On Contractibility of the Orbit Space of a *G*-Poset of Brauer Pairs

Laurence Barker*

Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey and Mathematisches Institut, Friedrich-Schiller-Universität, D-07740 Jena, Germany E-mail address: barker@fen.bilkent.edu.tr; barker@maxp03.mathe.uni-jena.de

Communicated by Michel Broué

Received April 11, 1998

Given a *p*-block *b* of a finite group *G*, we show that the *G*-poset of Brauer pairs strictly containing (1, b) has contractible *G*-orbit space. A similar result is proved for certain *G*-posets of *p*-subgroups. Both results generalise P. Symonds' verification of a conjecture of P. Webb. © 1999 Academic Press

Key Words: double simplicial complex; orbit space; poset of Brauer pairs.

Symonds [6] proved the conjecture of Webb [9] that, given a finite group G and a prime p dividing |G|, then the G-poset $\mathscr{S}_p(G)$ of nontrivial p-subgroups of G has contractible G-orbit space $|\mathscr{S}_p(G)|/G$. More generally, consider a G-poset \mathscr{S} consisting of p-subgroups of G with \mathscr{S} having the property that $P \in \mathscr{S}$ whenever P and Q are p-subgroups of G satisfying $P \ge Q \in \mathscr{S}$. Let $\mathscr{S}_{\triangleleft}$ denote the G-simplicial subcomplex of \mathscr{S} such that the nonempty simplexes in $\mathscr{S}_{\triangleleft}$ are the chains of the form $(P_0 \triangleleft \cdots \triangleleft P_n)$ where each $P_i \trianglelefteq P_n$. Symonds' argument shows:

THEOREM 1 (Symonds). For \mathscr{S} as in the previous text, $|\mathscr{S}_{\triangleleft}|/G$ is contractible.

Theorem 1 generalizes the conjectured assertion because Thévenaz– Webb [8, Theorem 2] gives a *G*-homotopy equivalence $|\mathscr{S}_p(G)_{\triangleleft}| \simeq_G$

^{*} This work was carried out during a visit to the Friedrich-Schiller-Universität-Jena. The author was on leave from Bilkent University, and was funded by the Alexander-von-Humboldt Foundation.

 $|\mathscr{S}_p(G)|$. Using another method, we shall prove a different generalization:

THEOREM 2. For S as in the preceding text, |S|/G is contractible.

In fact, we prove that a generalization of Webb's conjectured assertion holds for *G*-posets of Brauer pairs. Some fundamental properties of Brauer pairs (also called subpairs) were established in Alperin–Broué [1] (another account is given in Thévenaz [7, Section 40]). Let *F* be a field of characteristic *p*, and let *b* be a block (idempotent) of *FG*. Let *T* be a *G*-poset consisting of Brauer pairs on *FG* containing (1, *b*) with $(P, e) \in \mathcal{T}$ whenever (P, e) and (Q, f) are Brauer pairs on *FG* satisfying $(P, e) \geq$ $(Q, f) \in \mathcal{T}$. Let $\mathcal{T}_{\triangleleft}$ be the *G*-simplicial subcomplex of \mathcal{T} whose nonempty chains are of the form $((P_0, e_0) \triangleleft \cdots \triangleleft (P_n, e_n))$ where each $P_i \trianglelefteq P_n$. We show:

THEOREM 3. For \mathcal{T} as in the earlier text, $|\mathcal{T}_{\triangleleft}|/G$ is acyclic.

Now suppose that the block b has a positive defect, let $\mathscr{B}(b)$ be the G-poset of all Brauer pairs strictly containing (1, b), and let \mathscr{A} be any G-subposet of $\mathscr{B}(b)$ such that \mathscr{A} contains all the Brauer pairs $(P, e) \in \mathscr{B}$ such that P is elementary Abelian. The proof of Thévenaz–Webb [8, Theorem 2] generalizes easily to the following result; we sketch the argument in the following text.

THEOREM 4 (Thévenaz–Webb). For $\mathscr{B}(b)$ and \mathscr{A} as in the foregoing text, there are G-homotopy equivalences,

$$|\mathscr{B}(b)| \simeq_G |\mathscr{A}| \simeq_G |\mathscr{B}(b) \triangleleft|.$$

In the case of the principal block, the following result is precisely the assertion conjectured by Webb.

THEOREM 5. Given a positive defect block b of FG, then $|\mathscr{B}(b)|/G$ and $|\mathscr{B}(b)_{\triangleleft}|/G$ are contractible.

Our technique is based on a certain double chain complex, by means of which, the *G*-orbit space of a given *G*-simplicial complex *X* and the orbit spaces of some simplicial subcomplexes of *X* are to be compared with the *G*-orbit space of a carefully chosen *G*-simplicial complex *Y* and the orbit spaces of some simplicial subcomplexes of *Y*. To begin, we must generalize some material in Curtis–Reiner [3, Section 66].

Recall that any finite *G*-poset *W* may be regarded as a *G*-simplicial complex whose simplexes are the totally ordered subsets of *W*. If *W* is regular (meaning that gx = x whenever $x, y \in W$ and $g \in G$ with $x \leq y \geq gx$), then the *G*-orbit poset *W*/*G* has underlying polyhedron |W/G| canonically *G*-homeomorphic to the *G*-orbit space |W|/G.

Let X be a finite G-simplicial complex. The nonempty simplexes in X comprise a G-poset sd(X) partially ordered by the subchain relation. As a G-simplicial complex, sd(X) may be identified with the barycentric subdivision of X. It is easy to see that if X happens to be a G-poset, then the G-poset sd(X) is regular. In general, therefore, |X|/G is G-homeomorphic to |sd(sd(X))/G|.

Let *R* be a commutative unital ring of characteristic zero. Recall that the augmented chain complex $\tilde{C}(X, RG)$ of *X* with coefficients in *R* is a chain complex of permutation *RG*-modules, and has *G*-stable *R*-basis $\tilde{sd}(X) = \bigcup_{n \ge -1} \tilde{sd}_n(X)$, where $\tilde{sd}_n(X)$ is the set of all simplexes <u>x</u> whose dimension n(x) is equal to *n*. (Thus the empty simplex \emptyset is the unique element of $\tilde{sd}_{-1}(X)$.) Writing M_1^G for the image of the 1-relative trace map $\operatorname{tr}_1^G: M \to M^G$ on any *RG*-module *M*, then $\tilde{C}(X, RG)_1^G$ is a chain complex of free *R*-modules. The following result is doubtless well known.

PROPOSITION 6. Let X be a finite G-simplicial complex, and let R be a commutative unital ring of characteristic zero. Then we have an isomorphism of homology,

$$\tilde{H}(|X|/G, R) \cong H(\tilde{C}(X, RG)_1^G).$$

Proof. Because $\tilde{C}(X, RG) \simeq_G \tilde{C}(sd(sd(X)), RG)$, we have a homotopy equivalence,

$$\tilde{C}(X, RG)_1^G \simeq \tilde{C}(\mathrm{sd}(\mathrm{sd}(X)), RG)_1^G.$$

So we may assume that X is a regular G-poset. Then an isomorphism,

$$\tilde{C}(X/G, R) \cong \tilde{C}(X, RG)_1^G$$

is specified by the correspondences $\varnothing \leftrightarrow \operatorname{tr}_1^G(\varnothing)$, and

$$(\operatorname{Orb}_G(x_0) < \cdots < \operatorname{Orb}(x_n)) \leftrightarrow \operatorname{tr}_1^G(x_0 < \cdots < x_n),$$

for $(x_0 < \cdots < x_n) \in sd(X)$. But $|X/G| \cong |X|/G$, and we are finished.

Let us consider three finite *G*-simplicial complexes X, Y, Z such that $X \le Z \ge Y$ and $X * Y \ge Z$; the join X * Y is defined by the identity,

$$\widetilde{\mathrm{sd}}(X * Y) \coloneqq \widetilde{\mathrm{sd}}(X) \times \widetilde{\mathrm{sd}}(Y).$$

The triple (X, Y, Z) is called a double *G*-simplicial complex. (Compare with Quillen [5, 1.9], and the notion of a bisimplicial set in Gelfand–Manin

[4, Section I.3]). We write $\underline{x}Z\underline{y}$ to mean that $(\underline{x}, \underline{y}) \in \widetilde{sd}(Z)$. We let $\underline{x}Z$ be the $N_G(\underline{x})$ -simplicial complex such that

$$\widetilde{\mathsf{sd}}(\underline{x}Z) \coloneqq \Big\{ y \in \widetilde{\mathsf{sd}}(Y) \colon \underline{x}Z\underline{y} \Big\}.$$

Similarly, we define Zy as an $N_G(y)$ -simplicial complex with vertices in X. Note that $X = Z\emptyset$ and $Y = \emptyset Z$.

Let D = D(X, Y, Z, RG) be the double chain complex of permutation *RG*-modules such that *D* is a subcomplex of the tensor product double complex $\tilde{C}(X, RG) \otimes_R \tilde{C}(Y, RG)$, and $D_{s,t}$ has *R*-basis,

$$\widetilde{\mathrm{sd}}_{s,t}(X,Y,Z) \coloneqq \left(\widetilde{\mathrm{sd}}_{s}(X) \times \widetilde{\mathrm{sd}}_{t}(Y)\right) \cap \widetilde{\mathrm{sd}}(Z).$$

Then $\tilde{C}(Z, RG) = [-1]$ Tot(D), where [-1] denotes the "dimension shift" one place to the right. Therefore:

Remark 7. We have $\tilde{C}(Z, RG)_1^G = [-1]\text{Tot}(D_1^G)$.

LEMMA 8. Suppose that $\underline{x}Z/N_G(\underline{x})$ and $\underline{Z}\underline{y}/N_G(\underline{y})$ are *R*-acyclic for all (nonempty) $\underline{x} \in sd(X)$ and $\overline{y} \in sd(Y)$. Then

$$\tilde{H}(|X|/G, R) \cong \tilde{H}(|Y|/G, R) \cong \tilde{H}(|Z|/G, R).$$

In particular, X/G is R-acyclic if and only if Y/G is R-acyclic.

Proof. Let *E* be the spectral sequence arising from the column-filtration of the double chain complex D_1^G . By the hypothesis on $Zy/N_G(y)$ and Proposition 6, $E_{s,t}^1 = \tilde{H}_t(|Y|/G, R)$ if s = -1, otherwise $E_{s,t}^1 = 0$. Because the E^1 -page collapses to a single column,

$$E_{st}^1 \cong \tilde{H}_{s+t}(\operatorname{Tot}(D_1^G)).$$

But by Proposition 6 and Remark 7,

$$\tilde{H}_{s+t}(\operatorname{Tot}(D_1^G)) \cong \tilde{H}_{s+t+1}(|Z|/G, R).$$

Therefore, $\tilde{H}_*(|X|/G, R) = \tilde{H}_*(|Z|/G, R)$. To complete the argument, we interchange *X* and *Y* (in effect, switching to the row-filtration of D_1^G).

Proof of Theorem 2. Because [2, Theorem 3] tells us that $|\mathcal{S}|/G$ is simply connected, it suffices to show that $|\mathcal{S}|/G$ is acyclic (over the rational integers). We may assume that \mathcal{S} contains non-Sylow *p*-subgroups of *G*. Let $X = \mathcal{S}$, and let *Y* be the *G*-subposet of \mathcal{S} obtained by deleting

the *G*-conjugates of some minimal element of \mathscr{S} . Let *Z* be such that (X, Y, Z) is a double *G*-simplicial complex and, given (nonempty) $\underline{x} \in \operatorname{sd}(X)$ and $\underline{y} \in \operatorname{sd}(Y)$, then $\underline{x}Zy$ provided the maximal vertex \underline{y} of \underline{y} fixes \underline{x} under conjugation. Then $Z\underline{y}$ is the $N_G(\underline{y})$ -poset of \underline{y} -fixed elements X^y , which is conically $N_G(\underline{y})$ -contractible via the composite map $\underline{x} \mapsto \underline{x}\underline{y} \mapsto \underline{y}$. Meanwhile, $\underline{x}Z$ consists of those p-subgroups of $N_G(\underline{x})$ which belong to Y, and by induction on the number of vertices of X, we may assume that $\underline{x}Z/N_G(\underline{x})$ is acyclic. So Lemma 8 applies. By induction again, we may assume that |Y|/G is acyclic, hence so is |X|/G, as required.

Proof of Theorem 3. Again, we shall apply Lemma 8. Because the maximal Brauer pairs containing (1, b) are permuted transitively by G, we may assume that \mathcal{T} contains a nonmaximal Brauer pair. Let $X = \mathcal{T}_{\triangleleft}$, and let Y be the G-simplicial subcomplex of X obtained by deleting the G-conjugates of some minimal vertex (P^0, e^0) of \mathcal{T} . We form a double *G*-conjugates of some minimal vertex (P^o, e^o) of \mathcal{G} . We form a double *G*-simplicial complex (X, Y, Z) such that, given nonempty simplexes $(\underline{P}, \underline{e}) = ((P_0, e_0) \triangleleft \cdots \triangleleft (P_n, e_n))$ of *X* and $(\underline{Q}, f) = ((Q_0, f_0) \triangleleft \cdots \triangleleft (Q_m, f_m))$ of *Y*, then $(\underline{P}, \underline{e})Z(\underline{Q}, f)$ provided each $(P_i, e_i) \trianglelefteq (Q_j, f_j)$. Fixing (\underline{Q}, f) , then for each $(\underline{P}, \underline{e}) \in \overline{sd}(Z(\underline{Q}, f))$, let $(\underline{P}, \underline{e})'$ be the element of $\overline{sd}(\overline{Z}(\underline{Q}, f))$ obtained from $(\underline{P}, \underline{e})$ by inserting (Q_0, f_0) as the maximal term (if the maximal term is already (Q_0, f_0) , then $(\underline{P}, \underline{e})' = (\underline{P}, \underline{e})$). The barycentric subdivision $sd(Z(\underline{Q}, \underline{f}))$ of $Z(\underline{Q}, \underline{f})$ is $N_G(\underline{Q}, \underline{f})$ -contractible via

$$(\underline{P}, \underline{e}) \mapsto (\underline{P}, \underline{e})' \mapsto ((Q_0, f_0)).$$

Therefore, $|Z(\underline{Q}, \underline{f})| / N_G(\underline{Q}, \underline{f})$ is contractible, and perforce, acyclic. By induction on the number of vertices of X, we may assume that |Y|/G is acyclic. So, fixing a nonempty simplex $(\underline{P}, \underline{e})$ as in the previous |Y|/G is acyclic. So, fixing a nonempty simplex $(\underline{P}, \underline{e})$ as in the previous text, it suffices to show that $|(\underline{P}, \underline{e})Z|/N_G(\underline{P}, \underline{e})$ is acyclic. We need only worry about the case where $(\underline{P}, \underline{e}) = ((P^0, e^0))$, because if $(\underline{P}, \underline{e})$ is not a *G*-conjugate of $((P^0, e^0))$, then we can consider the element $(\underline{Q}, \underline{f})'$ of $\mathrm{sd}((\underline{P}, \underline{e})Z)$ obtained from $(\underline{Q}, \underline{f})$ by inserting (P_n, e_n) as the minimal term, and the argument proceeds as before. Clearly, $((P^0, e^0))Z$ is nonempty. Also, $((P^0, e^0))Z$ is the $N_G(P^0, e^0)$ -simplicial complex $\mathcal{T}_{\triangleleft}^0$, where \mathcal{T}^0 consists of the Brauer pairs on $FN_G(P^0, e^0)$ strictly containing (P^0, e^0) . By induction, we may assume that $|\mathcal{T}_{\triangleleft}^0|/N_G(P^0, e^0)$ is acyclic, and now there is nothing left to prove is nothing left to prove.

Sketch Proof of Theorem 4. We indicate the modification to be made to the proof of Thévenaz–Webb [8, Theorem 2]. Given $(P, e) \in \mathscr{B}(b) - \mathscr{A}$, then the $N_G(P, e)$ -posets,

$$\{(Q, f): (1, b) < (Q, f) < (P, e)\}$$
 and $\{Q: 1 < Q < P\}$

are isomorphic, and we can apply [8, 1.7] to the inclusion $\mathscr{A} \hookrightarrow \mathscr{B}$, deducing the first asserted G-homotopy equivalence.

To demonstrate the second half of the assertion, we may assume that \mathscr{A} consists of precisely those Brauer pairs (Q, f) such that Q is Abelian. Let $\mathscr{P} := \operatorname{sd}(\mathscr{B}(b)_{\triangleleft})$ as a G-poset. Let ϕ be the surjective G-poset map $\mathscr{P}^{\operatorname{op}} \to \mathscr{A}$ such that, given $(\underline{P}, \underline{e}) = ((P_0, e_0) \lhd \cdots \lhd (P_n, e_n)) \in \underline{P}$, then $\phi(\underline{P}, \underline{e}) := (A, f)$ where A is the intersection of the centres of the p-subgroups P_i , and $(A, f) \leq (P_0, e_0)$. Let us now fix $(A, f) \in \mathscr{A}$, and let \mathscr{C} be the $N_G(A, f)$ -subposet of \mathscr{P} consisting of the elements (\underline{Q}, f) such that $\phi(\underline{Q}, f) \geq (A, f)$. For such (\underline{Q}, f) , let $(\underline{Q}, f)'$ be the element of \mathscr{C} obtained by inserting (A, f) as the minimal term (leaving (Q, f) unchanged if (A, f) is already the minimal term). Then \mathscr{C} is $\overline{N_G}(A, f)$ -contractible via $(\underline{Q}, f) \mapsto (\underline{Q}, f)' \mapsto ((A, f))$, and the assertion holds by [8, Theorem 1(ii)].

Proof of Theorem 5. By Theorems 3–5, respectively, $|\mathscr{B}(b)_{\triangleleft}|/G$ is acyclic, $|\mathscr{B}(b)|/G \approx |\mathscr{B}(b)_{\triangleleft}|/G$, and $|\mathscr{B}(b)|/G$ is simply connected.

ACKNOWLEDGMENTS

The seed for this work was an unpublished theorem of Burkhard Külshammer and Geoffrey R. Robinson. I also thank Klaus Haberland for some illuminating comments.

REFERENCES

- 1. J. L. Alperin and M. Broué, Local methods in block theory, Ann. Math. 110 (1979), 143-157.
- 2. L. Barker, Alperin's fusion theorem and G-posets, J. Group Theory, to appear.
- C. W. Curtis and I. Reiner, "Methods of Representation Theory," Vol. II, Wiley, New York, 1987.
- 4. S. I. Gelfand and Y. I. Manin, "Methods of Homological Algebra," Springer-Verlag, Berlin, 1996.
- D. Quillen, Homotopy properties of the poset of non-trivial *p*-subgroups of a group, *Adv. Math.* 28 (1978), 101–128.
- 6. P. Symonds, The orbit space of the *p*-subgroup complex is contractible, *Comment. Math. Helvet.* **73** (1998), 400–405.
- J. Thévenaz, "G-Algebras and Modular Representation Theory," Clarendon, Oxford, U.K., 1995.
- J. Thévenaz and P. J. Webb, Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991), 173–181.
- 9. P. J. Webb, Subgroup complexes, Proc. Sympos. Pure Math. 47 (1987), 349-365.