,, k3, ...
such that g, = x;, A (i, = me) A Gy, = i ) A = g = Qg — ) A
Mk, — M) A ... and this is a contradiction since deg(g,) # deg(g,).

2.2.4. LEMMA. Let V be a vector space with basis {e,, . .., e,}. Define the
isomorphism ¢: V — V* by ¢(e;) = e¥, where ef is the dual of e;. If U C V
is any subspace of V then the composite map . U C V —¢ V* St [* g
an isomorphism.

Proof. Let {u,,...,u,} be a basis for U (m < n) and express u; =
i ja;e; (1 <i <m), where A =(a;) is an (m X n)-matrix with linearly
independent rows and has rank m. Let A" be the transpose of A. Then
B = AA" is a non-singular (m X m)-matrix. Let B = (b;;). Then (u,Xu,)
= (Ckowape )Xo a,e) = Ti_qaygay = by, ie, ¢lu) = Tl bjuf.
Since B is nonsingular, it follows that {¢(x,)} is a linearly independent set
and hence is a basis for U*. Thus ¢ is an isomorphism.

2.25. DEFINITION.  Let V' ={x;,y;,..., X,,, ¥,,) be a 4n-dimensional
vector space. w; =x; Ay; (1 <j <2n). Let T be the subspace of A*"V
spanned by {Cu; — ) A (py — ) A A Q= b 0 < (U<
k<n), ij< - <i,as (i, j)i,, j,) - (,, j,) runs through the set of
(2,2,...,2) partitions of (1,2,...,2n). Define K, (T)={tT|t At =
0Vt eT}.

2.26. LEMMA. K,(T) = 0.

Proof. Let ¢: V — V* be defined by ¢(x,) = xF and ¢(y,) = y* and
A ¢ AV — A*IV be the induced map which maps the induced basis for
AV into the dual basis for A*V. Let «: AV — A*V be the (left) duality
operator. Then an easy computation shows that

* [{( M — Mjl) A A (/J'i,, - Mj,,)}]
= FAD[{(m, = ) A Ay — )} (D)
Let «: T C AV be the inclusion and *: A*)V — T* be the restriction

map. Define a, : T = T*by a = t*o*x o and y = *o ¢ o 1. Applying o*
to Eq. (1) yields

a[{( M — Mjl) AN (l"“i,, - p‘jn)}]
= $l!/[{( M — Mjl) A A (l“i,, - 'U“/'n)}]' (2)

a maps K,(T) to zero. However, ¢ is an isomorphism by Lemma 2.2.4
and thus « is an isomorphism by Eq. (2). Hence K (T) = 0.
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2.2.7. Remark. Let U {x y} (1 <j <s)andlet U be a complemen-
tary subspace to U, @ U2 - @ U, in V. In the following proposition we
shall regard pu; + w, + - +u,_ , € N2(U, 0o U,® - ® U_, ® U) and
O(py +py + - F+pu,_Dc AU, 08U, ® - U_, ®U) and similarly
for the other terms.

2.2.8. PROPOSITION.  O( ) N K(O(w) = 0y + - +p,_,) ® A2U, +
OCuy + - gy + ) ® AU+ +0(p, + - +p) @ AU,

Proof. Let ge€ 0(u, + - +p,_,) ® A*U. Then g=g, A u, for
g, € H(Ml +o ) 8 = (g — ) A A (py — M,,)
A /\ Us_1_0,, Where 0 <r <|[(s — 1)/2] and  (iy j,)ipjy) - (1,13
(k k,_,_,)isa partltlon of (12 s —1).g=g, AN, = g, AX, A
ys = +xs A (“’11 - M’]l) A A (er :u’jr) A Ukl A A Us—Zr /\ys €
6(w), hence RHS < LHS.

Conversely, let g € 6(u) N K(6(w)). By Lemma 2.2.1 we can write

g§=2a,Ng, = by > Ay A gy
a Ay, Vg Uk, 5) 8a €Ak, Uy Uk, )
Fix an equivalence class A(ukl, Uk - ) of generators and let
ACuy ... u; ) be the “dual” equwalence class and let g, €

Ay, uy,, - uk . ). Then 8a N8 =0Vg, & Ay, vy ,...,0, ) by
Lemma 2.2. 3 Then

0=g/\g3= Z aa/\ga/\gﬁ (1)

8a €AV, Vg Vg, )

Let (iy,iy,...,05), 1 <i, <i, < -+ <i, <s, be the complementary in-
dices to (ky, ky,...,k,_,,) in (12 ... 5). Let W be the 4r-dimensional
subspace of V' spanned by {x, yiu--"xizu Vb wp =X Ay € NW
(1 <j<2r). Let T be the subspace of A* W generated by {Cpy, —
M) A o Ay = )} as (imy) ... (Im,) runs through the set
(2,2,...,2) partitions of (iy,i,,...,i,,). Then g, =t, A vy A= Ay
and gg=tg Auy A Auy, for some ta,tB € T. Define Q' = v,

é EEERVAN Uk572' AN ukl VANREREWAN uk372V = +xk1 /\yk /\ka 2 yk =
Fg A B, A A g . Then g, Agg=1, A tB A Q' and define
= Fx;, Ay, A /\xl2 /\yl = Fu AW, “A . Then 1, Aty =

n,g " for unique integers n «p- The matrlx (naﬁ) is non- smgular by
Lemma 2.2.6. Define Q=Q" AQ" =x, Ay, A AXy, AVy, = g A
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Mo Ao A g, Then g, A gz = n,z €. Substituting into Eq. (1) yields

Since the matrix (n,4) is non-singular, we deduce that a, A ) =0 Vg, €

Aoy, vp,, 0, ), 18, G, /\xl/\y1 ~/\x2,/\y2,=0 It follows
from Proposmon 1.2.13 that A, =a, 1 NXy+a, ANy, + - +a,, A
2r ¥ oo NV, Then a, Ag, = (aa,l NXy+ay Ay + o ta, A

Xop + o0 ANYa) Ay = ) A e A (Mz, = M) AU AN A

Take the term x; A (py — p, ) Ao Ay = ) A A ses A
U, Suppose 1 € {ky, ky, ... k,_ 2,} and assume WLG that k, = 1. Ei-
ther v, =x,, in which case the term is zero or v, =y, and the term
equals (,u, ) A o ANy = o, ) A0 A s Aoy v Ay € 0(p,
+ e tp)® /\2U Now suppose that 1 ¢ {kl,kz,..., o 2,} and the
term equals x; A (g = p ) A s AQRy = Ry ) AU A s Aoy =
Cyy = ) A /\(Mz - Mm)/\xl/\Uk /\”./\UkT,z,/\/'Lm &
OCuy + -+ + 1, + +,us) ® AU, U,, and similar for the other terms.
This shows that a, A g, € RHS and hence that g € RHS and this shows
that LHS € RHS and hence equality, i.e., LHS = RHS.

2.3. Duality between () and 6( w)

231 Lemma. () N () =[K[(py + - +p, DI+ (g
+ )l e AU

Proof. Let U be a complementary subspace to U, @ --- @ U, in JV and
let o€ [K[(py + - +p,_ D]+ (uy + - +u,_Dl® A°U,. Then o =
o, A p,+ o, Ap, for o, € K[(py + - +p,_)] and w, = 7 A
(g + - 4p,_Dforre AUy @ -0 U_;,®U). Then o, A p=w; A
(/*L1+.“+/“Lsfl)+wl/\/‘Ls=wl/\/“Ls and wZ/\/*LszT/\
(g + 4+ ) Ap, = TApAp,andthus o=, Ap+7Ap
Ap, = (o +7Ap)Ape(p) Also, w e (p,). Hence w e (p) N
(). Conversely, let w € (u) N (p,). Then, o = 7 A p forsome re AV
and since AV =AU, & -0 U_, ®U)® AU.Wecanwrite 7= 7y +
TWAX, Ty Ay, + 1y Apforn,e AU, @0 U_,0U)1 <i<?3).
Thus o =7y A+ A AX, A+ THh AP A+ T3 A pg A e o € (py)
= K[(x,, y,)] by Proposition 1.2.13 and thus 0 = @ A pu, = 79 A o A
= [toA(u; ++ plAp, € AU -0, 1eaU)® AU..
Hence 7o A (py + - +p,_,) =0, ie, 7, eK[(,u1 - +pu,_ ] Also,
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ToAR=ToAN(puy+ o Fp g+ p) =g Ap. 0=wAx + 7 Ay,
ANpAx = =13 ApApg=—lr, AQpg+ - +p, )l A . Hence 7,
Alpg+ o Fpe ) =0and T Ay Ap=1 AQpy+ o+ ) Ay,
=0.Similarly, 7, Ax, Ap=0. 73 Apu, Aw=73 A(py + - +pu,_)A
u,=aA u, where @ € (pu; + - +p,_;). Thus o =(ry + a) A u, €
[KICpy + - +p DI+ Qg + -+, Dl ® AU,

2.3.2. Lemma. K[O(w]I N () =K[0(u, + - +p,_,) ® A*U,_; +
O, ) ® AU AL,

Proof. Let w e K[6(w] N (w,). Then w=7A pu, for re AU, &

@& U,_,; ®U), where U is a complementary subspace to U, ® U, &

~oUinV.Letg, =(u —pw) A AQw, — ) Ao A= /\Uk
be a generator for 6(w), where 0 <r < [s/2] (11]1 (1,17)
(kik,...k,_,) is a partition of (12 ... s) and vy, is either x, or y, . If
sefky,....k,_,) then g, A w=0 anyway, so’ the generators which
contribute non-trivially are those for which s € {i,j,...i,j,}. Suppose g,
is such a generator and assume WLG that j, = 5. Then

O0=gaNo=(my =) A ACK = 1) Al AU A A AT
=y, = 1) A ACH = ) ARy A g AU A Av AT
=ggAm AT, where g, € 0y + -+ + o Fu )

(I<i,<s—1).

Thus 7€ K[0(u, + - +ﬁ,.r + - +Mé_1) ® /\2U] C K[o(p, +
ot ,) ® /\2 0, o, )l ® /\ U, and hence
wEK[O(/-Ll +,u,s_2)® NU_ + 00, + o ) ®

A2U;1® A’U, and the argument can be reversed so as to prove the
converse.

2.3.3. THEOREM. K[O6(w)] = ().

By using the duality between and ideal and its annihilator, we can also
state Theorem 2.3.3 in an equivalent form.

2.3.3. THEOREM*. K[(w)] = 6(w).

Proof.  Clearly () € K[6(w)].

The converse will be proved by induction on s = rank( w). For s =1,
w=xAyand 6(uw) = (x,y) = K[(x Ay)] =K[(w)] Let s >1 and as-
sume the induction hypothesis for (s — 1). Let w = x; Ay, + - +x, A y,,
U=A{x;,y} (1<j<s) and let U be a complementary subspace to
U ®--eUinVandregard 0(u, + - +u,_ ) C AU, & -0 U_, &
U). Let .7, denote the restriction of (x;, y,) to AU, Then
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o(lu‘l + o +l“(’s—l) N (xs’ys) = 0(/“(’1 + o +l‘1’s—l) ®“73 g o(lu‘) ThUS

K[0(w)] cK[0( s+ +p_1) N0 (x,,50)]
=K[(0(py + - +p_1)] + K[(x,,y,)] bylLemmal.2.7.
= (/*Ll + o +I*Ls—1) + (xs /\ys)
by the induction hypothesis and by Proposition 1.2.13,
where (p; + - +u,_ ) AU, @& -~ @ U_, & U). Let we K[(6(p].
We can write o = 7 A (g + - +u, )+ 7 Ap,0ro=71Apu+aA
u,, Where o = 7' — 1.
a A p, €K[O(m)] N (n)
= K[0(p + - +pp) ® AUy + -
+0(py + - +p_y) ® A2U,| ® A2U, by Lemma2.3.2.
=K[0(py + = +py) NK[0(py + - +py)]] ® AL,
by Proposition 2.2.8.
= [K[0Cm + - +po)] + 0+ +p )] ® AU
by Lemma 1.2.7 and Proposition 1.2.2.
= [(my - Hpy) K[+ )] @ AL
by the induction hypothesis
=(u) N (py by Lemma 2.3.1.

Thus w =7A u+ @ A p, Where a A u, € (u). Hence w € ().

2.3.4. Remark. The vectors {x,,...,x,, ¥, ...,y,) were used in the
definition of the ideal 6( n). However, Theorem 2.3.3 showed that 6( w) is
independent of the choice of these vectors.

2.3.5. DEMONSTRATION. Let u=x; Ay, +x, Ay, +x3; Ay; be of
rank 6 and o € A V. Then according to Theorem 2.3.3, w factors into a
wedge product w = 7 A u for some r € AV iff w satisfies the following
system of exterior equations.

L. oAx Ax; Ax3=0 8. wAy Ay, ANy;=0

2. wAX; Ax, Ay;=0 9. wA(X Ay, —x, Ay,) Axy=0
3 wAX; Ay, Axz=0 10 o A(x; Ay, —x, Ay,) Ay, =0
4. o Ax; ANy, Ny;=0 11, oAy Ay, —x3 Ay Ax, =0
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5. o Ay, Ax, Axg=0 12 o A(xy Ay, —x3 Ay Ay, =0
6. wAYy, Ax, Ay, =0 13 o Ax; A(X, Ay, —x3Ay) =0
7. oAy, Ay, Ax3=0 14, oAy, Ay, Ay, —x3 Ayy) =0

2.4. The Global Problem of Factorization

Let ¢ be a vector bundle over a topological space X and wp a 2-form
and o a form on {. At each point x € X, define 6.(w) as an ideal of
(A &), and put 0(p) = U, 0. (). If w is of constant rank then 6( w)
is a subbundle of A {. Suppose w, € K[6.(w)] Vx € X. Then by Theorem
2.3.3, o factors into o, = 7, A u, for some 7, € (A ¢), and this can be
done locally in some neighborhood of every point. The question is, what
primary and higher obstructions will be hit for a global factorization of this
form, i.e., for the existence of a continuous form 7 on ¢ such that
w=TA u?
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