# On Contractibility of the Orbit Space of a $G$-Poset of Brauer Pairs 

Laurence Barker*<br>Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey and Mathematisches Institut, Friedrich-Schiller-Universität, D-07740 Jena, Germany E-mail address: barker@ fen.bilkent.edu.tr; barker@ maxp03.mathe.uni-jena.de

Communicated by Michel Broué
Received A pril 11, 1998

Given a $p$-block $b$ of a finite group $G$, we show that the $G$-poset of Brauer pairs strictly containing $(1, b)$ has contractible $G$-orbit space. A similar result is proved for certain $G$-posets of $p$-subgroups. Both results generalise P. Symonds' verification of a conjecture of P. Webb. © 1999 A cademic Press

Key Words: double simplicial complex; orbit space; poset of Brauer pairs.

Symonds [6] proved the conjecture of Webb [9] that, given a finite group $G$ and a prime $p$ dividing $|G|$, then the $G$-poset $\mathscr{S}_{p}(G)$ of nontrivial $p$-subgroups of $G$ has contractible $G$-orbit space $\left|\mathscr{S}_{p}(G)\right| / G$. M ore generally, consider a $G$-poset $\mathscr{S}$ consisting of $p$-subgroups of $G$ with $\mathscr{S}$ having the property that $P \in \mathscr{S}$ whenever $P$ and $Q$ are $p$-subgroups of $G$ satisfying $P \geq Q \in \mathscr{S}$. Let $\mathscr{S}_{\triangleleft}$ denote the $G$-simplicial subcomplex of $\mathscr{S}$ such that the nonempty simplexes in $\mathscr{S}_{\triangleleft}$ are the chains of the form ( $P_{0} \triangleleft \cdots \triangleleft P_{n}$ ) where each $P_{i} \triangleleft P_{n}$. Symonds' argument shows:

Theorem 1 (Symonds). For $\mathscr{S}$ as in the previous text, $\left|\mathscr{S}_{\triangleleft}\right| / G$ is contractible.

Theorem 1 generalizes the conjectured assertion because ThévenazWebb [8, Theorem 2] gives a $G$-homotopy equivalence $\left|\mathscr{S}_{p}(G)_{\triangleleft}\right| \simeq_{G}$

[^0]$\left|\mathscr{S}_{p}(G)\right|$ U sing another method, we shall prove a different generalization:
Theorem 2. For $\mathscr{S}$ as in the preceding text, $|\mathscr{S}| / G$ is contractible.
In fact, we prove that a generalization of Webb's conjectured assertion holds for $G$-posets of Brauer pairs. Some fundamental properties of Brauer pairs (also called subpairs) were established in Alperin-Broué [1] (another account is given in Thévenaz [7, Section 40]). Let $F$ be a field of characteristic $p$, and let $b$ be a block (idempotent) of $F G$. Let $\mathscr{T}$ be a $G$-poset consisting of Brauer pairs on $F G$ containing $(1, b)$ with $(P, e) \in \mathscr{T}$ whenever ( $P, e$ ) and ( $Q, f$ ) are Brauer pairs on $F G$ satisfying $(P, e) \geq$ $(Q, f) \in \mathscr{T}$. Let $\mathscr{T}_{\triangleleft}$ be the $G$-simplicial subcomplex of $\mathscr{T}$ whose nonempty chains are of the form $\left(\left(P_{0}, e_{0}\right) \triangleleft \cdots \triangleleft\left(P_{n}, e_{n}\right)\right)$ where each $P_{i} \triangleleft P_{n}$. We show:

## Theorem 3. For $\mathscr{T}$ as in the earlier text, $\left|\mathscr{T}_{\triangleleft}\right| / G$ is acyclic.

Now suppose that the block $b$ has a positive defect, let $\mathscr{B}(b)$ be the $G$-poset of all Brauer pairs strictly containing ( $1, b$ ), and let $\mathscr{A}$ be any $G$-subposet of $\mathscr{B}(b)$ such that $\mathscr{A}$ contains all the Brauer pairs $(P, e) \in \mathscr{B}$ such that $P$ is elementary Abelian. The proof of Thévenaz-Webb [8, Theorem 2] generalizes easily to the following result; we sketch the argument in the following text.
Theorem 4 (Thévenaz-Webb). For $\mathscr{B}(b)$ and $\mathscr{A}$ as in the foregoing text, there are G-homotopy equivalences,

$$
|\mathscr{B}(b)| \simeq_{G}|\mathscr{A}| \simeq_{G}\left|\mathscr{B}(b)_{\triangleleft}\right| .
$$

In the case of the principal block, the following result is precisely the assertion conjectured by W ebb.

Theorem 5. Given a positive defect block $b$ of $F G$, then $|\mathscr{B}(b)| / G$ and $\mid \mathscr{B}(b))_{\triangleleft} \mid / G$ are contractible.

O ur technique is based on a certain double chain complex, by means of which, the $G$-orbit space of a given $G$-simplicial complex $X$ and the orbit spaces of some simplicial subcomplexes of $X$ are to be compared with the $G$-orbit space of a carefully chosen $G$-simplicial complex $Y$ and the orbit spaces of some simplicial subcomplexes of $Y$. To begin, we must generalize some material in Curtis-R einer [3, Section 66].

Recall that any finite $G$-poset $W$ may be regarded as a $G$-simplicial complex whose simplexes are the totally ordered subsets of $W$. If $W$ is regular (meaning that $g x=x$ whenever $x, y \in W$ and $g \in G$ with $x \leq y$ $\geq g x$ ), then the $G$-orbit poset $W / G$ has underlying polyhedron $|W / G|$ canonically $G$-homeomorphic to the $G$-orbit space $|W| / G$.

Let $X$ be a finite $G$-simplicial complex. The nonempty simplexes in $X$ comprise a $G$-poset $\mathrm{sd}(X)$ partially ordered by the subchain relation. A s a $G$-simplicial complex, $\operatorname{sd}(X)$ may be identified with the barycentric subdivision of $X$. It is easy to see that if $X$ happens to be a $G$-poset, then the $G$-poset $\operatorname{sd}(X)$ is regular. In general, therefore, $|X| / G$ is $G$-homeomorphic to $|\operatorname{sd}(\operatorname{sd}(X)) / G|$.

Let $R$ be a commutative unital ring of characteristic zero. Recall that the augmented chain complex $\tilde{C}(X, R G)$ of $X$ with coefficients in $R$ is a chain complex of permutation $R G$-modules, and has $G$-stable $R$-basis $\widetilde{\mathrm{sd}}(X)=\cup_{n \geq-1} \widetilde{\operatorname{sd}}_{n}(X)$, where $\widetilde{\mathrm{sd}}_{n}(X)$ is the set of all simplexes $\underline{x}$ whose dimension $n(\underline{x})$ is equal to $n$. (Thus the empty simplex $\varnothing$ is the unique element of $\widetilde{\mathrm{sd}}_{-1}(X)$.) Writing $M_{1}^{G}$ for the image of the 1 -relative trace map $\operatorname{tr}_{1}^{G}: M \rightarrow M^{G}$ on any $R G$-module $M$, then $\tilde{C}(X, R G)_{1}^{G}$ is a chain complex of free $R$-modules. The following result is doubtless well known.

Proposition 6. Let $X$ be a finite $G$-simplicial complex, and let $R$ be a commutative unital ring of characteristic zero. Then we have an isomorphism of homology,

$$
\tilde{H}(|X| / G, R) \cong H\left(\tilde{C}(X, R G)_{1}^{G}\right)
$$

Proof. Because $\tilde{C}(X, R G) \simeq{ }_{G} \tilde{C}(\operatorname{sd}(\operatorname{sd}(X)), R G)$, we have a homotopy equivalence,

$$
\tilde{C}(X, R G)_{1}^{G} \simeq \tilde{C}(\operatorname{sd}(\operatorname{sd}(X)), R G)_{1}^{G} .
$$

So we may assume that $X$ is a regular $G$-poset. Then an isomorphism,

$$
\tilde{C}(X / G, R) \cong \tilde{C}(X, R G)_{1}^{G}
$$

is specified by the correspondences $\varnothing \leftrightarrow \operatorname{tr}_{1}^{G}(\varnothing)$, and

$$
\left(\operatorname{Orb}_{G}\left(x_{0}\right)<\cdots<\operatorname{Orb}\left(x_{n}\right)\right) \leftrightarrow \operatorname{tr}_{1}^{G}\left(x_{0}<\cdots<x_{n}\right),
$$

for $\left(x_{0}<\cdots<x_{n}\right) \in \operatorname{sd}(X)$. But $|X / G| \cong|X| / G$, and we are finished.

Let us consider three finite $G$-simplicial complexes $X, Y, Z$ such that $X \leq Z \geq Y$ and $X * Y \geq Z$; the join $X * Y$ is defined by the identity,

$$
\widetilde{\operatorname{sd}}(X * Y):=\widetilde{\operatorname{sd}}(X) \times \widetilde{\operatorname{sd}}(Y)
$$

The triple ( $X, Y, Z$ ) is called a double $G$-simplicial complex. (Compare with Quillen [5, 1.9], and the notion of a bisimplicial set in Gelfand-M anin
[4, Section I.3]). We write $\underline{x Z y}$ to mean that $(\underline{x}, \underline{y}) \in \widetilde{\operatorname{sd}}(Z)$. We let $\underline{x} Z$ be the $N_{G}(\underline{x})$-simplicial complex such that

$$
\widetilde{\operatorname{sd}}(\underline{x} Z):=\{y \in \widetilde{\operatorname{sd}}(Y): \underline{x} Z \underline{y}\} .
$$

Similarly, we define $Z y$ as an $N_{G}(y)$-simplicial complex with vertices in $X$. Note that $X=Z \varnothing$ and $Y=\varnothing Z$.

Let $D=D(X, Y, Z, R G)$ be the double chain complex of permutation $R G$-modules such that $D_{\sim}$ is a subcomplex of the tensor product double complex $\tilde{C}(X, R G) \otimes_{R} \tilde{C}(Y, R G)$, and $D_{s, t}$ has $R$-basis,

$$
\widetilde{\mathrm{sd}}_{s, t}(X, Y, Z):=\left(\widetilde{\mathrm{sd}}_{s}(X) \times{\left.\widetilde{\operatorname{sd}_{t}}(Y)\right) \cap \widetilde{\mathrm{sd}}(Z) . . . .}\right.
$$

Then $\tilde{C}(Z, R G)=[-1] \operatorname{Tot}(D)$, where $[-1]$ denotes the "dimension shift" one place to the right. Therefore:
Remark 7. We have $\tilde{C}(Z, R G)_{1}^{G}=[-1] \operatorname{Tot}\left(D_{1}^{G}\right)$.
Lemma 8. Suppose that $\underline{x} Z / N_{G}(\underline{x})$ and $Z \underline{y} / N_{G}(\underline{y})$ are $R$-acyclic for all (nonempty) $\underline{x} \in \operatorname{sd}(X)$ and $y \in \operatorname{sd}(Y)$. Then

$$
\tilde{H}(|X| / G, R) \cong \tilde{H}(|Y| / G, R) \cong \tilde{H}(|Z| / G, R)
$$

In particular, $X / G$ is $R$-acyclic if and only if $Y / G$ is $R$-acyclic.
Proof. Let $E$ be the spectral sequence arising from the column-filtration of the double chain complex $D_{1}^{G}$. By the hypothesis on $Z y / N_{G}(y)$ and Proposition 6, $E_{s, t}^{1}=\tilde{H}_{t}(|Y| / G, R)$ if $s=-1$, otherwise $E_{s, t}^{1}=0$. Bēcause the $E^{1}$-page collapses to a single column,

$$
E_{s t}^{1} \cong \tilde{H}_{s+t}\left(\operatorname{Tot}\left(D_{1}^{G}\right)\right) .
$$

But by Proposition 6 and Remark 7,

$$
\tilde{H}_{s+t}\left(\operatorname{Tot}\left(D_{1}^{G}\right)\right) \cong \tilde{H}_{s+t+1}(|Z| / G, R) .
$$

Therefore, $\tilde{H}_{*}(|X| / G, R)=\tilde{H}_{*}(|Z| / G, R)$. To complete the argument, we interchange $X$ and $Y$ (in effect, switching to the row-filtration of $D_{1}^{G}$ ).

Proof of Theorem 2. Because [2, Theorem 3] tells us that $|\mathscr{S}| / G$ is simply connected, it suffices to show that $|\mathscr{S}| / G$ is acyclic (over the rational integers). We may assume that $\mathscr{S}$ contains non-Sylow $p$-subgroups of $G$. Let $X=\mathscr{S}$, and let $Y$ be the $G$-subposet of $\mathscr{S}$ obtained by deleting
the $G$-conjugates of some minimal element of $\mathscr{S}$. Let $Z$ be such that ( $X, Y, Z$ ) is a double $G$-simplicial complex and, given (nonempty) $x \in$ $\operatorname{sd}(X)$ and $y \in \operatorname{sd}(Y)$, then $x Z y$ provided the maximal vertex $y$ of $y$ fixes $\underline{x}$ under conjugation. Then $Z \underline{y}$ is the $N_{G}(y)$-poset of $y$-fixed elements $X^{y}$, which is conically $N_{G}(y)$-contractible via the composite map $x \rightarrow x y \mapsto y$. M eanwhile, $\underline{x} Z$ consists of those $p$-subgroups of $N_{G}(\underline{x})$ which belong to $Y$, and by induction on the number of vertices of $X$, we may assume that $\underline{x} Z / N_{G}(\underline{x})$ is acyclic. So Lemma 8 applies. By induction again, we may assume that $|Y| / G$ is acyclic, hence so is $|X| / G$, as required.

Proof of Theorem 3. A gain, we shall apply Lemma 8. Because the maximal Brauer pairs containing $(1, b)$ are permuted transitively by $G$, we may assume that $\mathscr{T}$ contains a nonmaximal Brauer pair. Let $X=\mathscr{T}_{\triangleleft}$, and let $Y$ be the $G$-simplicial subcomplex of $X$ obtained by deleting the $G$-conjugates of some minimal vertex ( $P^{0}, e^{0}$ ) of $\mathscr{T}$. We form a double $G$-simplicial complex $(X, Y, Z)$ such that, given nonempty simplexes ( $\underline{P}, \underline{e}$ ) $=\left(\left(P_{0}, e_{0}\right) \triangleleft \cdots \triangleleft\left(P_{n}, e_{n}\right)\right)$ of $X$ and $(Q, f)=\left(\left(Q_{0}, f_{0}\right) \triangleleft \cdots \triangleleft\right.$ $\left(Q_{m}, f_{m}\right)$ ) of $Y$, then $(\underline{P}, \underline{e}) Z(\underline{Q}, f)$ provided each $\left(P_{i}, e_{i}\right) \unlhd\left(Q_{j}, f_{j}\right)$. Fixing $(Q, f)$, then for each $(\underline{P}, \underline{e}) \in \operatorname{sd}(Z(\underline{Q}, \underline{f}))$, let $(\underline{P}, \underline{e})^{\prime}$ be the element of $\operatorname{sd}(\bar{Z}(\underline{Q}, \underline{f}))$ obtained from ( $\underline{P}, \underline{e}$ ) by inserting $\left(Q_{0}, f_{0}\right)$ as the maximal term (if the maximal term is already $\left(Q_{0}, f_{0}\right)$, then $(\underline{P}, \underline{e})^{\prime}=(\underline{P}, \underline{e})$ ). The barycentric subdivision $\operatorname{sd}(Z(\underline{Q}, \underline{f}))$ of $Z(\underline{Q}, \underline{f})$ is $N_{G}(\underline{Q}, \underline{f})$-contractible via

$$
(\underline{P}, \underline{e}) \mapsto(\underline{P}, \underline{e})^{\prime} \mapsto\left(\left(Q_{0}, f_{0}\right)\right)
$$

Therefore, $|Z(\underline{Q}, f)| / N_{G}(\underline{Q}, f)$ is contractible, and perforce, acyclic.
By induction on the number of vertices of $X$, we may assume that $|Y| / G$ is acyclic. So, fixing a nonempty simplex ( $\underline{P}, \underline{e}$ ) as in the previous text, it suffices to show that $|(\underline{P}, \underline{e}) Z| / N_{G}(\underline{P}, \underline{e})$ is acyclic. We need only worry about the case where $(\underline{P}, \underline{e})=\left(\left(P^{0}, e^{0}\right)\right)$, because if $(\underline{P}, \underline{e})$ is not a $G$-conjugate of $\left(\left(P^{0}, e^{0}\right)\right)$, then we can consider the element $(Q, f)^{\prime}$ of $\operatorname{sd}((\underline{P}, \underline{e}) Z)$ obtained from $(Q, f)$ by inserting $\left(P_{n}, e_{n}\right)$ as the minimal term, and the argument proceed $\bar{s}$ as before. Clearly, $\left(\left(P^{0}, e^{0}\right)\right) Z$ is nonempty. Also, $\left(\left(P^{0}, e^{0}\right)\right) Z$ is the $N_{G}\left(P^{0}, e^{0}\right)$-simplicial complex $\mathscr{T}_{4}^{0}$, where $\mathscr{T}^{0}$ consists of the Brauer pairs on $F N_{G}\left(P^{0}, e^{0}\right)$ strictly containing ( $P^{0}, e^{0}$ ). By induction, we may assume that $\left|\mathscr{T}_{\triangleleft}^{0}\right| / N_{G}\left(P^{0}, e^{0}\right)$ ) is acyclic, and now there is nothing left to prove.

Sketch Proof of Theorem 4. We indicate the modification to be made to the proof of Thévenaz-W ebb [8, Theorem 2]. Given $(P, e) \in \mathscr{B}(b)-\mathscr{A}$, then the $N_{G}(P, e)$-posets,

$$
\{(Q, f):(1, b)<(Q, f)<(P, e)\} \quad \text { and } \quad\{Q: 1<Q<P\}
$$

are isomorphic, and we can apply [8, 1.7] to the inclusion $\mathscr{A} \hookrightarrow \mathscr{B}$, deducing the first asserted $G$-homotopy equivalence.

To demonstrate the second half of the assertion, we may assume that $\mathscr{A}$ consists of precisely those Brauer pairs $(Q, f)$ such that $Q$ is A belian. Let $\mathscr{P}:=\operatorname{sd}\left(\mathscr{B}(b)_{\triangleleft}\right)$ as a $G$-poset. Let $\phi$ be the surjective $G$-poset map $\mathscr{P}^{\mathrm{op}} \rightarrow \mathscr{A}$ such that, given $(\underline{P}, \underline{e})=\left(\left(P_{0}, e_{0}\right) \triangleleft \cdots \triangleleft\left(P_{n}, e_{n}\right)\right) \in \underline{P}$, then $\phi(\underline{P}, \underline{e}):=(A, f)$ where $A$ is the intersection of the centres of the $p$-subgroups $P_{i}$, and $(A, f) \leq\left(P_{0}, e_{0}\right)$. Let us now fix $(A, f) \in \mathscr{A}$, and let $\mathscr{Q}$ be the $N_{G}(A, f)$-subposet of $\mathscr{P}$ consisting of the elements $(Q, f)$ such that $\phi(Q, f) \geq(A, f)$. For such $(Q, f)$, let $(Q, f)^{\prime}$ be the element of $\mathscr{Q}$ obtained by inserting $(A, f)$ as the minimat term (leaving $(Q, f)$ unchanged if $(A, f)$ is already the minimal term). Then $\mathscr{Q}$ is $\bar{N}_{G}(A, f)$ contractible via $(\underline{Q}, \underline{f}) \mapsto(\underline{Q}, \underline{f})^{\prime} \mapsto((A, f))$, and the assertion holds by [8, Theorem 1(ii)].

Proof of Theorem 5. By Theorems 3-5, respectively, $\left|\mathscr{B}(b)_{\triangleleft}\right| / G$ is acyclic, $|\mathscr{B}(b)| / G \simeq|\mathscr{B}(b) \triangleleft| / G$, and $|\mathscr{B}(b)| / G$ is simply connected.

## ACKNOWLEDGMENTS

The seed for this work was an unpublished theorem of Burkhard Külshammer and Geoffrey R. Robinson. I also thank Klaus Haberland for some illuminating comments.

## REFERENCES

1. J. L. Alperin and M. Broué, Local methods in block theory, Ann. Math. 110 (1979), 143-157.
2. L. Barker, Alperin's fusion theorem and $G$-posets, J. Group Theory, to appear.
3. C. W. Curtis and I. Reiner, "M ethods of Representation Theory," V ol. II, Wiley, New Y ork, 1987.
4. S. I. Gelfand and Y. I. Manin, "M ethods of Homological Algebra," Springer-V erlag, Berlin, 1996.
5. D. Quillen, Homotopy properties of the poset of non-trivial $p$-subgroups of a group, $\operatorname{Adv}$. Math. 28 (1978), 101-128.
6. P. Symonds, The orbit space of the $p$-subgroup complex is contractible, Comment. Math. Helvet. 73 (1998), 400-405.
7. J. Thévenaz, "G-A Igebras and M odular Representation Theory," Clarendon, Oxford, U.K., 1995.
8. J. Thévenaz and P. J. Webb, Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991), 173-181.
9. P. J. W ebb, Subgroup complexes, Proc. Sympos. Pure Math. 47 (1987), 349-365.

[^0]:    * This work was carried out during a visit to the Friedrich-Schiller-U niversität-J ena. The author was on leave from Bilkent U niversity, and was funded by the A lexander-von-H umboldt Foundation.

