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Environmental efficiency in carbon
dioxide emissions in the OECD:
A non-parametric approach

0. Zaim™ and F. Taskin

The role of the environment is an important issue in the policy-making and hence, the accurate assessment
of the environmental conditions is vital. In this paper, an environmental efficiency index is developed for the
OECD countries using non-parametric techniques. The approach adopted is based on the assumption that
there is just one production process behind the production of both goods and pollution emissions. The index
derived in this work measures the extent of the required output sacrifice, due to the transformation of the
production process, from one where all outputs are strongly disposable to the one which is characterized by
weak disposability of pollutants. Using this index, we first conduct cross-section comparisons on the state
of each country’s production process in its treatment of pollution emissions. We then trace each country’s
modification of their production processes overtime. The results indicate that if the disposability for CO,
emissions were strictly restricted as the result of an environmental regulation, the total value of output loss
to the OECD countries as a whole would correspond to 3.7, 4.8 and 3.5% of the total OECD GDP for 1980,

1985 and 1990, respectively.
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Introduction

Growing demands for environmental quality
forces policy-makers to consider the envi-
ronmental impacts of their choices in the
formulation of economic policies. As environ-
mental concerns are pronounced increasingly
in relation to global commons, environmental
issues are treated as international matters.
This, not only brings the proposals for a better
environmental quality into the international
arena but also requires countries to measure,
document and publish information about
their environmental performance. Hence as
an initial step the accurate assessment of
environmental conditions is essential.

The objective of this study is two-fold.
First, to develop an environmental efficiency
index for each of the OECD countries that
will show their success in adopting environ-
mentally more desirable technologies. Sec-
ond, to make an assessment on the required
output sacrifice a country should incur in
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order to become environmentally more effi-
cient. These measures provide information
for countries, prior to engaging in interna-
tional agreements (such as the Luxembourg
decision of 1990 which was further reinforced
at the Rio Summit of 1992) which aimed at
limiting and reducing global emissions.
Early work, involving cross country com-
parisons of the environmental performance,
was based on either descriptive environ-
mental indicators, such as measures of
soil salinization, dissolved oxygen in water,
and suspended particular matter in air, or
performance-based environmental indicators
which are measured against some physical
threshold or normative policy goal. Examples
include measures of compliance with interna-
tional treaties or target levels of energy use
per unit of output. This is the initial approach
taken by international institutions such as
the World Bank and OECD in their analysis
of country comparisons of environmental per-
formances. These measures emphasize only
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environmental damage and losses without
reconciling economic aspirations with envi-
ronmental goals. The building blocks of the
alternative environmental efficiency index
proposed in this study are in accordance
with the principles laid down in the Rio
Declaration on Environment and Develop-
ment (1992):

‘In order to protect the environment,
the precautionary approach shall be widely
applied by States according to their capa-
bilities. Where there are threats of serious
or irreversible damage, lack of full scien-
tific certainty shall not be used as reason for
postponing cost-effective measures to prevent
environmental degradation.’ (Principle 15)

‘National authorities should endeavor to
promote internalization of environmental
costs and the use of economic instruments,
taking into account the approach that pol-
luter should, in principle, bear the cost of
pollution, with due regard to the public inter-
est and without distorting international trade
and environment.” (Principle 16)

The precautionary approach (Principle 15)
calls for the choice of a production plan which
is the least detrimental to the environmental
quality. That is, among many input, out-
put and pollution emission combinations, it
favors the production plan that maximizes
the desirable outputs while simultaneously
minimizing the resource use and pollution
emissions. In addition, the Polluter Pays
Principle (PPP) embodied in Principle 16
recognizes that pollutants are not dispos-
able without cost and that some productive
resources have to be given up to reduce the
levels of pollution emissions. Hence this prin-
ciple encourages the transformation of the
production process from one where outputs
(desirable or undesirable) are freely dispos-
able, with no cost to the producer, to the one
where disposability of undesirable outputs is
limited, by making the disposal of undesir-
able output costly. The development of the
index proposed in this study, starts with
the observation that there is one production
process behind the generation of desirable
outputs and undesirable outputs (pollutants).
The approach incorporates efficiency consid-
erations in the production of output, emission
of pollutants and resource use (as implied by
Principle 15), and measures the opportunity
cost of transforming the production process
from one where producers do not incur any

cost due to emissions of pollutants, to the one
where producers incur some losses in terms
of foregone desirable output (as implied by
Principle 16).

In the context of pollution emissions,
environmental efficiency considerations have
been taken into account by studies that
employ production frontiers techniques.
These studies, for which a comprehensive
literature survey can be found in Tyteca
(1996), mainly concentrated on the analysis
of micro level data. For example Fare et al.
(1986) examined the impact of environmental
regulation on the relative efficiency of US
steam electric utilities. Fare et al. (1989b)
investigated the magnitude and the sources
of relative efficiency changes in the electric
utilities before and after regulatory measures
are taken. Fare et al. (1989a) investigated
the regulatory impact in a sample of
30US paper mills in 1976. Fare et al.
(1996) and Tyteca (1997) developed an
environmental performance indicator based
on the decomposition of factor productivity
into a pollution index, and an input—output
efficiency index with an application to data
from US fossil fuel-fired electric utilities.
This study diverges from the above in its
focus on environmental performance at the
macro level, and its use of macro data in
the construction of (environmental) efficiency
indices. The use of macro data in studies that
employ production frontier techniques has
gained popularity recently (see for example,
Fare et al. 1994b; Taskin and Zaim, 1997) but
has not been applied in the environmental
context.

Model

In his influential work, Farrell (1957) showed
how one can measure productive inefficiency
and its components allocative and technical
inefficiencies within a theoretically mean-
ingful framework. His initial approach has
been adopted and extended by Farell and
Fieldhouse (1962), Seitz (1970) Afriat (1972)
and Meller (1976). In more recent studies
Banker et al. (1984), Fare et al. (1985a),
(1994a) showed how one can further decom-
pose Farrell’s measure of technical efficiency
and extract information on the output loss
due to deviations from optimal scale and con-
gestion. This literature, which is referred to



as ‘production frontiers’ is extensively cov-
ered in the works of Shephard (1970), Fare
et al. (1985b), (1994a) and Fried et al. (1993).

Literature on production frontiers is fur-
ther extended and modified to measure
environmental performance in addition to
capturing efficiency at the decision-making
unit level. The two competing approaches,
stochastic frontier estimation and data envel-
opment analysis, while determining the tech-
nology to be used as a basis for construct-
ing different measures of firm performance,
share equal responsibility in providing means
of measuring environmental performance.
As a result, empirical applications on the
measurement of environmental performance
have flourished from both strands. For exam-
ple, while Reinhard et al. (1996) used a
stochastic production frontier approach to
construct environmental efficiency indices at
the farm level, Ball et al. (1994) and Tyteca
(1997) adopted the data envelopment anal-
ysis to measure the environmental perfor-
mance. Yet Reinhard et al. (1997) used both
approaches on the same data set to ‘ana-
lyze the strengths and weaknesses of the
two methods in computing the comprehen-
sive environmental efficiency scores’.

Among the studies which use data envel-
opment analysis to measure the environ-
mental performance, there are alternative
approaches with respect to which type of
efficiency measure is chosen. For example,
Fare et al. (1996), rely on the comparison
of two input (output) oriented radial tech-
nical efficiency scores; one that accounts for
the production of environmentally undesir-
able outputs and the other which completely
ignores the production of hazardous elements
with the desirable outputs. Similarly, Fare
et al. (1986) and (1989b) also use radial mea-
sures of technical efficiency to compute the
desirable output loss which stems from the
reduced disposability of the undesirable out-
puts. In another study, Fare et al. (1989a),
as opposed to a radial measure, suggested
hyperbolic measure of technical efficiency
which allows for simultaneous equipropor-
tionate reduction in the undesirable out-
puts with an expansion in the desirable
outputs. Here, various measures of environ-
mental performance are proposed depending
on whether a reduction is sought in inputs
together with undesirable outputs.

Efficiency in carbon dioxide emissions

Studies that focus on the production theory
in measuring environmental performance,
also differed in their treatment of the
sources of undesirable environmental out-
comes. Some studies viewed environmental
deterioration stemming from the production
of ‘bads’ together with ‘goods’. Examples to
these are: Pittman, 1983; Fare et al. (1993);
Ball et al. (1994) and Tyteca, 1997. Yet,
some other studies blamed the environmen-
tally detrimental input usage for continuous
deterioration in environmental conditions
(for example, Reinhard et al. (1996), 1997,
Cropper and Oates, 1992, Boggs, 1997 and
Pittman, 1981).

Recognizing that the precautionary app-
roach (Principle 15) implies integration of
economic and environmental goals, we adopt
the hyperbolic measure of technical efficiency
proposed by Fare et al. (1989b). This mea-
sure, by seeking the maximum simultaneous
equiproportionate expansion for the desirable
outputs, and contraction for the inputs and
undesirable outputs serves both the economic
and environmental goals. The environmental
efficiency indices constructed in this study
rely on comparing the production processes
under alternative assumptions on disposabil-
ity of ‘bad’ outputs. In the theory of produc-
tion, it is assumed that outputs are strongly
disposable which implies that the disposal of
any output can be achieved without incur-
ring any cost in terms of reduced production
of other outputs. However, the symmetric
treatment of outputs in terms of their dispos-
ability characteristics looses its justification,
if one or some of the outputs produced are
undesirable goods. Especially in regulated
environments, where production units are
forced to clean up the undesirable outputs, or
to reduce their levels of undesirable output
production, one has to treat undesirable and
desirable outputs asymmetrically, in terms
of their disposability characteristics. Even in
the absence of regulations, increased envi-
ronmental consciousness in the society still
requires the treatment of undesirable goods
as weakly disposable, i.e. their disposal is
achieved by reducing the desirable outputs
proportionately.

The recognition that pollutants are not
freely disposable, and that some productive
resources have to be given up to reduce the
levels of undesirable outputs, leads to the out-
come of transforming the production process.
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One reason for this transformation is envi-
ronmental consciousness, which is conceived
as the societies’ willingness to undertake such
institutional reforms that would compel pri-
vate users of resources and producers of envi-
ronmental bads, to take account the social
cost of their actions (as implied by Princi-
ple 16). It is the extent of the required output
sacrifice due this transformation which then
determines the environmental efficiency and
its improvement for society.

Environmental efficiency indices can be
constructed by comparing the production
processes under alternative assumptions of
disposability, using a hyperbolic graph effi-
ciency approach. The underpinnings of the
method are shown in Figure 1, which repre-
sents the output sets for two piecewise linear
technologies with different assumptions on
disposability of undesirable outputs.

In Figure 1 U, and U, denote desirable
output (‘good’) and undesirable output (‘bad’),
respectively; if the disposal of bad is costless,
the line segment ab would be a feasible part
of the technology, since a reduction in U, (a
movement from b towards a) would be possi-
ble without giving up any Us,. If, however, the
disposal of Uj is not costless, then the line
segment ab will not be a feasible part of the
technology. This is because some resources
would be pulled out of the production of U,
in order to clean up Up, which in turn would
imply production of Oa amount of Uy is no
longer feasible. Then, it can be said that,
the technology bounded by line segments
Oa, ab, bc and cd represents the strongly
disposable output technology PS(x), and the

Ue PS5 (X
or
PS(TX)
5lasS b

(6] ui ul U,

Figure 1. Output sets for strongly and weakly
disposable undesirable outputs.

technology bounded by line segments Ob, bc
and cd represents technology with weakly
disposable bads P,‘JV(x). Note here that, we
refrain from using the terminology ‘weakly
disposable output technology’ since we still
maintain strong disposability assumption on
the desirable output. The weakly disposable
output technology would be bounded by Ob,
be, co (not drawn on Figure 1).

To describe the theoretical background of
the model used, suppose we observe a sample
of K production units, each of which uses
inputs xeRJX to produce desirable outputs
y€RY, and undesirable outputs weR”. As a
matter of notation let x* be the quantity of
input i used by unit 2 and let yf’, and wf’
be the quantity of desirable and undesirable
output i produced by unit k, respectively.
These data can be placed into data matrixes
M, a K x M matrix of desirable output levels
whose k,ith element is y¥, J, a K xJJ matrix
of undesirable output levels whose k,ith
element is w* and N a K x N matrix of input
levels whose k,ith element is x*. Using the
notation, and assuming that the production
process satisfies strong disposability of both
outputs (good and bad) and inputs, the
Constant Returns to Scale (CRS) output set
PS(x) (bounded by Oa, ab, bc and cd in
Figure 1), which denotes the collection of
all output vectors yeRY and weRJ that
are obtainable from the input vector xeRJX ,
can be constructed from observed data by
means of:

PS(x)z{(y, w):zTsz, 2T I>w, 2TN<x, zeRf}

where z is a K x1 intensity vector which
serves to construct the boundary of the
strongly disposable output set from the con-
vex combinations of the observed inputs and
outputs. Given two observations b and ¢ in
Figure 1, the inequalities, 2’ M>y and zTJ>w
allow for feasible vertical extensions to the
south, and feasible horizontal extensions to
the west respectively, indicating strong dis-
posability for both the desirable and undesir-
able outputs. Similarly, a CRS technology
satisfying the weak disposability of unde-
sirable outputs and strong disposability of
desirable outputs and inputs can be repre-
sented as an output set as shown below:

PV (0)={(y, w):zTM>y, zTd=w, 2T N <x, zeRIf}



where the equality z’J=w, implies that
undesirable outputs in J are not necessarily
strongly disposable, and allows for feasible
radial contractions of undesirable outputs
to the origin. Intuitively, these equations
represent a reference technology from the
observed inputs and outputs relative to
which technical efficiency of each production
unit can be calculated. Equivalently one
may chose to define the reference set for
a strongly disposable technology and for a
weak disposable technology using a graph
measure as:

GRS={(x.y, w):z"M>y,z"J>w,
ZTfo,zeRf} and
GRY ={(x,y, w):z"TM>y, 2T J=w,

"N <x,zeR¥},

respectively. The graph of the technology is
the collection of all feasible input and output
vectors.

The next step in the construction of the
environmental efficiency index is the compu-
tation of the opportunity cost resulting from
the transformation of the production process
from one where all outputs are strongly dis-
posable to the one which is characterized
by weak disposability of undesirable outputs.
Fareet al. (1989a) define this opportunity cost
as the ratio of two hyperbolic graph measures
of technical efficiencies, calculated from two
technologies characterized by two different
disposability assumptions. The hyperbolic
graph measure of technical efficiency seeks
the maximum simultaneous equiproportion-
ate expansion for the desirable outputs, and
contraction for the inputs and undesirable
outputs.

For a CRS technology which satisfies
strong disposability of inputs and outputs
(good or bad) hyperbolic graph measure of
technical efficiency measure is defined as:

FEr, oy, wh
=min{i: (\x*, A’lyk’, aw*)eGR)
and for each production unit % it can be
computed as the solution to the following

programming problem:

Fg (xk’,yk', w*)=min A

Efficiency in carbon dioxide emissions

subject to LP1:

ZTMZ)Lflyk’
2T > w”
2IN <x®

T _pK
z' eR’
or equivalently LP2:
A AN N
F,(x",y", w*)=minT
subject to:

ZTM >y

ZTJ>Tw"

ZTN <ra¥
Z"eRX

For computational purposes these non-
linear programming problems (in LP1) are
converted into linear programming prob-
lems as in (LP2), where '=A% and Z=
A2z and the solution is derived by solving
for +/T. Note, that for any &*, y* w*)e
GR, Fg (%, y* w*)e(0, 1] measures the maxi-
mum equiproportionate deflation of all inputs
and undesirable outputs and inflation of all
outputs that remain technically feasible.

For a technology that assumes weak dis-
posability for the undesirable outputs, and
strong disposability for the desirable outputs
and inputs, the following linear programming
problem:

F;V(xk/,yk/, w*)=min Q
subject to LP3:

ZTM>y*

ZTJ=u"*

ZTN <Qx*
ZTeRX

can be constructed to obtain a graph measure
of technical efficiency for each production unit
k' as the solution to +/Q. If one translates
these measures into a figure, in Figure 1,
while computing the hyperbolic graph mea-
sure of technical efficiency of a production
plan denoted by (ug, up) at point P with
respect to a technology which assumes strong
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disposability of outputs, point P is compared
to point S where the good output is expanded
(uﬁ:ug/«/F) while simultaneously contract-
ing inputs and the bad output (u%:ﬁub) in
the relevant output set (PS(+v/Tx)). Similarly,
the hyperbolic graph measure of technical
efficiency of production plan (ug,up), with
respect to a technology which assumes weak
disposability of undesirable good, compares
point P to point R where the good output
is expanded (ué:ug/\/ﬁ) while simultane-
ously contracting inputs and the bad out-
put (u}=+/Qu;) in the relevant output set
(PV (v Qx)).

Finally the environmental efficiency index
can be obtained from the ratio of these two
efficiency scores as:

YT

va

Note that this measure takes a value 1 only
for those production units which are on the
segments bc and cd or for those production
units whose hyperbolic expansions fall on
these segments. Since line segments bc and cd
are common to both technologies with differ-
ent assumptions on the disposability of bads,
for those production units, it is only natural
to expect no opportunity cost for transform-
ing the production process from one where
all outputs are strongly disposable to the one
which is characterized by weak disposabil-
ity of undesirable outputs. For production
units whose H index is less than 1, the index
indicates that there is an opportunity cost
due to aforementioned transformation. The
opportunity cost expressed in terms of the
percentage of desirable output given up due
to the reduced disposability of undesirable
output, can be measured as 1—H. Therefore
H index can safely be used as a measure of
environmental efficiency.

Instead of measuring the loss in desirable
output which stems from transforming the
technology from one where emission of pol-
lution is free to the one where it is costly,
one may want to see the effect of a reg-
ulatory standard on pollution emissions on
desirable output. The previous approach can
also be modified to provide a measure of regu-
latory impact, conceived in terms of foregone
desirable output due to a forced reduction in
pollution emissions dictated by quantitative

regulatory standards. In this case, the appro-
priate strategy is to compare two hyperbolic
graph measures of technical efficiency scores
computed with respect to two technologies
both satisfying strong disposability of both
inputs and outputs (good or bad), but one
containing an additional constraint which
incorporates the regulatory standard. For the
production unit %', the hyperbolic graph mea-
sure of technical efficiency with respect to a
technology which satisfy the strong dispos-
ability of both inputs and outputs (good or
bad) and also bounded by the regulatory con-
straint can be obtained from the solution of
the following linear programming problem:

Fg(xk/ , yk/, wk/):min o)
subject to LP4:

ZTM >y*
Z'J > ow®
ZTJ <w®
ZTN < dx*

ZTeR*

as +/®, where w* denotes the particular
quantitative standard for the kth production
unit. The percentage of desirable output
given up to meet the regulatory standards
can now be computed as:

A

NE)

The methods outlined above are applied
to construct an environmental efficiency
indices for the 25 OECD countries for the
period 1980-1990. The results are discussed
below.

Data and discussion of results

While computing the environmental effi-
ciency indices for each of the OECD countries
(Table 1), we chose aggregate output as mea-
sured by real Gross Domestic Product (GDP),
expressed in international prices (in 1985
US dollars) as the desirable output, and COq
emissions (millions of tons) as the only unde-
sirable output. The two inputs considered
are aggregate labor input, measured by the
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Table 1. Hyperbolic efficiency measures with strong disposability of undesirable outputs /T

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Canada 0-9520 0-9595 0-9509 0-9509 0-9496 0-9602 0-9659 0-9736 0-9781 0-9741 0.9601
Mexico 0-9063 0-9257 0-8835 0-8597 0-8813 0.9142 0-8956 0-8968 0-9400 0-9695 0.9833
USA 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Japan 0-7602 0-7592 0-7741 0.7693 0-7551 0.7620 0-7581 0-7581 0.7624 0.7671 0.7844
Austria 0-8789 0-8605 0-8741 0-8670 0-8416 0-8420 0-8387 0-8352 0-8364 0-8399 0.8534
Belgium 0-9355 0-9160 0-9398 0-9257 0-9073 0-8994 0-8981 0-8987 0-9066 0-9133 0.9273
Denmark 0-8232 0-8098 0-8391 0-8386 0-8341 0-8465 0-8551 0-8415 0-8312 0-8259 0.-8375
Finland 0-8291 0-8251 0-8538 0-8516 0-8353 0.8376 0-8370 0-8436 0-8511 0-8659 0.8541
France 0-9197 0-9120 0-9381 0-9235 0-8984 0-8950 0-8972 0-8955 0-8985 0-9003 0-9079
Germany 0-9276 0-9137 0-9231 0-9193 0-9014 0-8982 0-9010 0-8979 0-8988 0-8794 0-8838
Greece 0-7613 0-7532 0-7657 0-7640 0-7517 0.7635 0-7604 0-7473 0-7625 0.-7777 0-7891
Iceland 1.0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9868 0-9648 0-9640
Ireland 0-8541 0-8520 0-8556 0-8472 0-8410 0-8461 0-8361 0-8452 0-8603 0-9061 1-0000
Italy 0-9412 0-9265 0-9396 0-9282 0.-9118 0.9158 0-9225 0-9261 0-9330 0.-9345 0.9448
Luxembourg 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Netherlands 0-9603 0.9423 0.9493 0.-9392 0.-9208 0.9257 0-9305 0-9219 0-9187 0.9274 0.9441
Norway 0-8928 0-8885 0-9047 0-9118 0-9089 0.9225 0-9289 0-9206 0-8996 0-8833 0-8814
Portugal 0-9061 0-8892 0-8879 0-8919 0-8809 0.-9059 0.9294 0-9461 0-9818 1.0000 1-0000
Spain 0-9003 0-8814 0-8926 0-8936 0-8701 0-8747 0-8810 0-8868 0-9016 0-9089 0-9179
Sweden 0-8857 0-8770 0-8986 0-8947 0-8856 0-8857 0-8852 0-8872 0-8806 0-8766 0-8750
Switzerland  0-9655 0-9607 0-9706 0-9589 0.9351 0-9400 0-9434 0-9405 0-9367 0-9358 0-9304
Turkey 0.7774 0.7697 0-7721 0.7986 0.-8162 0-8352 0.-8612 0-8592 0-8731 0.8775 0-8989
UK 0-9290 0-9117 0-9251 0-9556 0-9539 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Australia 0-9276 0-9271 09243 0-9360 0-9246 0-9259 0-9177 0.9236 0-9277 0.9205 0-9054
New Zealand 0-8812 0-8917 0-9106 0-9009 0-8888 0-8779 0-8779 0-8671 0-8439 0-8453 0-8453

total employment, and total capital stock.
The input and the desirable output data
are compiled from the Penn World Tables
(PWT 5.6) initially derived from the Inter-
national Comparison Program benchmark
studies where cross country and overtime
comparisons are possible in real values. Pol-
lution related data were obtained from OECD
(1995).

To develop the environmental efficiency
index, we used cross-section data on all
countries to solve the linear programming
problems (LP2) and (LP3) for each coun-
try. The solutions determine the efficiency
for each country, for a given year, with
respect to two OECD multi-output produc-
tion frontiers constructed under alternative
disposability assumptions for the undesirable
output. The ratio of the two efficiency scores
gives the index of environmental efficiency for
a given year. This computation is repeated for
each year between 1980 and 1990 to analyze
the development of environmental efficiency
over time. The efficiency measures and the
resulting environmental efficiency index are
presented in Table 1, Table 2 and Table 3,
respectively. Values in Table 1 and Table 2
show the percentage by which a production

unit can contract its resource use and emis-
sions while simultaneously expanding its
output and still remain in the respective fea-
sible production sets. For instance the 0-9520
value computed for Canada in year 1980 (see
Table 1), shows the factor by which the output
can be expanded i.e. ug/0-9520 while simul-
taneously contracting the pollution emissions
i.e. up x0-9520 and resource use i.e. x x 0-9520
and still remain in the feasible production set
constructed by assuming strong disposability
of pollutants. A similar interpretation applies
to the values Table 2, however in this case the
contraction (or expansion) factors are mea-
sured with respect to a feasible production
set constructed by assuming weak disposabil-
ity for pollutants. The values in Table 3, are
the ratios of corresponding figures in Table 1
and Table 2, and can be used to determine
the opportunity cost of transformation (i.e.
the impact of reduced disposability of Up), in
terms of potential desirable output loss.

The analysis of the efficiency scores indi-
cates that, for all years in the sample, there
are only two countries, USA and Luxem-
bourg, that are fully efficient with respect to
both OECD multi output production frontiers
constructed under alternative assumptions
on the disposability for pollutants. In addition
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Table 2. Hyperbolic efficiency measures with weak disposability of undesirable outputs v/

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Canada 0-9679 0-9771 09620 0-9681 0-9688 0-9815 0-9871 0-9943 0-9977 0-9901 0-9838
Mexico 1-0000 1-0000 0-9885 0-9776 0-9735 0-9760 0-9546 0-9161 0.9526 0-9779 0-9833
USA 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1.0000 1.0000 1.0000 1-0000
Japan 0-8571 0-8468 0-8855 0-8910 0-8736 0-9131 0-9133 0-9051 0-8857 0-8844 0.8754
Austria 0-9344 0-9331 09414 0-9466 0-9346 0-9337 0-9270 0-9243 0-9274 0-9305 0-9333
Belgium 0-9599 0-9463 0-9640 0-9635 0-9566 0-9474 0-9441 0-9471 0-9564 0-9637 0.9743
Denmark 0-8728 0-8741 0-8891 0-9024 0-9087 0-9048 0-9101 0-9009 0-8945 0-8961 0-8953
Finland 0-8664 0-8803 0-8989 0-9097 0-9091 0-8930 0-8883 0-8872 0-9073 0-9232 0.9147
France 0-9821 0-9874 1.0000 1-0000 0-9951 0-9936 1-0000 1-0000 1-0000 1-0000 1-0000
Germany 0-9309 0-9175 0-9256 0-9227 0-9069 0-9033 0-9049 0-9044 0-9085 0-8942 0.9103
Greece 0-8380 0-8212 0-8418 0-8285 0-8166 0-8086 0-8124 0-7756 0-7862 0-7986 0-8079
Iceland 1.0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9640
Ireland 0-8639 0-8643 0-8683 0-8617 0-8593 0-8581 0-8361 0-8452 0-8626 0-9061 1-0000
Italy 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000

Luxembourg 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Netherlands 0-9988 0-9844 0-9934 0-9886 0-9772 0.-9772 0.9728 0-9641 0.-9573 0.9668 0-9760

Norway 0-9459 0-9519 09612 0-9792 0-9945 1.0000 1-0000 0-9989 0-9853 0-9621 0-9658
Portugal 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Spain 0-9574 0-9297 0-9434 0-9480 0-9472 0-9561 0-9605 0-9578 0-9687 0-9692 0-9820
Sweden 0-9555 0-9564 0-9733 0-9876 1-0000 1-0000 0-9951 1.0000 0-9851 1.0000 1-0000
Switzerland  1-0000 1-0000 1-0000 1-0000 1-0000 1.0000 1-0000 1-0000 1-0000 1-0000 1-0000
Turkey 0-9577 0-9568 0-9522 0-9563 0-9538 0-9156 0-9339 0-8845 0-9152 0-9304 0.9233
UK 0-9324 0-9171 0.9277 0-9575 0-9560 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000

Australia 0-9531 0-9536 0-9379 0-9586 0-9530 0-9544 0.9459 0-9513 0-9596 0-9470 0.9272
New Zealand 1-0000 1-0000 1-0000 1-0000 1-0000 0-9737 0-9769 0.9624 0-9305 0-9255 0-9119

Table 3. Environmental efficiency measures H=+vT/~/Q

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 Mean

Canada 0-9836 0-9820 0.9885 0-9823 0-9801 0-9783 0-9785 0-9791 0-9804 0-9838 0-9759 0-9811

Mexico 0-9063 0-9257 0-8938 0-8794 0-9053 0-9366 0-9382 0-9790 0-9867 0-9914 1-0000 0-9402
USA 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Japan 0-8870 0-8966 0-8742 0-8634 0-8644 0-8346 0-8300 0-8375 0-8608 0-8674 0-8960 0-8647
Austria 0-9406 0-9222 0.9285 0-9159 0-9006 0-9018 0-9047 0-9037 0-9019 0-9027 0-9144 0-9124

Belgium 0-9746 0-9681 0-9750 0-9608 0-9485 0-9493 0-9512 0-9489 0-9479 0-9477 0-9518 0-9567
Denmark 0-9432 0-9264 0-9438 0-9294 0-9179 0-9356 0-9396 0-9340 0-9292 0-9216 0-9354 0-9324

Finland 0-9569 0-9373 0-9498 0-9361 0-9188 0-9379 0-9423 0-9509 0-9381 0-9379 0-9337 0-9400
France 0-9364 0-9236 0-9381 0-9235 0-9028 0-9008 0-8972 0-8955 0-8985 0-9003 0-9079 0-9113
Germany 0-9965 0-9959 0-9974 0-9963 0-9939 0-9943 0-9957 0-9929 0-9894 0-9834 0-9709 0-9915
Greece 0-9085 0-9172 0-9097 0-9222 0-9206 0-9442 0-9360 0-9635 0-9699 0-9739 0-9766 0-9402
Iceland 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9868 0-9648 1-0000 0-9956
Ireland 0-9887 0-9858 0-9854 0-9832 0-9787 0-9860 1-0000 1-0000 0-9973 1-0000 1-0000 0-9914
Italy 0-9412 0-9265 0-9396 0-9282 0-9118 0-9158 0-9225 0-9261 0-9330 0-9345 0-9448 0.9295

Luxembourg 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
Netherlands 0-9615 0-9573 0-9556 0-9500 0-9423 0-9474 0-9565 0-9563 0-9597 0-9593 0-9673 0-9557

Norway 0-9438 0-9334 0-9412 0-9311 0-9139 0-9225 0-9289 0-9217 0-9130 0-9181 0-9126 0-9255
Portugal 0-9061 0-8892 0-8879 0-8919 0-8809 0-9059 0-9294 0-9461 0-9818 1.0000 1-0000 0-9290
Spain 0-9403 0-9481 0-9461 0-9425 0-9186 0-9149 0-9172 0-9259 0-9307 0-9377 0-9347 0-9324

Sweden 0-9269 0-9170 0-9233 0-9059 0-8856 0-8857 0-8896 0-8872 0-8938 0-8766 0-8750 0-8970
Switzerland 0-9655 0-9607 0-9706 0-9589 0-9351 0-9400 0-9434 0-9405 0-9367 0-9358 0-9304 0-9471
Turkey 0-8117 0-8045 0-8109 0-8351 0-8557 0-9122 0-9221 0-9714 0-9540 0-9432 0-9736 0-8904
UK 0-9963 0-9941 0-9972 0-9980 0-9978 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9985
Australia 0-9733 0-9722 0-9855 0-9764 0-9702 0-9701 0-9702 0-9709 0-9667 0-9720 0-9764 0-9731
New Zealand 0-8812 0-8917 0-9106 0-9009 0-8888 0-9017 0-8986 0-9010 0-9069 0-9133 0.9270 0-9020

Mean 0-9468 0-9430 0-9461 0-9405 0-9333 0-9406 0-9437 0-9493 0-9505 0-9506 0-9562 0-9455
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Figure 2. Comparison of mean efficiency and total pollution per output for OECD countries.

to these countries, Italy and Switzerland are
always fully efficient with respect to the fron-
tier constructed assuming weak disposability
of pollutants but are inefficient with respect
to the frontier constructed assuming strong
disposability of pollutants. This is as expected
theoretically, since the frontier constructed
assuming weak disposability of pollutants
envelops the data more closely than the fron-
tier constructed using strong disposability
assumption for the environmentally undesir-
able substances. Consequently, the measure
of environmental efficiency, defined as the
ratio of these two scores, takes the value of
one for USA and Luxembourg and less than
one for the other two countries mentioned
above during the entire sample period.

To elaborate more on the environmen-
tal performance of the OECD countries, in
Figure 2 we plot the mean value of the envi-
ronmental efficiency index computed over the
25 countries for the period 1980-1990. The
mean index shows the lowest environmental
efficiency in terms of COy emissions in 1984,
and an improved environmental performance
since then. We observe that the changes
in the efficiency index are also successful
in explaining the variation in total pollu-
tion per unit output, an alternative indicator
which captures the changes in environmen-
tal conditions. Figure 2 shows that, from
1985-1988, there is a rapid and simultaneous
decline in the total pollution per unit output
with improved environmental performance.

Similarly, declining environmental efficiency
between the years 1982-1984 dampens the
general decline in the total pollution per
output.

The analysis reveals that among the
25 countries, USA, Luxembourg, UK, Iceland
and Germany are among the best performers
and Japan, Turkey, Sweden, New Zealand
and France are among the worst, on the basis
of mean environmental efficiency computed
over the 1980-1990 (see the last column in
Table 3). Despite the differences in overall
means, countries such as Mexico, Portugal
and Turkey showed improved performance
while countries like Sweden, Austria and
France, exhibited a deterioration.

To investigate the opportunity cost of
transforming the production process from one
where all outputs (good or bad) are freely dis-
posable to the one where pollution emissions
are costly to dispose, we additionally compute
the output loss as (1—H)x GDP in constant
1985 International Dollars. Table 4 shows,
for each country, the value of output loss, a
country’s share in the total OECD output loss,
and the output loss per unit of COg emission
for the selected 3 years. Table 4 suggests that
if weak disposability for COs emissions were
strictly imposed as the result of an environ-
mental regulation, the total value of output
loss to the OECD countries as a whole would
be 347-8 billion US $, 504-2 billion US $ and
433-3 billion US $ for the years 1980, 1985
and 1990, respectively. These correspond to
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Table 5. Desirable output loss from CO, reduction schemes

%1 reduction

%3 reduction

%5 reduction %10 reduction

(billion $) (billion $) (billion $) (billion $)

Canada 9.4 10-8 IN IN
Mexico 0.0 0.0 IN IN
USA IN IN IN
Japan 131.5 134.5 1375 144.8
Austria 7-4 7-6 7.7 8-1
Belgium 5.7 6-0 6-3 IN
Denmark 3.2 3.3 35 3.9
Finland 35 3.6 3-8 4.2
France IN IN IN
Germany 13.0 14.7 16-3 205
Greece 0-0 0-0 0-0 0.0
Iceland 0.0 0.0 0.0 IN
Ireland IN IN IN
Italy IN IN IN
Luxembourg IN IN IN
Netherlands 5.6 6-0 IN IN
Norway 5.3 54 54 IN
Portugal IN IN IN
Spain 21.7 23.7 IN IN
Sweden IN IN IN
Switzerland IN IN IN
Turkey 0.0 0.0 0.0 0.0
UK IN IN IN
Australia 0-8 1.3 1.7 4.0
New Zealand 2.2 2.3 2.4 2.6
IN: infeasible.

3-7 4.8 and 3-5% of the total OECD GDP
for these 3 selected years, respectively. In
terms of the impact of such a regulation on
individual countries, in USA, Luxembourg
and Iceland, environmental regulation is not
binding so that there is no loss in output.
However, in terms of foregone output as a
percentage of the total OECD loss, Japan
(38-2%), France (11.6%) and Mexico (10-9%)
in 1980; and Japan (42-5%), France (16-8%)
and Italy (9-2%) in 1990 are the countries
that would assume the largest share due to
this transformation. These results are quite
robust with regards to the choice of tech-
nique in evaluating the cost of pollution
reduction. In fact, an OECD report (OECD,
1991) which simulates the cost of reducing
COg emissions within a general equilibrium
modelling framework also ranks France and
Japan among the countries which will incur
the highest costs.

An alternative interpretation emerges
when the output sacrifice can be consid-
ered as the required level of penalty that
should be imposed on each country to force
them to transform their technologies. These
amounts, computed for each ton of COg emis-
sions, are reported in the third columns of the

corresponding year in Table 4. When coun-
tries are ranked in terms of the magnitude of
the required output sacrifice per ton of COq
emitted, a different ordering emerges. In this
regard we observe Turkey, Portugal and Mex-
ico in 1980, Japan, Sweden and Portugal in
1985 and Sweden, France and Switzerland
in 1990 as countries incurring the highest
burden per ton of COs.

In a final analysis, we evaluate the impact
of a regulatory standard on pollution emis-
sions. One such standard is to dictate an
across the board proportional reduction in
CO; emissions.! Table 5 reports the impact
of four alternative reduction schemes on the
required desirable output for each country
in 1990. Some important conclusions emerge
from the comparisons of the output loss due
to the proportionate reduction of the COq
emissions and the output loss from imposing
weak disposability of undesirable outputs.
For all countries, the output loss due to the

L For example, in simulating the effects of across the
board proportional reductions of the COy emissions on
the desirable output, in linear programming problem
LP4, we choose w* to be 0-99 xw* for 1% reduction in the
total CO9 emission.
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imposed regulation (for all alternative lev-
els of COy reductions) is always less than
the output loss associated with weak dis-
posability of pollutants. This is as expected
theoretically because the weak disposability
of pollutants assumption is the most restric-
tive constraint when compared with other
restrictions. Consequently, for those obser-
vations that are fully efficient with respect
to the weakly disposable output set, even
the slightest reduction in COy emissions will
not be possible, implying infeasible solu-
tions. From the cross analysis of Table 5
and Table 2, one can see that USA, France,
Ireland, Italy, Luxembourg, Portugal, Swe-
den, Switzerland and UK are examples of
such cases where a reduction in COy emis-
sions is infeasible. For countries which are
not efficient with respect to the weakly dis-
posable output set, whenever the output loss
that results from a certain percentage of COq
reduction exceeds the output loss implied by
the weak disposability, the imposition of the
regulation leads to an infeasible outcome. On
the other hand, for another group of countries
the regulatory standard is not binding, imply-
ing that they can reduce their COg emissions
without incurring any desirable output loss.
For the cases presented in Table 5, Turkey
and Greece, for all the alternative propor-
tionate COy reductions, Iceland, up to 10%
reduction and Mexico up to 5% reduction, are
examples of cases where constraints are not
binding. Overall this analysis shows that,
while an across the board 1% reduction in
CO; emissions is feasible for 16 countries, a
10% reduction in COy emissions is feasible
for only nine out of 25 OECD countries.

Conclusion

Using production frontier methodology, this
paper develops an environmental efficiency
index for the OECD countries, which allows
temporal and cross country comparisons for
the period 1980-1990. In contrast to meth-
ods which gauge the environmental efficiency
with the levels of emissions of pollutants,
the index developed in this study is based
on a production approach that explicitly dif-
ferentiates between the disposability char-
acteristics of the environmentally desirable
and undesirable outputs. Employing this

measure, the value of desirable output loss
associated with weak disposability of pollu-
tants for each country and their share in
the total OECD output loss are computed.
The results indicate that, while transforming
their production processes in order to take
environmental considerations into account,
Japan and France are two countries that
would carry the largest burden. Furthermore,
the impact of across the board proportionate
reductions of CO9 emission on the desirable
output of each country is evaluated for 1990
and the results reveal that a 10% reduction
in COq emissions is feasible for only nine out
of 25 OECD countries while 1% reduction is
feasible for 16 countries.
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