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Dynamical systems on ‘‘continuum’’ Hilbert spaces may be realized as limits of
dynamical systems on ‘‘discrete’’ (possibly finite-dimensional) Hilbert spaces. In
this first of four papers on the topic, the ‘‘continuum’’ and ‘‘discrete’’ spaces are
interfaced to one another algebraically, convergence of vectors is defined in such a
way as to preserve inner products, and a necessary and sufficient coordinate-wise
criterion for convergence is proved. © 2001 Academic Press

1. INTRODUCTION

Motives for seeking discrete versions of Heisenberg–Weyl phase space
come from engineering and physics as much as from fundamental mathe-
matics. The discrete scenario introduced by von Neumann [15], and sys-
tematically developed by Weil [21], has attracted attention in number
theory, as in Lion and Vergne [14]; signal analysis, as in Richman et al.
[17]; and quantum physics, as in Ruzzi and Galetti [19]. Much of the
progress toward linking this discrete scenario with the familiar continuum
scenario (see the references in [19]) entails modifying the discrete scenario
in such a way as to lose the very close algebraic analogy that is manifest in
Weil’s unified treatment of the two scenarios.

Meanwhile, the discrete scenario originating in Stratonovich [20], and
pursued in the context of optics by Atakishiyev and Wolf [3] and
Atakishiyev et al. [1] has the group SU(2) playing the role of the contin-
uum Heisenberg–Weyl group. Or rather, SU(2) corresponds to the group
of Euclidian canonical transforms, which is generated by the continuum
Heisenberg–Weyl group and the continuum fractional Fourier transforms.
The correspondence is an algebraic analogy, and at the same time, it can be
characterized in terms of limits.

In this paper and its first two sequels [6, 7], we provide a mathematical
prerequisite for some of the limiting techniques that are currently being



used in a heuristic fashion. The definitions and results will then be applied
in the fourth paper [8] of the series, where we show how the continuum
Heisenberg translates, the continuum fractional Fourier transforms, and
the more general continuum complex Fourier transforms may be realized,
via limits, in terms of finite-dimensional representations of SU(2) and
SL(2, C). Let us emphasize that we are supporting the existing heuristic
techniques; only in the fourth paper do we we turn to an application
where ‘‘dead reckoning’’ and formal transcription of symbols are truly
inappropriate.

If our outlook is a little biased toward quantum physics, it may be
because, in that sphere of application, finite-dimensional analogy and
approximation of continuum systems is already a venerable topic.
Nevertheless, the mathematical objects involved are of broad relevance.
For instance, one-parameter families of signal transforms such as fractional
Fourier transform, chirping, and dialation are, from a mathematical point
of view, quantum dynamical systems.

Eckmann [13] has remarked on the peculiar absence of any known
‘‘reduction principle’’ from which certain ‘‘continuum’’ theorems perhaps
ought to be obtainable from some analogous and comparatively shallow
‘‘linear’’ theorems. Bearing in mind that ‘‘continuum’’ function spaces are
inevitably infinite-dimensional, and that ‘‘linear,’’ here, pertains to what
are actually finite-dimensional (hence discrete) function spaces, we are led
to ask whether or not such a ‘‘reduction principle’’ might possibly be
arrived at using something of the approach adopted in the material below.

Digernes et al. [12] have established a general (and rigorous) theory of
correspondences between discrete and continuum quantum systems whose
Hamiltonians are Schrödinger operators. They showed how the spectrum
of a discrete system may be related to the spectrum of the corresponding
continuum system. The emphasis of our concern is directed rather more
toward results on preservation of algebraic structure. We seek correspon-
dences that satisfy:

Analogy requirement. Algebraic constructions appearing in the contin-
uum scenario (such as time-evolution, symmetries of a system, symplectic
transforms, the Heisenberg–Weyl group) are to have corresponding
analogues in the discrete scenario.

Approximation requirement. Algebraic constructions appearing in the
continuum scenario are to be realizable as limits of their discrete analogues.

Let L. be a Hilbert space. Let N be a directed set (such as the set of
positive integers) and for each n ¥N, let Ln be a Hilbert space. In regard
to applications, we are to interpret L. as a ‘‘continuum’’ space; a space of
continuous functions, for instance, L2(R). We are to interpret each Ln as a
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‘‘discrete’’ space, for instance, a finite-dimensional inner product space,
or a space, such as a2, with an explicitly specified complete orthonormal
set. The analogy requirement: an object O. associated with L. is to be an
algebraic analogue of objects On associated with the spaces Ln. The
approximation requirement: the equation

O.=lim
n ¥N

On

must hold (and must be meaningful). It should be possible to take limits of
sequences (or nets) of vectors, operators, quantum dynamical systems, and
perhaps, group representations. The convergence must respect all additive
and multiplicative structure.

From a theoretical point of view, it helps to dismiss the jargon ‘‘con-
tinuum’’ and ‘‘discrete.’’ The space L. and the spaces Ln are better per-
ceived simply as abstract Hilbert spaces. The interfacing of L. with the
spaces Ln is to be a purely algebraic condition, quite independent of any
interpretation of the vectors as functions. (This point is especially impor-
tant in connection with phase space techniques, where the use of canonical
transforms to effect ‘‘change of variables’’ or ‘‘change of operators’’ is a
distinctive feature. The criteria for convergence must not be tied to, say, the
description of the state space whereby the state vector is expressed as a
function of the position variable.)

In Section 2, the interfacing of L. and the spaces Ln is expressed by the
notion of an inductive resolution. There are three different ways of charac-
terizing convergence of vectors. An abstract criterion, which we adopt as
our definition, is introduced in Section 2. Proof of the necessity and suffi-
ciency of a coordinate-wise criterion—Theorem 3.4—is the goal of the
present paper. A point-wise characterization, applicable only in the pres-
ence of function-space representations of the state spaces, is discussed in the
second paper [6]. The point-wise criterion, in heuristic form, is already in
frequent use. We shall review the (well-known) realization of the Hermite–
Gaussians as limits of the Kravchuk functions. The third paper [7] intro-
duces convergence of operators. Using the coordinate-wise criterion for
convergence of vectors, we shall prove the sufficiency of a coordinate-wise
criterion for convergence of operators. In particular, we shall review the
(well-known) realizations of the continuum fractional Fourier transform as
the limit of the Kravchuk function FRFT introduced by [3], and also
as the limit of the Harper function FRFT introduced by Pei–Yeh
[16]. The case of the Harper function FRFT has already been discussed
in [5] and in [9]. The former of these works contains some ideas that
are developed more systematically below; the latter invokes the criterion
for operator convergence proved in [7]. The examples of convergence
discussed in [6] and [7] could be—and indeed, have been—established
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merely by ‘‘dead reckoning’’ (in some cases supported by numerical
evidence). In so far as concerns applications external to fundamental
mathematics, the results in the fourth part [8] comprise the main motive
for the material in the previous three parts of this work.

2. INDUCTIVE RESOLUTIONS

All our Hilbert spaces are to be complex and separable, possibly finite-
dimensional. Let L. be a Hilbert space. Let N be a directed set, and
for each n ¥N, let Ln be a Hilbert space. Given a net (xn)n ¥N in some
Hausdorff space, we may ask whether the net is convergent, and when it is,
we can write the limit as limn ¥N xn. Consider vectors k. ¥L. and kn ¥Ln
for each n ¥N. We still speak of (kn)n ¥N as a net, and we wish to be able
to ask whether k. is the limit.

Let S be a dense subspace of L., and for each n ¥N, let resn be a linear
map SQLn such that the inner product of any two elements f, q ¥S
satisfies

Of | qP=lim
n ¥N

Oresn(f) | resn(q)P.

The maps resn are called restriction maps. The net of Hilbert spaces (Ln)n
(abusing language) together with the net of linear maps (resn)n, is called an
inductive resolution of L..

The net (kn)n is said to converge to k. provided the norms ||kn || are
essentially bounded (bounded for sufficiently large n) and

Of | k.P=lim
n ¥N

Oresn(f) | knP

for all f ¥S. By the Riesz Representation Theorem, and the denseness of
S in L., the net (kn)n cannot converge to two distinct vectors in L..
When (kn)n converges k., we call k. the limit of (kn)n, and we write

k.=lim
n ¥N
kn.

These definitions are still applicable when the vectors kn are given not
necessarily for all n, but only for sufficiently large n in N. (For example, it
is shown in [6] that the Hermite–Gaussian hs of degree s is the limit of the
Kravchuk functions hs, n of degree s; the functions hs, n exist only when
s < n.)

The clause requiring the norms ||kn || to be essentially bounded is a tech-
nicality, inserted for the good enough reason that the statements of many
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of our results below would otherwise be false. The author settled upon this
clause after experimenting with several other definitions of convergence. If
N …N then, of course, the norms are essentially bounded if and only if
they are bounded.)

In [9] and [5] some alternative terminology was used: instead of saying
that (kn)n converges to k., it was said that (kn)n induces k.. When those
papers were written, the author was not aware of [6, Theorem 3.1], which
shows that the above definition of convergence is compatible with some
customary heuristic use of limiting arguments in discrete quantum mechanics.

Remark 2.1. Given any f ¥S, then f=limn resn(f).

Proof. Since ||f||=limn ||resn(f)||, the norms ||resn(f)|| are essentially
bounded. L

Remark 2.2. Given vectors k.=limn ¥N kn and h.=limn ¥N hn in L.,
and given complex numbers l and m, then lk.+mh.=limn(lkn+mhn).

Proof. This is obvious. L

Remark 2.3. Let k. ¥L., and for each n ¥N, let kn, hn ¥Ln. Suppose
that k.=limn kn and limn ||kn−hn ||=0. Then k.=limn hn.

Proof. Clearly, the norms ||hn || are essentially bounded. For any f ¥S,
we have

|Oresn(f) | knP−Oresn(f) | hnP| [ ||resn(f)|| · ||kn−hn ||. L

Every vector in L. is the limit of a net of vectors in the spaces Ln. More
precisely:

Theorem 2.4. Given any vector k. ¥L. , then there exist vectors
kn ¥Ln such that k.=limn kn , and ||kn || = ||k. || for each n ¥N.

Proof. Throughout the argument, we may assume that k. is nor-
malized; ||k. ||=1. For the moment, let us assume also that k. ¥S. Since
the norms ||resn(k.)|| converge to unity, resn(k.) ] 0 for sufficiently large
n. When resn(k.) ] 0, put kn=resn(k.)/||resn(kn)||, otherwise, choose kn
to be any normalized vector in Ln. The assertion is now clear in the case
where k. ¥S.

Now let the normalized vector k. ¥L. be arbitrary. Since S is dense in
L., there exist vectors fm ¥S such that ||k.−fm || < 2−m for each integer
m \ 1. Letting h1=f1, and hm+1=fm+1−fm, then ||hm || < 22−m for all
m \ 1. We have k.=;.

m=1 hm. By the previous paragraph, we can write
hm=limn hm, n, where hm, n ¥Ln and ||hm, n ||=||hm ||. Since each Ln is
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complete, and the series ;.

m=1 ||hm, n || converges, we can define kn :=
;.

m=1 hm, n in each Ln. We will show that k.=limn kn.
Let f ¥S. Choose a real A such that ||f|| < A \ ||resn(f)|| for sufficiently

large n. Let e > 0. Choose a positive integer M such that 23−MA [ e. If n is
sufficiently large, then |Of | hmP−Oresn(f) | hm, nP| < e/2M for all m [M,
whereupon

|Of | k.P−Oresn(f) | knP| [ C
.

m=1
|Of | hmP−Oresn(f) | hm, nP|

< C
M

m=1

e

2M
+ C

.

m=M+1
A22−m < e.

The norms ||kn || are bounded by ;.

m=1 2
2−m=4. We have shown that

k.=limn ¥N kn.
As in the first paragraph of the argument, we may demand that the

vectors hm, n be chosen such that hm, n is a scalar multiple of resn(hm) unless
resn(hm)=0. Our demand granted,

lim
n ¥N

> C
m

j=1
hj, n− C

m

j=1
resn(hj)>=0

for each m. Since ||k. ||=1, and ||k.−fm || [ 2−m, and

lim
n ¥N

> C
m

j=1
resn(hj)>=>C

m

j=1
hj>=||f||

we deduce that if n is sufficiently large then ||;m
j=1 hj, n || differs from unity

by at most 21−m. On the other hand,

>km− C
m

j=1
hj, n> [ C

.

j=m+1
||hj, n || [ C

.

j=m+1
21−j=21−m.

So if n is sufficiently large, then ||kn || differs from unity by at most 22−m.
Since m is aribitrary, limn ||kn || =1. Normalizing the vectors kn as in the
first paragraph, we obtain the required conclusion. L

If each Ln=L., and each resn is the inclusion S+Ln, then
k.=limn kn if and only if the net (kn)n weakly converges to k.. Thence,
we see that the condition k.=limn kn does not imply that ||k. ||=
limn ||kn ||, and we also see that the converse to Remark 2.3 is false.

Example 2.A. Let r be a positive integer, let L. be the Hilbert space
L2(R r), and let S be the Schwartz subspace S(R r). Let N be the set of
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positive integers. For each n ¥N, let Xn be a countable set (with the
discrete measure) and let Ln=a2(Xn). Let sn be a function Xn Q R r, and let
n(n) be a positive real number. We impose the hypothesis that, for every
bounded convex subset U of R r, the preimage Xn(U) :=s−1n (U) is finite,
and the sequence (|Xn(U)|/n(n)2)n converges to the volume (the measure)
of U. The hypothesis is equivalent to the condition that

F
V
f̄(x) q(x) dx=lim

n ¥N
n(n)−2 C

X ¥ s
−1
n (V)

f̄(sn(X)) q(sn(X))

for all convex V ı R r (not necessarily bounded), and all f, q ¥S. The
elements X of Xn are to be regarded as indices corresponding to sample-
points sn(X) in R r. We define

resn(f)(X)=f(sn(X))/n(n).

The ‘‘Riemann sum’’ Oresn(f) | resn(q)P converges to Ok | qP. We have
realised (Ln)n as an inductive resolution of L.. The interpretation of this
rather abstract inductive resolution is clarified in the following three
Examples, which are special cases.

Example 2.B. In the notation of Example 2.A, let r=1, and let Xn be
the set of integers X in the range −n/2 < X [ n/2. Let c be any positive
real number. We complete the specification of the inductive resolution
(Ln)n by putting n(n)=(cn)1/4 and sn(X)=X/n(n)2. In the particular case
c=1, the restriction maps resn are as in [6B, Section 2]. In the case
c=1/2p, the inductive resolution (Ln)n pertains to the Harper functions
and the Harper function fractional Fourier transform; see [9], [6]. It is
straightforward to extend this Example to the case where the positive
integer r is arbitrary, and Xn consists of the r-tuples (X1, ..., Xr) with each
integer Xj in the range −n/2 < Xj [ n/2.

Example 2.C. This example is virtually the same as the previous
example, but it is worth recording separately because much use of it will be
made in the three sequels. Let r=1. Given an element n ¥N, write
n=2a+1, and let Xn be the set of rational numbers X such that X+a is an
integer, and −a [X [ a. Thus, if n is odd, then Xn is the same as it was in
Example 2.B, otherwise Xn is a set of halves of odd integers. Either way,
|Xn |=n. As before, let c be a positive real number. This time, we complete
the specification of the inductive resolution (Ln)n by putting n(n)=(ca)1/4

and sn(X)=X/n(n)2. In the case c=1, the inductive resolution here per-
tains to the Kravchuk functions and to the Kravchuk function fractional
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Fourier transform; see [6] and Atakishiyev and Wolf [3]. Again, general-
ization to the case of arbitrary r is straightforward.

Example 2.D. In the case r=2 of Example 2.A, Atakishiyev et al. [2]
have proposed, for applications to circularly symmetric systems, various
polar distributions of sample-points, some of which have the uniform
density property that we demanded. Of course, R r can be replaced by
another manifold. Particularly, periodic lattices of sample-points in an
r-torus have received much recent attention in quantum physics; see
Athanasiu et al. [4], Bars and Minic [10], Bouzouina and De Bièvre [11],
and Rivas and Ozorio de Almeida [18].

Example 2.E. Let L. be a Hilbert space, let S ıL. be a dense sub-
space, and let N be a directed set of subspaces of L., the direction being
inclusion. We insist that 1N is dense in L.. For each n ¥N, let Ln=n.
We make the net (Ln)n=(n)n become an inductive resolution of L. by
letting each resn be the orthogonal projection SQLn. Given vectors
k. ¥L. and kn ¥Ln for each n, then k.=limn kn if and only if the norms
||kn || are essentially bounded, and (kn)n weakly converges to k.. Once
again, we have defined a rather general kind of inductive resolution. The
last two Examples in this Section are (in essence) special cases.

Example 2.F. Let S be a dense subspace of an infinite-dimensional
Hilbert space L., let B be a complete orthonormal set in L., and let N be
a directed set of subsets of B, directed by inclusion, with 1N=B. Taking
resn to be the orthogonal projection SQLn, then (Ln)n becomes an
inductive resolution of L.. One ‘‘applicable’’ special case is where B is
enumerated {b0, b1, ...} such that, the coordinates have (quickly) decreas-
ing significance in the application. Changing notation, and now writing
N=N and Ln=Ob0, ..., bnP, then restriction resn is truncation to the n+1
most significant coordinates.

Example 2.G. Recall that a wavelet (in the simplest scenario) is a square-
integrable function h0, 0 Q C such that, writing hj, k(x)=2 jh0, 0(2 jx−k),
then the set G :={hj, k : j, k ¥ Z} is a complete orthonormal set in L2(R).
Without forcing a well-ordering on G, let us construct, from G, two fairly
natural inductive resolutions of L2(R). Let S=L.=L2(R). For the first
construction, we let N=Z, and for each n ¥N, we let Ln be the Hilbert
subspace of L. with a complete orthonormal set consisting of the vectors
hj, k such that j [ n. In the terminology of Wojtaszczyk [22, Definition
2.2], the net (Ln)n is a multiresolution analysis. Letting resn be the orthog-
onal projection to Ln, then (Ln)n becomes an inductive resolution
of L.. For the second construction, let N be the set of quadruples
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(a, a, b, b) of integers with a [ a and b [ b. We make N become a directed
set with direction [ such that (a, a, b, b) [ (aŒ, aŒ, bŒ, bŒ) provided a \ aŒ
and a [ aŒ and b \ bŒ and b [ bŒ. For an element n=(a, a, b, b) of N, let
Ln be the finite-dimensional subspace of L. with a basis consisting of the
vectors hj, k such that a [ j [ a and b [ k [ b. Again, we let resn be the
orthogonal projection to Ln. The point of this inductive resolution (in
accordance with the principal motivation for wavelets in the first place) is
that projection to Ln is a way of zooming in on a particular window of
time (the home variable) and logarithmic frequency.

3. CONVERGENCE OF COORDINATES

Throughout this Section, we consider the general case of an inductive
resolution (Ln)n of a Hilbert space L.. As before, we write the restriction
maps as resn : SQLn. We shall explain how the spaces Ln admit systems
of coordinates that are, in an appropriate sense, compatible with any given
system of coordinates of the space L.. Our aim is to show that a given net
(kn)n of vectors kn ¥Ln converges to a given vector k. ¥L. if and only if
the norms ||kn || are essentially bounded, and the coordinates of the vectors
kn converge to the coordinates of k.. This criterion for convergence of
vectors will be needed in [7].

By an enumerated set, we mean a set {Oj : j ¥ J} equipped with a bijec-
tion j W Oj, where either J=N or else J={0, 1, ..., d−1} for some natural
number d. Given an enumerated orthonormal set of vectors A.=
{aj,. : j ¥ J.} in L., and an enumerated orthonormal set of vectors
An={aj, n : j ¥ Jn} in each Ln, we say that the net (An)n ¥N converges to A.
provided aj,.=limn ¥N aj, n for each j ¥ J..

Theorem 3.1. Any enumerated orthonormal set in L. is the limit of a
net of enumerated orthonormal sets in the spaces Ln.

Proof. Let A.={aj,. : j ¥ J.} be an enumerated orthonormal set in
L.. Theorem 2.4 guarentees that, for each j ¥ J., there exist vectors
cj, n ¥Ln such that ||cj, n || =1 and aj,.=limn cj, n. Given e > 0, we can
choose vectors fj ¥S such that ||fj−bj,. || [ e for all j ¥ J.. For fixed
j, k ¥ J., we have

lim
n ¥N

Oresn(fj) | ck, nP=Ofj | ak,.P=dj, k+O(e)

But limn ||resn(fj)|| = ||fj || =1+O(e) and ||ck, n || =1, so

Ocj, n | ck, nP=dj, k+O(e)
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for sufficiently large n. Let An={aj, n : j ¥ Jn} be the enumerated ortho-
normal set constructed from {cj, n : j ¥ J.} by the Gram–Schmidt process.
Thus a0, n=c0, n/||c0, n ||, and generally, each aj, n is the normalized orthogo-
nal projection of cj, n to the orthogonal complement of the span of
{c0, n, ..., cj−1, n}. For given n, the set An is finite if and only if the process
terminates after finitely many steps; the set An has finite size d provided
d is minimal such that either d=|J. | or else cd, n is a linear combination
of the vectors c0, n, ..., cd−1, n. The approximate orthonormality condition for
the vectors cj, n ensures that, given any j ¥ J. then, for sufficiently large n,
the set {c0, n, ..., cj, n} is linearly independent, hence aj, n is defined. The
same condition ensures that limn ||cj, n−aj, n || =0. By Remark 2.3, aj,.=
limn aj, n. L

For the rest of this paper, we let B.={bj,. : j ¥ J.} be an enumerated
complete orthonormal set for L., and for each n ¥N, we let Bn=
{bj, n : j ¥ Jn} be an enumerated orthonormal set for Ln such that the net
(Bn)n converges to B..

Corollary 3.2. If the dimension dim L. is finite, then dim L. [

dim Ln for sufficiently large n. If dim L.=., then limn ¥N dim Ln=..

Proof. For each j ¥ J., we have bj,.=limn ¥N bj, n, hence j ¥ Jn for
sufficiently large n. L

Let us discuss a technical irritation. Is every enumerated complete
orthonormal set for L. the limit of a net of enumerated complete ortho-
normal sets for the spaces Ln? The answer is negative in general, but
affirmative in most cases of likely interest. Let us discuss this briefly,
leaving the easy proofs of our observations as exercises. The directed set N
has an unbounded countable subset if and only if there exists an order-
preserving unbounded function NQN. When these equivalent conditions
hold, N is said to be Archimedian. If N is countable, then N is Archime-
dian. If L. is infinite-dimensional and each Ln is finite-dimensional, then
(thanks to Corollary 3.2) N is Archimedian. Whenever N is Archimedian,
the answer to the above question is affirmative. Meanwhile, if N is the set
of countable subsets of an uncountable set (directed by inclusion), then N
is non-Archimedian. Supposing that N is non-Archimedian, L. is infinite-
dimensional and each resn has domain L. and image strictly contained in
Ln, then no complete orthonormal set in L. is the limit of a net of
complete orthonormal sets in the spaces Ln.

To keep the notation simple, let us abuse it slightly. For a vector
k. ¥L., let us write

k.=C
.

j=0
cj,.bj,.,
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where cj,.=Obj,. | k.P for j ¥N. The notation makes sense, granted the
understanding that Obj,. | k.P :=0 if j ¨ J.. For kn ¥Ln, we write

kn=k
+
n +C

.

j=0
cj, nbj, n,

where cj, n=Obj, n | knP for j ¥N. As before, it is to be understood that
Obj, n | knP :=0 if j ¨ Jn. Thus, the vector k+

n is the component of kn
orthogonal to the span of the orthonormal set Bn. Similarly, for f ¥S, we
write

f=C
.

j=0
aj,.bj,. and fn=resn(f)=f

+
n +C

.

j=0
aj, nbj, n.

Lemma 3.3. Given f ¥S, and letting aj,. and aj, n be coordinates as
above, then

lim
n ¥N

C
.

j=0
|aj,.−aj, n |2=0 and lim

n ¥N
||f+
n ||=0.

Proof. We have ;.

j=0 |aj,. |
2=||f||2=limn ¥N ||fn ||2=limn ¥N(||f+

n ||2+
;.

j=0 |aj, n |
2). Since aj,.=Of | bn,.P=limn ¥N Ofn | bn, jP=limn ¥N aj, n for

all j ¥ J., we have

lim
n ¥N

(||f+
n ||2+ lim

j ¥ Jn −J.
|aj, n |2)=0.

The second asserted equality follows, and furthermore,

C
.

j=0
|aj,. |2=lim

n ¥N
C
.

j=0
|aj, n |2.

Let 0 < e < 1. Let n ¥N, and assume that n is sufficiently large for all
our purposes. Choose m ¥N such that

C
.

j=m
|aj,. |2 < e.

Given 0 [ j [ m−1, then |aj,.−aj, n | < e, hence

|aj,. |2−|aj, n |2 [ e(|aj,. |+|aj, n |) [ e(||f||+||fn ||) [ e(1+2 ||f||)=O(e).
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The two differences ;.

j=0 |aj, n |
2−;.

j=0 |aj,. |
2 and ;m−1

j=0 |aj, n |2−;m−1
j=0 |aj,. |2

both have magnitude O(e), hence

C
.

j=m
|aj, n |2=O(e)+ C

.

j=m
|aj,. |2=O(e).

Therefore ;.

j=0 |aj,.−aj, n |2 [ me2+;.

j=m |aj,.−aj, n |2=O(e). L

Theorem 3.4. Let k. ¥L., and let cj,. and cj, n be coordinates as above.
Then k.=limn ¥N kn if and only if the norms ||kn || are essentially bounded,
and cj,.=limn ¥N cj, n for all j ¥ J..

Proof. Throughout the argument, we may assume that the norms
{||kn || : n ¥N} are essentially bounded. In fact, we may assume that the
norms ||kn || are bounded. Choosing an upper bound C for ||k. || and all the
norms ||kn ||, then

C
.

j=0
|cj,. |2= ||k. ||2 [ C2 \ ||kn ||2=||k+

n ||2+C
.

j=0
|cj, n |2.

Let f ¥S. We continue to use the notation of the proof of Lemma 3.3, and
we still assume that n is sufficiently large. We have

Of | k.P=C
.

j=0
āj,.cj,. and Ofn | knP= C

.

j=0
āj, ncj, n.

Assume that each cj,.=limn cj, n. Our choice of m ensures that
;.

j=m |āj,.cj,. | [ C`e. Similarly, ;.

j=m |āj, ncj, n |=O(`e). Therefore,
|Of | k.P−Oresn(f) | knP|=O(`e). We have deduced that k.=limn kn.

Conversely, assume that k.=limn kn. Fix an index k ¥ J.. Since S

is dense in L., the vector f ¥S can be chosen and fixed such that
||f−bk,. || < `e, in other words

|ak,.−1|2+C
j ] k

|aj,. |2 < e.

Thence ;j ] k=āj,.cj,. < C`e.
We now impose upon m the further constraint that m > k. By Lemma

3.3, aj,.=limn aj, n for all j ¥N. So ;k ] j [ m−1 |aj, n |2=O(e). Hence,
;j ] k |aj, n |2=O(`e) and

C
j ] k

āj,.cj,.=O(`e)
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Our assumption on the net (kn)n yields ;.

j=0=āj,.cj,.=limn ¥N ;.

j=0=
āj, ncj, n. Therefore

|āk,.ck,.−āk, nck, n |=O(`e).

Since |ak,.−1| [`e and ak,.=limn ak, n, we have ck,.=limn ck, n. L
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