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1. INTRODUCTION

Ž wThis paper is motivated by the problem arising from quantum gravity 9,
x.2 of counting combinatorial types of triangulations S of a Riemann

surface X with given degrees of vertices. Let us color 2-simplexes of the
barycentric subdivision S9 in black and white, so that adjacent simplexes
are of different color, and consider a mapping p : X ª P1 onto the
Riemann sphere P1 which send white simplexes onto the northern hemi-
sphere, black simplexes onto the southern hemisphere, and centers k-sim-
plexes of S into an equatorial point y , k s 0, 1, 2. Then deg p s 3n, n isk
the number of 2-simplexes in S, and p is unramified outside y , y , y . It0 1 2
is easy to see that points of X over y and y have ramification index 21 2
Ž .respectively, 3 , while rmaification indices of points over y are just0
degrees of vertices of S. So the problem of counting triangulations reduces
to the problem of counting ramified coverings p : X ª Y of Riemann
surfaces with given ramification indices.

In Section 2 we recall a connection between ramified coverings p : X ª
Y of a Riemann surface Y of genus g and irreducible characters x of theY
symmetric group S , n s deg p . The starting point is the following for-n

w x Ž w x.mula, essentially owing to Hurwitz 6 see also 10, 4, 2 :

< < < < < <1 C C ??? C x g x g ??? x gŽ . Ž . Ž .1 2 k 1 2 ks , 1.1Ž .Ý Ý2y2 g Ž .ky 2y2 gY Y< <Aut p n!Ž . x 1Ž .Ž .xp : XªY
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where the first sum extends over all coverings of degree n with fixed
conjugacy classes C ; S of monodromy g g C around ramificationi n i i
points y g Y, while the second sum runs over all irreducible characters ofi
the symmetric group S . Following Serre we will refer to the first sum inn
Ž .1.1 as Eisenstein number of coverings.

Ž .We call the covering p : X ª Y and formula 1.1 elliptic, parabolic, or
hyperbolic if the Euler characteristic 2 y 2 g is positive, zero, or negative.X
By the Riemann]Hurwitz formula the type depends on the sign of the
quantity

1 1 1 1
2 y 2 g s q q ??? q y k q 2 y 2 g , 1.2Ž . Ž .X Yn l l l1 2 k

where l is the mean value of cycle length of the monodromy g .i i
In Section 3 we consider elliptic and parabolic coverings for which the

Ž .transformations g consist of cycles of the same length s l .i i
In the elliptic case such a covering is a disjoint union of factorizations

P1 ª P1rG by a finite group of Mobius transformations G. For each such¨
Ž .group G the first sum in 1.1 may be easily evaluated. For example, the

identity

x s x s x s 30n !230 n 20n !320 n 12n !512 nŽ . Ž . Ž . Ž . Ž . Ž .2 3 5 s 1.3Ž .Ý n
x 1Ž . 60n !n! 60Ž . Ž .x

Ž .comes from the icosahedral group Theorem 3.3 . Here s g S is ad 60 n
permutation splitting in cycles of length d, and the sum extends over all
irreducible characters of S .60 n

Ž .Under the same condition, parabolic formulas 1.1 relate to root
systems of rank 2. They give identities like

3 3n 3 `x s 3 n!Ž . y1r33 n ks coefficient at q in 1 y q , 1.4Ž .Ž .Ý Łž /x 1 3n !Ž . Ž . ks1xgS3n

Ž .which corresponds to root system A Theorem 3.9 . In general under our2
Ž .assumptions parabolic character sums 1.1 in essence coincide with Fourier

coefficients of some negative power of Dedekind h function. There is an
w xexplicit Rademacher]Zukerman formula 11 for these coefficients, similar

Ž .to that of for partition function p n .
Ž .Geometrically, these two types of identities correspond to coverings 1.1

of positive or zero Euler characteristic, but in the most interesting case of
negative Euler characteristic, almost nothing is known about the corre-
sponding character sums.
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Of course in the hyperbolic case we have no chance to get an explicit
Ž . Ž .formula similar to 1.3 or 1.4 . The main problem we keep in mind is an

Ž .asymptotic formula for the character sum in 1.1 . We have not yet
succeeded completely in solving this problem, mainly because we do not
know leading terms of the sum. Let us observe that in view of

Ž . Ž .Riemann]Hurwitz formula 1.2 , the character sum in 1.1 may be written
as

x g x g x gŽ . Ž . Ž .1 2 kŽ .2y2 g rnXx 1 ??? . 1.5Ž . Ž .Ý 1r l 1rl 1rl1 2 kx 1 x 1 x 1Ž . Ž . Ž .x

If genus g of Riemann surface X is fixed, while n ª `, then the firstX
Ž .Ž2y2 g X .r nfactor x 1 decreases or increases as a power of n. So in essence

Ž . Ž .1r lthe problem reduces to studying for large n the ratio x g r dim x ,
where l is the mean value of cycles length g g S . This ratio may ben

Ž . Ž .compared with or opposed to normalized character x g rdim x treated
w xin 15, 16, 12 .
As a contribution to this problem, we give in Section 4 an asymptotic

formula for characters of S under some restrictions. More specifically,n
consider a sequence of diagrams b : b G b G ??? G b such that the1 2 m
ratio b rn s b is a constant, and a sequence of permutations s g Si i a n
with constant relative multiplicity a rn s a of k cycles. The main resultk k

Ž .of this section is the asymptotic formula for n ª ` Theorem 4.2 ,

exp nv Ł 1 y exp t y tŽ . Ž .Ž .i- j j i
x s ; , 1.6Ž . Ž .b a Ž .my1 r2 m1rm Ý H t'Ž . Ž .2p nŽ . is1 i i

where we suppose b / b and lengths of all cycles involved in s g S arei j a n
Ž .coprime. Here v s v a , b is minimum of the function

m

L t s a log exp kt q exp kt q ??? qexp kt y b t ,Ž . Ž . Ž . Ž .Ž .Ý Ýa , b k 1 2 m i i
k is1

t g R m , 1.7Ž .

Ž . 5Ž 2 . 5and H t are principle minors of Hessian ­ r­ t ­ t L at the pointi i i j a , b
m Žof minimum t g R which exists, satisfies t ) t ) ??? ) t , and is1 2 m

. Ž .unique up to transformation t ¬ t q c . Note that b ¬ v a , b is justi i
Ž .the Legendre transform of the first sum in 1.7 .

The asymptotic formula may be extended to diagrams b with multiple
rows by making use of an integral, which is a special case of Macdonald

Ž .conjecture. The resulting formula differs from 1.6 only in pre-exponential
factor, which becomes more complicated. To avoid technicalities we con-
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Žsider only the most degenerate case of a rectangular diagram Proposi-
.tion 4.4 .

Ž .The second restriction lengths of cycles are coprime is more subtle. Let
q be the greatest common divisor of cycle lengths in s . Then by Little-a

Ž . Ž .wood theorem x s / 0 only if the diagram b or character x isb a b

divisible by q. In the last case

Sn r qx s s "Ind x = x = ??? = x s [ "x s ,Ž . Ž . Ž .b a b b b a r q b , b , . . . ,b a r q1 2 q 1 2 q

< < < < < <where diagrams b , b , . . . , b , b q b q ??? q b s nrq form so-1 2 q 1 2 q
called q quotients of b , and cycle lengths of s are that of s dividedar q a

Ž w x . Ž .by q see 7 for details . Our approach may be applied to x sb , b , . . . ,b a r q1 2 q
Ž .as well. As result we can see that for q N b the critical exponent of x sb a

is given by the same formula v s min L .ab

In conclusion we give a useful estimation of the critical value v
Ž .Theorem 4.6 ,

H b H bŽ . Ž .
F v F ,

l lmin

where l and l are mean value and minimal value of cycle lengths inmin
Ž .s , and H b s yÝ b log b is an entropy function. It follows that fora i i

large n,

1r l 1rlminx 1 F x s F x 1Ž . Ž . Ž .b b a b

provided diagram b is not rectangular and not all cycle lengths of s area

equal.

2. CONNECTION WITH CHARACTERS

As explained in the Introduction, the problem of counting triangulations
is a particular case of counting ramified coverings with prescribed ramifi-

w xcation indices 2 . In this section we recall some results on interrelation of
w xthe last problem with characters of symmetric groups 10, 4, 2 . This

connection follows from two basic facts:

Fact 1. Topologically, coverings p : X ª Y of degree n unramified
outside k points y g Y are classified by conjugacy classes of homomor-i

Ž � 4phisms p ª S of the fundamental group p s p Y _ y , y , . . . , y ,1 n 1 1 1 2 k
which is known to be defined by the unique relation

w x w xg g ??? g f , h f , h ??? f , h s 1,1 2 k 1 1 2 2 g g



IDENTITIES AND ASYMPTOTICS 417

where g s g is the genus of Y and the brackets denote the commutatorY
w x y1 y1 1f , h s fhf h . Thus the coverings of Riemann sphere p : X ª P of
given degree n and ramification indices are parametrized by solutions of
the equation

g g ??? g s 1, g g C , 2.1Ž .1 2 k i i

up to conjugacy, where cycle lengths of the conjugacy class C ; S arei n
y1Ž .equal to ramification indices of points in fibers p y . For an arbitraryi

Riemann surface Y of genus g the number of coverings is equal to the
number of solutions up to conjugacy of the equation

w xg g ??? g f , h ??? f , h s 1, f , h g S , g g C . 2.2Ž .1 2 k 1 1 g g i i n i i

Fact 2. The Burnside theorem gives the number of solutions of the
Ž . Ž .equations 2.1 and 2.2 for an arbitrary group G in terms of irreducible
w xcharacters 1 ,

� 4a g g ??? g s 1 N g g C1 2 k i i

< < < < < <C C ??? C x g x g ??? x gŽ . Ž . Ž .1 2 k 1 2 ks ,Ý ky2< <G x 1Ž .x

w xa g g ??? g f , h ??? f , h s 1� 41 2 k 1 1 g g

2.3Ž .

< < < < < <C C ??? C x g x g ??? x gŽ . Ž . Ž .1 2 k 1 2 ks ,Ý1y2 g kq2 gy2< <G x 1Ž .x

where the sums extend over all irreducible characters x of G and g g Ci i
are elements from fixed conjugacy classes C .i

Combination of these two results gives the following formula for Eisen-
w xstein number of ramified coverings 4, 2 .

THEOREM 2.1. In the pre¨ious notation the following formula for Eisen-
stein number of co¨erings p : X ª P1 with prescribed ramification indices
holds:

< < < < < <1 C C ??? C x g x g ??? x gŽ . Ž . Ž .1 2 k 1 2 ks . 2.4Ž .Ý Ý2 ky2< <Aut p n! x 11 Ž . Ž .Ž .xp : XªP

Ž .Proof. In view of the Burnside formula 2.3 it is sufficient to show that

n!
� 4a g g ??? g s 1 N g g C ; S s . 2.5Ž .Ý1 2 k i i n < <Aut p1p : XªP
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� 4According to Fact 1, a solution g , g , . . . , g of the equation in the1 2 k
Ž . 1left-hand side of 2.5 corresponds to a ramified covering p : X ª P and

Aut p ( C g , g , . . . , g ,Ž .1 2 k

Ž . � 4where C g , g , . . . , g is the centralizer of the set g , g , . . . , g in S .1 2 k 1 2 k n
� 4Hence the number of solutions conjugate to g , g , . . . , g is equal to1 2 k

n!
S : C g , g , . . . , g sŽ .n 1 2 k < <Aut p

Ž .and 2.5 follows.

The same arguments give a similar result for Eisenstein number of
coverings of an arbitrary Riemann surface Y.

THEOREM 2.2. In the pre¨ious notation,

< < < < < <1 C C ??? C x g x g ??? x gŽ . Ž . Ž .1 2 k 1 2 ks . 2.6Ž .Ý Ý2y2 g Ž .ky 2y2 gY Y< <Aut p n!Ž . x 1Ž .Ž .xp : XªY

Theorems 2.1 and 2.2 may be used in both directions, i.e., information
on coverings may be transformed into information on characters and vice
versa. When the structure of the covering is known, it is easier to carry
information on coverings to characters. In the next we give some examples.

3. EXPLICIT FORMULAE

There exist several remarkable cases in which the number of coverings
can be evaluated explicitly. In essence these are the elliptic and parabolic

y1Ž .coverings p : X ª Y with equal ramification indices in each fiber p y .
Let us consider such a covering p : X ª P1 of Riemann sphere unrami-
fied outside y , y , . . . , y with ramification index m in points over y . To1 2 k i i

Ž Ž ..be elliptic or hyperbolic it should satisfy the inequality cf. 1.2

1 1 1
q q ??? q G k y 2.

m m m1 2 k

It turns out that all such coverings may be explicitly described in terms of
finite groups of Mobius transformations or affine Coxeter groups. Since¨

Ž .the structure of these groups is known, explicit formulae for 2.4 can be
obtained.
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3.1. Elliptic Case

In this case we have strict inequality,

1 1 1
q q ??? q ) k y 2, 3.1Ž .

m m m1 2 k

which admits the following values of m :i

Cyclic: k s 2, m s m s m;1 2

Dihedral: k s 3, m s m s 2, m s m;1 2 3

Tetrahedral: k s 3, m s 2, m s m s 3;1 2 3

Octahedral: k s 3, m s 2, m s 3, m s 4;1 2 3

Icosahedral: k s 3, m s 2, m s 3, m s 5.1 2 3

Remark 3.1. The fundamental group of a sphere with two punctures is
Z. Hence in the case k s 2 there should be m s m , and we may1 2

Ž .disregard other solutions of 3.1 . To each of these cases corresponds a
unique covering that may be described in terms of a finite group of Mobius¨

Ž .transformations we use to label solutions of 3.1 .

PROPOSITION 3.2. Let p : P1 ª P1 be a co¨ering unramified outside
y , . . . , y with ramification index m in each point o¨er y . Then p is1 k i i
isomorphic to factorization p : P1 ª P1rG ( P1 by a finite group G ofG
Mobius transformations.¨

Ž .Proof. Let m , m , . . . , m be one of the above solutions of 3.1 . Then1 2 k
Ž .the group G s G m , m , . . . , m defined by relations1 2 k

g m1 s g m2 s ??? s g m k s g g ??? g s 11 2 k 1 2 k

is finite and isomorphic to the rotation group of the polyhedron we use for
labeling the solution. Now observe that the only transitive permutation
representation of G for which the element g splits into cycles of lengthi
m is regular. Hence the covering with ramification indices m is unique. Iti i
may be constructed from realization of G as a group of Mobius transfor-¨
mations.

In combination with Theorem 2.1 this implies

THEOREM 3.3. The following indentities hold:

n2 n r mCyclic : x s s !m ;Ž .Ý m ž /mx
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22 n r2 n r mx s x s nr2 !2 nrm !mŽ . Ž . Ž . Ž .2 m
Dihedral: s ;Ý nr2 mx 1Ž . n! 2m nr2m !Ž . Ž .x

Tetrahedral:
22 n r3 n r2x s x s nr3 !3 nr2 !2Ž . Ž . Ž . Ž .3 2 s ;Ý nr12x 1Ž . n! 12 nr12 !Ž . Ž .x

Octahedral:
n r2 n r3 n r4x s x s x s nr2 !2 nr3 !3 nr4 !4Ž . Ž . Ž . Ž . Ž . Ž .2 3 4 s ;Ý nr24x 1Ž . n! 24 nr24 !Ž . Ž .x

Icosahedral:
n r2 n r3 n r5x s x s x s nr2 !2 nr3 !3 nr5 !5Ž . Ž . Ž . Ž . Ž . Ž .2 3 5 s ,Ý nr60x 1Ž . n! 60 nr60 !Ž . Ž .x

where the summations are taken o¨er all irreducible characters x of S and sn m
denotes a permutation consisting of nrm cycles of length m.

Proof. Let as before m , m , . . . , m be one of the above solutions of1 2 k
Ž .3.1 , let G be the corresponding group of Mobius transformations, and let¨
p : X ª P1 be a covering with ramification indices m . Then each compo-i
nent X of X should be elliptic, i.e., isomorphic to P1, and by the previousi
proposition the restriction p : X ª P1 is isomorphic to the factorizationi i

1 1 < <P ª P rG. So for each n such that G divides n there exists only one
such covering p and Aut p is a wreath product of G and symmetric group

< <S , m s nr G , of permutation of the components of X. As result them
Ž .left-hand side of the formula 2.4 contains only one term,

1 n
, m s ,m< < < <m! G G

and the theorem follows.

3.2. Parabolic Case

In this case we have

k 1
s k y 2 3.2Ž .Ý miis1
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with the solutions

A = A : k s 4, m s m s m s m s 2;1 1 1 2 3 4

B : k s 3, m s 2, m s m s 4;2 1 2 3

G : k s 3, m s 2, m s 3, m s 6;2 1 2 3

A : k s 3, m s m s m s 3.2 1 2 3

Ž .Let as before G s G m , m , . . . , m be a group defined by the relations1 2 k

g m1 s g m2 s ??? s g m k s g g ??? g s 1,1 2 k 1 2 k

Ž .where m , m , . . . , m is one of the solutions of 3.2 . It turns out that the1 2 k
w xgroup G has a remarkable geometrical interpretation 3 as the group of

Ž .even elements in affine Coxeter group G s G m , m , . . . , m generated1 2 k
by reflections in the sides of a plane k-gon with angles prm . In otheri
words, G is an affine Weyl group of the root system used for labeling

Ž .solutions of 3.2 . In this interpretation the generators g are just rotationsi
Ž .by angle 2prm around vertices of the k-gon. Let T ; G be the normali

subgroup of translations. T is the unique maximal torsion-free subgroup of
w xG and index m s G:T is finite.

PROPOSITION 3.4. Connected parabolic co¨erings p : X ª P1 with con-
y1Ž .stant ramification indices m in singular fibers p y , i s 1, 2, . . . , k, ha¨ei i

w xdegree n s mm dï isible by m s G:T . Such co¨erings are parametrized by
w xconjugacy classes of translation subgroups H ; T of index m s T : H .

Proof. There exists a one-to-one correspondence between connected
coverings p : X ª P1 of degree n and conjugacy classes of subgroups in

Ž 1 � 4.p P _ y , . . . , y of index n. If the monodromy around y has order1 1 k i
m , then we can deal with subgroups H ; G of G instead of p . We claimi 1
that the generators g split into cycles of the same length m in GrH ifi i
and only if H ; T , i.e., H consists of translations. Really

g splits into cycles of length m m g k gH / gH , k k 0 m , ;g g HŽ .i i i i

m gy1 g k g f H ,i

i.e., H contains no elements conjugate to g k. But from the above geomet-i
rical interpretation of G we know that all elements of finite order are

kconjugate to some g . Hence H is torsion-free and the result follows.i

PROPOSITION 3.5. In the abo¨e notation the Eisenstein number of parabolic
connected co¨erings p : X ª P1 of degree nm is equal to

1 1
s d ,Ý Ý< <Aut p nm1 dNnp : XªP

w x Ž .where m s G:T , T is the translation subgroup of G s G m , . . . , m .1 k
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Proof. We will need the following information:

Ž .i If G acts transitively on a set Y, then

Aut Y ( N G rG ,Ž . Ž .G G y y

Ž .where N G is the normalizer of stabilizer G of a point y g Y.G y y

Ž .ii Let H ; T be a sublattice of index n in a lattice T of rank 2.
Then

w xa H ; T N T : H s n s d� 4 Ý
dNn

Ž w x.see 14 .

Ž .Using i and Proposition 3.4 we can write the Eisenstein number of
connected parabolic coverings as

1 1 1
s s G: N H , 3.3Ž . Ž .Ý Ý Ý G< <Aut p N H : H nmŽ .1 GH;G H;Gp : XªP

where summation on the right-hand side extends over conjugacy classes of
torsion-free subgroups H ; G of index nm. Since such a subgroup H is
contained in the translation group T , which is a lattice of rank 2, we can

Ž .use ii and end the proof as

1 1 1
w xG: N H s a H ; T N T : H s n s d.� 4Ž .Ý ÝGnm nm nmH;G <d n

So we have a simple formula for the Eisenstein number of connected
parabolic coverings. The number of all coverings may be easily deduced

Ž w x.from here cf. 4 .

LEMMA 3.6. For co¨erings p : X ª Y with gï en constant ramification
y1Ž .indices m in singular fibers p y , the identityi i

qdeg p qdeg p

s exp , 3.4Ž .Ý Ý< < < <ž /Aut p Aut pp connected p

Žholds, where the first sum runs o¨er all co¨erings p : X ª Y connected or
.not , while the second sum extends only o¨er co¨erings with connected sur-

face x.

Proof. Let X s " d X be a disjoint union of pairwise nonisomorphici i i
<connected components X of multiplicity d and let p s p . ThenXi i i i
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< < < < diŽ .Aut p s Ł Aut p d ! and deg p s Ý d deg p . Hence the left-handi i i i i i
Ž .side of 3.4 may be written as

q dideg p i q d deg p qdeg p

s sexp .ÝŁ Ł Ý Ýd di < <ž /Aut p< < < <Aut p d ! Aut p d!i connected pp dG0 connected pi i

Combining this lemma with the previous proposition, we get the follow-
ing formula.

COROLLARY 3.7. The Eisenstein number of elliptic co¨erings p : X ª P1

of degree n with gï en constant ramification indices m in singular fibersi
y1Ž .p y is equal toi

`1 y1rmn kms coefficient at q in 1 y q ,Ž .Ý Ł< <Aut p ks11p : XªP

w xwhere m s G:T and T is the translation subgroup of G s
Ž .G m , m , . . . , m .1 2 k

Proof. Let N s nm, n G 1. Then

qdeg p 1 1
N Ns q s q dÝ Ý Ý Ý Ý< < < <Aut p Aut p Nconnected p N deg psN N <d n

1 q mm d 1
mms s y log 1 y q . 3.5Ž . Ž .Ý Ý Ý

m d mmG1 dG1 mG1

In the second equality we use Proposition 3.5. The corollary follows by
taking exponents and applying Lemma 3.6.

w x Ž .Here are values of the index m s G:T for each solution of 3.2 :

A = A : m s 2,1 1

B : m s 4,2

G : m s 6,2

A : m s 3,2

Ž .Remark 3.8. The right-hand side of 3.5 in essential is a negative
power of Dedekind h function, so we may apply the Rademacher analytic

w xformula 11 for its Fourier coefficients. As a simple corollary we get the
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` Žfollowing asymptotics for nonzero coefficients of the series P 1 yks1
km.y1r mq :

'exp pr6m 24nŽ .'a ; 12m , n ' 0 mod m . 3.6Ž . Ž .n 3r4q1r4m24nŽ .

Combining Corollary 3.7 with Theorem 2.2, we get a number of ‘‘strange’’
identities.

THEOREM 3.9. The following identities hold:

A = A :1 1

4 44 n `x s 2 n!Ž . Ž . y1r22 n ks coeff . at q in 1 y q ,Ž .Ý Ł2 2 ž /x 1 ks12n !Ž . Ž .Ž .xgS2n

B :2

2 26 n `x s x s 2 2n ! n!Ž . Ž . Ž . Ž . y1r42 4 n ks coeff . at q in 1yq ,Ž .Ý Łž /x 1 4n !Ž . Ž . ks1xgS4n

G :2

x s x s x s 24 n33n 3n ! 2n !n!Ž . Ž . Ž . Ž . Ž .2 3 6 sÝ
x 1 6n !Ž . Ž .xgS6n

`
y1r6n k= coeff . at q in 1 y q ,Ž .Łž /ks1

3 33n `x s 3 n!Ž . Ž . y1r33 n kA : s coeff . at q in 1 y q ,Ž .Ý Ł2 ž /x 1 3n !Ž . Ž . ks1xgS3n

where the permutation s splits into cycles of length m.m

Ž .Remark 3.10. It is known that x s s 0 except the Young diagram ll m
is divisible by m. In the last case the value of character is given by the

w xhook formula 18

nrm !Ž .
x s s " , 3.7Ž . Ž .l m Ł h rmmy hooks i j
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where h are hook lengths of l. The first identity just means thati j

2product of odd hooks
Ý product of even hooksdomino diagrams

y1r2n ks coeff. at q in 1 y q ,Ž .Ł
k

Žwhere the sum is extended over all e¨en diagrams of order 2n i.e.,
.diagrams which may be tiled by n dominos .
Ž .Let us observe that in view of estimation 3.6 the character sums of the

Ž .theorem are of subexponential growth in n, while the dimension x 1
Ž .1r2generically is superexponential. Hence the first identity implies that x 1

Ž .in general is a good estimation for x s . We may suppose that a similar2
Ž . Ž .result is valid for x s , as suggested by formula 3.7 , and moreoverm

1rdq«< <x g - x 1Ž . Ž .

for ‘‘general’’ character x and n ª `. Here d is the mean value of cycle
length of g g S . The characters we consider in the next section haven
exponential growth of dimension and thus are not general.

4. ASYMPTOTIC FORMULAE

Let p : X ª Y be a ramified covering of degree n, of surface Y of genus
g by surface X of genus g , ramified over k points y , . . . , y in Y. TheY X 1 k
Riemann]Hurwitz formula connecting the genus of X and Y may be
written in the form

1 1 1
2 g y 2 s n 2 y 2 q k y y ??? y , 4.1Ž .X g Y l l l1 2 k

y1Ž .where l is the mean value of ramification indices in the fiber p yi i
Žequal to the mean value of the cycle length of the monodromy g aroundi
.y . Hence, Theorem 2.2 may be written asi

1
Ý < <Aut pp : XªY

< < < <C ??? C x g x g x gŽ . Ž . Ž .1 k 1 2 kŽ .2y2 g rnXs x 1 ??? .Ž .Ý2y2 g 1rl 1rl 1rlY 1 2 kn! x 1 x 1 x 1Ž . Ž . Ž . Ž .x

Ž .Ž2yg X .r nIf the genus g is fixed, then the first factor x 1 decreases orX
increases at most as some power of n. So the main problem is in
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Ž . Ž .1r lestimation of the quotient x g rx 1 , where l is the mean value of
cycle length of g g S , as n ª `.n

Let us denote by

b : b G b G ??? G b 4.2Ž .1 2 m

the Young diagram of x s x and by s g S an element with cycleb a n
structure

a : 1a1 2 a2 ??? sas . 4.3Ž .

In subsequent text, we restrict ourselves to sequences of characters x andb

elements s g S subject to the following conditions:a n

Condition 1. Diagrams b have a fixed number of rows and permuta-
tions s contain only cycles of bounded length.a

Condition 2. Lengths of rows in b increase linearly with n, i.e.,
b s b n.i i

Condition 3. Multiplicities of cycles in s g S increase linearly with n,a n
i.e., a s a n.k k

Ž .Under these conditions we will find asymptotics for x s andb a

Ž . Ž .1r dx s rx 1 . It follows that the last quotient exponentially increasesb a b

for n ª `, provided not all rows of b are equal and not all cycles of sa

are of the same length.

4.1. Frobenius Formula

Let z , z , . . . , z be independent variables and let1 2 m

d s m y 1, m y 2, . . . , 0 ,Ž .
z bqd s z b1qm y1z b2qm y2 ??? z bm ,1 2 m

s s z j q ??? qz j ,j 1 m

D s D z , . . . , z s z y z .Ž . Ž .Ł1 m i j
i-j

In this notation we have the following Frobenius formula for irreducible
characters:

x s s coefficient at z bqd in D saj . 4.4Ž . Ž .Łb a j
j
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Making use of the residue theorem we can rewrite it in integral form,

1
n?v Ž z .x g s ??? g z e dz , 4.5Ž . Ž . Ž .H Hmb

< < < <2p iŽ . z s1 z s11 m

where

z s z , . . . , z g C mŽ .1 m

D z , . . . , z zŽ .1 m j
g z s s 1 y ,Ž . Łm my1 ž /zz z ??? z i-j i1 2 m 4.6Ž .

n m

v z s a log s y b log z .Ž . Ý Ýk k i i
ks1 is1

4.2. Asymptotics of Characters

w xAccording to general principles 5 , in order to find asymptotics of the
Ž .integral 4.5 , we have to deform the surface of integration S in such a way

Ž .that it passes through a critical point z of v z with maximal value Re v.0
Ž . Ž .The critical points of v z are given by the equation dv z s 0, which in

coordinates looks like the system of nonlinear algebraic equations

z k
i

ka s b , i s 1, . . . , m. 4.7Ž .Ý k ik kz q ??? qz1 mk

Ž .The system 4.7 is homogeneous in z and thus by the Bezout theorem has
a lot of complex solutions. The first problem is to understand which of
them is responsible for the asymptotics. For this the following result is
crucial.

Ž .THEOREM 4.1. For b G b G ??? G b G 0 the system 4.7 has, up to1 2 m
Ž .proportionality, unique positï e real solution x s x , x , . . . , x and for this1 2 m

solution, x G x G ??? G x G 0.1 2 m

Proof. Let us put

z s eti , t g R,i i

so that in variable t ,i

n m
tiv e s a log exp kt q ??? qexp kt y b tŽ . Ž . Ž .Ž .Ý Ýk 1 m i i

ks1 is1
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and the equation for critical points of w takes the form

exp ktŽ .i
ka s b , i s 1, 2, . . . , m. 4.8Ž .Ý k iexp kt q ??? qexp ktŽ . Ž .1 mk

The proof may be divided into three steps.

Ž .Step 1. v is a convex function of t s t , . . . , t , i.e.1 m

­ 2v
Hess v s X X G 0, ;X , X g R.Ž . Ý j i i j­ t ­ ti ji , j

Proof. Really, since

n 2­
Hess v s a log exp kt q ??? qexp kt X X ,Ž . Ž . Ž .Ž .Ý Ýk 1 m j i­ t ­ ti jks1 i , j

it suffices to show that

­ 2

h t s log exp t q ??? qexp t X X G 0. 4.9Ž . Ž . Ž . Ž .Ž .Ý 1 m j i­ t ­ ti ji , j

A simple calculation gives

22Ý exp t X Ý exp t XŽ . Ž .i i i i i i
h t s y G 0 4.10Ž . Ž .ž /Ý exp t Ý exp tŽ . Ž .i i i i

and equality is possible only for X s X s ??? s X .1 2 m

From Step 1 it follows that

Ž .Step 2. Restriction of Hess v on the hyperplane Ý X s 0 is positivei i
and hence the mapping

­ f ­ f
V : t , . . . , t ª , . . . , s b , . . . , b ,Ž . Ž .1 m 1 mž /­ t ­ t1 m

f t s a log exp kt q ??? qexp kt ,Ž . Ž . Ž .Ž .Ý k 1 m
k

is locally invertible on the hyperplane Ýt s 0.i
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Step 3. The mapping

V : log x , log x , . . . , log x ª b , b , . . . , b ,Ž . Ž .1 2 m 1 2 m

x q x q ??? qx s 1, x G 0,1 2 m i

gives a homeomorphism between simplexes

� 4D s x N x q x q ??? qx s 1, x G 0 ,x 1 2 m i

� 4D s b N b q b q ??? qb s 1, b G 0 .b 1 2 m i

Proof. We will proceed by induction on m. Without loss of generality
we may suppose restriction of V on a face of the simplex D ,x

V : log x , . . . , log x , 0, log x , . . . , log xŽ .i 1 iy1 iq1 m

ª b , . . . , b , 0, b , . . . , b ,Ž .1 iy1 iq1 m

to be a homeomorphism. Then V induces a homeomorphism of the
boundaries ­ V: ­D ª ­D , and by Brouwer theorem the mapping V isx b

surjective. Combining this with Step 2 we find out that V is an unramified
covering of D . Since the simplex D is simply connected, V is in fact ab b

homeomorphism.

Ž .The theorem follows from the Step 3, because V t , . . . , t is just the1 m
Ž .left-hand side of 4.8 .

It turns out that the positive critical point x from Theorem 4.1 is
Ž .responsible for asymptotics of characters x s .b a

THEOREM 4.2. Suppose in addition to Conditions 1]3 that rows of Young
diagrams b ha¨e distinct lengths b / b and lengths of all cycles in¨ol̈ ed ini j

Ž .s g S are coprime. Then, as n ª ` the characters x s ha¨e thea n b a

asymptotics

nwŽ x .'e m x 1j
x s ; 1 y ,Ž . Łb a Ž . mmy1 r2 ž /x Ý H'i-j2p nŽ . i is1 i i

where x is a positï e critical point from Theorem 4.1,
n m

k k kv x s a log x q x q ??? qx y b log x , 4.11Ž . Ž .Ž .Ý Ýk 1 2 m i i
ks1 is1

and H is ith principle minor of the formii

2m k 2 m kn Ý x dt Ý x dtis1 i i is1 i i2Hess v s k a y . 4.12Ž . Ž .Ý k k m kž /ž /Ý x Ý xi i is1 iks1
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Proof. Step 2 below is crucial. It ensures that only critical points
proportional to the positive one are essential for asymptotics. The rest is

w xan exercise in the multidimensional saddle point method 5 , with a minor
complication due to nonisolated critical points.

Step 1. Deformation of the surface of integration. By deformation of
Ž .the contour in integral 4.5 we can write

1
nv Ž z .x g s ??? g z e dz. 4.13Ž . Ž . Ž .H Hmb

< < < <2p iŽ . z sx z sx1 1 m m

The surface of integration now passes through the positive critical point x.

Ž .Step 2. The asymptotics of integral 4.13 depends on an arbitrary small
< <neighborhood of the set of critical points z s l x, l s 1 proportional to

Ž Ž ..the positive one x. It suffices to show that the maximum of Re v z on
< < Žt i.the contour z s exp is attained only at l x. In order to see this, writei

< k k k < < <Re v z s a log z q z q ??? qz y b log z . 4.14Ž . Ž .Ž . Ý Ýk 1 2 m i i
k i

Evidently,

< k k k < < < k < < k < < k k k kz q z q ??? qz F z q z q ??? q z s x q x q ??? qx1 2 m 1 2 m 1 2 m

and equality is possible only for collinear z k. In the last case,i

z s l« x , « k s 1.i i i i

Ž .This should be valid for all k that enter 4.14 with nonzero coefficient
a / 0, i.e., for all cycle lengths of s g S which are supposed to bek a n
coprime. As a result, we get « s 1, and hence any critical point z withi

Ž .maximal value of Rev z should be proportional to x.

Step 3. The final formula. Let us write the positive critical point in the
form

x , x , . . . , x s exp t , exp t , . . . , exp tŽ . Ž . Ž . Ž .Ž .1 2 m 1 2 m

Ž .and put in integral 4.13 ,

z s exp t q it , yp F t F p .Ž .j j j j
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Then

p p1 exp t q itŽ .j j
x s s ??? 1 y exp nv t dt ,Ž . Ž .Ž .ŁH Hmb a ž /exp t q itŽ .2pŽ . yp yp i-j i i

Ž . Ž tqi t.where v t denotes v e . Let

exp t q itŽ .j j
F t s 1 y exp nv t .Ž . Ž .Ž .Ł ž /exp t q itŽ .i-j i i

Observe that

F t , . . . , t s F t q a, . . . , t q a , ;a g R,Ž . Ž .1 m 1 m

Ž .so that F t is a constant on lines parallel to the main diagonal t s t s1 2
??? s t of the m-dimensional cube yp - t - p . According to Step 2 them i
asymptotics of the integral depends only on an arbitrary small neighbor-
hood of the main diagonal. Hence asymptotically

'2p m
x s ; F t dt ,Ž . Ž .Hmb a 2pŽ . H«

where integration is over a neighborhood of origin in the hyperplane H:
'Ý t s 0 orthogonal to the diagonal, and the extra multiplier 2p m isi i

equal to the length of the diagonal. The asymptotics of the last integral
were determined by the isolated critical point t s 0, so by the saddle point
method we get

nv Ž x .'e m x 1j
x s ; 1 yŽ . Łb a Ž .my1 r2 ž /x <'det Hess v xŽ . Ž .i-j2p nŽ . i H

nv Ž x .'e m x 1js 1 y ,ŁŽ . mmy1 r2 ž /x Ý H'i-j2p nŽ . i is1 i i

Ž .where H are the principal minors of the Hessian Hess v .i i

EXAMPLE 4.3. As a simple illustration of Theorem 4.2, let us deduce
the asymptotic formula for dimension,

en H Ž b .Ł 1 y b rbŽ .i- j j i
x 1 ; ,Ž .b Ž .my1 r22p n b b ??? bŽ . ' 1 2 m

Ž .where H b s yÝ b log b is the entropy function.i i i
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Proof. Really, for s s 1 the critical point has coordinates x s b , anda i i
hence the critical exponent is

m

v x s log b q b q ??? qb y b log b s H b ,Ž . Ž . Ž .Ý1 2 m i i
is1

since Ým b s 1. The Hessian in the case under consideration,is1 i

Hess v s b dt 2 y b b dt dt ,Ž . Ý Ýi i i j i j
i i , j

has principal minors H s b b ??? b and the result follows.i i 1 2 m

4.3. Multiple Rows

The saddle point method used in the previous section was based on
Ž . nv Ž x .comparing integral H g x e dx near a critical point with the Gaussian

nr21 2exp y x dx s 2p .Ž .Ž .H 2
nR

Ž .This works only if the pre-exponential factor g x does not vanish at the
critical point. Otherwise the asymptotics heavily depends on the structure

Ž .of zeros of g x near the critical point, and we need another ‘‘reference’’
integral instead of the Gaussian one. This is the difficulty that appears for
diagrams with multiple rows. In this section we show how the difficulty
may be overridden by using as reference the integral

n
nr22 1 2< <D x exp y x dx s 2p k!, 4.15Ž . Ž . Ž .Ž . ŁH 2

nR ks1

Ž . Ž .where as usual D x s Ł x y x . This integral is a special case of thei- j i j
Macdonald conjecture for the root system A , which in turn follows fromn

w x Ž w x .the Selberg integral 13 see 8 for details . To avoid technicalities we
consider only the most degenerate case of rectangular diagrams.

PROPOSITION 4.4. Assume all the notation and conditions of Theorem
4.2, but suppose the diagram b s I is rectangular of m rows. Then, as

Ž .n ª `, character x s has the asymptoticsI a

2a�c ycl e s4q1r2 Ž .m y1 r2 my1m m
x s ; k!,Ž . ŁI a Ž .my1 r2 � 4d ? a cycles ks12pŽ . 2

where d is the mean square of cycle lengths in s .2 a
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Proof. For the rectangular diagram the positive critical point is x s1
Ž .x s ??? s x s 1, which by 4.11 corresponds to the critical value2 n

1
v x s a log m s log m ,Ž . Ý k dk

where d is the mean value of cycle lengths. We start with integral
Ž .representation 4.15 from the proof of Theorem 4.2, which for the above

critical value gives

'm D z , z , . . . , zŽ .1 2 m
x s ; exp nv z dtŽ . Ž .Ž .Hb a my1 my1 my2z z ??? zH2pŽ . 1 2 my1«

n r d'm ? m D z , z , . . . , z nŽ .1 2 m
; exp y HH t dt , 4.16Ž . Ž .Hmy 1 my1 my2 ž /2z z ??? zH2pŽ . 1 2 my1

where the first integral is taken over an arbitrary small neighborhood H«

of the origin in the hyperplane H: t q t q ??? qt s 0. Here we use the1 2 n
notation z s eit and

22 2 2t q t q ??? qt t q t q ??? qt1 2 m 1 2 m2HH t s k a yŽ . Ý k ž /m mk

d2 2 2 2s t q t q ??? qtŽ .1 2 mmd

Ž t.is the Hessian of the function v e restricted to the hyperplane H. The
Ž .crucial observation is that Hessian HH t is a symmetric function of t, while

D z , z , . . . , z s z y zŽ . Ž .Ł1 2 n i j
i-j

is skew symmetric,

D s ? z s sgn sD z , s g S .Ž . Ž . n

Hence by symmetrization we can change the factor

1
my 1 my2s z z ??? z1 2 my1my1 my2z z ??? z1 2 my1
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Ž .under the integrals in 4.16 by the sum

1 1
my 1 my2sgn i , i , . . . , i z z ??? z s D z , z . . . z ,Ž . Ž .Ý 1 2 m i i i 1 2 m1 2 my1m! m!permutations

Ž .which is equal to the Vandermond determinant. So 4.16 reduces to the
integral

n r d'm ? m n2< <x s ; D z , z , . . . , z exp y HH t dtŽ . Ž . Ž .HI a 1 2 mmy1 ž /2H2p m!Ž .
n r d'm ? m n2< <; D t , t , . . . , t exp y HH t dt , 4.17Ž . Ž . Ž .H 1 2 mmy1 ž /2H2p m!Ž .

< Ž . < 2 < Ž . < 2where in the second line we use that D z ; D t near the critical
Ž .point t s 0. The last integral is of the type 4.15 , except the integration is

over hyperplane H: Ýt s 0, rather than the whole space R n. Note thati
Ž .D t is a constant on any line orthogonal to H and hence

`1 2 12 2 2 2D t exp y t dt s D t exp y t q s ds dtŽ . Ž . Ž .Ž .H H H 2ž /n 2R H y`

2 1 2's 2p D t exp y t dt , 4.18Ž . Ž .Ž .H 2
H

where t and s are tangent and normal to H components of t. Easy
Ž . Ž . Ž .calculation using 4.17 , 4.18 , and 4.15 ends the proof.

COROLLARY 4.5. For a rectangular diagram I and s / 1,a

x sŽ .I a
lim s 0,1rdnª` x 1Ž .I

where d is the mean ¨alue of cycle lengths in s .

4.4. Estimation of v

Ž . nvBy Theorem 4.2 character x s increases exponentially as e whileb a

n ª `. Here we give two estimations for critical value v. Let us recall that
Ž . Ž .for dimension x 1 the critical exponent is just entropy see Example 4.3b

H b s y b log b .Ž . Ý i i
i
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Ž .THEOREM 4.6. The critical exponent v in asymptotic of character x sb a

satisfies the inequalities

H b H bŽ . Ž .
F v F ,

l lmin

where l and l are mean ¨alue and minimum of cycle lengths in s . The leftmin a

equality holds only if all cycles of s are of the same length or diagram b isa

rectangular, while the right one holds only for substitutions s with equal cyclea

lengths and for trï ial character x s 1.b

Proof. By Theorem 4.1, v is the unique critical value of the function

v x s a log x k q ??? qx k y b log xŽ . Ž .Ý Ýk 1 m i i
k i

k k ks a log x q ??? qx y b log x 4.19Ž .Ž .Ý Ýk 1 m i i
k i

for positive x . Since by Step 1 in the Proof of Theorem 4.2, the Hessian ofi
this function is positive, v is the global minimum:

v F v x , ; x ) 0. 4.20Ž . Ž .
d Ž .To get the upper bound for v let us put x s b in 4.20 :i i

v F a log b kd q b kd q ??? qb kd q dH b . 4.21Ž . Ž .Ž .Ý k 1 2 m
k

For d s 1rl we have b kd q b kd q ??? qb kd F 1 and hence the sum inmin 1 2 m
Ž .4.21 is not positive and the upper bound follows.

Ž .The lower bound for the function 4.19 , and hence for v, follows from
inequality

log y q y q ??? qy y b log y G H b . 4.22Ž . Ž . Ž .Ý1 2 m i i
i

Ž .To prove 4.22 , observe that the function in the left-hand side has a
unique critical point given by the linear system

y s b y q y q ??? qyŽ .1 i 1 2 m

with solution y s lb . The corresponding critical value is just entropyi i
Ž .H b .

Ž . Ž . Ž .Thus we get from 4.19 and 4.22 that v G H b rl with equality
possible only if

x k s l bi k i

Ž .for all k that enter in 4.19 with nonzero coefficient a / 0. There arek
two possibilities.
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1. There exist two cycles of different lengths, say k and r. Then

x k s l b , x r s l b ,i k i i r i

which implies x s x s ??? s x and b s b s ??? s b , i.e., b is a1 2 m 1 2 m
rectangular diagram.

k Ž .2. All cycles are of the same length k. Then x s lb and v s H bi i
for any diagram b.

By combining Theorem 4.6 with Example 4.3 we get upper and lower
Ž .bounds of a character in terms of its dimension cf. Corollary 4.5 .

COROLLARY 4.7. For large n, the inequalities

1r l 1rlminx 1 - x s - x 1Ž . Ž . Ž .b b a b

hold, pro¨ided diagram b is not rectangular and not all cycle lengths of sa

are equal.
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