
Journal of Parallel and Distributed Computing 61, 1148�1179 (2001)

Adaptive Routing on the New Switch Chip
for IBM SP Systems

Bulent Abali and Craig B. Stunkel

IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598

Jay Herring

Server Group, IBM Corporation, Poughkeepsie, New York 12601

Mohammad Banikazemi and Dhabaleswar K. Panda

Department of Computer and Information Science, Ohio State University, Columbus, Ohio 43210

and

Cevdet Aykanat and Yucel Aydogan

Department of Computer Engineering, Bilkent University, 06533 Ankara, Turkey

Received December 15, 1999; revised May 7, 2000; accepted July 20, 2000

The IBM RS�6000 SP is one of the most successful commercially available
multicomputers. SP owes its success partially to the scalable, high bandwidth,
low latency network. This paper describes the architecture of Switch2 switch
chip, the recently developed third generation switching element which future
IBM RS�6000 SP systems may be based on. Switch2 offers significant enhan-
cements over the existing SP switch chips by incorporating advances in both
VLSI technology and interconnection network research. One of the major
new features of Switch2 is the incorporation of adaptive routing support into
it. We describe the adaptive source routing architecture of the Switch2 chip
which is a unique feature of this chip. The performance of the adaptive source
routing and oblivious routing for a wide range of system characteristics and
traffic patterns is evaluated. It is shown that adaptive source routing outper-
forms or performs comparably with oblivious routing. We propose two novel
algorithms for generating adaptive routes specifications required for enabling
the usage of adaptive source routing. A comparison between the cost of these
two algorithms and the performance improvement obtained from using these
algorithms are discussed. We also propose different output selection functions

doi:10.1006�jpdc.2001.1747, available online at http:��www.idealibrary.com on

11480743-7315�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

to be used in switching elements for implementing the adaptive routing. We
evaluate and compare the performance of these selection functions and dis-
cover that the best selection functions for BMINs are not dependent on the
traffic pattern, message size, or system size. � 2001 Academic Press

Key Words: adaptive routing; bidirectional multistage interconnection
networks; source routing; output selection functions.

1. INTRODUCTION

A high performance interconnection network [7] is a crucial component in mul-
ticomputer and clustered systems. The RS�6000 SP is one of the most successful
multicomputer systems available today. The SP system's success has been partially
due to the scalable and high bandwidth SP interconnect. This paper describes a
recently developed third generation switching element which future IBM RS�6000
SP systems may be based on. In this paper this switching element will be referred
as the Switch21 chip. Switch2 chips are completely functional and have been runn-
ing in the laboratory for some time. Switch2 offers significant enhancements over
existing SP network switch chips. In particular, it introduces a new form of adap-
tive routing with the potential to significantly improve network bandwidth and it
adds a powerful hardware multicast replication capability.

The most important measure of a computer network is perhaps its aggregate
throughput. This throughput measure depends on topology, link speed, and
achievable utilization through the individual switching elements. The switch utiliza-
tion is heavily dependent upon the internal queuing mechanism and the buffer
organization within the switches. The Switch2 chip employs the same central buffer
strategies successfully employed in current SP network switches to implement output
queuing. However, buffer sizes are increased throughout the chip. As a consequence
Switch2 supports links of up to 200 m, longer than current SP switches. This in turn
allows the construction of richly connected topologies with a high bisection bandwidth.
Switch2 also increases the bandwidth per link to 500 MB�s per direction.

An important design consideration for any interconnection network is the rout-
ing mechanism. Routing mechanisms can be subdivided into route specification and
routing decisions, where route specification occurs once at the source and routing
decisions occur at each switch on the path between a source and a destination. For
route specification, modern networks are almost evenly divided between source
routing (in which, for each device on the path, the source node embeds a routing
directive within the packet) and destination or logical-address routing (in which
only an address or an address offset is embedded). Routing decisions can be
classified as adaptive (a routing choice can be made among several options) and
nonadaptive or oblivious (there is only one valid choice) [12]. For many networks,
it has been shown that adaptivity can increase performance. However, all adaptive
routing schemes to date have relied on destination routing.

1149ADAPTIVE ROUTING ON SP SWITCH

1 Switch2 is not an IBM product and no assumptions should be made regarding its availability in the
future.

A unique feature of Switch2 architecture is combining source routing and adap-
tive routing mechanisms, referred to as adaptive source routing. This feature is used
to allow control over the degree of adaptivity on a per packet and per switch basis,
an important consideration for fault-tolerance, to provide backward compatibility,
and to provide support for some protocols that require in-order packet arrival. It
is particularly well suited for the bidirectional multistage interconnection networks
(BMINs) used in today's SP networks. BMINs have aggregate bandwidth scaling
linearly as the number of nodes increases, as do unidirectional multistage networks.
They have smaller diameter than the mesh and torus networks. Fat trees [18] and
least common ancestor networks [21] are examples of BMINs.

In the source routing mechanisms the network interface must perform a route
table lookup before inserting messages into the network. Route tables are built by
various algorithms that use the network topology as an input. In the adaptive
source routing scheme, these algorithms must generate routing directives that maxi-
mize the degree of adaptivity in the network. In this paper we present two novel
algorithms, fully adaptive and partially adaptive algorithms which make a trade-off
between execution time and network performance.

Another important design consideration in adaptive networks is how routing
decisions are made within the switching elements. A switching element may deter-
mine that more than one output port are available for forwarding a message. The
switching element uses an output selection function to decide which output port will
be used [9, 12]. It has been shown that using a proper output selection function
is a key to the good adaptive routing performance. In this paper, we examine
output selection functions for SP-like, bidirectional multistage interconnection
networks.

Previous studies on output selection functions have focused on the mesh and
torus networks [4, 11, 13, 14, 22, 29, 30]. To the best of our knowledge, output
selection functions for BMINs or MINs have not been studied to date. We intro-
duce six output selection functions. The performance of adaptive routing under the
proposed output selection functions is studied with extensive simulations.

There are a number of other enhancements offered in the Switch2 switch that will
not be described in detail in this paper. For example, Switch2 switches provide a
powerful hardware multicast replication capability. In addition to this enhance-
ment, Switch2 provides support for high-priority traffic, and locking between
individual elements of the switching network becomes asynchronous to help dis-
tribute faster oscillator signals.

The major contributions of this paper are as follows:

v We describe the architecture of Switch2, the newly developed third genera-
tion switching chip for IBM RS�6000 SP systems, and present the major Switch2
enhancements in comparison with the previous generations of SP switches.

v We compare the performance of the adaptive source routing and oblivious
routings for a wide range of system characteristics and traffic patterns.

v We propose two novel algorithms for generating adaptive route specifica-
tions. We provide a comparison between the cost and performance of these two
algorithms.

1150 ABALI ET AL.

v We propose several output selection functions to be used in switch chips for
implementing the adaptive routing. We compare the performance of these selection
functions and discover that the choice of a selection function for BMINs is not
dependent on the traffic pattern, message size, or system size.

In the rest of this paper, we begin with an overview of current SP Switch
architecture and concepts in Section 2. Section 3 gives an overview of the major
Switch2 enhancements. In Section 4, we discuss the new adaptive routing technique
used in Switch2. In Section 5, we describe the adaptive route generation algorithms,
and in Section 6, we describe the output selection functions.

2. BACKGROUND

In this section we examine several properties of the current generation of SP
switching networks before discussing the major Switch2 enhancements.

The current generation of SP networks is called the SP Switch. The basic
organization of an SP switch chip is shown in Fig. 1. This is an 8-port switch chip
that achieves link bandwidths of 150 MB�s per direction, and it is architecturally
similar to the 40 MB�s Vulcan switch chip [28] used in the original IBM SP1 [1,
27] and SP2 [25] High Performance Switch networks.

2.1. Flow-Control and Switching

SP switching networks use wormhole routing [10], which consists of both flit-
based flow-control and cut-through switching. In flit-based flow-control, a packet is
broken into small units called flits, or flow-control digits. A flit is the smallest unit
of a packet that can be accepted or rejected by the flow-control mechanism. In SP
systems, each output port of each network device maintains a credit count and can
send one flit for each credit that it holds. Each time a downstream input port
releases buffer space for one flit, it sends a new credit back to the upstream output
port. In this manner multiple flits can proceed at full bandwidth over a long link,
given sufficient buffer space for flow-control at the input port.

In cut-through switching, once the packet header (which contains the route) is
received, the route is decoded and an immediate attempt is made to forward the
packet to the desired output port. In SP systems, this forwarding occurs via a large,
dynamically allocated central buffer.

FIG. 1. The SP switch chip organization.

1151ADAPTIVE ROUTING ON SP SWITCH

2.2. Central Buffer (Buffered Wormhole Routing)

In most wormhole implementations, when a packet cannot be routed to the
desired output port, it is blocked in place which prevents any subsequent packet at that
input port from being forwarded. SP switches contain a large central buffer in which
packet flits can be stored when an output port is busy. In most cases, the entire packet
can be stored in this central buffer. This frees the input port to route the next packet in
the input buffer. This technique is termed buffered wormhole routing [25].

The central buffer implements multiple FIFO queues of packets, one queue for
each output port. This is a space-efficient form of output queuing, which is known
to be superior to input queuing methods. In addition, central buffer space is
dynamically shared according to the demand from the input and output ports,
which further increases maximum utilization in the switching element.

The central buffer must be able to store and fetch packet flits at the same
aggregate rate as the input and output ports. Under worst-case conditions, all eight
input ports and eight output ports may be receiving and sending one flit per switch
cycle. Thus the central buffer must be able to store and�or fetch 8 flits every cycle.
Rather than building a very expensive and slow 16-port memory to handle this
load, it is far more efficient to provide an 8-flit-wide 2-port memory. This 8-flit
central buffer width is called a chunk. Before storing into the central buffer, an input
port therefore collects one chunk of packet data.

Now that we have given an overview of the central buffer and its queuing
mechanisms, we are ready to examine the high-level data flow of SP switch chips.

2.3. Basic Data Flow

When an input port receives a flit, it stores it, in the input buffer. Concurrently,
the input port may also be fetching flits out of this buffer. When a packet header
is fetched from the buffer, the packet route is decoded. Once an entire 8-flit chunk
has been collected in the input buffer or the last flit of the packet has been received,
a store request is made to the central buffer to forward the packet chunk. The cen-
tral buffer must eventually grant every received store request, and it does so on a
least recently used (LRU) basis. When a central buffer store request is granted, the
chunk is sent to the central buffer. To ensure that no queue in the buffer can be
starved, each queue maintains an exclusively reserved emergency chunk. This
emergency chunk can only be used by a critical chunk data that is immediately
needed by the output port. For instance, if only two chunks of a three chunk packet
have been stored in the central buffer, and both of these chunks have been subse-
quently fetched by the output port, then the third chunk is critical and is eligible
to be stored in the emergency chunk. Critical chunk requests are considered before
non critical requests.

2.4.. Routing

In the first two generations of SP switch chips, the 8-port switches have had no
topological assumptions built into them. The switches are source-routed, which
means that the routing decision for each switch chip is embedded within the packet.
Each switch chip decodes��and then discards��the first route field in the packet.

1152 ABALI ET AL.

FIG. 2. A 16-way SP switching network.

Each route field contains a 3-bit encoded output port ID. Source routing allows dif-
ferent packets going to the same destination to traverse different paths based upon
the embedded route. It is straightforward to bypass faulty links or switches using
source routing, and, in principle, no switch chip setup is required before sending a
source-routed packet through that switch chip. To better understand the typical
routing strategy, let us describe the current SP topology.

2.5. Topology

Even though the source routing technique assumes no particular topology, cer-
tain topologies are more scalable in aggregate bandwidth than others. Because SP
systems are positioned to be highly scalable, the choice of topology is critical. From
the earliest SP1 machines, only BMINs have been built. An example of a 16-node
SP network is shown in Fig. 2, where each block represents a switch chip in the
network. As do uni-directional multistage networks, these networks scale aggregate
bandwidth linearly as the number of nodes increases. BMINs reward communication
locality and require no virtual channels to avoid deadlock among packets in the network.
Fat-trees [18] and least common ancestor networks [21] are examples of BMINs.

Figure 2 shows the path of two packets sent from node P13. The first message is
destined for P8 and need only be routed through one switch chip. The second
message is destined for P6 and traverses three switch chips. Note that any of the
right-hand-side switch chips could have served as the second switch chip in the path
of this packet. In all cases a minimal (shortest-path) route is selected. Note that the
node numbering in Fig. 2 is the same as the 16 node SP system's node numbering
and it is an artifact of the physical wire layout.

3. OVERVIEW OF SWITCH ENHANCEMENTS

In this section we discuss differences between the eight-port Switch2 switch chip
and current SP switches. Just as its predecessors, external links carry 1 byte of data

1153ADAPTIVE ROUTING ON SP SWITCH

TABLE 1

Properties of SP Switch Chips and the Switch2 Switch Chip

Property SP2 HPS (Vulcan SP Switch (current) Switch2

(Uni) link BW 40 MB�s 150 MB�s 500 MB�s
(Uni) link width 11 signals 11 signals 10 signals
Internal cycle time 25 ns 13.3 ns 8 ns
Internal data path 1 byte 2 bytes 4 bytes
Input buffer size 32 bytes 128 bytes 1024 bytes
Central buffer size 1 KBytes 4 KBytes 8 KBytes
Max link length 25 meters 25 meters 200 meters
Hardware multicast No No Yes
Adaptive Routing No No Yes
Clocking Globally Globally Asynchronous

synchronous synchronous (plesiochronous)

(plus clock and control) in each direction, but at a signalling rate of 500 Mbit�s per
signal. The clock is sent at half-speed and is used to capture the data on each edge
(every 2 ns) upon arrival at the downstream input port. Internally, Switch2 executes
on 8-ns cycles and therefore has 4-byte-wide data paths. Table 1 compares and
summarizes many of the attributes of the first two generations of SP switch chips
and the Switch2 chip.

Flits are 4 bytes, and Switch2 switch chips provide 512 bytes (128 flits) per input
buffer. At 500 Mbyte�s, and taking into account the round-trip delay to send a flit
and receive the returned credit, a Switch2 switch chip can support link lengths up
to 200 m. This length is beyond the range of a typical copper link operating at
500 Mbit�s per signal, but optics could potentially be used to extend the usable
range if desired. We have 25-m copper link cables working in the laboratory.

3.1. Central Buffer Enhancements

The Switch2 chip enhances the central buffer by maintaining two queues per out-
put port: a high-priority queue and a normal-priority queue. This often allows high-
priority packets to bypass queued normal-priority packets. Switch2 also increases
the size of the central buffer to 8 KBytes. Finally, Switch2 pipelines access to the
central buffer to reduce data path width and latency to and from the buffer [16].
Logically, the central buffer remains one chunk wide, but it is divided into four
banks. Bank 0 receives the first two flits of a stored chunk. Two cycles later, bank 1
receives the next two flits, and so on. This bank arrangement reduces cost without
affecting bandwidth through the central buffer.

3.2. Other Enhancements

The Switch2 chip adds two new forms of routing (adaptive and multicast).
Unlike the switches in current SP machines, these new forms of routing do depend
upon topology. We should emphasize that although these functions exist in the
Switch2 switching hardware, the use of both functions is dependent upon the

1154 ABALI ET AL.

software that controls the route format at the network interface. Any product-level
use of these new capabilities might be phased in over time.

The last row in Table 1 mentions clocking. All SP networks to date have been
driven by a common oscillator. (There are multiple oscillators in the system but
only one master oscillator is used at any point in time.) As clock speeds increase,
the reliable and redundant distribution of a global clock becomes more difficult.
Therefore, Switch2 uses an asynchronous clocking scheme. Data travel with a clock
signal over the link, and the clock is used to latch the data. Clocking is
plesiochronous, meaning that all clocks in the system are approximately the same
frequency. This fact can be used to minimize the number of idle cycles needed to
avoid input buffer overflow [26].

4. ADAPTIVE SOURCE ROUTING

One of the most important architectural enhancements in the Switch2 chip is the
adaptive source routing. In nonadaptive (or oblivious) routing, a fixed routing deci-
sion is made for traveling between a source and a destination node. Each switch
must forward the message through a fixed output port regardless of the traffic. If
the predetermined output port is busy, the packet must wait for the busy port to
clear although there may be other available ports leading to the destination. In con-
trast, adaptive routing methods allow for more than one choice of output ports. A
switch may forward the packet to one of many output ports making the routing
decision on the fly as the packet header is decoded. The decision for selecting an
output port is made by an output selection function. This will be described in detail
in Section 6.

While the Switch2 chip supports adaptive routing, for many reasons including
backward compatibility Switch2 must also continue to support oblivious routing
and even a mix of oblivious and adaptive routing. Existing adaptive routing
schemes rely on distributed routing techniques (destination routing) as opposed to
source routing. For example, in a regular 2-D mesh, an intermediate switch can,
based upon the destination address or a distance vector from the destination,
choose from more than one output port that will lead to that destination. Fault-
tolerance becomes an issue for destination routing networks, as faulty links make
it possible to select a port that eventually leads to a dead-end. This problem is
sometimes addressed by adding virtual channels for adaptive routing and�or by
allowing non minimal routing. A more powerful fault-tolerance capability can be
achieved through a form of destination routing known as table-lookup routing, in
which each packet carries a logical address that is used to index a route lookup
table inside each switch. The tables throughout the network can be configured to
avoid dead-ends. However, in all of these schemes, the source processor has no per-
packet control over the route or the amount of adaptivity. Instead, the routing deci-
sions are made by the switches distributed throughout the network. In SP systems,
we desire to maintain control over adaptivity at the source node and to use mini-
mal routing without any need for virtual channels. For instance, in-order packet
arrival may be required in some cases but not others. All of these objectives are met
by adaptive source routing [3].

1155ADAPTIVE ROUTING ON SP SWITCH

4.1. Route Specification

In adaptive source routing, just as in the current SP source routing technique,
the source node embeds a single route field for each switch chip to be traversed in
the path. However, for adaptive route fields, a 4-bit field is used to specify the per-
missible set of output ports instead of a single output port. To see why four bits are
sufficient (instead of eight bits, each corresponding to an output port), recall the SP
BMIN topology shown in Fig. 2. Each packet in an SP network traverses a mini-
mal path, traveling away from the source node to some least common ancestor
(LCA) of the source and destination nodes. In Fig. 2 for the packet traveling to P6,
any of the right-hand-side switches is an LCA of the P13�P6 pair. The packet then
travels downward from LCA to the destination. To maintain a minimal route, there
is only one path going downward from an LCA. Thus all adaptivity must occur on
the upward path to the LCA. Each routing decision along the upward path involves
at most the four output ports on the upper side of the switch chip. As shown in
Fig. 3, the entrance port guides the interpretation of the route field. On the upward
path to LCA, a packet entering the switch chip from one side must always exit from
the other side. Therefore, the adaptive routing field needs to specify only four bits
each corresponding to an output port on the opposite side of the input port.

Because there is only one route field per switch stage in the packet header, all
LCA switches reachable via the adaptive choices must have the same downward
view of the destinations. Fortunately, this is an inherent property of fat-tree
networks, and in most SP networks this is also the case. For instance, to send a
packet from P13 to P6, the same port (port 2) of each LCA switch leads to the
destination (Fig. 2). There are few SP network topologies in which only a subset of
LCAs satisfy this property. For these networks, the adaptivity on the upward path
can be restricted with adaptive source routing so that only this subset of LCA
switches will be reached. Note that a 4-bit adaptive route field is not sufficient to
determine the LCA switch (the point at which the packet may turn and continue
nonadaptively). Therefore Switch2 packets also carry an initial field in the first flit
which maintains the number of adaptive routes in the packet. All remaining route
fields in the packets are then nonadaptive and carry the same format as previous
generations of SP switch chips. This has the added advantage that the routes
generated for older SP systems can be trivially embedded in Switch2 packets.

For a complete example, consider the 128-node SP network in Fig. 4. From
source node S to destination node D there are 64 different routes which a message
may follow to avoid network congestion: In the first three stages of switches (in the

FIG. 3. Adaptive routing nibble bits set to ``1'' indicate which ports a message can exit from.

1156 ABALI ET AL.

FIG. 4. A 128-node SP switching network. A subset of the entire set of links is shown.

upward path to the LCAs) a message has a choice of four output ports per stage,
thereby having a total choice of 4_4_4=64 different routes. Once the message
moves on to the fourth stage (in the downward path from LCA), it has no choices
left but must exit from a fixed port in each stage. Therefore, there are a total of 64
possible routes from node S to D. This example in Fig. 4 illustrates the power of
adaptive routing in BMIN where a single oblivious route is replaced by 64 possible
routes, one of which will be selected dynamically depending on the traffic.

In Fig. 4 since there are six stages of switch chips from S to D, the 4-bit routing
fields in the message packet will be in the form of A, R1, R2, R3, R4, R5, R6. A=3
indicates that there are three adaptive routing fields followed by the nonadaptive
routing fields. Each switch chip decrements A while consuming an adaptive routing
field. The source node may set a field as R=1111 instructing the corresponding
switch that any one of the four output ports may be used. For maximum adaptivity
the first three route fields can be set to R1=1111, R2=1111, and R3=1111. For
partial adaptivity the source node S may send the message with some bits of
R1, R2, or R3 of the packet header turned off. Thus, the number of distinct routes
a packet may follow is

Nroutes=|R1|_|R2 |_ } } } _|Rn&1|_|Rn |,

where |Ri | is defined as the number of bits set in the routing field Ri .
Being able to specify the degree of adaptivity on a per packet basis and at the

source node is one of the unique advantages of the Switch2 chip. This architecture
is not only backward compatible with previous generations of SP networks but it
also allows a mix of adaptive and oblivious traffic to coexist in the same network.
For in-order-delivery, consecutive packets may be sent obliviously through a single
route (Nroutes=1), while other packets not sensitive to in-order delivery may be
sent with maximum adaptivity (Nroutes=max). For network security or partitioning,

1157ADAPTIVE ROUTING ON SP SWITCH

packets may be sent partially adaptive to avoid certain regions of the network
(1<Nroutes<max).

5. ROUTE GENERATION ALGORITHMS

The use of adaptive routing in Switch2 depends on the software that creates the
route tables. Given the network topology the route generation algorithm must com-
pute adaptive routing headers for each destination. In this section, we discuss two
different algorithms for generating the adaptive routing headers. The first algorithm
generates fully adaptive headers (as described in Section 4.1). The second algorithm
generates partially adaptive headers by restricting adaptivity to the first stage of the
network. The partially adaptive algorithm has the advantage of being a simple
extension of the current generation SP algorithm. Its execution is also faster than
the fully adaptive algorithm. Network simulations show that the three algorithms,
oblivious, partially adaptive, and fully adaptive, have increasing performance in the
given order. Thus, a trade-off may be made between the execution time and the per-
formance depending on the network size and system requirements. Another
possibility is to create hybrid route tables that may contain fully adaptive, partially
adaptive, or oblivious routing headers, since the Switch2 chip allows a mix of adap-
tive and oblivious traffic to coexist in the same network.

5.1. Fully Adaptive Routes

The fully adaptive route generation algorithm maximizes the amount of adap-
tivity (Nroutes) of packet headers. While it may appear straightforward in Figs. 2�4
to generate fully adaptive route headers, the problem of maximizing the adaptivity
is complicated by irregularities in the network topology. The presence of faulty
links and switches makes this problem even more challenging.

In the proposed algorithm (Fig. 5), we adopt a graph-theoretical approach. For
each source�destination processor pair (s, d), we construct a multistage routability
graph GR which enumerates all possible minimal paths from s to d. Then, using GR

we construct a multistage solution graph GS which enumerates every feasible adap-
tive route solution (route-word encoding) from s to d. Finally, we find a maximally
adaptive route through a dynamic-programming formulation on GS .

We represent the topology of the network by a directed graph GT=(VT , ET),
which is referred to here as the topology graph. Vertex set VT contains two types
of nodes, processor nodes and switching nodes. Edge set ET represents the intercon-
nections between the switching nodes and between the processor and switching

FIG. 5. A 32-processor node bidirectional multistage network (BMIN).

1158 ABALI ET AL.

nodes. Each edge a=(u, v) has an m-bit binary label lT[e] whose 1-bit position
denotes the output port number of the switching vertex u it is sourced from.
Multiple edges between a pair of vertices in the same direction are coalesced into
a single edge by bitwise OR'ing the labels of the individual edges.

While describing the algorithm we will use an example of the 32-node SP
network shown in Fig. 6. The respective topology graph GT=(VT , ET) contains
48 vertices. Processors are indexed from 0 to 31 and switches are indexed from 32
to 47.

5.1.1. Routability graph. Routability graph Gr (s, d)=(VR , ER) for a given
source�destination processor pair (s, d) is a directed n-stage graph [15], where n
denotes the shortest path distance from s to d. Here, distance refers to the number
of switching elements in a route. GR (s, d) contains only switching nodes and it is
a subgraph of GT with all switching nodes and edges that are not in the minimal
paths from s to d eliminated. Each vertex v # VR has an m-bit (m=8 for SP switch)
binary attribute portsR [v] whose 1-bit positions denote the output ports allowed
during routing to reach the destination processor. Here, we will assume that the
route specifications are 8-bit wide, rather than the 4-bit specification used in the
actual hardware (Section 4.1). Vertices V i

R in each network stage i are indexed from
0 to |V i

R |&1, for i=1, 2, ..., n. Both the first and the last stages contain a single
vertex v1

0 and vn
0 which correspond to the source and destination switches, respec-

tively. The routing word Rn for reaching the destination processor d from the
destination switch is known in advance. Edges exist only between the vertices of the
successive stages. That is, (u, v) # ER only if u # V i

R and v # V i+1
R for some

i=1, 2, ..., n&1. Each edge e=(u, v) is labeled with lR [e] similar to GT . Figure 7
shows the routability graph for the (s, d) pair (4, 30) of the network given in Fig. 6.

GR (s, d) is constructed in two steps. In the first step, we use a modified breadth-
first-search (BFS) like algorithm��BFS1(GT , s) in Fig. 8��on GT starting from
vertex s. BFS1(GT , s) constructs predecessors subgraph G? (s)=(V? , E?) which is
different from the breadth-first tree generated during conventional BFS [6]. In

FIG. 6. Generating routes from a source processor s to other processors.

1159ADAPTIVE ROUTING ON SP SWITCH

FIG. 7. Routability graph GR (4, 30)=(VR , ER) for source-destination processor pair (4, 30).

G? (s), V? contains all processor nodes of GT and those switching nodes of GT

which are in the minimal route from source processor s to multiple destination pro-
cessors other than s. Similarly, E? contains those edges (links) of GT in reverse
direction which are in the minimal route from s to at least one destination pro-
cessor other than s. As seen in Fig. 8, each node v # V? contains multiple parents
stored in its ?[v] field which also denotes the adjacency list of vertex v in G? .

In the second step, we run another BFS-like algorithm��BFS2(G? , d) in
Fig. 9��on G? (s) starting from d. In Fig. 9, each nonblack (white and gray) vertex
v # V? encountered while scanning the adjacency list of a vertex u of depth j from
the destination switch constitutes an edge from vertex v to u at stages i and i+1
of GR (s, d), respectively, where i=n& j&1.

5.1.2. Solution graph. Solution graph GS(s, d)=(VS , ES) is a multistage graph
with the same number of stages as in routability graph GR . Vertex set V i

S of GS at
stage i is a subset of the power set of V i

R of GR excluding the empty set; i.e.,

FIG. 8. BFS-like algorithm proposed to construct predecessors subgraph G? (s)=(V? , E?) for
source processor s.

1160 ABALI ET AL.

FIG. 9. BFS-like algorithm proposed to construct routability graph GR (s, d)=(VR , ER) for source-
destination processor pair (s, d).

Vi
S �2V i

R&<. Both first and last stages (stages 1 and n) of GS contain a vertex v1
1

and vn
1 which correspond to the source and destination switches, respectively.

In a straightforward implementation, we allocate 2|Vi
R|&1 vertices for construct-

ing the stage i vertices of GS . Allocated vertices of each stage are indexed from 1
to 2|Vi

R| &1. The positions of the 1-bits in the binary representation of each vertex
vi

k # V i
S determine the subset Si

k of vertices (switches) at stage i of GR that it
represents. For example, at stage 2 of the routability graph shown in Fig. 7, there
are four vertices 0, 1, 2, 3 corresponding to switches 36, 37, 38, 39, respectively.
Therefore, at stage 2 of the corresponding solution graph shown in Fig. 11, there
are 24&1=15 vertices. labeled in binary 0001 through 1111, representing all
possible subsets of the set of four vertices in the routability graph. For example,
v2

13 # V 2
S of GS represents the vertex subset S2

13=[s2
0 , s2

2 , s2
3]=[36, 38, 39] of V 2

R

since 13=``1101'' in binary.
A vertex vi

k # V i
S only if there exist at least one feasible adaptive route R1R2 ...Rn

which can forward the message to exactly one of the switches in Si
k through

R1R2 ...Ri&1. Here, feasibility refers to the fact that the remaining n&i route words
Ri Ri+1 ...Rn can forward the message packets at all switches in Si

k to the destina-
tion processor. An edge e=(vi

k , vi+1
l) # ES only if there exists at least one feasible

route whose stage-i routing word Ri forwards the message packets at all switches
in Si

k to exactly one of the switches in Si+1
l . Each edge e is associated with a label

lS [e] corresponding to the maximal routing word which achieves the above men-
tioned message forwarding. Here, maximality refers to the routing word with a
maximum number of 1's. Hence, the sequence of labels (routing words) on the
edges of each distinct path from v1

1 to vn
1 constitutes a feasible route from the source

switch to the destination switch. Each one of these feasible routes appended with
the last stage routing word Rn from the destination switch to the destination

1161ADAPTIVE ROUTING ON SP SWITCH

processor constitutes a feasible adaptive route from the source processor to the
destination processor.

For example, in Fig. 11, vertex v2
5=0101 at stage 2 has an edge with label

11110000 to v3
5=0101. This edge indicates that from the set of switches

S2
5=[s2

0 , s2
2]=[36, 38] at stage 2 of GR , we can reach the set of switches

S3
5=[s3

0 , s3
2]=[40, 42] at stage 3 by routing word 11110000 which can be verified

from Fig. 7.
Figure 10 illustrates the pseudo-code of the algorithm for creating the solution

graph. Here, InAdj and OutAdj denote the adjacency lists of the vertices for their
incoming and outgoing edges in GS , respectively.

The second outer for-loop (lines 7�21) performs a forward pass over the vertex
stages starting from the only active vertex v1

1 at stage 1 which corresponds to the
source switch. In this for-loop, only active vertices are processed at each stage i to
determine the active vertices at the following stage i+1 and create the edges
between the active vertices at stages i and i+1. At line 9, Pa is an m-bit binary
number whose 1-bit positions correspond to the common ports of the switches in

FIG. 10. Algorithm for generating solution graph GS (s, d)=(VS , ES) for source�destination
processor pair (s, d).

1162 ABALI ET AL.

Sa which can be used to reach the destination. In the for-loop at lines 10�21, all
possible route words corresponding to the 1-bit positions of Pa are enumerated and
processed. For a Pa with 1�k�m 1-bits, 2k&1 route words are generated by fix-
ing the bit positions corresponding to the 0-bit positions of Pa to all 0's and
enumerating 2k&1 distinct nonzero binary numbers from 1 to 2k&1 on the bit
positions corresponding to the 1-bit positions of Pa . The set S i+1

R �V i+1
R of

switches reached from the switch set Sa �V i
R by routing word Ri is constructed in

the for-loop at lines 12�14. The search operation at line 15 can be performed in con-
stant time by exploiting the proposed vertex encoding in GR and GS . The if-clause
at lines 16�19, adds edge e=(a, v) to ES , activates vertex v at stage i+1 of GS ,
and initializes route-word label lS[e] of edge e. The else clause at lines 20�21
ensures the maximality of the route-word label lS [e].

GS generated at the end of the second outer for-loop (lines 7�21) may contain
vertices and edges which are not involved in any feasible solution path from the
source to the destination because of the vertices at later stages which do not have
any outgoing edges. These infeasible vertices and edges are removed in the last
outer for-loop (lines 22�27) in order to reduce the computational complexity of the
dynamic programming algorithm to be executed in the next phase. The backward
processing order over the vertex stages of GS ensures the feasibility of all remaining
vertices and edges.

The number of vertices in each stage of GS is a power of 2, which may be
extremely large in some networks. However, only a small fraction of those vertices
are utilized in large networks and remaining vertices do not result in any routing
solutions. Therefore, for such stages of GR , we used the digital search tree data
structure in GS to reduce the space complexity, rather than allocating storage
for all possible vertices. The binary representations of the vertex numbers of
GS are used as search keys in the digital search tree. Digital search tree adds
only a constant complexity to the algorithm, but reduces space complexity con-
siderably.

5.1.3. Maximizing adaptivity. Once the solution graph is created, a maximally
adaptive route may be found by finding a path from source to destination node in
the solution graph that maximizes the product of the adaptivity values of edges. The
adaptivity of an edge e # ES is defined as the number of 1-bits (i.e., |lS [e]|) in its
edge label lS [e], representing the number of common output port choices of the
switches in Sa that can be used to lead the messages at those switches to the
destination. Hence, the problem reduces to finding a path from v1

1 to vn
1 in GS with

maximum adaptivity. For example, in Fig. 11, the top-most path has a product cost
(adaptivity) of 1_4_1=4 (i.e., |00010000|_|11110000|_|10000000|), which
indicates that the given sequence of routing words results in four different routes.
The botton-most path, which has a product cost of 4_4_1=16 (i.e., |11110000|_
|11110000|_|10000000|), is the solution with maximum adaptivity since there are
no more than 16 distinct shortest paths from processor 4 to 30, as can be verified from
Figs. 6 and 7. Therefore, the route header encoding with the maximum adaptivity
is R1 = 11110000, R2 = 11110000, R3 = 10000000, and R4 = 01000000 in this
example.

1163ADAPTIVE ROUTING ON SP SWITCH

FIG. 11. Solution graph GS(4, 30)=(VS , ES) for source-destination processor pair (4, 30).

A dynamic-programming [6, 15] formulation for an n-stage solution graph GS is
obtained by first noticing that every source to destination path is a result of a
sequence of n&2 decisions. The ith decision involves determining which vertex in
Vi

S (1<i<n) is to be on an optimal path. Let ADP[vi
k] denote the adaptivity of

an optimal path p(vi
k , vn

1) from stage-i vertex vi
k # V i

S to destination switch vn
1 . Then,

the optimal substructure property gives the recursive formulation

ADP[vi
k]= max

(vi
k , vl

i+1) # ES

[|lS[(vi
k , vi+1

l)]|_ADP[vi+1
l]]. (1)

The adaptivity of optimal routes from all vertices of GS can easily be computed by
performing a backward pass over the vertex stages of GS as shown in Fig. 12.
ADP[v1

1] contains the adaptivity value of the optimal routing solution(s) when the
first for-loop (lines 2�9) terminates. In this for-loop, the next attribute for each
vertex is computed to enable the construction of an optimal routing in the second
outer for-loop (lines 11�14) by simply following the next fields of the vertices in a
forward direction starting from the source switch at stage 1.

5.2. Performance Evaluation

In this section we present performance evaluation of the adaptive routing on
SP-like BMIN topologies. We compare the performance of the adaptive routing to
the oblivious routing schemes used in SP systems.

1164 ABALI ET AL.

FIG. 12. Algorithm for determining maximum adaptive route in an n-stage solution graph
GS(s, d)=(VS , ES).

We conducted network simulations based upon a C++ model of SP-like
switches. These switches implement buffered wormhole routing [25] for flow-control
and contain the dynamical shared central buffer. Under light to medium loading,
a switch is typically able to buffer an entire arriving packet when that packet
becomes blocked due to output port contention. Thus, in effect, the switch often
operates in virtual cut-through [17] fashion, completely removing blocked packets
from network links. However, under heavy loading the central buffer may become
full, and packets may then be blocked across several switches, just as in wormhole
routing [8]. In the Switch2 chip, when more than one output port is idle and
permitted for adaptive routing, an output port is selected based on a least-recently-
used basis. Other output selection functions are examined in detail in Section 6.

All simulations assume an open network model containing idealized processor
nodes: the nodes contain an infinite transmit queue buffer, and packet flits are
immediately pulled from the network as they arrive. We assume an exponential dis-
tribution for message injection time (message arrival time). We apply a range of
loading to the network, where a load of 1.0 indicates that each node is injecting
packets in the network at the maximum link data rate. Latency curves include input
queuing time and are not shown after saturation (steady-state latency is infinite
after saturation, assuming infinite input queues). The maximum packet size is 255,
and messages longer than 255 bytes are broken into multiple packets before
transmission unless otherwise stated.

The open network model makes it possible to stress the network to a far greater
degree and cause more contention than might be possible in a real environment.
For instance, in the SP systems, the processor software and the network interface
hardware control the injection of message packets via strategies such as end-to-end
flow control and message interleaving that significantly reduce the possibility of
network saturation [24]. Therefore the heavily loaded simulation results shown
here are extremely unlikely to be reproducible in an actual machine. However, the

1165ADAPTIVE ROUTING ON SP SWITCH

open network model simplifies analysis by removing the complex software and
network interface factors and makes it possible to examine a single issue: the effect
of adaptive routing.

In each experiment, we compare adaptive routing with oblivious routing. In
current SP systems, each node maintains a route table containing four oblivious
routes to each destination node. If there are less than four unique minimal routes,
as when the source and destination nodes are connected to the same switch, then
these four routes are identical. The SP network interface adapter uses these four
oblivious routes in a round-robin fashion for consecutive message packets to reduce
contention.

5.2.1. Permutation traffic simulation. In this section we investigate the relative
performance of adaptive routing when the communication pattern is a static per-
mutation. We test two permutations: bit-reversal and transpose. Some permutations
such as bit-reversal and transpose often reveal weaknesses of networks better than
random traffic. In bit-reversal, a source processor represented in binary by
sn&1 sn&2 } } } s1s0 sends messages to destination s0s1 } } } sn&2sn&1. In transposes for
even n, the destination is sn�2&1sn�2&2 } } } s1s0sn&1 sn&2 } } } sn�2+1 sn�2 . We simulate
16-way and 64-way BMINs. For our simulations the 64-way BMIN is constructed
from four of the 16-way BMINs shown in Fig. 2. For each 16-way BMIN, the 16
unused right-side bidirectional links are connected to a separate switch in a third
stage of 16 switches. Thus each third stage switch is connected to each 16-way
BMIN by one link.

Figure 13 displays simulation results for the bit-reversal permutation on a 16-way
BMIN topology. Adaptive routing attained both the lowest latency and the highest
saturation bandwidth for this difficult permutation. For our 1-route oblivious rout-
ing, each packet traverses a ``straight'' path to a least common ancestor switch, and
then the packet proceeds on the unique path to the destination [1]. This topology
has a maximum of four distinct paths between pairs of nodes, and therefore the
four-route oblivious routing exercises all the paths between a source and destina-
tion as can be seen in Fig. 2. In general, 1-route oblivious routing performs either
very well or very poorly depending on the permutation. Its dismal worst-case per-
formance and high variability make it a poor choice for a general routing strategy

FIG. 13. Bit-reversal permutation traffic on a 16-node BMIN topology.

1166 ABALI ET AL.

and it is not being used in currant SP systems. Therefore we will not consider it
further in this paper.

In 16-way topology, adaptive routing and four-route oblivious routing have
exactly the same paths available. However, with adaptive routing any packet travel-
ing a three-hop path is guaranteed not to contend with any other packets while
traversing the first switch stage. Because, for this first hop, only four input ports
(the ``left'' input ports in Fig. 2) are contending for the four ``right'' output ports of
the switching element (packets cannot enter and then exit the right side of the
switching element, because the resulting path would not be minimal). Therefore if
a packet is entering the left side, there are less than or equal to three other input
ports currently sending packets to the right side, leaving at least one right output
port open. The four-route oblivious packets may often contend in the first stage,
and this is the major cause of higher latency for this experiment.

Figure 14 illustrates the adaptive routing performance for the transpose permuta-
tion. Again, adaptive routing performs better and in fact encounters no contention
because, for transpose permutation, some communication is made directly between
pairs of nodes attached to the same switch chip. This results in more output ports
available for adaptive routing in the first hop switches. The four-route oblivious
method loses bandwidth principally because of contention in the first hop.

We have established that adaptive routing performs well for several types of per-
mutation traffic on small systems. We now briefly examine the performance of one
permutation on a larger system to illustrate that the benefits of adaptive routing
extend over a range of system sizes. Figure 15 displays the latency curves for the
transpose permutation on a 64-way BMIN topology. Adaptive routing still obtains
lower latency and higher saturation throughput, although it no longer achieves the
``no contention'' curve of the 16-way system. For the 64-way system, packets with
source and destination in different 16-way groups will traverse five switches and
have 16 possible least common ancestors. Thus four-route oblivious routing no
longer exercises all the possible paths, and we include the 16-route oblivious case
to demonstrate that adaptive routing still maintains performance advantages over
oblivious routing as the system size grows. Other permutations and system sizes
support similar conclusions, but we will not exhaustively detail results to further
support these claims here.

FIG. 14. Transpose permutation traffic on a 16-node BMIN topology.

1167ADAPTIVE ROUTING ON SP SWITCH

FIG. 15. Transpose permutation traffic on a 64-node BMIN topology.

5.2.2. Random traffic simulation. In these experiments, we injected traffic with a
uniform destination distribution: for each message, the source randomly chooses
any node except itself as the destination. Figure 16 plots message latency for adap-
tive routing and four-route oblivious routing for short (100- and 500-byte)
messages. Latency before saturation is lower and saturation load is higher for adap-
tive routing, although neither criteria is significantly better than that of oblivious
routing.

To see how the effect of adaptive routing for random traffic changes with system
size, Fig. 17 shows the results of the same short message experiment conducted on
the 128-way SP network in Fig. 4. For this larger topology, the positive effects of
adaptive routing on random routing are more pronounced. There are more stages
in which adaptive routing avoids contention compared with oblivious routing.

Figure 18 shows the results of the same 128-way experiment conducted with
longer (2000- and 8000-byte) messages. For longer messages, adaptive routing
saturates the network at a 250 higher input load than four-route oblivious routing.
As messages become longer, the effect of hotspots becomes greater, and adaptive
routing tends to shift traffic away from heavily loaded parts of the BMIN network.

We intended to create a hotspot in the network and observe how adaptive rout-
ing and oblivious routing performances differ. Each node injects messages to the
network with uniform destination distribution except that it also sends a fixed
amount of messages to node 0. This creates congestion at the node 0 output of the

FIG. 16. Short message random traffic on a 16-node BMIN topology.

1168 ABALI ET AL.

FIG. 17. Short message random traffic on a 128-node BMIN topology.

network and at different times depending on the queue lengths this congestion
extends back to all the network links and switch queues therefore interfering with
messages intended for other destinations. Simulations were performed on the
16-node topology using an SP switch model with 2 flits�cycle links, 4 Kbyte central
queue size and 1 Kbyte message size. To create a hotspot, each of the nodes 1�15
directs 0.05 units of load to destination node 0. This results in 0.75 units of total
load intended for node 0. When the network was lightly loaded average latencies
for messages intended for node 0 were determined as 1767 and 1865 cycles, and
maximum latencies were determined as 9936 and 8876 cycles, for the adaptive and
oblivious routing schemes, respectively. This means that on the average there were
3.45 and 3.64 messages queued for node 0 in the network and at maximum there
were 19.4 and 17.3 messages queued for node 0 in the network, for the adaptive and
oblivious routing schemes, respectively. While the hotspot load to node 0 was fixed,
regular traffic to destinations 1�15 was varied from 0.1 to 1.0 units of load and
average latencies for adaptive and oblivious routing schemes were measured as a
function of the load. Figure 19 shows that adaptive routing still performs better
than oblivious routing under hotspot traffic.

To summarize, for BMINs, adaptive routing is generally superior to oblivious
routing for both permutation and random routing. The advantages accrue for two
reasons: (1) Adaptive routing does not contribute to contention in the upward path
from the processors to the LCA switches, because for this portion of the path each
packet always finds an output port link available. (2) Even in the absence of

FIG. 18. Long message random traffic on a 128-node BMIN topology.

1169ADAPTIVE ROUTING ON SP SWITCH

FIG. 19. Random traffic in the presence of a hotspot on a 16-node BMIN topology.

contention, adaptive routing randomizes traffic by choosing among several available
output ports.

5.3. Partially Adaptive Routes

We also considered using partially adaptive route headers by restricting adap-
tivity to the first stage of the network. This algorithm has the advantage of being
a simple extension of the current four-route oblivious routing algorithm used in SP,
and it requires only small changes in the SP system software. In this section we
describe the partially adaptive routing algorithm and its performance.

In current SP systems, each node maintains a route table containing four
oblivious routes to each destination node. The SP network interface adapter uses
these four oblivious routes in a round-robin fashion for consecutive message
packets to reduce contention and to reduce the probability of creating hotspots in
the network. These four oblivious routes to each destination are found by building
balanced breadth-first spanning trees [1]. This algorithm is quite simple and we
will not describe it here.

The partially adaptive routing algorithm is based on a property of the four-route
oblivious algorithm: analysis of the four routes between source and destination
node pairs shows that in many cases the switch output port numbers used in four
routes differ only in the first stage. For example, in Fig. 2 consider the source and

TABLE 2

Number of Four-Routes That Can Be Combined into Partially Adaptive Routes

System size Total number of routes Number of four-routes combined

16 64 48
32 128 112
48 192 176
64 256 48

128 512 496
256 1024 448 (avg.)
512 2048 1456 (avg.)

1170 ABALI ET AL.

TABLE 3

Average Route Table Generation Times (in seconds) for One Processor

Network size Partially adaptive Fully adaptive

16 0.08 0.06
64 0.41 0.39

128 1.84 24.98
512 36.61 2394.87

destination nodes P10 to P6. The four routes respectively use the following packets
headers, [4, 2, 2], [5, 2, 2], [6, 2, 2], and [7, 2, 2], where numbers indicate output
port numbers. Since, the four-route headers differ only in the first stage nibble,
these may be merged into one adaptive route header. Thus, the partially adaptive
header for the example above is [[4, 5, 6, 7], 2, 2]. Using the notation A, R1, R2,
R3 of Section 4.1 the partially adaptive route header becomes A=1, R1=1111,
R2=0010, R3=0010. The nibble R1=1111 indicates that the first stage switch
chip can adaptively select one of the ports 4, 5, 6, 7.

Table 2 shows the number of four routes that can be converted to one partially
adaptive route for different SP networks. Note that the 64-node network has a
relatively irregular topology which results in the four-routes per destination being
dissimilar most of the time and therefore not as many four-routes can be combined.
Likewise, the turn restrictions used for deadlock avoidance [2, 14, 19, 20, 23] in
256-node and 512-node networks result in a lower percentage of routes that can be
combined into adaptive routes in comparison to other networks.

Table 3 compares the execution time of fully adaptive (Section 5.1) and partially
adaptive algorithms for different system sizes. Figure 20 compares the saturation
bandwidth of 16- and 128-node networks for random traffic and for four-route
oblivious routing, partially adaptive routing, and fully adaptive routing methods.
For 16-node networks partially adaptive routing is equivalent to fully adaptive

FIG. 20. Comparison between non-adaptive four routes, partially adaptive and fully adaptive
routing methods.

1171ADAPTIVE ROUTING ON SP SWITCH

routing because adaptivity occurs only in the first stage switch for this network.
Results show that the three algorithms, oblivious, partially adaptive, and fully
adaptive, have increasing performance in the given order. However, the partially
adaptive algorithm executes much faster for large networks. A trade-off may be
made between execution time and performance depending on the network size and
system requirements.

Another important issue which affects the performance of the adaptive routing is
the choice of the output selection function [9, 12]. In the next section, we present
several output selection functions and evaluate their impact on the performance of
the system.

6. OUTPUT SELECTION FUNCTIONS

In this section, we focus particularly on the output selection functions for SP-like
BMINs [5]. Previous studies on output selection functions have focused on the
mesh and torus networks [4, 11, 13, 14, 22, 29, 30]. To the best of our knowledge,
output selection functions for BMINs or MINs have not been studied to date.
Based on the architectural characteristics of the Switch2 chip and SP-like BMINs,
we introduce six output selection functions with different hardware complexities.
These functions are LRU, MRU, RND, RR, LRUC, and LRUD. The performance
of adaptive routing on SP-like BMINs with the proposed output selection functions
is studied with simulations.

In the new Switch2 chip when an input port decodes an adaptive route field, if
there are more than one output port candidates, the input port requests service
from all of these output ports. All free output ports will grant the service request.
If no grants are received, the packet is routed to the central buffer, just as for non-
adaptive packets. If one or more grants are received from the output ports, the
input port selects a winning output port among granted ports (based on a selection
function) and immediately begins forwarding data to that output port through the
central buffer. The losing output ports are notified that they are free to grant
requests from other input ports. In the rest of this section, we discuss several
selection functions.

6.1. Alternatives for the Output Selection Function

Random (RND) selection function: One output port is randomly selected from
output ports which have granted an input port's service request.

Least recently used (LRU) selection function: In the switch chip every input port
keeps an LRU ordered list of output port numbers. Each list is kept ordered based
on the time an output port is used by a message entering from this input port. After
the input port makes a service request, among all the granted output ports, the
LRU output port wins the selection. The motivation for the LRU selection function
is to distribute message traffic evenly among output ports.

Most recently used (MRU) selection function: This selection function is similar
to the LRU selection function except that the list is ordered in reverse. After the

1172 ABALI ET AL.

input port makes a service request, among all the granted output ports, the MRU
port wins the selection. The motivation for MRU selection function is to see if
multipacket messages will perform better if they are concentrated into a single out-
put port to avoid mixing with other traffic in the network.

Round robin (RR) selection function: In the eight-port switch chip, each input
port has a 3-bit register called RRID, which holds the ID (ID=0...7) of the most
recently used output port used by a message entering from the input port. After the
input port makes a service request, then one or more outputs will grant the request.
The RR selection function is such that the RRID register is incremented (modulo
8) until a granted output port is found whose ID matches the RRID register. Thus,
granted outputs are considered in round robin fashion starting with the last used
output port number +1 (mod 8). The RR function is not the same as the LRU
function. LRU keeps a history of all output ports and favors ungranted output
ports by increasing their priority. RR does not keep any history except for the most
recently used output port ID.

Centralized least recently used (LRUC) selection function: LRUC is similar to the
LRU selection function. The difference is that in the LRUC selection function there
is only one LRU list per switch chip, while the LRU selection function uses one
LRU list per input port. The motivation behind the LRUC function is to share the
information among input ports, thereby making switch-chip-wide decisions when
balancing the output traffic. In contrast, in the LRU selection function, the input
ports do not share their LRU information. For example, an output port may
appear as the least recently used in one input's LRU list and it may appear as the
most recently used in another input's LRU list.

Destination-based least recently used (LRUD) selection function: Similar to the
LRU selection function, LRUD uses multiple LRU lists. However, in every switch
chip there is one LRU list per node switch in the network. A node switch refers to
a switch chip which is connected to one or more (usually four) nodes. For example,
in Fig. 2 there are four node switches connecting to the nodes P0�P15 on the left-
hand side of the network and in Fig. 4 there are 32 node switches connecting to 128
nodes on both sides of the network.

The motivation behind the LRUD selection function is to make a network-wide
decision when selecting outputs in a switch chip. The LRUD function attempts to
keep a separate LRU history of messages going to the same destination in the
network. This permits consecutive incoming messages going to different destina-
tions to use the same output port. Since consecutive messages will use separate
downward paths from LCAs, even if the first message is blocked downstream, the
next message(s) may continue because they will be using different output ports in
the LCA switches.

6.2. Performance Evaluation

In this section, we focus on the effect of the output selection function on the per-
formance of adaptive routing. We also present the results for four-route oblivious
routing along adaptive routing algorithms. In addition to the random traffic, we

1173ADAPTIVE ROUTING ON SP SWITCH

FIG. 21. Peak throughout for the oblivious routing and adaptive routing with different selection
functions on a 16-node system with random traffic pattern for (a) 128-byte messages and (b) 4096-byte
messages.

used three other permutation traffic patterns: bit-complement, matrix-transpose,
and bit-reversal permutations. For bit-complement, source nodes, represented in
binary by sn&1sn&2 } } } s1s0 , send messages to sn&1 sn&2 } } } s1 s0 . We used two
topologies, for 16-node and 128-node systems illustrated in Figs. 2 and 4, and six
different message sizes, 128, 256, 512, 1 K, 2 K, and 4 K bytes.

Figure 21a shows the effective throughput of the network (as a percentage of
maximum 1.0) using the four-route oblivious routing and the adaptive routing algo-
rithms with different selection functions and for 128-byte messages on a 16-node
system under random traffic. All algorithms perform more or less the same for small
message traffic. Figure 21b is for the same conditions, except the message size is
14 Kbytes, and shows that all adaptive routing algorithms perform the same
regardless of the choice of output selection function. For long messages LRUD
outperforms the others negligibly. However, all adaptive algorithms perform better
than the oblivious algorithm.

The results for the bit-reverse permutation displayed in Fig. 22b show that the
MRU selection function performs poorly for long messages. The other selection
function which performs slightly worse is the RND selection function.

Figures 23 and 24 illustrate the performance of the oblivious routing and the
adaptive routing with different selection functions in a 128-node system. It can be
observed that the adaptive routing algorithms outperform the oblivious routing. The
performance of all of the selection functions is the same for 128-byte messages
under the random traffic (Fig. 23a). The MRU and LRUC perform slightly worse
than the other adaptive selection functions for long messages (Fig. 23b). The
simulation results for the bit-reversal traffic is shown in Fig. 24. Using adaptive

FIG. 22. Peak throughout for the oblivious routing and adaptive routing with different selection
functions on a 16-node system with bit-reversal traffic pattern for (a) 128-byte messages and (b) 4096-
byte messages.

1174 ABALI ET AL.

FIG. 23. Peak throughout for the oblivious routing and adaptive routing with different selection
functions on a 128-node system with bit-reversal traffic pattern for (a) 128-byte messages and (b) 4096-
byte messages.

routing instead of four-route oblivious routing results in more than 2290 improve-
ment in the peak throughput. For short messages LRU and LRUD outperform the
rest of the selection functions. The RND, RR, and LRUC selection functions
perform marginally worse than LRU and LRUD. The MRU selection function
performs poorly. For longer messages (Fig. 24b), MRU and LRUC perform worse
than the rest of the adaptive selection functions, achieving a throughput of 0.55 and
0.54, respectively. Using LRU instead of LRUC increases the peak throughput by
more than 300.

To summarize the simulation results, for the random traffic, all of the selection
functions perform well. LRU, LRUD, and RR outperform MRU, RND, and
LRUC only marginally. The performance of the studied selection functions shows
a wider range for the bit-reversal traffic. For this traffic pattern, LRU and LRUD
outperform the other selection functions (LRUD performing slightly better than
LRU). The RR selection function shows a good performance under the bit-reverse
traffic as well. The MRU selection function performs poorly across the board, while
LRUC and RND functions perform poorly for long messages. In other words,
LRU, LRUD, and RR selection functions perform well under different traffic
patterns and system configurations. Because of the ease of implementation of LRU,
the Switch2 chip implements the LRU selection function.

Another important factor in choosing a selection function is the cost of the
hardware implementation. LRUD function requires very large number of LRU lists
and hence is not cost effective considering that it performs equally or marginally
better than LRU. Results show that the RR function may be considered an
improvement over the LRU function in future generation switch chips because RR

FIG. 24. Peak throughout for the oblivious routing and adaptive routing with different selection
functions on a 128-node system with bit-reversal traffic pattern for (a) 128-byte messages and (b) 4096-
byte messages.

1175ADAPTIVE ROUTING ON SP SWITCH

requires less chip area but performs as well as LRU. The LRU function implemen-
tation on SP switch chips requires n(n+1)�2 latches, n(n&1) 2-input NAND gates,
and n n-input NAND gates where n is the number of switch ports. A faithful
implementation of RR requires a very similar amount of combinational logic, but
only requires log2 n latches. As latches are typically far more area-intensive than
2-input NAND gates, the area required for latches is a worthwhile consideration.

7. CONCLUSIONS

We have described the Switch2 switch chip, which may be used to interconnect
future IBM RS�6000 SP systems. The new features of Switch2 and its differences
with the earlier generation switch chips are presented. Switch2 introduces a major
routing enhancement: adaptive source routing. We have described how adaptive
source routing is supported in Switch2. We have also presented two novel route
generation algorithms for adaptive source routing. We have shown that using adap-
tive source routing results in a significant improvement in the performance of the
system under different traffic patterns and for different system sizes. We have also
discussed and evaluated different output selection functions and shown that the best
output selection functions for BMINs are not dependent on the traffic pattern,
message size, or system size. The presented Switch2 switch chip represents a signifi-
cant advance over its predecessors in performance and usability.

REFERENCES

1. B. Abali and C. Aykanat, Routing algorithms for IBM SP1, in ``Proceedings of the 1st International
Workshop PCRCW,'' Lecture Notes in Computer Science, Vol. 853, pp. 161�165, Springer-Verlag,
Berlin�New York, 1994.

2. B. Abali, A deadlock avoidance method for computer networks, in ``Proceedings of the 1st Interna-
tional Workshop on Communication and Architectural Support for Network-Based Parallel
Computing (CANPC),'' Lecture Notes in Computer Science, Vol. 1199, pp. 61�72, Springer-Verlag, 1997.

3. Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali, Adaptive source routing in multistage inter-
connection networks, in ``Proceedings of the 10th Int. Parallel Processing Symp. (IPPS),''
pp. 258�267, April 1996.

4. S. Badr and P. Podar, An optimal shortest-path routing policy for network computers with regular
mesh connected topologies, IEEE Trans. Comput. 38, 10 (1989), 1362�1371.

5. M. Banikazemi, C. Stunkel, D. K. Panda, and B. Abali, Adaptive routing in RS�6000 SP-like
bidirectional multistage interconnection networks, in ``Proceedings of the Int. Parallel and Dis-
tributed Processing Symp. (IPDPS), pp. 43�52, May 2000.''

6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, ``Introduction to Algorithms,'' The MIT Press,
Cambridge, MA, 1991.

7. D. E. Culler and J. P. Singh, ``Parallel Computer Architecture: A Hardware-Software Approach,''
Morgan Kaufmann, March 1998.

8. W. J. Dally, Performance analysis of k-ary n-cube interconnection networks, IEEE Trans. Comput.
39, 6 (June 1990), 775�785.

9. W. J. Dally, Virtual-channel flow control, IEEE Trans. Parallel Distrib. Systems 36, 2 (March 1992),
194�205.

10. W. J. Dally and C. L. Seitz, Deadlock-free message routing multiprocessor interconnection networks,
IEEE Trans. Comput. 36, 5 (May 1987), 547�553.

1176 ABALI ET AL.

11. J. Duato, Improving the efficiency of virtual channels with time dependent selection functions, in
``Parallel Arch. and Lang. Europe 92,'' pp. 635�650, 1992.

12. J. Duato, S. Yalamanchili, and L. Ni, ``Interconnection Networks: An Engineering Approach,'' IEEE
Computer Society Press, Los Alamitos, CA, 1997.

13. W. Feng and K. G. Shin, Impact of selection functions on routing algorithm performance in
multicomputer networks, in ``Proceedings of the 11th Int. Conf. Supercomputing,'' 1997.

14. C. J. Glass and L. M. Ni, The turn model for adaptive routing, J. Assoc. Comput. Machin. 41, 5
(1994), 874�902.

15. E. Horowitz and S. Sahni, ``Fundamentals of Computer Algorithms,'' Computer Science Press,
Maryland, 1989.

16. M. Katevenis, P. Vatsolaki, and A. Efthymiou, Pipelined memory shared buffer for VLSI switches,
in ``Proceedings of ACM SIGCOMM,'' pp. 39�48, August 1995.

17. P. Kermani and L. Kleinrock, Virtual cut-through: A new computer communications switching
technique, Computer Networks 3, 4 (Sept. 1979), 267�286.

18. C. E. Leiserson, Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE Trans.
Comput. 34, 10 (Oct. 1985), 892�901.

19. T. M. Pinkston and S. Warnakulasuriya, On deadlocks in interconnection networks, in ``Proceedings
of the 24th International Symposium on Computer Architecture,'' pp. 38�49, June 1997.

20. W. Qiao and L. M. Ni, Adaptive routing in irregular networks using cut-through switches, in
``Proceedings of the 25th Int. Conf. Processing (ICPP),'' August 1996.

21. I. D. Scherson and C.-H. Chien, Least common ancestor networks, in ``Proceedings of the 7th Int.
Parallel Processing Symp.,'' pp. 507�513, 1993.

22. L. Schwiebert and R. Bell, The impact of output selection function choice on the performance of
adaptive wormhole routing, in ``Proceedings of the 10th Int. Conf. Parallel and Distributed Comput-
ing Sys.,'' pp. 539�544, 1997.

23. H. Sethu, R. F. Stucke, and C. B. Stunkel, Technique for accomplishing deadlock free routing
through a multi-stage cross-point packet switch, U.S. Patent 5, 453, 978, issued 9�26�1995.

24. M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea, The communication software and parallel
environment of the IBM SP2, IBM Systems J. 34, 2 (1995), 205�221.

25. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice, P. Hochschild,
D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R. Varker, The SP2 High-
Performance Switch, IBM Systems J. 34, 2 (1995), 185�204.

26. C. B. Stunkel, J. Herring, B. Abali, and R. Sivaran, A new switch chip for IBM RS�6000 SP systems,
in ``Supercomputing 99 (SC99),'' 1999.

27. C. B. Stunkel, D. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao, The SP1 High Performance
switch, in ``Scalable High Performance Computing Conference,'' pp. 150�157, 1994.

28. C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H. Hochschild, D. J. Joseph, B. J. Nathanson,
M. Tsao, and P. R. Varker, Architecture and implementation of Vulcan, in ``Proceedings of the
International Parallel Processing Symposium,'' pp. 268�274, 1994.

29. J. Updahyay, V. Varavithya, and P. Mohapatra, A traffic balanced adaptive wormhole-routing
scheme for two dimensional meshes, IEEE Trans. Comput. 46, 2 (1997), 190�197.

30. J. Wu, An optimal routing policy for mesh-connected topologies, in ``Proceedings of the Int. Conf.
Parallel Processing,'' pp. 267�270, 1996.

BULLENT ABALI has been a research staff member at IBM's T. J. Watson Research Center since
1989, where he is now a manager responsible for system software and performance evaluation of
advanced memory systems. He has contributed to numerous projects on parallel processing, high-speed
interconnects, and memory systems. Dr. Abali received his Ph.D. in electrical engineering from Ohio
State University.

1177ADAPTIVE ROUTING ON SP SWITCH

CRAIG STUNKEL is a research staff member at IBM's T. J. Watson Research Center in Yorktown
Heights, New York. He received the B.S. and M.S. in electrical engineering from Oklahoma State
University in 1982 and 1983 and the Ph.D. in electrical engineering from the University of Illinois,
Urbana in 1990, where he was a Shell Doctoral Fellow. From 1983 to 1986 he worked at IBM in
Rochester, Minnesota, where he was a CPU designer for System�38 and the first AS�400 minicomputer.
After joining IBM Research in 1990, he became one of the co-designers of the Vulcan parallel computer
prototype. He was extensively involved in incorporating the Vulcan switching network and control
solftware into the High-Performance Switch of IBM's SP1 and SP2 parallel supercomputer offerings, for
which he received two IBM Outstanding Technical Achievement Awards. He also made several architec-
tural contributions to the SP Switch 2, which became available in 2000 and is the network of ASCI
White, currently the world's most powerful supercomputer system. He consults on future switching
networks for IBM and serves as manager of the Scalable Server Networks 6 Memory Systems depart-
ment. He holds 10 U.S. patents related to switching networks. Dr. Stunkel served as an associate editor
of the IEEE Transactions on Parallel and Distributed Systems from 1997 to 2000 and was a co-chair
of the 1997 and 1998 Workshops on Communication and Architectural Support for Network-Based
Parallel Computing. He is a member of the IEEE, the IEEE Computer Society, and ACM. His current
research interests include parallel architectures, algorithms, and performance analysis.

JAY HERRING is a senior design engineer at IBM's Server Development Lab in Poughkeepsie, New
York. He received the B.S. in electrical engineering from Iowa State University in 1988 and the M.S. in
computer engineering from Syracuse University in 1993. From 1988 to 1992, he worked at IBM in
Kingson, New York, on S�390 high-speed connectivity solutions. Since 1992, he has worked on the
RS�6000 SP system on the development of the SP Switch Adapters and SP Switches. Currently, he is
working on the switches and adapters for furure IBM P-series parallel supercomputer offerings.

MOHAMMAD BANIKAZEMI is a research staff member at IBM's T. J. Watson Research Center
in Yorktown Heights, New York. He received the M.S. in electrical engineering and the Ph.D in com-
puter science from Ohio State University in 1996 and 2000, where he was an IBM Graduate Fellow. His
current research interests include network-based computing, interprocessor communication, and
memory systems. He is a member of the ACM, the IEEE, and the IEEE Computer Society.

DHABALESWAR K. PANDA received the B.Tech in electrical engineering from the Indian Institute
of Technology, Kanpur, India, in 1984, the M.E. in electrical and communication engineering from the
Indian Institute of Science, Bangalore, India, in 1986, and the Ph.D. in computer engineering from the
University of Southern California in 1991. He is a professor in the Department of Computer and Infor-
mation Science, Ohio State University, Columbus. His research interests include parallel computer
architecture, wormhole-routing, interprocessor communication, collective communication, network-
based computing, quality of service, and resource management. He has published over 95 papers in
major journals and international conferences related to these research areas. Dr. Panda has served on
program committees and organizing committees of several parallel processing conferences. He was a
program co-chair of the 1999 International Conference on Parallel Processing, the founding co-chair of
the 1997 and 1998 Workshops on Communication and Architectural Support for Network-Based
Parallel Computing (CANPC), and a co-guest editor for two special issue volumes of Journal of Parallel
and Distributed Computing on ``Workstation Clusters and Network-Based Computing.'' He also served
as an IEEE Distinguished Visitor Speaker and an IEEE Chapters Tutorials Program Speaker during
1997�2000. Currently, he is serving as an associate editor of the IEEE Transactions on Parallel and Dis-
tributed Computing, general co-chair of the 2001 International Conference on Parallel Processing, and
program co-chair of the 2001 Workshop on Communication Architecture for Clusters (CAC). Dr. Panda
is a recipient of the NSF Faculty Early CAREER Development Award, the Lumley Research Award at
Ohio State University, and an Ameritech Faculty Fellow Award. He is a member of the IEEE, the IEEE
Computer Society, and the ACM.

CEVDET AYKANAT received the B.S. and M.S. from Middle East Technical University, Ankara,
Turkey, in 1977 and 1980, respectively, and the Ph.D. from Ohio State University, Columbus, in 1988,
all in electrical engineering. He was a Fulbright scholar during his Ph.D. studies. He worked at the Intel

1178 ABALI ET AL.

Supercomputer Systems Division, Beaverton, Oregon, as a research associate. Since October 1988 he has
been with the Computer Engineering Department, Bilkent University, Ankara, Turkey, where he is
currently a professor. His research interests include combinatorial algorithms, parallel computing, scien-
tific computing, neural-network algorithms, and graph�hypergraph partitioning. He is a member of the
ACM, IEEE, and IEEE Computer Society.

YUCEL AYDOGAN was a senior software engineer at ADC Telecommunications from 1995 to 2000
where he contributed to design and development of various projects on wireless communications and
distributed SS7 protocol. He is currently a technical staff member at Sonus Networks working on design
and development, of next-generation packet telephony products. Yucel Aydogan received his M.Sc. in
computer engineering and information sciences from Bilkent University.

1179ADAPTIVE ROUTING ON SP SWITCH

	1. INTRODUCTION
	2. BACKGROUND
	FIG. 1
	FIG. 2

	3. OVERVIEW OF SWITCH ENHANCEMENTS
	TABLE 1

	4. ADAPTIVE SOURCE ROUTING
	FIG. 3
	FIG. 4

	5. ROUTE GENERATION ALGORITHMS
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10
	FIG. 11
	FIG. 12
	FIG. 13
	FIG. 14
	FIG. 15
	FIG. 16
	FIG. 17
	FIG. 18
	FIG. 19
	TABLE 2
	TABLE 3
	FIG. 20

	6. OUTPUT SELECTION FUNCTIONS
	FIG. 21
	FIG. 22
	FIG. 23
	FIG. 24

	7. CONCLUSIONS
	REFERENCES

