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Abstract An American option (or, warrant) is the right, but not the obligation, to
purchase or sell an underlying equity at any time up to a predetermined expiration
date for a predetermined amount. A perpetual American option differs from a plain
American option in that it does not expire. In this study, we solve the optimal stop-
ping problem of a perpetual American option (both call and put) in discrete time
using linear programming duality. Under the assumption that the underlying stock
price follows a discrete time and discrete state Markov process, namely a geometric
random walk, we formulate the pricing problem as an infinite dimensional linear pro-
gramming (LP) problem using the excessive-majorant property of the value function.
This formulation allows us to solve complementary slackness conditions in closed-
form, revealing an optimal stopping strategy which highlights the set of stock-prices
where the option should be exercised. The analysis for the call option reveals that
such a critical value exists only in some cases, depending on a combination of state-
transition probabilities and the economic discount factor (i.e., the prevailing interest
rate) whereas it ceases to be an issue for the put.
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1 Introduction

The subject of determining correct market prices for options (a.k.a warrants) is a
well-known and widely studied branch of mathematical finance. Valuation of options
has consistently been in the center of the derivative pricing literature. One of the most
significant distinctions within the literature in the field is the study of European versus
American type options. In this paper we study the valuation of American options
without an expiration date written on stocks that follow a geometric random walk.

Comprehensive treatments of option pricing can be found in Hobson [7] and
specifically for American options in Myneni’s [9] survey.

The problem of determining correct prices for American type contingent claims
was first handled by McKean in a continuous-time Geometric Brownian motion set-
ting upon a question posed by Samuelson (see Appendix of [10]). In his response,
McKean transformed the problem of pricing American options into a free boundary
problem and gave a closed form solution for perpetual American options. The formal
treatment of the problem from an optimal stopping perspective was later done by Mo-
erbeke [15] and Karatzas [8], who used hedging arguments for financial justification.
Wong, in a recent study, has collected the optimal stopping problems arising in the
financial markets [18]. A textbook treatment of American options in continuous time
can be found in Chap. 8 of [11].

In this paper, following on our previous work [16], which is more of a pedagogical
nature in the more straightforward case of a simple random walk model, we provide
an alternative approach to solving the pricing problem of perpetual American call and
put options when the underlying stock follows a geometric random walk, a special
case of discrete-time/discrete-state Markov processes. Our objective is to determine
the optimal stopping region(s) for exercising the option contract. It is well known
that the value function of an optimal stopping problem for a Markov process is the
minimal excessive function majorizing the pay-off of the reward process (see [1, 5]).
The value function, then, can be obtained by solving an infinite dimensional linear
program using the duality theory of linear programming. This approach is taken, for
instance, in [14] to treat singular stochastic control problems. The solution approach
for the call option relies on finding the increasing solution to a certain difference
equation and then identifying the value function in a specific form. For the put option
we use the decreasing solution to this difference equation. This approach mirrors the
work in continuous-time/continuous-state processes as reported in [6, 12, 13, 17].
In [6] in particular an LP embedding and duality is used in the analysis of optimal
stopping problems for one-dimensional diffusions. In discrete time, a semi-explicit
solution for the call problem for general random walks is given in [2] while a more
recent solution for more general reward functions is derived in [3] for processes with
stationary independent increments. In an unpublished recent Master’s thesis [4] the
problem of optimal stopping is treated in a setting identical to ours, but using different
methods, namely the method of measure transformation. We note that this reference
takes into account the ambiguity on probability measure by allowing multiple priors.
In the case of a single prior, one solves problems identical to ours.

In a recent paper, Vanderbei and Pinar [16] use the approach of linear program-
ming to propose an alternative method for the pricing of American perpetual call

@ Springer



Appl Math Optim (2013) 67:97-122 99

warrants. Under mild assumptions, they find that the optimal stopping region can be
characterized by a critical threshold which, when reached, leads to the decision to
exercise. In this paper, we extend the analysis on simple random walks by providing
a more general optimal stopping criterion and giving a solution to the geometric ran-
dom walk case for both the call and the put options. Although the geometric random
walk case was suggested as an exercise in [16], the analysis turns out to be quite
involved and sufficiently different from the simple random walk case to warrant a
separate circulation of the results of the present paper.

A call option is a contract giving the right, but not the obligation, to buy an asset at
a certain time in the future for a previously agreed price, whereas, a put option is the
right, but not the obligation, to sell an asset in a similar fashion. The agreed price is
called the strike price. The issuer of an option contract is said to wrife the option and
the date at which the right of exercising an option expires is known as the maturity
date. When the holder of an option uses the contract, which means (s)he buys or sells
the asset at the strike price, we say that the holder has exercised the option. In a given
state of the world, the amount that the holder of the option gains or loses is captured
as a function of the underlying’s pay-off. This is defined as the option pay-off. In the
remainder of this work, we will use S for the strike price, T for the maturity date and
the real-valued function f : E — R for the option pay-off where E is the set of all
possible states of the world.

An option whose exercise is only possible at the maturity date T is said to be a
European type option while for the American type options, early exercise is allowed
in the period [0, T]. These two types of options are known as plain vanilla options
and they form the basis of option pricing literature. The holder of the American option
observes the price of the underlying throughout the life of the option and decides on
an exercise time that maximizes his earnings.

Assume that for some state of the world x € E, the market value of the underlying
is captured by the variable /(x). For the owner of a call option, if & (x) is greater than
the strike price S at the maturity date, it is meaningful for the holder to exercise the
option for an immediate gain of h(x) — S, since the contract gives her the right to
buy a unit of the underlying at the price S. Then, by selling this unit for its market
value h(x), the owner can realize the specified gain. If, the price of the underlying,
however, is lower than S, it will not be profitable to exercise the option because the
same asset is already available cheaper in the exchange market. For a call option, the
pay-off function corresponds to:

f@) =max{h(x) = $,0} = (h(x) - 5),.

The pay-off of the American call option treated in this paper is modeled using the
real valued function f: E x T — R, where T is an index set representing time. We
reserve the symbol X;(x) for the value of the underlying asset at time ¢ and state x,
and define f;(x) to be the image of (x,#) € E x T forsome x € E andt € T.

The holder of an American type option is interested in determining the correct mo-
ment to exercise the contract. The characterization of optimal exercising rules where
the decision is made with respect to the expected pay-off in the future is the main
objective of this work. Our problem, therefore, is to obtain such states of the world
where it is no longer meaningful for the trader to retain the rights to the underlying.
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In order to make a decision, the trader must possess the knowledge of the best
possible pay-off in the future, at each state of the world. Having such information
allows the trader to compare what he can get at a particular point in time to the best
he can do in the future. Delaying the decision to exercise when the best future pay-off
cannot beat the immediate pay-off will clearly be suboptimal, due to the time value
of money.

We call the best future pay-off at each state of the world the value of the option.
Suppose the underlying stock follows a stochastic process X; on the state space E.
For any initial state x € E and at any future time ¢ > 0, we can denote the expected
pay-off with E[ f(X;)|Xo = x]. The maximum of such functions over all stopping
times 7 (recall that a stopping time with respect to a sequence of random variables
X1, X2, ... is a random variable T with the property that for each ¢, the occurrence
or non-occurrence of the event = ¢ depends only on the values of X1, X», ..., X;)
will be our value function, which will be denoted with v. In mathematical terms, a
definition for v is

v(x) =131€a%dEx[a f(Xo)],

where 7 represents the set of all stopping times. Our problem is to find a subset OPT
(termed the support set in [1, 5]) of the state space E where for all x € OPT we have
v(x) = f(x). Note that it is not possible to have v(x) < f(x) since the time-index set
includes time zero. Thus, for any x ¢ OPT we must have v(x) > f(x) which means
that the best expected future pay-off is larger than what is readily available. Then, the
correct decision must be to wait further to exercise the contract. It may also be the
case (as in the case of a perpetual call option) that it is optimal to never exercise the
option, i.e. T = oo in which case the pay-off is zero.

In this work, we determine the correct value function and the set OPT to under-
stand when to make an optimal stopping decision. In the rest of the paper, we make
the following assumptions:

1. The stock price process follows a discrete time and discrete state random walk.
2. There is a fixed discount rate « € (0, 1) per period due to the time value of money.
3. The option contract under study may be written without an expiration date.

The rest of this paper is organized as follows. In Sect. 2, we review the mathemat-
ical background relevant to our analysis. In Sect. 3, we present the geometric random
walk model for asset prices, and carry out the analysis for the call option in Sect. 4.
In Sect. 5, we give numerical illustrations. In Sect. 6, we extend the analysis to put
options of American perpetual type giving the essential points without repeating all
the details.

2 Background
In this section we present mathematical definitions and tools to lay the groundwork
for deriving rules for exercising perpetual American type options. The majority of re-

sults in this section are from the optimal stopping literature on stochastic processes,
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especially on the ramifications of the Markov hypothesis. The reader is encouraged
to see [5] for a thorough yet readable treatment of Markov processes. The notation
throughout the section is borrowed from Cinlar’s introductory text on stochastic pro-
cesses [1].

Let the triplet (§2, F,P) be a probability space. We start with the classic defini-
tions of stochastic processes and Markov processes.

Definition 2.1 A stochastic process X = {X;, t € T} with the state space E is a col-
lection of E-valued random variables indexed by a set T', often interpreted as the time.
We say that X is a discrete-time stochastic process if T is countable and a continuous-
time stochastic process if T is uncountable. Likewise, X is called a discrete-state
stochastic process if E is countable and called a continuous-state stochastic process
if E is an uncountable set.

For any i € E, we define P; (X;) to be the conditional probability distribution of
the stochastic process at time ¢ conditional on the initial state i. Similarly E;(X;)
is defined to be the conditional expectation of the value of the stochastic process at
time ¢ conditional on the initial state i. In this work we assume that the stock prices
follow a stochastic process with the Markov property. We use discrete state Markov
processes defined on R to model stock prices.

The study of excessive functions is of significant importance in the optimal stop-
ping literature. These functions are tools to connect the underlying stochastic process
to the outcomes associated with the movement of the process in time.

Definition 2.2 A real-valued function g : E — R is called the reward function of a
stochastic process X.

A reward function defined on the states of the process represents a quantity ac-
quired once the process enters a particular state in time. Our motivation in consider-
ing reward functions comes from the need to model the pay-off of an option contract
depending on the pay-off of the underlying stock.

Let o € [0, 1] be a constant that denotes the discount factor. Next, we introduce
the family of a-excessive functions which plays a key role in characterizing the value
function of a stochastic process.

Definition 2.3 Let f be a finite-valued function defined on a countable state space E
and P be a transition matrix. The function f is said to be a-excessive provided that
f>0and f >aPf.If f is 1-excessive, it is simply called excessive.

Note that a reward function on E need not necessarily be a-excessive though, as
we will later see, the value function of a stochastic process must be a-excessive. To
define this value function, we will look at the optimal stopping problem of a Markov
process.

Suppose we have the Markov process X, the transition matrix P and the reward
function f defined on the state space E. Let ¢t = 0 denote time zero, the initial period
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at the beginning of analysis and suppose Xo = i. A valid measure of assessing a
particular state’s value can be defined as:

supEi[a” £ (X7)]

which gives the supremum of the discounted expected future rewards over all stop-
ping times T when the initial state is i. In other words, it gives the highest expected
value of future rewards when the current state of the process is i. Thus, we can define
the value of the optimal stopping problem as a function from E to the real numbers,
which gives the highest possible expected pay-off per state.

Definition 2.4 The real valued function v on E given by
v(i) = supEi[a" f(Xo)]
T

is called the value function of the optimal stopping problem associated with the
Markov process X and the reward function f.

In order to make a stopping decision, we need to determine the set of states, say
OPT C E, such that v(j) = f(j),Yj € OPT. Note that for any state with this prop-
erty, it is unwise, in terms of the expected future reward, to hold off from stopping
in the hopes of higher future gains. Since the participant will never get a better value
in the future, on average, the correct decision is to stop immediately and collect the
reward. In our setting, this corresponds to exercising the option. An optimal strategy
can, therefore, be characterized as to exercise the option as soon as the underlying
stock process attains a value in OPT. Note, however, that in the case of a call option,
the option may never be exercised, i.e., T = oco. In infinite state spaces, it may also oc-
cur that the first hitting time of the support set does not give an optimal stopping time
even if the value function is finite. Numerical examples illustrating such situations
can be found e.g. on p. 108 of [5].

With these definitions from the optimal stopping literature in mind, we note that
the problem of pricing a perpetual American option and determining the optimal
stopping strategy is equivalent to computing a value function for the underlying stock-
price process and determining the set of states where the value function is equal to
the pay-off of the option. The essence of our study will be the application of the
following key result allowing the problem to be formulated as a linear program.

Theorem 2.1 The value function v is the minimal a-excessive function greater than
or equal to the pay-off function f.

Proof See [5], p. 105 or [1], p. 221. O
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Now, suppose that both E and T are countable. We can use the above result to
convert the problem to the following LP using the definition of an excessive function:

min Y " v(i)
ieE

st. v(@)=>fG), i€k
v(i)>alPv, i€E

v(i) >0, iek.

3 A Geometric Random Walk Model on R for the Stock Price Process

Let ¢ be a real number slightly greater than 1 and Xy > O be the current price of
the underlying stock. Without loss of generality, we take ¢+ = 0 as the current time.
Consider the state space Ey = {X(- ¢/ : j € Z}. Note that limj_, _oo ¢/ = 0, thus, our
state space E, consists of positive-valued elements constructed as a geometric series.
We define the stock-price process as the collection of E;-valued random variables
{X; :t € N}. Let ¢ be a non-negative integer denoting future periods. Suppose at each
period ¢ > 0, the stock-price in # + 1 obeys the random progression:

X:-@ W.p. p
Xip1= 1
X0 w.p.q=1—p.

The process described above leads to a binomial conditional p.m.f. Let 7 > 0 be an ar-
bitrary future period and define the set E = {Xop ™", Xop ™2, ..., Xo¢' 7%, Xo¢'}
to be the set of possible values of the stock ¢ periods into the future. Clearly E} C E.
By construction, E; does not have any absorbing states and the conditional p.m.f of
X; is given by:

@21, j. p) =P[ X, = Xo- ¢/ | Xo] = ( . )q"""”p“’(”
()
where j € {—t, —(t —2),...,(t —2),t} and ¢ (j) = (¢ + j)/2 is the number of times
the random process has moved forward in ¢ units of time.

4 Pricing and Optimal Exercise Under the Geometric Random Walk

Under the geometric random walk scenario, we wish to solve the problem:

(P3) min » " v;
JjEZ

subjectto  v; > fj, JEZ (H

vj > alquj—1 + pvj+1), JEZ. (2)
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Here, f; is given by max{Xg - @/ — §,0}. Constraints (1) and (2), defined over the
set of integers, again correspond to the majorant and excessive properties of the value
function. For the solution of P3 to coincide with the sought-after value function in
Definition 2.4 we need to make sure according to Theorem 2.1 that v remains finite.
The expectation in the definition of the value function becomes in the present case
for fixed ¢:

E[a'(X; — 8)+1Xo = x]

o Pyt =9D) o) (xei — §
“ 2 (¢(j>)q P =9),

Je{—t,—(t=2),....(t=2),1}

For the value function to remain finite as t — 00, the condition

app <1 3)

suffices. To see this we first observe that ¢ (j) runs from O to 7 in the summation
above, and the terms in the summation with a negative exponent on ¢ vanish as
t — oo since every such term is of the form o/ (r —c1) (1 — p)! €1 p® ) (xp/ — §) 4 for
some constants ¢ and ¢, (dependent on the term). On the other hand the terms receiv-
ing a positive exponent on ¢ all have the form o/ (f — ¢3)(1 — p)?U) p' ¢4 (xp/ — )
for some constants c3 and c4 (dependent on the term), and each such term vanishes
as t — oo provided that condition (3) holds.

Now, we shall pursue a solution strategy based on linear programming duality. Let
us consider the dual problem to the original problem (P3):

(D3) mafoj ©Yj
jez
subjectto y; —apzj 1+zj—aqzj1=1, jEZ “4)
yj =0, jeZ (%)
z; =20, jeZ (6)

which yield the complementary-slackness (CS) conditions:

(fi—vp)-yj=0, jeZ 7
(a(pvjs1+quj-1) —vj)-z; =0, jeZ ®)
”j‘(l_yJ—Zj+0l(PZj—1+qz,'+1))=0, jeZ. )

We are interested in finding the optimal solution to P3 in order to characterize the
states to take action. Let v* denote the optimal solution to P3. We construct the value
function under the assumption that a critical threshold denoted by j* exists with the
properties

vi=f; Vj=j* (10)

v > f; Vj<j%. (1m
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Assuming the existence of j* we now derive a closed-form expression for the
corresponding value function. Since v; = max{f;, @(pvj+1 +qvj_1)} and v; # f;
for j < j*, due to our assumption, we have v; = a(pv;1 +qv;_1) for j < j*. To
determine the value function, then, we need to solve the second order homogeneous
difference equation:

vi —a(pvjtr +quj—1) =0, j<j* (12)

with the boundary conditions:
Vjx = fj* (13)
V_co = 0. (14)

Using the general solution technique given in the Appendix, we can obtain a solution
for the system (12)—(14). Since we are working with a homogeneous equation, we
know that v; is of the form C, & i + C_&’ where £_ and &, are the roots:

—1—+/1 —4a%pg =141 —4aZpq

s-= —2ap —2ap

, &+

From the boundary condition (14), we get:
lim (Cy&]+cC_&)=o0.
j;rfw( +E1 +C-&)

Note that the roots £_ and &, are greater than and less than 1, respectively. Since

£_>1,wehave lim &’ =0 which reduces the boundary condition to:
j—>—00

lim Cp&]=0.
——00

J

Clearly, this is only possible when C; = 0 since é_{ grows without bound with de-
creasing j. Now, utilizing the boundary (13), we find C_ to be:

Cié +C_gl = fj

c_g' = fpr

i
T

The coefficients C; and C_, thus, lead to the value function:
U;f — fj* . %-£]_] )
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for j < j*. For other values of j we already know that itis equal to f;. The arguments
given above, therefore, suggest that we have a candidate v* given by:

J

. =it -
m:{ff =0 =T (15)
i JF =

We shall prove that v* indeed solves P3 to optimality by exhibiting suitable dual
feasible (y*, z*) that are complementary to v*.

To make a reasonable guess of the dual variables (y*, z*), we use a similar method.
To begin with, we assume that f;+ > 0, which makes sense because it is unlikely to
have a state where the decision is to exercise the option while the pay-off is zero.
The pay-off f;+ at j* being positive implies, by definition of v*, that v;f > 0 for all
J € Z.. From the CS condition (7), we have y}‘.‘ =0 for j < j*. This, together with v;‘f
being positive implies that z’j‘f satisfies the non-homogeneous second order difference
equation:

zj—al@zjp1+pzj-) =1, j<j (16)
Since v} # oz(pv;'.‘Jrl +qvj_y) for j = j*, CS condition (8) implies that z; = 0 for

Jj = j*. Furthermore, assuming that the sequence {z;} converges as j — —oo, we see
from (16) that

1
li P = .
j—iIPoo % 1l—«

Using these two boundary conditions, we can obtain a solution to (16). Let the partic-
ular solution be ﬁ For the homogeneous solution, we proceed as in the Appendix.
Let ¢+ and ¢_ denote the corresponding roots derived in the Appendix. They are

¢ _—1+\/1—4a2pq ¢ _—1—\/1—4a2pq
T —2aq T —2aq '

The two boundary conditions give the following system, which needs to be solved to
determine z7:

i - 1
Cigl +C-¢ + o =0 (17)

lim (Coel+C gyt = (1)
S T o l—«a l—a

J

Since ¢4 < 1 and ¢_ > 1, a line of reasoning similar to the case of v* applied to (18)
reveals that C = 0. Using this identity and (17), we find C_ to be:

o= (L)
T l—«a S
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The dual variables z* associated with the candidate optimal solution v* are therefore
given by the following simple formula:

s e =T <
1o J*<.

The second set of dual variables, y*, are also determined using the CS conditions.
Since v; # f; for j < j*, from (7) we have y; =0 for j < j*. For j > j* we have
zj = 0 which, in turn, implies that y; = 1 due to (9). Finally, for j = j* the same
equation tells us that 1 — y;+ + apzj+_1 = 0. The resulting piecewise function is:

19)

0 j<jJ*
yvi=1l+apz_ j=j* (20)
1 j>Jj*

We have constructed a pair of candidate solutions for P3 and D3 assuming that a
candidate threshold value j* exists. We now show that the existence of this critical
state is guaranteed only when the parameters chosen for the model satisfy certain
conditions. First let us make the following assumption:

Assumption 1 There exists a jg € Z such that § = X - /5.

Note that the above assumption is only made for convenience in the analysis to follow.
Removing the assumption leads to more complicated notation. It is also easy to see
that the solution to the optimal stopping problem changes very little when the pay-off
(Xop! — S)4 has S perturbed by a very small amount such that it falls in an interval
[Xo@/S, Xo@/sT1). One could replace an arbitrary strike S by one of the form in the
assumption. As a result, in some of our numerical examples (such as the example in
Sect. 5) we do not use this assumption.
The following lemma restricts the existence of j* to a certain condition:

Lemma 4.1 A critical value j* € 7t defined as:

js +1 if A2 <

ko fj5+1 -

= 21
max{k : % >&_} otherwise,

exists if and only if ¢ < &_, where &_ is given by

—1—+/1—4a%pq

—2ap

é_:

Proof To begin, let us observe that f; > 0 when j > js + 1 and thus the ratio %
i
is only defined when j > jg + 2. The ratio is also monotonically decreasing. Fur-

thermore, it converges to ¢ as j tends to infinity and % > ¢ for all j > js + 2.
i
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Now, suppose that j* as defined above exists. Then, we either have j* = jg+ 1 or

Jr=maxfk: g > & ) I = s 41, ?ij > ¢ and the definition of j* in (21)

together imply:
g > it
Sis+1
If, on the other hand, j* = max{k : 2~ > &_}, we have f’f +1 < &_. Suppose, for a
contradiction, that & < ¢. Since ff L > ¢ forall j > js+2, we also have f’f s 0.

f/ +1

This contradicts with < &_ < ¢. Thus, the condition ¢ < &_ is necessary for the

existence of j*

In order to show that it is also sufficient, let us suppose ¢ < &_. The existence of
js+2
Jjs+1 T
J* = js + 1 which readily shows the existence of j*. On the other hand, suppose that
f/s+2
f15+1

Js is guaranteed by our starting assumption. Therefore, when < &_, we can use

> £_. Since the sequence

/i
, 2
{f] 1 ]>]S+ }

is a monotonically decreasing sequence whose limit is ¢, ¢ < §_ implies that there
exist finitely many j € Z with j > jg + 2 such that % > £_. The existence of

Jj* = max{k : j[—f] > £_}, then, follows since the maximum of a finite set always

exists. Hence, ¢ < &£_ is also a sufficient condition for the existence of j*, which
completes the proof. O

Now we need to show that v* defined in terms of the critical threshold j* is in fact
the optimal solution to problem P3. To show this, we need to show (a) v* is primal
feasible, (b) (y*, z*) is dual feasible, and (c) v*, y* and z* together satisfy the CS
conditions.

Lemma 4.2 The candidate solution v* is feasible for P3 if and only if p and a are
chosen such that

-3 1—01 .
@’ +1 > [1 — — _1](015‘
apy —aqy

Proof We first show that the given condition is necessary for feasibility. Let us as-
sume that v* as given in (15) is feasible to P3. Then, v* must satisfy constraints (2).
This implies that the system of inequalities

* * * _
Vi Z 0PV g gy +o¢qvj*+k_1, k=1,2,3,...
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hold with v;’.‘ = f;. By substituting the values of f; into the above inequalities and
rearranging the terms, one obtains the following system of inequalities:

(pj*-i-kzl: l—« 1i|(pjs’ i=1,23,...
I —app —aqe™

which also implies that the given condition holds. This shows that the given condition
is necessary for the feasibility of v*.

Next, we show that it is also sufficient for feasibility. Suppose that the condition
above holds. We first concentrate on constraints (2). Let j > j*. Since ¢/ k> 7 s
for all k > 1, we have:

Sk 5 1—05 .
wf*"zsof“z[ _l}p“, j=12.3,...
1 —app —aqe

which follows from the given condition. As noted in the first part of the proof, this
system is equivalent to having:

f]*+k2apf]*+k+l+0€C]fj*+k717 k=1’2937”'

which shows that the constraints (2) are satisfied with v;f = fj for j > j*. When
J < j*, on the other hand, we already have v;f = cxpv;_l + ag v;f_l since v* is nec-
essarily the solution to this difference equation. Therefore, it remains to check for the
case when j = j*. Consider the solution of the difference equation:

Wj =0pwjt] +oqwj_|

lim ;=0
Jj——00
which extends over the set of integers. Then, w1 = fj+&_. Since wj» = apw 41+
« . .
oaqwjx—1 and Wj—1 =Vju_p, fj* =wj* = Oépfj*_;,_] +o¢qvj*_1 if and only if fj*+l <

wj+y1 = fj*&_. This means that it is sufficient to check % < &_ in order to show
p g ]*

feasibility of v* for constraints (2) at j = j*. Recall that j* may attain one of the

two values defined in (21). First, suppose j* = js + 1. Then, by definition of j*,

f] +1 fj5+2

we have e < &_, hence the desired result. Now, let j* = max{k : fki >
J*

= Figt1 -1
E_}. Deﬁnmon of jJS in this case implies that j* is the maximum integer k with the
property f >§‘ which further implies that for j* + 1, we have I }J“ < &_. Thus,
we can conclude (2) is satisfied with v* at j = j* which completes the feasibility of
v* for constraints (2) for all j € Z.

Now, we turn our attention to the constraints (1). Note that, by deﬁmtlon of v*
these are satisfied tr1v1ally for j > j*.So,let j < j*. Then, v¥ 5= = fjx&1 7=7" Under the
assumption that j* exists, we have j* > js + 1 which implies that f;« > 0. Then, it
follows that v;f > 0. Note that for any j < jg, we have f; = 0 and thus v;f > f; which
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is sufficient for the feasibility of (1). Therefore, it remains to check feasibility for the
values of j where js < j < j*. In order to do this, let us consider the difference

D= U;‘f — fj
for js < j < j*. We have:
D= fp&l™ —f;
= (Xop’!" = )& — (X9’ — 9)

= Xo(p/ &7 — )y + 51—,

Note that we need to show D > 0. By the choice of j and the fact that £_ > 1, the
second term in D above is always strictly positive. If the first term is also greater than

or equal to 0, we are done. So, suppose that we have Xo((pj*éi_j* — /) <0.1In this
case, in order for D > 0, we need:

Xo(p/ —¢/ €777 ) <s(1-&/77).
By rearranging the terms, we can obtain:
XOW' -8 >€__£*—j.
Xopl =S =

Note that by the choice of j*, for any jg < j < j* we have (j* — j) inequalities
satisfying:

Jixt
fi

fi+2

fi+1

fi
fir—1
Since all terms in these inequalities are positive, the inequality obtained by multiply-

ing all terms in both sides of these inequalities does not change their direction. This
operation will yield:

which is precisely the desired property for D to be non-negative. Since D > 0, then,
we have v¥ > f; forall js < j < j*, which concludes that constraints (1) are satisfied
with v* for all j € Z. Since we have also shown that (2) are also satisfied, we will
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conclude that the condition presented in this lemma is a sufficient condition for the
feasibility of v* to P3, which completes the proof. O

Next, we show that the candidate dual solution (y*, z*) is feasible in D3, which is
needed to ascertain optimality of v*.

Lemma 4.3 The pair of dual variables y* and z* given in (20) and (19) respectively
is a feasible solution to D3.

Proof Let us first consider constraints (6). Note that for j > j*, we have z¥ = 0 which
satisfies non-negativity of z*. Now, let j < j*. Since j < j* and ¢ > 1, we have
@/=7" € (0, 1). Then, since « < 1, both ﬁ and (1 — ¢/=7") are strictly positive,
which implies that zjf > 0 for j < j*. Therefore, z’; satisfies constraints (6) for all
JjEZ.

Now, we show y* satisfies constraints (5). By definition of y*, for any j # j* we
already have y* > 0. Thus, the only case to verify is when j = j*. Since zjf > 0 for
any j € Z, we have zjf*_l > (. Then, yj* =1+ apzjf*_l > (0 which concludes that
y;’f > 0 for all j € Z and that y* satisfies constraints (5).

Finally, we show that y* and z* taken together satisfy constraints (4). First, let
J < j*. Then, by definition, y;’f = 0. The LHS of constraints (4), therefore, reduce
to zj —apzj_1 —aqz;41. Since z* solves the difference equation z; — a(qz; 41 +
pzj—1) = 1, we have zj — a(qsz + pzjf_l) = 1 which shows that (4) are satisfied
for j < j*. Now, suppose that j > j*. In this case, we have y;f =1 and z§ = 0. Thus,

yi—apj_ +7j—aqii 1 =1-0+0-0=1

which shows that (4) are also satisfied when j > j*. Then, it remains to check they
also hold when j = j*. But since y;f* =1+ ozpz’;,_l, z’;* =0 and Z§*+1 =0, we
have:

Yie—apZje_y + s —aqie = L+ ap_ —apTi_,

=1.

Therefore, y* and z* taken together satisfy constraints (4) for all j € Z, which com-
pletes the proof. O

Finally, we need our candidate solutions to satisfy the CS conditions (7)—(9) for
optimality.

Lemma 4.4 v*, y* and z* as given in (15), (20) and (19) respectively, satisfy the CS
conditions (7)—(9).

Proof We first consider equations (7). For j > j*, we have v;‘f = f;. Then, (f; — v;‘f) .

y; =0. When j < j*, we have y} =0, which again implies that (f; — v}) - y7 =0.
Thus, (7) are satisfied for all j € Z.
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Next, consider condition (8). For j > j*, we have zjf = 0 and the result follows
similarly. For j < j*, we know that v;’.‘ solves v; —a(pvjy1 +quvj—1) =0, j < j*
with the corresponding boundary conditions. Thus, v;’.‘ —a( pvl’/’.‘ Tt qv(’;_l) =0.It
follows, then, (8) are also satisfied by the choice of v* and z*.

Finally, we check (9). From feasibility of y* and z*, we have

Vie —apZis_y + 2 — g =1
for all j € Z. Then, v;’.‘ (1 - y; — Zj + ot(pz?_1 + qzij)) = 0. Therefore, (9) are
also satisfied by the choice of v*, y* and z*; and we conclude that all CS conditions
hold. d

Using these properties for the candidate solution v*, we can now show that it is
indeed optimal to problem P3. The following theorem establishes this fact, however,
it should be noted that it is valid whenever an appropriate j* exists. Recalling the
result in Lemma 4.1, we know that such a j* exists only when ¢ < &_ which also
guarantees the agreement between the value function and v*.

Theorem 4.1 Under Assumption 1, let ¢ < &_ where &_ is given by

—1—/1—4a2pg

—2ap

é_:

Then, the solution v* given by (15) is optimal to problem P3 if and only if p and «

are chosen such that
-3 l — .
(p] +12|: ljleS.

1l —apyp —aqe

Furthermore, v* coincides with the value function in Definition 2.4.

Proof Showing the given condition is necessary for optimality is straightforward.
Suppose v* is optimal to P3. Then, v* must be feasible. By Lemma 4.2, then, we
can conclude that the given condition must hold, which is the same for saying it is a
necessary condition to optimality.

Now, we will show that it is also sufficient under the assumption that j* exists.
Suppose this condition holds. This is enough, by Lemma 4.2, for feasibility to prob-
lem P3. Furthermore, we know that the pair of dual variables (y*, z*) are also feasible
to P3, by Lemma 4.3. Therefore, it remains to show that they satisfy CS conditions
and there is no duality gap between the objective functions P(v*) and D(y*, z*).
But we have already shown, through Lemma 4.4, that these solutions satisfy the CS
conditions. Hence, all requirements for optimality are satisfied as long as the given
condition in the statement of the theorem holds. Therefore, the choice of v* solves
P3 to optimality, as long as an appropriate j* exists.

Now, the condition ¢ < &_ is equivalent to the condition

o
a¢p<l+;(p—l)
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after some straightforward algebraic manipulation, which implies the condition (3)
for finiteness of v. Hence, by Theorem 2.1 v* coincides with the value function. [J

The above theorem is particularly useful in identifying the optimal stopping region
when the underlying stock-price follows a geometric random walk on RT*. With its
structure, the function v* suggests that there exists a critical point j* identifying
a corresponding state X - ¢/ " € E, which separates the state space into subsets.
Whenever the stock price is less than this critical threshold, the value per state is
strictly greater than the current pay-off, implying that the decision to exercise should
be delayed. On the other hand, when the price of the stock is greater than or equal to
this critical value, the value function gives the same amount with the existing pay-off,
which means that it is no longer meaningful to hold the option for one more period.

A key observation in the scenario studied in this paper is that, the existence of
a critical state is not guaranteed. By Lemma 4.1, we know that the critical value to
identify v* does not always exist: the existence is guaranteed only when ¢ < &_,
which is a condition fully dependent on the parameters of the problem instance. It
states that the upward movement in the stock price must be bounded with a quantity
dependent on both the probability distribution of the random progression and the
discount factor «. The condition also guarantees that the optimal v* coincides with
the sought-after value function.

5 Numerical Illustrations

The parameters for the examples are selected as follows (note that we do not satisfy
Assumption 1):

Xo =10, a=0.999, ¢ =1.01, S=12.

The pay-off for this particular call option is given in Fig. 1.

Payoff ($)
141
12t
10+
8l
6|
41
2L
0 . . Share
0 5 10 15 20 Price ($)

Fig. 1 Pay-off for a Call Option where Sy = 10, ¢ =1.01, S =12
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We use three different probability measures in order to show the change in the
value function under varying transition probabilities. Suppose p; = 0.50, po = 0.52
and p3 = 0.54. Recall that as we increase p, £_ decreases and for p close to 1, &_
also tends to 1. The behaviour of £_, thus, creates an upper bound for the forward
probability. Since our previous analysis revealed that we must have ¢ < £_ in order
for a meaningful j* to exist (and we have set ¢ = 1.01 for this post), we cannot test
the model under larger forward probabilities. (For instance, when p = 0.60 we have
&_=10.00496 < 1.01.)

Note that the optimal decision is to choose an integer satisfying:

. f/s+2
o oSt M7 =5 (22)
max{k : - >“§ }  otherwise

and calculate the stock price (which is a function of j) with this critical integer as the
optimal threshold of exercise. With the above set of probabilities, we have:

£050 — 104576,  £%2=1.02022,  &%% =1.01173.
The corresponding critical integers, in order of appearance are:
Jo.so =44, Jo.s2 =87, Josa=211.
The stock values for these particular integers are approximately:
X (44) = 15.50, X (87)=23.77, X (211) =81.62.

Figure 2 shows the resulting graph for these three instances of the problem.
Value ($)

30}

25]

20t

15¢ Pay—off

—  Value:p=0.5, X'=1549
10t
——  Value:p =052, X"=23.77

— Value: p = 0.54, X *=81.62

Share
10 20 30 40 Price ($)

Fig. 2 Value of a American Perpetual Call under various parameters
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Payoff ($)
10

Share

0 ‘
0 5 10 15 Price ($)

Fig. 3 The Pay-off of a Put Option for Xy =10, S =8 and ¢ = 1.01

6 The Case of an American Perpetual Put Option

In this section we apply the ideas of the previous section to the American perpetual
put option.

Let S be the strike price for a put option and ¢ be a real number slightly greater
than 1. Assuming that the stock price follows the random walk X, on E» = {Xo¢/ :
J € Z}, the pay-off function is:

f(X;) = max{S — X;, 0}

which gives a positive value only when the stock price is less than the strike price S.
Note also that the pay-off tends to the strike price as j — —oo since we have:

lim Xop/ =0

j—>—00

due to the choice of ¢. This pay-off is shown in Fig. 3 for the values of Xy = 10,
S=28and ¢ =1.01.

As in our previous approach, we will assume that the value function satisfies cer-
tain properties. Let us assume that there exists a critical point j* such that Vj < j*
we have v; = f; and Vj > j* we have:

vj =a(pvj1+quj_1).
We further assume that lim;_, o, v; = 0 which leads to the difference equation:
v —a(pvj+1 +quj—1) =0 (23)
with the boundary conditions:
vjr = fjr

lim v; =0.
j—o0

The solution to this difference equation yields the desired value function.
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6.1 Solving the Difference Equation
Recalling the general solution of such difference equations, we can write the system:
cisl vl = fp (24)
Jim. (Cy&l+cgl)=0 (25)

using the two boundary conditions above. Here, £, and £&_ are the same roots as we
have used before, and given in terms of «, p and ¢:

—1—/1—4a2pq =141 —4a2pq

—2ap —2ap

S— = 5 é‘i‘

We know that §_ > 1 and &, < 1. Thus, we have lim;_, Ei = 0. For this reason,
(25) reduces to:

lim C_&/ =0

J—00

which implies that C_ = 0. Then, using (24) we can obtain C; = ?T: Substitut-

i
ing the values of C and C_ and using our previous assumption, we get the value
function given below:

; (26)

Vo ifj*s.’f’ i> i
i i<t

This value function, dependent on the value of j*, provides a class of functions for
different values of the underlying probabilities. Now, we describe the critical exercise
point j*.

6.2 Determining the Critical Threshold

Note that the value function is equal to the pay-off for sufficiently small values of j.
Thus, we seek the maximum integer where the ratio of value to pay-off is exactly 1.
Or, from the opposite direction, we seek the minimum integer j such that the ratio of
value to pay-off at j + 1 is greater than 1. In mathematical terms, we would like to
find a j* satisfying:

e . v vj}
Jj :mln{] e 3
fivt  fj

By substituting the value function into the above definition and rearranging the terms
we obtain:

j*:min{j:f}—j1 <E+}.
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Let us try to clarify this selection criterion. This formula tells us that we will compare

the ratio }“ to the root &1 and report the integer j as the critical exercise point just

before the ratio exceeds &;. We know that & is strictly less than 1. But we have:
. fi+t .S —Xop/t!
lim —= lm ————=
j—=—oc fj j——00 §— Xog/

Thus, there exists at most finitely many integers such that < &4 which also

fi+1

. . . .. f]

implies the existence of a critical threshold value. We say at most because we do not

know whether there actually are integers satisfying this relation. Note that the ratio

is defined for j < js — 1 where jg, by assumption, is the unique integer k satisfying

S = Xo¢k. Thus, the ratio, starting with % could entirely remain above &,. To
o

handle this case, we update the definition of j* in the following way:
Js—1 if f’Sl>$+

¥ f/S 2 (27)
min{; : ’“ <£&,} otherwise

-k

The first case in this definition is parallel to what we have derived in the case of call
options under geometric random walks. It means that the trader will have to exercise
as long as (s)he observes a positive pay-off.

6.3 Dual Variables

For the sake of completeness, we present the dual solution to our optimization prob-
lem. Following our notation, the dual solution for a put option will be:

1 Jj=Jj* . -
1 1=
zj. = 1701( CJr ) ].*< J . (28)
0 J =
and
0 j>j*
yi=y1l+aqzjy, Jj=j" (29)
1 j<jJ*

Note the change in the definition of z*: {_ has been replaced with ¢ . This is mainly
due to the directional change in the index j. We now require lim;_, zj = ﬁ,
which is exactly in the opposite direction with respect to j, when compared to a call
option properties. Also, y* needs to be adjusted at j = j* since the neighbour of j*
which makes z* equal to zero is now (j* — 1) as opposed to (j* + 1) in the case of a

call.
6.4 An Example

Let us use the parameters of the previous plot to calculate an optimal exercise point.
To ensure existence of jg, let S = 8.034. Then, we have js = —22. For any j <
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Table 1 Value of £ for varying « and p

o =0.999 a =0.995 a=0.9 a=0.75 a=0.5
p &+ J4 &+ J4 &+ P &+ J4 &+

0.1 0.9988 0.1 0.9938 0.1 0.8796 0.1 0.7131 0.1 0.4606
0.2 0.9983 0.2 0.9917 0.2 0.8501 0.2 0.6667 0.2 0.4174
0.3 0.9975 0.3 0.9877 0.3 0.8049 0.3 0.6082 0.3 0.3706
0.4 0.9951 0.4 0.9766 0.4 0.7339 0.4 0.5363 0.4 0.3206
0.5 0.9562 0.5 0.9046 0.5 0.6268 0.5 0.4514 0.5 0.2679
0.6 0.6634 0.6 0.6510 0.6 0.4893 0.6 0.3575 0.6 0.2137
0.7 0.4275 0.7 0.4233 0.7 0.3450 0.7 0.2607 0.7 0.1588
0.8 0.2496 0.8 0.2479 0.8 0.2125 0.8 0.1667 0.8 0.1044
0.9 0.1110 0.9 0.1104 0.9 0.0977 0.9 0.0792 0.9 0.0512

—22, we have f; > 0. Now, consider % = 0.5025. According to (27), for &4 <

0.5025, the trader has to exercise as soon as the stock price hits Xo(p’23 = 7.9544.
But the choice of £ depends on the underlying probability measure and the discount
factor «. Table 1 shows a selection of & values under varying p and «.

Note that as the forward probability p increases, the value of & falls below the
0.5025 which implies that the trader has to exercise as soon as (s)he receives a pos-
itive value. The result is also intuitive because for a higher forward probability, the
tendency to move forward reduces the expectation of a positive pay-off and pushes
the critical state to exercise as low as possible.

For lower values of p, the exercise region should be calculated as given in the
second case of (27). Since the pay-off ratio converges to 1, the existence of such a
point is guaranteed.

6.5 On the Existence of a Critical State

The valuation of a put option under geometric random walk differs from the valuation
of a call option since the pay-off for a put option is bounded whereas for a call option,
we have an unbounded pay-off function. Recall that in the case of a call option, the
pay-off ratio converged to ¢, a parameter of the model. Thus, for sufficiently large ¢,
we had a convergence issue and showed that a critical point may not exist.

In the case of a put option, the pay-off ratio converges to 1, which follows from
the fact that f is bounded. This is almost similar to the simple random walk model,
ensuring that the pay-off ratio intersects &,. Thus, one does not need to worry about
existence of an optimal solution.

Various exercise points with different parameters are shown in Fig. 4.

7 Conclusions

In this paper we analyzed the optimal exercise problem for American perpetual op-
tions, and derived a closed form valuation formula under some mild assumptions on
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Value ($)
8

— Pay—off
— Value: p = 0.5, X*=6.58

6F — Value: p = 0.45, X*=3.93

Value: p = 0.3, X*=1.60

Share
5 10 15 Price ($)

Fig. 4 Value of a Put Option under various parameters

the problem parameters. A similar analysis is applicable to American perpetual put
options. Due to the particular form of the pay-off function, an optimal finite exercise
policy always exists in the case of the put whereas for the call case exercise depends
on the values of certain parameters.

Appendix: Solution of Second Order Difference Equations with Given
Boundary Conditions

The system of linear equations,
apvj +avj_1 +avj_o=by, jel (30)

is known as a second order linear difference equation on the index set Z where it is
convenient to consider Z to be a subset of the set of integers. It is said to be homoge-
neous if by = 0 and non-homogeneous if otherwise. We shall give, here, the solution
method adopted in this work to obtain a closed form formula for the unknown v.

It is assumed, a priori, that the solution is of the form £/ If the difference equation
encountered is a homogeneous equation, we have:

ao%-j + a1§(j_1) + azE(j_z) =0
Dividing both sides of the equation by £, we get:
apt’ + a1 +ary =0

‘Which will have the obvious roots:

—a +,/a% — 4apay : —a —,/a% —4apay

= 2a9 ’ - 2ap
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The closed form formula for v, then, will be in the form:
vi=A-& +B-&
where the coefficients A and B can be obtained by solving the system:
A-El 4B g =y,
A'?‘E.{_Z—i-B'éiz =vj,
with two known values of v. If, we have a non-homogeneous equation, we can write:
v = v? + v

where v? is the solution to the homogeneous case and v; is any particular solution to
the non-homogeneous case.

The technique given here can be used to solve difference equations with arbitrary
boundary values. Assume we are given a difference equation of the form 30 and any
two points ji, j» € Zsuchthatv; = fj and vj, = f>. Roots of the homogeneous case
can clearly be obtained with ease. Let’s say these are A4 and A_. The boundaries of
the difference equation yield the following system:

coll+Cc A =g
CAl2+cal =g,
which has the solution:
B S TR & el 3/ G1)
A = A=A

In the general sense, then, the homogeneous case has the solution
MU =22f0N g (M =M,
M T ALA M T AL A

The reader can easily verify that this general solution reduces to the solution we have
just obtained for the 0 — j* instance.
In the present paper we deal with a boundary value of the form:

Vioo =0

implying that the value function reduces asymptotically to O as the index value is
increased without bound, e.g., the geometric random walk case where the stock price
never reduces to zero, but the value function must tend to zero accompanying the
price of the stock. Suppose that this leads to the boundary condition:

lim (CyA +Coal)=o0.

j—>—00
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If it is known that one of the roots is strictly greater than 1, as it is the case for the
model studied in the present paper, the boundary condition reduces to an equation
which is in terms of the second root. Say A_ > 1. Clearly we have lim;_, o Al =0.
Then, the reduced equation will be:

lim CyAl =0.

J—>—00

Note that for A4 < 1, Mr grows without bound as j — —oo. The only possibility for
C to satisfy the boundary condition is, thus, to have the value 0. The coefficient C_
can, then, be solved with the knowledge of another boundary condition. Say, for some
integer j’, the value of v is known, that is vy = K where K represents this known

value. C_ will clearly be equal to K - A /, and the solution to the homogeneous case
will be:

v;=K-2 7

The treatment of the case where j tends to oo is similar. Note that the arguments
presented here are valid provided that a finite j’ for which the value of v is known
exists.
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