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E-mail address: barker@fen.bilkent.edu.tr; barker@maxp03.mathe.uni-jena.de

Communicated by Michel Broué
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Given a p-block b of a finite group G, we show that the G-poset of Brauer pairs
Ž .strictly containing 1, b has contractible G-orbit space. A similar result is proved

for certain G-posets of p-subgroups. Both results generalise P. Symonds’ verifica-
tion of a conjecture of P. Webb. Q 1999 Academic Press
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w x w xSymonds 6 proved the conjecture of Webb 9 that, given a finite group
< < Ž .G and a prime p dividing G , then the G-poset SS G of nontrivialp

< Ž . <p-subgroups of G has contractible G-orbit space SS G rG. More gener-p
ally, consider a G-poset SS consisting of p-subgroups of G with SS having
the property that P g SS whenever P and Q are p-subgroups of G
satisfying P G Q g SS . Let SS denote the G-simplicial subcomplex of SS1
such that the nonempty simplexes in SS are the chains of the form1

eŽ .P 1 ??? 1 P where each P P . Symonds’ argument shows:0 n i } n

Ž . < <THEOREM 1 Symonds . For SS as in the pre¨ious text, SS rG is1
contractible.

Theorem 1 generalizes the conjectured assertion because Thevenaz]´
w x < Ž . <Webb 8, Theorem 2 gives a G-homotopy equivalence SS G ,p 1 G
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< Ž . <SS G . Using another method, we shall prove a different generalization:p

< <THEOREM 2. For SS as in the preceding text, SS rG is contractible.

In fact, we prove that a generalization of Webb’s conjectured assertion
holds for G-posets of Brauer pairs. Some fundamental properties of

Ž . w xBrauer pairs also called subpairs were established in Alperin]Broue 1´
Ž w x.another account is given in Thevenaz 7, Section 40 . Let F be a field of´

Ž .characteristic p, and let b be a block idempotent of FG. Let TT be a
Ž . Ž .G-poset consisting of Brauer pairs on FG containing 1, b with P, e g TT

Ž . Ž . Ž .whenever P, e and Q, f are Brauer pairs on FG satisfying P, e G
Ž .Q, f g TT. Let TT be the G-simplicial subcomplex of TT whose nonempty1

eŽŽ . Ž ..chains are of the form P , e 1 ??? 1 P , e where each P P . We0 0 n n i } n
show:

< <THEOREM 3. For TT as in the earlier text, TT rG is acyclic.1

Ž .Now suppose that the block b has a positive defect, let BB b be the
Ž .G-poset of all Brauer pairs strictly containing 1, b , and let AA be any

Ž . Ž .G-subposet of BB b such that AA contains all the Brauer pairs P, e g BB

wsuch that P is elementary Abelian. The proof of Thevenaz]Webb 8,´
xTheorem 2 generalizes easily to the following result; we sketch the

argument in the following text.

Ž . Ž .THEOREM 4 Thevenaz]Webb . For BB b and AA as in the foregoing´
text, there are G-homotopy equï alences,

< <BB b , AA , BB b .Ž . Ž .1G G

In the case of the principal block, the following result is precisely the
assertion conjectured by Webb.

< Ž . <THEOREM 5. Gï en a positï e defect block b of FG, then BB b rG and
< Ž . <BB b rG are contractible.1

Our technique is based on a certain double chain complex, by means of
which, the G-orbit space of a given G-simplicial complex X and the orbit
spaces of some simplicial subcomplexes of X are to be compared with the
G-orbit space of a carefully chosen G-simplicial complex Y and the orbit
spaces of some simplicial subcomplexes of Y. To begin, we must generalize

w xsome material in Curtis]Reiner 3, Section 66 .
Recall that any finite G-poset W may be regarded as a G-simplicial

complex whose simplexes are the totally ordered subsets of W. If W is
Žregular meaning that gx s x whenever x, y g W and g g G with x F y

. < <G gx , then the G-orbit poset WrG has underlying polyhedron WrG
< <canonically G-homeomorphic to the G-orbit space W rG.
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Let X be a finite G-simplicial complex. The nonempty simplexes in X
Ž .comprise a G-poset sd X partially ordered by the subchain relation. As a
Ž .G-simplicial complex, sd X may be identified with the barycentric subdi-

vision of X. It is easy to see that if X happens to be a G-poset, then the
Ž . < <G-poset sd X is regular. In general, therefore, X rG is G-homeomor-

< Ž Ž .. <phic to sd sd X rG .
Let R be a commutative unital ring of characteristic zero. Recall that

Ž̃ .the augmented chain complex C X, RG of X with coefficients in R is a
chain complex of permutation RG-modules, and has G-stable R-basis& & &
Ž . Ž . Ž .sd X s D sd X , where sd X is the set of all simplexes x whosenGy1 n n

Ž . Ždimension n x is equal to n. Thus the empty simplex B is the unique&
GŽ . .element of sd X . Writing M for the image of the 1-relative trace1y1

G G ˜ GŽ .map tr : M ª M on any RG-module M, then C X, RG is a chain1 1
complex of free R-modules. The following result is doubtless well known.

PROPOSITION 6. Let X be a finite G-simplicial complex, and let R be a
commutatï e unital ring of characteristic zero. Then we ha¨e an isomorphism
of homology,

G˜ ˜< <H X rG, R ( H C X , RG .Ž .Ž . Ž .1

˜ ˜Ž . Ž Ž Ž .. .Proof. Because C X, RG , C sd sd X , RG , we have a homotopyG
equivalence,

GG˜ ˜C X , RG , C sd sd X , RG .Ž . Ž .Ž .Ž .1 1

So we may assume that X is a regular G-poset. Then an isomorphism,

G˜ ˜C XrG, R ( C X , RGŽ . Ž . 1

GŽ .is specified by the correspondences B l tr B , and1

Orb x - ??? - Orb x l tr G x - ??? - x ,Ž . Ž . Ž .Ž .G 0 n 1 0 n

Ž . Ž . < < < <for x - ??? - x g sd X . But XrG ( X rG, and we are finished.0 n

Let us consider three finite G-simplicial complexes X, Y, Z such that
X F Z G Y and X )Y G Z; the join X )Y is defined by the identity,

& & &
sd X )Y [ sd X = sd Y .Ž . Ž . Ž .

Ž . ŽThe triple X, Y, Z is called a double G-simplicial complex. Compare
w xwith Quillen 5, 1.9 , and the notion of a bisimplicial set in Gelfand]Manin
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&
w x. Ž . Ž .4, Section I.3 . We write xZy to mean that x, y g sd Z . We let xZ be

Ž .the N x -simplicial complex such thatG

& &
sd xZ [ y g sd Y : xZy .Ž .Ž . ½ 5

Ž .Similarly, we define Zy as an N y -simplicial complex with vertices in X.G
Note that X s ZB and Y s BZ.

Ž .Let D s D X, Y, Z, RG be the double chain complex of permutation
RG-modules such that D is a subcomplex of the tensor product double

˜ ˜Ž . Ž .complex C X, RG m C Y, RG , and D has R-basis,s, tR

& & & &
sd X , Y , Z [ sd X = sd Y l sd Z .Ž . Ž . Ž . Ž .s tŽ .s , t

Ž̃ . w x Ž . w xThen C Z, RG s y1 Tot D , where y1 denotes the ‘‘dimension shift’’
one place to the right. Therefore:

˜ G GŽ . w x Ž .Remark 7. We have C Z, RG s y1 Tot D .1 1

Ž . Ž .LEMMA 8. Suppose that xZrN x and ZyrN y are R-acyclic for allG G
Ž . Ž . Ž .nonempty x g sd X and y g sd Y . Then

˜ ˜ ˜< < < < < <H X rG, R ( H Y rG, R ( H Z rG, R .Ž . Ž . Ž .

In particular, XrG is R-acyclic if and only if YrG is R-acyclic.

Proof. Let E be the spectral sequence arising from the column-filtra-
G Ž .tion of the double chain complex D . By the hypothesis on ZyrN y and1 G

1 ˜ 1Ž < < .Proposition 6, E s H Y rG, R if s s y1, otherwise E s 0. Becauses, t t s, t
the E1-page collapses to a single column,

1 ˜ GE ( H Tot D .Ž .Ž .st sqt 1

But by Proposition 6 and Remark 7,

˜ G ˜ < <H Tot D ( H Z rG, R .Ž .Ž .Ž .sq t 1 sqtq1

˜ ˜Ž < < . Ž < < .Therefore, H# X rG, R s H# Z rG, R . To complete the argument,
Ž G.we interchange X and Y in effect, switching to the row-filtration of D .1

w x < <Proof of Theorem 2. Because 2, Theorem 3 tells us that SS rG is
< < Žsimply connected, it suffices to show that SS rG is acyclic over the

.rational integers . We may assume that SS contains non-Sylow p-subgroups
of G. Let X s SS , and let Y be the G-subposet of SS obtained by deleting
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the G-conjugates of some minimal element of SS . Let Z be such that
Ž . Ž .X, Y, Z is a double G-simplicial complex and, given nonempty x g
Ž . Ž .sd X and y g sd Y , then xZy provided the maximal vertex y of y fixes

Ž . yx under conjugation. Then Zy is the N y -poset of y-fixed elements X ,G
Ž .which is conically N y -contractible via the composite map x ¬ xy ¬ y.G

Ž .Meanwhile, xZ consists of those p-subgroups of N x which belong to Y,G
and by induction on the number of vertices of X, we may assume that

Ž .xZrN x is acyclic. So Lemma 8 applies. By induction again, we mayG
< < < <assume that Y rG is acyclic, hence so is X rG, as required.

Proof of Theorem 3. Again, we shall apply Lemma 8. Because the
Ž .maximal Brauer pairs containing 1, b are permuted transitively by G, we

may assume that TT contains a nonmaximal Brauer pair. Let X s TT , and1
let Y be the G-simplicial subcomplex of X obtained by deleting the

Ž 0 0.G-conjugates of some minimal vertex P , e of TT. We form a double
Ž . Ž .G-simplicial complex X, Y, Z such that, given nonempty simplexes P, e

ŽŽ . Ž .. Ž . ŽŽ .s P , e 1 ??? 1 P , e of X and Q, f s Q , f 1 ??? 10 0 n n 0 0
Ž .. Ž . Ž . Ž . Ž .Q , f of Y, then P, e Z Q, f provided each P , e e Q , f . Fixingm m i i j j}

Ž . Ž . Ž Ž .. Ž .Q, f , then for each P, e g sd Z Q, f , let P, e 9 be the element of
Ž Ž .. Ž . Ž .sd Z Q, f obtained from P, e by inserting Q , f as the maximal term0 0

Ž Ž . Ž . Ž ..if the maximal term is already Q , f , then P, e 9 s P, e . The0 0
Ž Ž .. Ž . Ž .barycentric subdivision sd Z Q, f of Z Q, f is N Q, f -contractible viaG

P , e ¬ P , e 9 ¬ Q , f .Ž .Ž . Ž . Ž .0 0

< Ž . Ž .Therefore, Z Q, f NrN Q, f is contractible, and perforce, acyclic.G
By induction on the number of vertices of X, we may assume that

< < Ž .Y rG is acyclic. So, fixing a nonempty simplex P, e as in the previous
<Ž . < Ž .text, it suffices to show that P, e Z rN P, e is acyclic. We need onlyG
Ž . ŽŽ 0 0.. Ž .worry about the case where P, e s P , e , because if P, e is not a

ŽŽ 0 0.. Ž .G-conjugate of P , e , then we can consider the element Q, f 9 of
ŽŽ . . Ž . Ž .sd P, e Z obtained from Q, f by inserting P , e as the minimal term,n n

ŽŽ 0 0..and the argument proceeds as before. Clearly, P , e Z is nonempty.
ŽŽ 0 0.. Ž 0 0. 0 0Also, P , e Z is the N P , e -simplicial complex TT , where TTG 1

Ž 0 0. Ž 0 0.consists of the Brauer pairs on FN P , e strictly containing P , e . ByG
< 0 < Ž 0 0..induction, we may assume that TT rN P , e is acyclic, and now there1 G

is nothing left to prove.

Sketch Proof of Theorem 4. We indicate the modification to be made to
w x Ž . Ž .the proof of Thevenaz]Webb 8, Theorem 2 . Given P, e g BB b y AA,´

Ž .then the N P, e -posets,G

� 4Q, f : 1, b - Q, f - P , e and Q: 1 - Q - P� 4Ž . Ž . Ž . Ž .
w xare isomorphic, and we can apply 8, 1.7 to the inclusion AA ¨ BB, deduc-

ing the first asserted G-homotopy equivalence.
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To demonstrate the second half of the assertion, we may assume that AA

Ž .consists of precisely those Brauer pairs Q, f such that Q is Abelian. Let
Ž Ž . .PP [ sd BB b as a G-poset. Let f be the surjective G-poset map1

op Ž . ŽŽ . Ž ..PP ª AA such that, given P, e s P , e 1 ??? 1 P , e g P, then0 0 n n
Ž . Ž .f P, e [ A, f where A is the intersection of the centres of the

Ž . Ž . Ž .p-subgroups P , and A, f F P , e . Let us now fix A, f g AA, and leti 0 0
Ž . Ž .QQ be the N A, f -subposet of PP consisting of the elements Q, f suchG

Ž . Ž . Ž . Ž .that f Q, f G A, f . For such Q, f , let Q, f 9 be the element of QQ

Ž . Ž Ž .obtained by inserting A, f as the minimal term leaving Q, f un-
Ž . . Ž .changed if A, f is already the minimal term . Then QQ is N A, f -G

Ž . Ž . ŽŽ .. wcontractible via Q, f ¬ Q, f 9 ¬ A, f , and the assertion holds by 8,
Ž .xTheorem 1 ii .

< Ž . <Proof of Theorem 5. By Theorems 3]5, respectively, BB b rG is1
< Ž . < < Ž . < < Ž . <acyclic, BB b rG , BB b rG, and BB b rG is simply connected.1
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