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Abstract We consider the problem of testing two simple hypotheses about unknown local
characteristics of several independent Brownian motions and compound Poisson processes.
All of the processes may be observed simultaneously as long as desired before a final choice
between hypotheses is made. The objective is to find a decision rule that identifies the cor-
rect hypothesis and strikes the optimal balance between the expected costs of sampling and
choosing the wrong hypothesis. Previous work on Bayesian sequential hypothesis testing in
continuous time provides a solution when the characteristics of these processes are tested
separately. However, the decision of an observer can improve greatly if multiple information
sources are available both in the form of continuously changing signals (Brownian motions)
and marked count data (compound Poisson processes). In this paper, we combine and ex-
tend those previous efforts by considering the problem in its multisource setting. We identify
a Bayes optimal rule by solving an optimal stopping problem for the likelihood-ratio pro-
cess. Here, the likelihood-ratio process is a jump-diffusion, and the solution of the optimal
stopping problem admits a two-sided stopping region. Therefore, instead of using the vari-
ational arguments (and smooth-fit principles) directly, we solve the problem by patching
the solutions of a sequence of optimal stopping problems for the pure diffusion part of the
likelihood-ratio process. We also provide a numerical algorithm and illustrate it on several
examples.
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1 Introduction

On some probability space (Ω, F ,P), let (X
(i)
t )t≥0, 1 ≤ i ≤ d be d independent Brown-

ian motions with constant drifts μ(i), 1 ≤ i ≤ d , and (T
(j)
n ,Z

(j)
n )n≥1, 1 ≤ j ≤ m be m in-

dependent compound Poisson processes independent of the Brownian motions. For every
1 ≤ j ≤ m, (T

(j)
n )n≥1 are the arrival times, and (Z

(j)
n )n≥1 are the marks on some measurable

space (E, E ), with arrival rates λ(j) and mark distributions ν(j)(·) on (E, E ).
Suppose that μ(i),1 ≤ i ≤ d and (λ(j), ν(j))1≤j≤m are unknown, but exactly one of the

following two simple hypotheses,

H0:
{

μ(i) = μ
(i)

0 , 1 ≤ i ≤ d(
λ(j), ν(j)

)= (λ(j)

0 , ν
(j)

0

)
, 1 ≤ j ≤ m

}
,

H1:
{

μ(i) = μ
(i)

1 , 1 ≤ i ≤ d(
λ(j), ν(j)

)= (λ(j)

1 , ν
(j)

1

)
, 1 ≤ j ≤ m

}
,

(1.1)

is correct for some known μ
(i)

0 , μ(i)

1 for every 1 ≤ i ≤ d , and (λ
(j)

0 , ν
(j)

0 ), (λ(j)

1 , ν
(j)

1 ) for every
1 ≤ j ≤ m, where probability measures ν

(j)

0 and ν
(j)

1 on (E, E ) are equivalent. Let Θ be the
index of correct hypothesis, which is a {0,1}-valued random variable with prior distribution

P{Θ = 1} = 1 − P{Θ = 0} = π

for some known π ∈ (0,1).
The problem is to find a stopping time τ and a terminal decision rule d which depend

only on the observations of Brownian motions (X(i)
n )n≥0, 1 ≤ i ≤ d and compound Poisson

processes (T
(j)
n ,Z

(j)
n )n≥1, 1 ≤ j ≤ m, and which minimizes the Bayes risk

Rτ,d(π) := E
[
τ + 1{τ<∞}(a1{d=0,Θ=1} + b1{d=1,Θ=0})

]
, (1.2)

where a and b are known positive constants and correspond to the costs of making wrong ter-
minal decisions. If such a decision rule (τ, d) exists, then it strikes optimal balance between
the expected total sampling cost and the expected cost of selecting the wrong hypothesis.

Sequential hypothesis testing problems have been studied extensively in the literature due
to their practical applications in different fields. These include target detection in radar and
sonar systems, threat identification in homeland security, fault identification and isolation in
industrial processes, testing the riskiness of financial assets; see, e.g., Marcus and Swerling
(1962), Fu (1968), Veeravalli and Baum (1996), Ernisse et al. (1997), Dragalin et al. (2000),
Lai (2001), and the references therein.

The non-Bayes formulation of the sequential hypothesis testing problem has been stud-
ied by many authors, both in discrete- and continuous-time, and can be found in the recent
reviews and contributions made by Lai (2000, 2001), Dragalin et al. (1999, 2000), Lor-
den (1977). In the Bayesian framework, sequential hypothesis testing problems were stud-
ied in discrete-time for the identification of the distribution of i.i.d. observations by Wald
and Wolfowitz (1950), Blackwell and Girshick (1979), Zacks (1971), Shiryaev (1978). In
continuous-time, on the other hand, Bayesian formulations are studied and solved for the
identification of the drift of a Brownian motion in Shiryaev (1978), Peskir and Gapeev
(2004), Shiryaev and Zhitlukhin (2011), for the identification of the drift term of more gen-
eral diffusion processes in Shiryaev and Gapeev (2011), for the identification of the arrival
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rate of a simple Poisson process in Peskir and Shiryaev (2000, 2006), and for the identifi-
cation of the arrival rate and mark distribution of a compound Poisson process in Gapeev
(2002), Dayanik and Sezer (2006), Dayanik et al. (2008b), Ludkovski and Sezer [2012,
Sect. 5.2]. The problem has not been addressed earlier for joint identification of local char-
acteristics of concurrently observed independent Brownian motions and compound Poisson
processes, and its solution is the main contribution of this paper.

Multisource detection problems with Brownian motions and compound Poisson pro-
cesses appear naturally in many fields. In finance, for example, stock prices are modeled
with exponential Brownian motions, and the firm defaults or credit derivatives are modeled
with compound Poisson processes. Stock prices, firm defaults, and credit derivatives move
together in a random economic environment, which may either be in recession or in a boom-
ing state. For a fund’s asset manager interested in the best short-term financial plans, it is
important to identify as quickly and confidently as possible if the economy is in recession
or in a booming regime. For that purpose, the asset manager can trace the stock prices of
certain companies operating in different industries or even in different countries. It is then
reasonable to expect that those stock price processes change independently conditionally on
the common market indicators of a recession or a booming economy. In addition to those
stocks, the asset manager may also trace the number of defaults in some other key indus-
tries. To the extend that the conditionally independent industry default processes and the
stock return rate processes of companies operating in different and diverse industries can be
modeled with compound Poisson processes and Brownian motions with arrival rates, mark
distributions, and drift rates modulated by the given common unobserved market indica-
tors of economic state, our paper provides a simple formulation and solution for the asset
manager’s problem. Similar problem also arises when we test the reliability of mechanical
systems; we can monitor both the occurrence/depth of cracks as marked count data and the
vibrations in the system as continuously changing signals for a better diagnosis.

When the observations come from both several Brownian motions and compound Pois-
son processes simultaneously, finding the best multisource sequential identification rule be-
comes a very difficult dynamic programming problem because of an unfavorable second-
order integro-differential operator. Instead of following the standard variational arguments,
we develop an alternative solution method that takes specifically into account the special
structure of the sample-paths of a suitable sufficient statistic for the problem. This method
enables us to solve the problem completely for the most general case—without any need for
specific simplifying assumptions about the relationships between drift rates, arrival rates,
and mark distributions.

We show that an optimal decision rule (τ, d) always exists. The optimal stopping time τ

is when the likelihood-ratio process

Lt := exp

{
d∑

i=1

(
μ

(i)

1 − μ
(i)

0

)(
X

(i)
t − X

(i)

0

)− t

2

d∑
i=1

[(
μ

(i)

1

)2 − (μ(i)

0

)2]}

× exp

{
m∑

j=1

∑
n:0<T

(j)
n ≤t

log

(
λ

(j)

1

λ
(j)

0

dν
(j)

1

dν
(j)

0

(
Z(j)

n

))− t

m∑
j=1

(
λ

(j)

1 − λ
(j)

0

)}

exits for the first time a bounded interval (φ1(1 − π)/π,φ2(1 − π)/π) for some suitable
constants 0 < φ1 < b/a < φ2 < ∞, and optimal terminal decision rule d is to choose the
null hypothesis if πLτ/(1−π) ≤ b/a and the alternative hypothesis otherwise. We describe
a provably convergent numerical method to calculate both the minimum Bayes risk and the
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decision boundaries φ1 and φ2 of the optimal stopping rule τ . The minimum Bayes risk is
shown to be the uniform limit of a decreasing sequence of successive approximations, which
are obtained by applying a contraction mapping iteratively to a suitable initial function. The
maximum absolute difference between successive approximations is bounded by an explicit
bound, which decays at a known exponential rate with the number of iterations. Thus, one
can always determine the necessary number of iterations ex-ante for any desired level of
accuracy in the approximations of the minimum Bayes risk and optimal decision boundaries.

We address the problem by reducing it to the optimal stopping of the likelihood-ratio
process, which we solve later. The likelihood-ratio process is a jump-diffusion with an in-
finitesimal generator which is a second-order integro-differential operator, and the conven-
tional method of variational inequalities is very unlikely to succeed. Instead, we solve the
problem by means of a jump operator, which is obtained by applying the dynamic program-
ming principle at the jump times. The role of this operator is to patch, at successive jump
times, the solutions of suitably modified optimal stopping problems for pure diffusion part.
The latter modified problems are solved easily and directly by the potential-theoretic meth-
ods developed by Dayanik and Karatzas (2003) and Dayanik (2008). A similar sequential
plan was followed by Dayanik et al. (2008a) and Sezer (2010) to solve sequential change de-
tection problems, each admitting a one-sided optimal stopping region with only one decision
boundary. The multisource Bayesian sequential binary hypothesis testing problem, however,
is far more challenging with a two-sided optimal stopping region and two critical decision
boundaries, which should be determined simultaneously. Optimal stopping problems for
jump-diffusions, which admit two-sided optimal stopping rules, appear also in finance and
real-option theory for pricing American-type financial contracts, which, we believe, can be
tackled very effectively with the same method of this paper. We refer the reader to Salminen
(1985), Beibel and Lerche (1997, 2001), Christensen and Irle (2011), Cissé et al. (2012)
for examples of and additional remarks on problems with two-sided stopping regions. For
the general theory of optimal stopping for (jump) diffusions, the books by Shiryaev (1978),
Peskir and Shiryaev (2006), Øksendal and Sulem (2007) and the references cited therein can
be consulted.

In Sect. 5, we show that the general multisource sequential testing problem can be re-
duced to a simple one where the observations consist of those of only one Brownian motion
and only one compound Poisson process (i.e., d = m = 1). Therefore, in the remainder ex-
cept Sect. 5, we assume that d = m = 1 and drop the superscripts used to identify local
characteristics, arrival times, and marks with different Brownian motions and compound
Poisson processes.

In Sect. 2, we start with the precise description of the problem and the derivation of an
auxiliary optimal stopping problem. Section 3 introduces a key jump operator and succes-
sive approximations to the value function of the auxiliary optimal stopping problem, whose
solution is explicitly identified, along with the Bayes-optimal decision rule for the Bayesian
sequential binary hypothesis testing problem, in Sect. 4. Section 5 shows how to reduce the
multisource problem to that of one Brownian motion and one compound Poisson process,
the solution of which was already given in Sect. 4. Section 6 concludes with a numerical
algorithm to find Bayes ε-optimal decision rules and its illustrations on several numerical
examples. Some of the proofs are deferred to the Appendix.

2 Problem description and a model

Let X be a Brownian motion with constant drift μ, and let (Tn,Zn)n≥1 be a compound
Poisson process with arrival times (Tn)n≥1, marks (Zn)n≥1 on some measurable space (E, E ),
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arrival rate λ, and mark distribution ν(·) on (E, E ), independent of Brownian motion X.
Denote by F

X = (F X
t )t≥0, F

p = (F p
t )t≥0, and F = (Ft )t≥0 the Brownian, compound Poisson,

and observation filtrations, respectively, enlarged suitably to satisfy the usual conditions of
right-continuity and completion with P-negligible sets.

Suppose that the drift μ and arrival rate and mark distribution (λ, ν) are unknown, but
exactly one of the following two simple hypotheses,

H0: (μ,λ, ν) = (μ0, λ0, ν0) versus H1: (μ,λ, ν) = (μ1, λ1, ν1), (2.1)

is correct for some known μ0,μ1, (λ0, ν0), and (λ1, ν1), where μ0 �= μ1, λ0 < λ1, and prob-
ability measures ν0 and ν1 on (E, E ) are equivalent. The unknown index of the correct
hypothesis is denoted by Θ , which we assume is a random variable with prior distribution

P{Θ = 1} = 1 − P{Θ = 0} = π for some known π ∈ (0,1).

One is allowed to observe processes X and (Tn,Zn)n≥1 as long as desired before making
a final choice between hypotheses H0 and H1. Each time-unit before a decision is made
costs one, and choosing the wrong hypothesis costs a or b monetary units, respectively, if
the choice is H0 or H1. The objective is to minimize the expected total costs of sampling
time and a wrong terminal decision.

Hence, every acceptable decision rule (τ, d) consists of an F-stopping time τ and a {0,1}-
valued Fτ -measurable random variable d and is associated with the Bayes risk

Rτ,d(π) := E
[
τ + 1{τ<∞}(a1{d=0,Θ=1} + b1{d=1,Θ=0})

]
. (2.2)

The problem is to (i) calculate the minimum Bayes risk

U(π) := inf
(τ,d)∈


R(τ,d)(π), π ∈ (0,1) (2.3)

over the collection 
 of all acceptable decision rules (τ, d), and (ii) to find an acceptable
decision rule that attains the minimum, if such a rule exists.

2.1 Model

We will now construct a model for the problem just described. Let (Ω, F ,P0) be a probabil-
ity space hosting the following independent stochastic elements: (i) X is a Brownian motion
with drift rate μ0, (ii) (Tn,Zn)n≥1 is a compound Poisson process with arrival rate λ0 and
mark distribution ν0 on (E, E ), and (iii) Θ is a Bernoulli random variable with success
probability π ∈ (0,1).

We denote by G = (Gt )t≥0 the filtration obtained by enlarging the observation filtration
F with the information about Θ ; i.e., Gt := Ft ∨ σ(Θ) for every t ≥ 0, and introduce the
likelihood-ratio process

Lt = exp

{
(μ1 − μ0)(Xt − X0) −

[
μ2

1 − μ2
0

2
+ λ1 − λ0

]
t

+
∑

0<Tn≤t

log

(
λ1

λ0

dν1

dν0
(Zn)

)}
, t ≥ 0. (2.4)
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Let P be a new probability measure on (Ω, G∞), whose restriction to each Gt , t ≥ 0 is
defined in terms of the Radon–Nikodym derivative

dP

dP0

∣∣∣∣
Gt

= ξt := 1{Θ=0} + 1{Θ=1}Lt, t ≥ 0. (2.5)

An application of Girsanov theorem shows that under P, the process Xt − [(1 − Θ)μ0 +
Θμ1]t is a standard (P,G)-Brownian motion, and (Tn,Zn)n≥1 is a marked point process
with (P,G)-compensating measure (1−Θ)ν0(dz)λ0 dt +Θν1(dz)λ1 dt . Moreover, because
Θ ∈ G0 and L0 = 1, the distributions of Θ under P0 and P are the same. Under probability
measure P defined by (2.5), we have the same setup as in the problem description. Therefore,
in the remainder we will work with the model constructed here.

Starting from any arbitrary but fixed initial state φ ∈ R+, let us define the process

Φ0 = φ and Φt = Φ0Lt, t ≥ 0. (2.6)

The Bayes theorem implies that

P{Θ = 1 | Ft }
P{Θ = 0 | Ft } = E0[ξt1{Θ=1} | Ft ]

E0[ξt1{Θ=0} | Ft ] = LtP0{Θ = 1 | Ft }
P0{Θ = 0 | Ft }

= π

1 − π
Lt , t ≥ 0 P

π
1−π -a.s.

because Lt is Ft -measurable, and Θ and Ft are independent under P0. Namely, Φt is the
conditional odds of the event {Θ = 1} given the observations of X and (Tn,Zn)n≥1 until
time t ≥ 0.

The next proposition, the proof of which is very similar to that of Proposition 2.1 of
Dayanik and Sezer (2006), shows that the sequential hypothesis testing problem can be
reduced to an optimal stopping problem for the conditional odds-ratio process Φ in (2.6).

Proposition 2.1 The Bayes risk Rτ,d(π) in (2.2) can be written as

Rτ,d(π) = b(1 − π)P
π

1−π

0 {τ < ∞}

+ (1 − π)E
π

1−π

0

[∫ τ

0
(1 + Φt)dt + (aΦτ − b)1{d=0,τ<∞}

]
, (2.7)

where P
φ

0 is the probability P0 with Φ0 = φ, and E
φ

0 is the expectation with respect to P
φ

0 for
every φ ∈ R+. If we define

d(t) := 1(b/a,∞)(Φt ), t ≥ 0, (2.8)

then the pair (τ, d(τ )) belongs to 
. We have Rτ,d(π) ≥ Rτ,d(τ)(π) for every (τ, d) ∈ 
 and
π ∈ (0,1), and the minimum Bayes risk U(π) of (2.3) can be written as

U(π) ≡ inf
(τ,d)∈


Rτ,d(π) = b(1 − π) + (1 − π)V

(
π

1 − π

)
, π ∈ (0,1) (2.9)

in terms of the value function V (·) of the auxiliary optimal stopping problem

V (φ) := inf
τ∈F

E
φ

0

[∫ τ

0
g(Φt)dt + 1{τ<∞}h(Φτ )

]
, φ ≥ 0, (2.10)
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where the running cost function g : R+ 	→ R and the terminal cost function h : R+ 	→ R are
defined by

g(φ) := 1 + φ and h(φ) := −(aφ − b)−. (2.11)

Remark 2.1 If E
φ

0 τ = +∞ for some τ ∈ F and φ ∈ R+, then E
φ

0 [∫ τ

0 g(Φt)dt +1{τ<∞}h(Φτ )]
≥ E

φ

0 τ − b = +∞ because g(φ) ≥ 1 and h(φ) ≥ −b. Therefore, in (2.10), the infimum can
be restricted, without any loss, to those τ ∈ F for which E

φ

0 τ < ∞.

Let us denote the point process generated by (Tn,Zn)n≥1 with

p
(
(0, t] × B

)= ∞∑
n=1

1(0,t]×B(Tn,Zn), t ≥ 0.

Then the likelihood-ratio process L in (2.4) can be written as

Lt = exp

{
(μ1 − μ0)(Xt − X0) −

[
μ2

1 − μ2
0

2
+ λ1 − λ0

]
t

+
∫

(0,t]

∫
E

log

(
λ1

λ0

dν1

dν0
(z)

)
p(ds × dz)

}
, t ≥ 0,

and an application of Itô’s rule to (2.6) gives the dynamics of process Φ as

Φ0 = φ and dΦt = (μ1 − μ0)Φt (dXt − μ0 dt)

+ Φt−
∫

E

(
λ1

λ0

dν1

dν0
(z) − 1

)[
p(dt × dz) − ν0(dz)λ0 dt

]
, t ≥ 0,

and for every sufficiently smooth function w : R+ 	→ R, we have

dw(Φt) = (Aw)(Φt)dt + (μ1 − μ0)Φt−w′(Φt )(dXt − μ0 dt)

+
∫

E

[
w

(
λ1

λ0

dν1

dν0
(z)Φt−

)
− w(Φt−)

][
p(dt × dz) − ν0(dz)λ0 dt

]
, t ≥ 0,

(2.12)

where A is the (P0,F)-infinitesimal generator of Φ given by

(Aw)(φ) = (λ0 − λ1)φw′(φ) + (μ1 − μ0)
2

2
φ2w′′(φ)

+ λ0

∫
E

[
w

(
λ1

λ0

dν1

dν0
(z)φ

)
− w(φ)

]
ν0(dz). (2.13)

Note that, for every k ≥ 0 and t ≥ 0, (2.4) implies that

ΦTk+t = Φ0LTk+t = Φ0LTk

LTk+t

LTk

= ΦTk
exp

{
(μ1 − μ0)(XTk+t − XTk

) −
[

μ2
1 − μ2

0

2
+ λ1 − λ0

]
t
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+
∑

Tk<Tn≤Tk+t

log

(
λ1

λ0

dν1

dν0
(Zn)

)}
. (2.14)

Let us set T0 ≡ 0 and introduce

X
(k)
t := XTk+t , t ≥ 0, k ≥ 0,(

T
(k)
� ,Z

(k)
�

) := (Tk+� − Tk,Zk+�), � ≥ 1, k ≥ 0,

F
(k) := (F (k)

t

)
t≥0

with F (k)

0 := FTk
, k ≥ 0, and

F (k)
t := F (k)

0 ∨ σ
{
X(k)

u ; 0 ≤ u ≤ t
}∨ σ

{(
T

(k)
� ,Z

(k)
�

); 0 ≤ T
(k)
� ≤ t, � ≥ 1

}
.

Then, for every k ≥ 0, (X
(k)
t )t≥0 is a (P0,F

(k))-Brownian motion with drift μ0, and
(T

(k)
� ,Z

(k)
� )�≥1 is a (P0,F

(k))-compound Poisson process with arrival rate λ0 and mark dis-
tribution ν0 on (E, E ). If we define

Y
k,φ
t := φ exp

{
(μ1 − μ0)

(
X

(k)
t − X

(k)

0

)− [μ2
1 − μ2

0

2
+ λ1 − λ0

]
t

}
,

t ≥ 0, k ≥ 0, φ ≥ 0, (2.15)

then the sample paths of the conditional odds-ratio process Φ in (2.6) and (2.14) can be
decomposed into diffusion and jump parts as in

Φt =

⎧⎪⎨
⎪⎩

Y
k,ΦTk

t−Tk
, if t ∈ [Tk, Tk+1) for some k ≥ 0,

λ1

λ0

dν1

dν0
(Zk+1)Y

k,ΦTk

Tk+1−Tk
, if t = Tk+1 for some k ≥ 0.

(2.16)

The process Y k,φ is a diffusion with dynamics

Y
k,φ

0 = φ and dY
k,φ
t = (μ1 − μ0)Y

k,φ
t

(
dX

(k)
t − μ0 dt

)+ (λ0 − λ1)Y
k,φ
t dt, t ≥ 0.

In the remainder, we will take advantage of the decomposition in (2.16) of the process Φ to
solve the auxiliary optimal stopping problem in (2.10).

3 Jump operator and successive approximations

We will denote Y 0,Φ0 by Y Φ0 , which is a diffusion with dynamics

Y
Φ0
0 = Φ0, dY

Φ0
t = (λ0 − λ1)Y

Φ0
t dt + (μ1 − μ0)Y

Φ0
t (dXt − μ0 dt) t ≥ 0 (3.1)

and (P0,F)-infinitesimal generator

(A0w)(φ) = (λ0 − λ1)φw′(φ) + 1

2
(μ1 − μ0)

2φ2w′′(φ) (3.2)

acting on twice-continuously differentiable functions w : R+ 	→ R. For every bounded Borel
function w : R+ 	→ R, let us define

(Kw)(φ) :=
∫

E

w

(
λ1

λ0

dν1

dν0
(z)φ

)
ν0(dz), φ ∈ R+, (3.3)
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and the jump operator

(Jw)(φ) := inf
τ∈FX

E
φ

0

[∫ τ

0
e−λ0t

[
g+λ0(Kw)

](
Y

Φ0
t

)
dt +e−λ0τ h

(
Y Φ0

τ

)]
, φ ∈ R+, (3.4)

which is itself a discounted optimal stopping problem for the diffusion Y Φ0 in (3.1), with
discount rate λ0, running cost function g(·) + λ0(Kw)(·) and terminal cost function h(·).

As a possible solution to (2.10), consider the following strategy. For an arbitrary but fixed
stopping time τ of process X, i.e., τ ∈ F

X , suppose that we decided to stop the process Φ

at τ on {τ < T1} and continue with an optimal stopping rule from T1 onwards on {τ ≥ T1}.
Because of the decomposition in (2.16) of the sample paths of Φ , the expected total cost of
this strategy should be equal to E

φ

0 [∫ τ∧T1
0 g(Φt)dt + 1{τ<T1}h(Φτ ) + 1{τ≥T1}V (ΦT1)], which

can be written as

E
φ

0

[∫ ∞

0
1{T1>t}g

(
Y

Φ0
t

)
1{τ>t}dt + 1{τ<T1}h

(
Y Φ0

τ

)+ 1{τ≥T1}V
(

λ1

λ0

dν1

dν0
(Z1)Y

Φ0
T1

)]

=
∫ ∞

0
e−λ0t

E
φ0
0

[
g
(
Y

Φ0
t

)
1{τ>t}

]
dt + E

φ

0

[
e−λ0τ h

(
Y Φ0

τ

)]

+ E
φ

0

[∫ τ

0
λ0e

−λ0t

(∫
E

V

(
λ1

λ0

dν1

dν0
(z)Y

Φ0
t

)
ν0(dz)

)
dt

]

= E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(KV )
(
Y

Φ0
t

)]
dt + e−λ0t h

(
Y Φ0

τ

)]

since τ and Y Φ0 are functionals of process X, and X and (T1,Z1) are P
φ

0 -independent. One
also expects that V (φ) is the smallest expected total cost over all such strategies and solves

V (φ) = inf
τ∈FX

E
φ

0

[∫ τ

0
e−λ0t

[
g + λ0(KV )

](
Y

Φ0
t

)
dt + e−λ0τ h

(
Y Φ0

τ

)]

≡ (JV )(φ), φ ≥ 0. (3.5)

Later, we will prove that this conjecture is indeed true.

Lemma 3.1 If w1(·) ≤ w2(·) are bounded, then (Jw1)(·) ≤ (Jw2)(·). If −b ≤ w(·) ≤ 0,
then −b ≤ (Jw)(·) ≤ h(·). If w(·) is increasing and concave, then so is (Jw)(·).

Proof The monotonicity of w 	→ Jw is obvious. We have (Jw)(·) ≤ h(·) because τ ≡ 0 is
one of the acceptable stopping times. If w(·) ≥ −b, then (Kw)(·) ≥ −b and

(Jw)(φ) = inf
τ∈FX

E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(KV )
(
Y

Φ0
t

)]
dt + e−λ0τ h

(
Y Φ0

τ

)]

≥ inf
τ∈FX

E
φ

0

[∫ τ

0
λ0e

−λ0t (−b)dt + e−λ0τ (−b)

]

= inf
τ∈FX

(−b)E
φ0
0

[
1 − e−λ0τ + e−λ0τ

]= −b.

To establish the last claim, note first that the definition of the process Y Φ0 ≡ Y 0,Φ0 in (2.15)
implies that Y

φ1
0 ≤ Y

φ2
0 for every t ≥ 0 if 0 ≤ φ1 ≤ φ2. The functional (Kw)(·) in (3.3)
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is nondecreasing if w(·) is nondecreasing. Therefore, if 0 ≤ φ1 ≤ φ2, then (Kw)(Y
φ1
t ) ≤

(Kw)(Y
φ2
t ) for every t ≥ 0. Because the function h(·) is also nondecreasing, we conclude

that (Jw)(φ1) ≤ (Jw)(φ2) if 0 ≤ φ1 ≤ φ2.
Finally, the terminal reward function h(·) is concave, and if w(·) is concave, then the

function (Kw)(·) is also concave. Because Y φ in (2.15) linear in φ, the integrand and ex-
pectation in (3.4) are concave in φ for every fixed stopping time τ ∈ F

X . Because (Jw)(·)
is the infimum of a class of concave functions, it is itself concave. �

In (3.5), we anticipated that the value function V (·) in (2.10) coincides with a fixed point
of operator J , which can be found by means of successive approximations. Let us define

v0(·) := h(·) and vn(·) := (J vn−1)(·), n ≥ 1. (3.6)

Lemma 3.2 The sequence (vn(·))n≥0 is decreasing, and v∞(·) := limn→∞ vn(·) ≡
infn≥0 vn(·) exists; vn(·), n ≥ 0 and v∞(·) are nondecreasing, concave, and bounded be-
tween −b and h(·).

Proof Note that φ 	→ v0(φ) = h(φ) = −(aφ − b)− is nondecreasing, concave, and bounded
between −b and h(φ). Suppose that vn(·) for some n ≥ 0 has the same properties. Then by
Lemma 3.1, vn+1(·) = (J vn)(·) is nondecreasing, concave, and bounded between −b and
h(·). We have v1(·) ≤ (J v0)(·) = (Jh)(·) ≤ h(·) = v0(·), and if vn(·) ≤ vn−1(·) for some
n ≥ 1, then Lemma 3.1 also implies that vn+1(·) = (J vn)(·) ≤ (J vn−1)(·) = vn(·). Finally,
v∞(·) is nondecreasing, concave, and bounded between −b and h(·) because it is the point-
wise limit of the vn(·)’s, each of which has the same properties. �

Lemma 3.3 The function v∞(·) is the largest solution of the equation v(·) = (J v)(·) less
than or equal to h(·).

Proof Because −b ≤ vn(·) ≤ h(·) for every n ≥ 0, the bounded convergence theorem im-
plies

v∞(φ) = inf
n≥0

vn+1(φ) = inf
τ∈FX

inf
n≥0

E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kvn)
(
Y

Φ0
t

)]
dt + e−λ0τ h

(
Y Φ0

τ

)]

= inf
τ∈FX

lim
n→∞ E

φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kvn)
(
Y

Φ0
t

)]
dt + e−λ0τ h

(
Y Φ0

τ

)]

= inf
τ∈FX

E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0

(
K
(

lim
n→∞vn

))(
Y

Φ0
t

)]
dt + e−λ0τ h

(
Y Φ0

τ

)]

= (J v∞)(φ).

Let v(·) be any solution of v(·) = (J v)(·) such that v(·) ≤ h(·). Then v(·) = (J v)(·) ≤
(Jh)(·) = v0(·). Suppose that v(·) ≤ vn(·) for some n ≥ 0. Then v(·) = (J v)(·) ≤ (J vn)(·) =
vn+1(·). Hence, v(·) ≤ vn(·) for every n ≥ 0. Therefore, v(·) ≤ infn≥0 vn(·) = v∞(·). �

4 The solution

Firstly, we will identify explicitly the solution of the optimal stopping problem in (3.4),
namely the value function (Jw)(·) and an optimal stopping time τ ∈ F

X that attains the
infimum in (3.4), for every fixed Borel function w(·) satisfying the following assumption.
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Assumption Let w : R+ 	→ R be increasing, concave, bounded between −b and h of (2.11).

Let ψ(·) and η(·) be increasing and decreasing solutions, respectively, of the ODE

0 = (A0f − λ0f )(φ)

= (μ1 − μ0)
2

2
φ2f ′′(φ) + (λ0 − λ1)φf ′(φ) − λ0f (φ), φ ∈ (0,∞), (4.1)

where A0 is the (P0,F
X)-infinitesimal generator in (3.2) of Y Φ0 . More precisely,

ψ(φ) = φα1 and η(φ) = φα0 , φ > 0,

and α0 < 0 < 1 < α1 are the solutions of the quadratic equation

0 = (μ1 − μ0)
2

2
α(α − 1) + (λ0 − λ1)α − λ0

or

0 = α2 +
[

2(λ0 − λ1)

(μ1 − μ0)2
− 1

]
α − 2λ0

(μ1 − μ0)2
.

With the convention inf ∅ = ∞ (which will be also be followed in the remainder of the text),
let us define the hitting and exit times

τ� := inf
{
t ≥ 0: Y

Φ0
t = �

}
and τ�,r = inf

{
t ≥ 0; Y

Φ0
t /∈ (�, r)

}
, 0 < � < r < ∞

of process Y Φ0 , and the functions

ψ�(φ) := ψ(φ) − η(φ)
η(�)

ψ(�)
and

ηr(φ) := η(φ) − ψ(φ)
η(r)

ψ(r)
, 0 < � < r < ∞, φ > 0,

which are the increasing and decreasing solutions, respectively, of (4.1) subject to the condi-
tions f (�) = 0 and f (r) = 0, respectively. The next lemma can be proven by an application
of Itô formula; see also Borodin and Salminen (1996) and Karlin and Taylor (1981).

Lemma 4.1 For every 0 < � < φ < r < ∞, we have

(i) E
φ

0

[
e−λ0τ�1{τ�<τr }

]= ψ(φ)η(r) − ψ(r)η(φ)

ψ(�)η(r) − ψ(r)η(φ)
= ηr(φ)

ηr(�)
,

(ii) E
φ

0

[
e−λ0τr 1{τ�>τr }

]= ψ(�)η(φ) − ψ(φ)η(�)

ψ(�)η(r) − ψ(r)η(�)
= ψ�(φ)

ψ�(r)
,

(iii) E
φ

0

[
e−λ0τ�,r h

(
Y Φ0

τ�,r

)]= h(�)
ηr(φ)

ηr(�)
+ h(r)

ψ�(φ)

ψ�(r)
.

All three expectations are twice-continuously differentiable in φ and unique solutions of
the ODE A0f − λ0f = 0, � < φ < r with boundary conditions (i) f (�) = 1, f (r) = 0,
(ii) f (�) = 0, f (r) = 1, and (iii) f (�) = h(�), f (r) = h(r), respectively.
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We define the drift rate q(·) and diffusion rate p2(·) of Y Φ0 in (3.1), the Wronskian W(·)
of ψ(·) and η(·), and the Wronskian W�,r (·) of ψr(·) and η�(·) for every 0 < � < r < ∞ by

q(φ) = (λ0 − λ1)φ, p2(φ) = (μ1 − μ0)
2φ2,

W(φ) = ψ ′(φ)η(φ) − ψ(φ)η′(φ) = (α1 − α0)φ
α0+α1−1,

W�,r (φ) = ψ ′
�(φ)ηr(φ) − ψ�(ψ)η′

r (φ) = W(φ)

[
1 − η(r)

η(�)

ψ(�)

ψ(r)

]
,

and for every function w : R+ 	→ R and 0 < � < r < ∞ and 0 < � < r < ∞, the operators

(H�,rw)(φ) := E
φ

0

[∫ τ�,r

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw)
(
Y

Φ0
t

)]
dt + e−λ0τ�,r h

(
Y Φ0

τ�,r

)]
, φ > 0,

(4.2)

(Hw)(φ) := E
φ

0

[∫ ∞

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw)
(
Y

Φ0
t

)]
dt

]
, φ > 0. (4.3)

Since E
φ

0 [Y Φ0
t ] = E

φ

0 [Φ0 exp{(μ1 − μ0)(Xt − μ0t) − [ (μ1−μ0)2

2 + λ1 − λ0]t}] = φe−(λ1−λ0)t ,
we have

∣∣(Hw)(φ)
∣∣≤ E

φ

0

[∫ ∞

0
e−λ0t

(
1 + Y

Φ0
t + λ0b

)
dt

]
= 1 + λ0b

λ0
+
∫ ∞

0
e−λ0t

E
φ

0

[
Y

Φ0
t

]
dt

= 1 + λ0b

λ0
+ φ

∫ ∞

0
e−λ0t e−(λ1−λ0)t dt = 1 + λ0b

λ0
+ φ

λ1
< ∞, φ > 0. (4.4)

Also (H�,rw)(φ) < ∞ and (Jw)(φ) < ∞ for φ > 0, because for every F
X-stopping time τ∣∣∣∣Eφ

0

[∫ τ

0
e−λ0t

[
g + λ0(Kw)

](
Y

Φ0
t

)
dt + e−λ0τ h

(
Y Φ0

τ

)]∣∣∣∣
≤ E

φ

0

[∫ τ

0
e−λ0t

(
1 + Y

Φ0
t + λ0b

)
dt + e−λ0τ b

]

≤ E
φ

0

[∫ ∞

0
e−λ0t

(
1 + Y

Φ0
t

)
dt + b

(
1 − e−λ0τ + e−λ0τ

)]= 1

λ0
+ φ

λ1
+ b < ∞.

Lemma 4.2 Let k : R+ 	→ R be a Borel function such that |k(φ)| ≤ c(1 + φ) for every
φ ∈ R+ for some constant c > 0. Then E

φ

0 [∫ τ�,r
0 e−λ0t k(Y

Φ0
t )dt] equals

ηr(φ)

∫ φ

�

2ψ�(ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ + ψ�(φ)

∫ r

φ

2ηr(ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ (4.5)

for every � < φ < r , which is twice-continuously differentiable on (�, r), continuous on
[�, r] and unique solution of boundary value problem (A0f )(φ) − λ0f (φ) + k(φ) = 0 for
all � < φ < r with f (�) = f (r) = 0. Moreover,

E
φ

0

[∫ ∞

0
e−λ0t k

(
Y

Φ0
t

)
dt

]

= lim
�↓0,r↑∞

E
φ

0

[∫ τ�,r

0
e−λ0t k

(
Y

Φ0
t

)
dt

]
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= η(φ)

∫ φ

0

2ψ(ξ)

p2(ξ)W(ξ)
k(ξ)dξ + ψ(φ)

∫ ∞

φ

2η(ξ)

p2(ξ)W(ξ)
k(ξ)dξ, φ > 0, (4.6)

which is twice-continuously differentiable on (0,∞), and satisfies the ODE (A0f )(φ) −
λ0f (φ) + k(φ)(φ) = 0 for every φ ∈ (0,∞). If the limit k(0+) = limφ↓0 k(φ) exists, then

lim
φ↓0

E
φ

0

[∫ ∞

0
e−λ0t k

(
Y

Φ0
t

)
dt

]
exists and equals

k(0+)

λ0
.

The proof of Lemma 4.2 is omitted here and given in the Appendix at the end. Since
|g(φ) + λ0(Kw)(φ)| ≤ (1 + φ + λ0b) ≤ (1 + λ0b)(1 + φ) for every φ > 0, we can apply
Lemmas 4.1 and 4.2 to k(φ) = g(φ) + λ0(Kw)(φ) to reach the following corollaries.

Corollary 4.1 For every 0 < � < r < ∞, we have (H�,rw)(φ) = h(φ) if φ /∈ (�, r), and

(H�,rw)(φ) = ηr(φ)

∫ φ

�

2ψ�(ξ)

p2(ξ)W�,r (ξ)

[
g(ξ) + λ0(Kw)(ξ)

]
dξ

+ ψ�(φ)

∫ r

φ

2ηr(ξ)

p2(ξ)W�,r (ξ)

[
g(ξ) + λ0(Kw)(ξ)

]
dξ

+ ηr(φ)

ηr(�)
h(�) + ψ�(φ)

ψ�(r)
h(r) if φ ∈ (�, r). (4.7)

The function φ 	→ (H�,rw)(φ) is the unique twice-continuously differentiable function on
[�, r] which solves the boundary-value problem

(A0f )(φ) − λ0f (φ) + g(φ) + λ0(Kf )(φ) = 0, φ ∈ (�, r),

f (�) = h(�) and f (r) = h(r).

Corollary 4.2 We have (Hw)(φ) = lim�↓0,r↑∞(H�,rw)(φ) for every φ > 0, and

(Hw)(φ) = η(φ)

∫ φ

0

2ψ(ξ)

p2(ξ)W(ξ)

[
g(ξ) + λ0(Kw)(ξ)

]
dξ

+ ψ(φ)

∫ ∞

φ

2η(ξ)

p2(ξ)W(ξ)

[
g(ξ) + λ0(Kw)(ξ)

]
dξ, φ > 0, (4.8)

which satisfies the ODE

(
A0(Hw)

)
(φ) − λ0(Hw)(φ) + g(φ) + λ0

(
K(Hw)

)
(φ) = 0, φ > 0. (4.9)

Since w(0+) = limφ↓0 w(φ) exists, (Hw)(0+) = limφ↓0(Hw)(φ) exists and equals
w(0+)/λ0.

The strong Markov property of process Y Φ0 at every F
X stopping time τ implies that

(Hw)(φ) = E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw)
(
Y

Φ0
t

)]
dt

]
+ E

φ

0

[
e−λ0τ (Hw)

(
Y Φ0

τ

)]
, φ > 0.
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Because (Hw)(φ) < ∞ by (4.4), we have E
φ

0 [∫ τ

0 e−λ0t [g(Y
Φ0
t ) + λ0(Kw)(Y

Φ0
t )]dt] =

(Hw)(φ) − [e−λ0τ (Hw)(Y
Φ0
τ )] for every φ > 0 and τ ∈ F

X , which we can substitute in
(Jw)(φ) to get

(Jw)(φ) = inf
τ∈FX

E
φ

0

[∫ τ

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw)
(
Y

Φ0
t

)]
dt + e−λ0τ h

(
Y Φ0

τ

)]

= (Hw)(φ) − sup
τ∈FX

E
φ

0

[
e−λ0τ (Hw − h)

(
Y Φ0

τ

)]
, φ > 0. (4.10)

The correspondence between two optimal stopping problems in (4.10) can also be estab-
lished by means of the recently published results of Cissé et al. [2012 see, e.g., Lemma 3.4].
Thus to solve (Jw)(·) we shall solve the optimal stopping problem

(Gw)(φ) := (Hw)(φ) − (Jw)(φ) = sup
τ∈FX

E
φ

0

[
e−λ0τ (Hw − h)

(
Y Φ0

τ

)]
, φ > 0 (4.11)

by potential-theoretic direct methods of Dayanik and Karatzas (2003) and Dayanik (2008).
Since

lim
�↓0

ψ(�) = 0, lim
�↓0

η(�) = ∞ and lim
r↑∞η(r) = 0, lim

r↑∞ψ(r) = ∞, (4.12)

both 0 and ∞ are natural boundaries for Y Φ0 . Since α0 < 0 and α1 > 1, (4.4) implies that

0 ≤ (Hw − h)+(φ)

η(φ)
≤ |(Hw)(φ)| + |h(φ)|

η(φ)
≤
(

1 + λ0b

λ0
+ φ

λ1
+ b

)
φ−α0

φ↓0−−→ 0,

0 ≤ (Hw − h)+(φ)

ψ(φ)
≤ |(Hw)(φ)| + |h(φ)|

ψ(φ)
≤
(

1 + λ0b

λ0
+ φ

λ1
+ b

)
φ−α1

φ↑∞−−→ 0,

and we have limφ↓0
(Hw−h)+(φ)

η(φ)
= limφ↑∞ (Hw−h)+(φ)

ψ(φ)
= 0. Therefore, the value function

(Gw)(φ) of the optimal stopping problem in (4.11) is finite by Proposition 5.10 of Dayanik
and Karatzas (2003). Because (Hw − h)(·) is also continuous by Corollary 4.2, Proposi-
tion 5.13 of Dayanik and Karatzas (2003) guarantees that

Γ [w] := {φ > 0; (Gw)(φ) = (Hw)(φ) − h(φ)
}≡ {φ > 0; (Jw)(φ) = h(φ)

}
(4.13)

is the optimal stopping region and

τ [w] := inf
{
t ≥ 0; Y

Φ0
t ∈ Γ [w]} (4.14)

is an optimal stopping time for the problem in (4.11)—and for the problem in (3.4) as well,
because of the correspondence between the problems in (4.10).

We can also identify explicitly the structure of the optimal stopping region Γ [w]
of (4.13). Let us define increasing function F : (0,∞) 	→ R and operator (Lw)(·) on R+
by

F(φ) := ψ(φ)

η(φ)
= φα1−α0 , φ > 0 and

(Lw)(ζ ) :=
{

(Hw−h
η

) ◦ F−1(ζ ), 0 < ζ < ∞,

0, ζ = 0,

(4.15)
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and denote by (Mw)(·) the smallest nonnegative concave majorant of (Lw)(·) on R+. Then
by Proposition 5.12 and Remark 5.2 of Dayanik and Karatzas (2003) and for every φ >

0

(Gw)(φ) = η(φ)(Mw)
(
F(φ)

)
and Γ [w] = F−1

({
ζ > 0; (Mw)(ζ ) = (Lw)(ζ )

})
.

(4.16)

The explicit expressions in (4.8) for (Hw)(·) and in (2.11) for h(·) reveal that

(Hw − h)(φ) = 1

λ0
+ φ

λ1
+ (−α0)α1

α1 − α0
φα0

∫ φ

0
ξ−1−α0(Kw)(ξ)dξ

+ (−α0)α1

α1 − α0
φα1

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ + (aφ − b)−, φ > 0.

Lemmas 4.3 and 4.4 below will help us identify the shape of function (Lw)(·), which will
later allow us to describe explicitly its smallest nonnegative concave majorant (Mw)(·) and
optimal stopping region Γ [w], reexpressed in (4.16) in terms of (Mw)(·) and (Lw)(·).

Lemma 4.3 If w(·) �≡ 0, then

(i) lim
φ↓0

∫ φ

0
ξ−1−α0(Kw)(ξ)dξ = 0,

(ii) lim
φ↓0

φα0

∫ φ

0
ξ−1−α0(Kw)(ξ)dξ = w(0+)

(−α0)
,

(iii) lim
φ↓0

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ = −∞,

(iv) lim
φ↓0

φα1

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ = w(0+)

α1
,

(v) lim
φ↑∞φα0

∫ φ

0
ξ−1−α0(Kw)(ξ)dξ = w(∞)

(−α0)
,

(vi) lim
φ↑∞

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ = 0,

(vii) lim
φ↑∞φα1

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ = w(∞)

α1
.

The proof of the lemma can be found in the Appendix. By (i) and (iv) of Lemma 4.3,
limφ↓0(Hw − h)(φ) = 1

λ0
+ (−α0)α1

α1−α0

w(0+)

α1
+ b is finite. Because α0 < 0, we get

lim
ζ↓0

(Lw)(ζ ) = lim
φ↓0

(Hw)(φ) − h(φ)

η(φ)
= lim

φ↓0

[
(Hw)(φ) − h(φ)

]
φ−α0 = 0.

On the other hand, according to Lemma 4.3 (v) and (vii), for every ε > 0, there is some
φ0 > 0 such that for every φ ≥ φ0

(Hw − h)(φ) ≥ 1

λ0
+ φ

λ1
+ (−α0)α1

α1 − α0

[
w(+∞)

(−α0)
− ε

2

]
+ (−α0)α1

α1 − α0

[
w(+∞)

α1
− ε

2

]
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= 1

λ0
+ φ

λ1
+ w(+∞) − ε

(−α0)α1

α1 − α0

φ↑∞−−→ ∞.

Since α0 < 0, limζ↑∞(Lw)(ζ ) = limφ↑∞ (Hw)(φ)−h(φ)

η(φ)
= limφ↑∞[(Hw)(φ) − h(φ)]φ−α0 =

∞, and

(Lw)′(F(φ)
) =

(
(Hw)(φ) − h(φ)

η(φ)

)′ 1

F ′(φ)
= (−α0)

λ0(α1 − α0)
φ−α1 + 1 − α0

λ1(α1 − α0)
φ1−α1

+ (−α0)α1

α1 − α0

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ

+
[

(−α0)b

α1 − α0
φ−α1 − (1 − α0)a

α1 − α0
φ1−α1

]
1(0<b/a)(φ).

Because α1 > 1, Lemma 4.3(vi) implies that limζ↑∞(Lw)′(ζ ) = limφ↑∞(Lw)′(F (φ)) = 0.
On the other hand, Lemma 4.3(iv) implies that for every sufficiently small ε > 0

lim
ζ↓0

(Lw)′(ζ ) = lim
φ↓0

(Lw)′(F(φ)
)

= lim
φ↓0

φ−α1

[
(−α0)

λ0(α1 − α0)
+ (−α0)α1

α1 − α0
φα1

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ

+ (−α0)b

α1 − α0
+ 1 − α0

α1 − α0

(
1

λ1
− a

)
φ

]

≥ lim
φ↓0

φ−α1

[
(−α0)

λ0(α1 − α0)
+ (−α0)α1

α1 − α0

(
w(0+)

α1
− ε

)
+ (−α0)b

α1 − α0
− ε

]

≥ lim
φ↓0

φ−α1

[
(−α0)

2λ0(α1 − α0)
+ (−α0)

α1 − α0

(
w(0+) + b

)]= +∞

because α0 < 0, α1 > 1, and w(0+) + b ≥ 0. Note also that

(Lw)′
(

F

(
b

a
+
))

− (Lw)′
(

F

(
b

a
−
))

= −
[

(−α0)b

α1 − α0

(
b

a

)−α1

− (1 − α0)a

α1 − α0

(
b

a

)1−α1
]

= −
[

(−α0)b

α1 − α0

(
b

a

)−α1

− (1 − α0)b

α1 − α0

(
b

a

)−α1
]

= b

α1 − α0

(
b

a

)−α1

> 0,

which completes the proof of the next lemma.

Lemma 4.4 We have

(i) lim
ζ↓0

(Lw)(ζ ) = 0, (ii) lim
ζ↑∞

(Lw)(ζ ) = +∞,

(iii) lim
ζ↓0

(Lw)′(ζ ) = +∞, (iv) lim
ζ↑∞

(Lw)′(ζ ) = 0,

(v) lim
ζ↑F(b/a)

(Lw)′(ζ ) < lim
ζ↓F(b/a)

(Lw)′(ζ ).
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Let us also study the sign of the second derivative (Lw)′′(·) of (Lw)(·). Dayanik and
Karatzas [(2003), p. 192] showed that

(Lw)′′(F(φ)
)= 2η(φ)

p2(φ)W(φ)F ′(φ)

(
(A0 − λ0)(Hw − h)

)
(φ), φ ∈ R+ \ {b/a},

sgn
[
(Lw)′′(F(φ)

)]
sgn
[
(A0 − λ0)(Hw − h)(φ)

]
, φ ∈ R+ \ {b/a},

(4.17)

because η(·), p2(·), W(·), and F ′(·) are positive. By Corollary 4.2 and (2.11), we have

(A0 − λ0)(Hw − h)(φ) =
{ − 1 − λ0b − (1 − aλ1)φ − λ0(Kw)(φ), if 0 < φ < b/a,

− 1 − φ − λ0(Kw)(φ), if φ > b/a,

which is convex on (0, b/a) and (b/a,∞). It is also decreasing on (b/a,∞) and negative for
every large enough φ. It has jump discontinuity at φ = b/a and (A0 −λ0)(Hw−h)(b/a+)−
(A0 −λ0)(Hw−h)(b/a−) = (λ1 −λ0)b > 0. Moreover, because w(·) ≥ −b, we have (A0 −
λ0)(Hw −h)(0+) = −1 −λ0w(0+)−λ0b = −1 −λ0[w(0+)+b] ≤ −1. Therefore, (A0 −
λ0)(Hw − h)(φ) is negative in a nonempty open neighborhood of both φ = 0 and φ = +∞
(after one-point compactification of R+) and changes its sign at most once in each of the
intervals (0, b/a) and (b/a,∞). Then (4.17) implies that (Lw)(ζ ) is always strictly concave
in some open nonempty neighborhood of ζ = 0 and ζ = ∞ and strictly convex on some
bounded closed interval containing ζ = F(b/a). The function (Lw)(ζ ) is strictly increasing
for every ζ ∈ [F(b/a),∞), because (Lw)(ζ ) = [(Hw)/η](F−1(ζ )) for every ζ > F(b/a)

and (Hw)(·) is increasing. Since (Lw)(0+) = 0 and (Lw)′(0+) = ∞ by Lemma 4.4 (ii)
and (iv), and since (Lw)(ζ ) is strictly concave in some open nonempty neighborhood of
ζ = 0, Lw(ζ ) is positive and strictly increasing in some open nonempty neighborhood of
ζ = 0. Finally, (v) of Lemma 4.4 implies that there are two unique numbers 0 < ζ1[w] <

F(b/a) < ζ2[w] < ∞ such that

(Lw)′(ζ1[w])= (Lw)(ζ2[w]) − (Lw)(ζ1[w])
ζ2[w] − ζ1[w] = (Lw)′(ζ2[w]),

and the smallest nonnegative concave majorant (Mw)(·) of (Lw)(·) coincides with (Lw)(·)
on [0, ζ1[w]] ∪ [ζ2[w],∞) and with the straight line tangent to (Lw)(·) at ζ = ζ1[w] and
ζ = ζ2[w] on the interval [ζ1[w], ζ2[w]]. Namely,

(Mw)(ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

(Lw)(ζ ), if ζ ∈ [0, ζ1[w]] ∪ [ζ2[w],∞),

ζ2[w]−ζ

ζ2[w]−ζ1[w] (Lw)(ζ1[w]) + ζ−ζ1[w]
ζ2[w]−ζ1[w] (Lw)(ζ2[w]),

if ζ ∈ (ζ1[w], ζ2[w]);

see Fig. 1 for the illustrations of (Lw)(·) and its smallest nonnegative concave majorants
(Mw)(·). If we define

φ1[w] := F−1
(
ζ1[w])= (ζ1[w])1/(α1−α0)

,

φ2[w] := F−1
(
ζ2[w])= (ξ2[w])1/(α1−α0)

,

(4.18)
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Fig. 1 Two possible forms of function (Lw)(·) and their smallest nonnegative concave majorants on R+

then (4.16) identifies value function (Gw)(·) of the optimal stopping problem in (4.11) by

(Gw)(φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Hw)(φ) − h(φ), φ ∈ (0, φ1[w]] ∪ [φ2[w],∞),

(φ2[w])α1−α0 −φα1−α0

(φ2[w])α1−α0 −(φ1[w])α1−α0
(Hw − h)(φ1[w])

+ φα1−α0 −(φ1[w])α1−α0

(φ2[w])α1−α0 −(φ1[w])α1−α0
(Hw − h)(φ2[w]),

φ ∈ (φ1[w], φ2[w])

(4.19)

and the optimal stopping region Γ [w] by

Γ [w] = {φ > 0; (Gw)(φ) = (Hw)(φ) − h(φ)
}= (0, φ1[w]]∪ [φ2[w],∞).

Therefore, the stopping time τ [w] in (4.14), which is optimal for the problems in both (4.11)
and (3.4), is given by

τ [w] = inf
{
t ≥ 0; Y

Φ0
t ∈ (0, φ1[w]]∪ [φ2[w],∞)}≡ τφ1[w],φ2[w], (4.20)

which completes the proof of the next proposition.

Proposition 4.1 An optimal stopping time for the problem in (3.4) is given by τ [w] =
τφ1[w],φ2[w] in (4.20), where 0 < φ1[w] < b/a < φ2[w] < ∞ are defined by (4.18). For every
φ > 0, we have (Jw)(φ) = (Hφ1[w],φ2[w]w)(φ), which can be calculated explicitly with (4.7).

Remark 4.1 Since ζ 	→ [(Hw − h)/η] ◦ F−1(ζ ) ≡ (Lw)(ζ ) = (Mw)(ζ ) on (0, ζ1[w]] ∪
[ζ2[w],∞) is strictly concave, we have 0 > d2

dζ 2 (Hw−h
η

) ◦ F−1(ζ ) for ζ ∈ (0, ζ1[w]] ∪
[ζ2[w],∞), and (4.17) implies that (A0 − λ0)(Hw − h)(φ) < 0 for every φ ∈ (0, φ1[w]] ∪
[φ2[w],∞).

Remark 4.2 The value function (Gw)(·) of the optimal stopping problem in (4.11) is contin-
uously differentiable on R+, twice continuously-differentiable on R+ \ {φ1[w], φ2[w]} and
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satisfies the variational inequalities

(i) (A0 − λ0)(Gw)(φ) = 0, φ ∈ (φ1[w], φ2[w]),
(ii) (Gw)(φ) > (Hw)(φ) − h(φ), φ ∈ (φ1[w], φ2[w]),
(iii) (A0 − λ0)(Gw)(φ) < 0, φ ∈ (0, φ1[w])∪ (φ2[w],∞),
(iv) (Gw)(φ) = (Hw)(φ) − h(φ), φ ∈ (0, φ1[w]]∪ [φ2[w],∞),

where (i) and (iv) follow from (4.19), (iii) from (iv) and Remark 4.1, and (ii) from strict
concavity/convexity of (Lw)(ζ ) on (ζ1[w], ζ2[w]) and from that (Mw)(ζ ) coincides with
straight line which is tangent at ζ = ζ1[w] and ζ = ζ2[w] to (Lw)(ζ ) and majorizes it ev-
erywhere.

Because (Jw)(φ) = (Hw)(φ) − (Gw)(φ) for every φ > 0 by (4.11) and twice
continuously-differentiable function (Hw)(·) satisfies (4.9) by Corollary 4.2, (Jw)(·) is
continuously differentiable on R+, twice continuously-differentiable on R+ \{φ1[w], φ2[w]}
and

(A0 − λ0)(Jw)(φ)

= (A0 − λ0)(Hw)(φ) − (A0 − λ0)(Gw)(φ)

= −(1 + φ + λ0(Kw)(φ)
)− (A0 − λ0)(Gw)(φ), φ ∈ R+ \ {φ1[w], φ2[w]}.

Now it immediately follows from the above variational inequalities that (Gw)(·) solves that
(Jw)(·) satisfies the variational inequalities

(i) (A0 − λ0)(Jw)(φ) + 1 + φ + λ0(Kw)(φ) = 0, φ ∈ (φ1[w], φ2[w]),
(ii) (Jw)(φ) < h(φ), φ ∈ (φ1[w], φ2[w]),
(iii) (A0 − λ0)(Jw)(φ) + 1 + φ + λ0(Kw)(φ) > 0, φ ∈ (0, φ1[w])∪ (φ2[w],∞),
(iv) (Jw)(φ) = h(φ), φ ∈ (0, φ1[w]]∪ [φ2[w],∞).

(4.21)

Recall now from Lemma 3.2 that the limit v∞(·) = limn→∞ vn(·) ≡ infn≥0 vn(·) of suc-
cessive approximations (vn(·))n≥0 in (3.6) is nondecreasing, concave, and bounded between
−b and h(·); hence, it satisfies the assumption on page 109. Moreover, it is a fixed point
of jump operator J by Lemma 3.3. Then by Remark 4.2 and for w = v∞, the function
(J v∞)(·) ≡ v∞(·) is continuously differentiable on R+, twice continuously-differentiable
on R+ \ {φ1[w], φ2[w]}, and satisfies the variational inequalities in (4.21). More precisely,

(i) (A0 − λ0)v∞(φ) + 1 + φ + λ0(Kv∞)(φ) = 0, φ ∈ (φ1[v∞], φ2[v∞])
(ii) v∞(φ) < h(φ), φ ∈ (φ1[v∞], φ2[v∞]),
(iii) (A0 − λ0)v∞(φ) + 1 + φ + λ0(Kv∞)(φ) > 0, φ ∈ (0, φ1[v∞])∪ (φ2[v∞],∞)
(iv) v∞(φ) = h(φ), φ ∈ (0, φ1[v∞]]∪ [φ2[v∞],∞).

Since (2.13) and (3.2) imply for φ ∈ R+ \ {φ1[w], φ2[w]}, (A0 − λ0)v∞(φ) + λ0(Kv∞)(φ)

equals

(λ0 − λ1)φv′
∞(φ) + (μ1 − μ0)

2

2
φ2v′′

∞(φ) + λ0

[∫
E

v∞
(

λ1

λ0

dν1

dν0
(z)φ

)
− v∞(φ)

]
ν0(dz),
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which is the (P0,F)-infinitesimal generator (Av∞)(φ) of jump-diffusion conditional odds-
ratio process Φ of (2.6), the variational inequalities satisfied by v∞(·) become

(i) Av∞(φ) + 1 + φ = 0, φ ∈ (φ1[v∞], φ2[v∞]),
(ii) v∞(φ) < h(φ), φ ∈ (φ1[v∞], φ2[v∞]),
(iii) Av∞(φ) + 1 + φ > 0, φ ∈ (0, φ1[v∞])∪ (φ2[v∞],∞),
(iv) v∞(φ) = h(φ), φ ∈ (0, φ1[v∞]]∪ [φ2[v∞],∞).

(4.22)

Let us denote the first exit time of Φ from the interval (�, r) by

τ̃�,r := inf
{
t ≥ 0; Φt ∈ (0, �] ∪ [r,∞)}, 0 ≤ � < r ≤ ∞, and,

τ̃ [w] := τ̃φ1[w],φ2[w] for every w : R+ 	→ R satisfying the assumption on page 109.

Applying Itô’s rule to w(·) = v∞(·) as in (2.13) gives

v∞(Φt∧τ∧τ̃�,r )

= v∞(φ) +
∫ t∧τ∧τ̃�,r

0
(Av∞)(Φs)ds +

∫ t∧τ∧τ̃�,r

0
(μ1 − μ0)Φsv

′
∞(Φs)(dXs − μ0 dt)

+
∫ t∧τ∧τ̃�,r

0

∫
E

[
v∞
(

λ1

λ0

dν1

dν0
(z)Φs−

)
− v∞(Φs−)

][
p(ds × dz) − λ0ν0(dz)ds

]
for every t ≥ 0 and F-stopping time τ , where both stochastic integrals are square-integrable
(P0,F)-martingales because

E
φ

0

[∫ t∧τ∧τ̃�,r

0
(μ1 − μ0)

2Φ2
s

(
v′

∞(Φs)
)2

ds

]
≤ t (μ1 − μ0)

2r2 max
φ∈[�,r]

(
v′

∞(φ)
)2

< ∞, t ≥ 0,

E
φ

0

[∫ t∧τ∧τ̃�,r

0

∫
E

∣∣∣∣v∞
(

λ1

λ0

dν1

dν0
(z)Φs−

)
− v∞(Φs−)

∣∣∣∣
2

λ0ν0(dz)ds

]
≤ 4b2λ0t < ∞, t ≥ 0.

Therefore, taking expectations of both sides leads to

E
φ

0

[
h(Φt∧τ∧τ̃�,r )1{τ<∞}

]≥ E
φ

0

[
v∞(Φt∧τ∧τ̃�,r )

]
= v∞(φ) + E

φ

0

[∫ t∧τ∧τ̃�,r

0
(Av∞)(Φs)ds

]

≥ v∞(∞) − E
φ

0

[∫ t∧τ∧τ̃�,r

0
(1 + Φs)ds

]
(4.23)

for every t ≥ 0, F-stopping time τ , and 0 < � < r < ∞, where the inequalities follow
from (4.22). Note that τ̃�,r → ∞ almost surely as � ↓ 0 and r ↑ ∞, h(·) in (2.11) is contin-
uous and bounded, and 1 + Φs ≥ 0 for every s ≥ 0. Firstly taking limits in (4.23) as � ↓ 0,
r ↑ ∞, and t ↑ ∞, and then the bounded convergence theorem on the left-hand side and the
monotone convergence theorem on the right-hand side give E

φ

0 [h(Φτ )1{τ<∞}] ≥ v∞(φ) −
E

φ

0 [∫ τ

0 (1 + Φs)ds] for every F-stopping time τ . Rearranging the terms and taking infimum

over all F-stopping times yield v∞(φ) ≤ infτ∈F E
φ

0 [∫ τ

0 (1 + Φs)ds + 1{τ<∞}h(Φτ )] ≡ V (φ)

for every φ > 0.
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Lemma 4.5 For every 0 < � < r < ∞ and integer k > 0, we have supφ∈[�,r] E
φ

0 τ̃ k
�,r < ∞.

The lemma, the proof of which can be found in the Appendix, implies that P
φ

0 {̃τ [v∞] <

∞} = 1 for every φ > 0. If we replace τ and τ̃�,r in the equality in (4.23) with τ̃ [v∞] ≡
τ̃φ1[v∞],φ2[v∞], the equality becomes E

φ

0 [v∞(Φt∧τ̃ [v∞])] = v∞(φ)+E
φ

0 [∫ t∧τ̃ [v∞]
0 (Av∞)(Φs)ds]

= v∞(φ) − E
φ

0 [∫ t∧τ̃ [v∞]
0 (1 + Φs)ds] for every t ≥ 0. After taking the limits of both sides

as t → ∞, the bounded and monotone convergence theorems give that E
φ

0 [v∞(Φτ̃ [v∞])] =
v∞(φ) − E

φ

0 [∫ τ̃ [v∞]
0 (1 + Φs)ds], and rearranging the terms leads to v∞(φ) = E

φ

0 [∫ τ̃ [v∞]
0 (1 +

Φs)ds + 1{̃τ [v∞]<∞}h∞(Φτ̃ [v∞])] ≥ V (φ) for all φ > 0, since on {̃τ [v∞] < ∞} we have
Φτ̃ [v∞] ∈ (0, φ1[v∞]] ∪ [φ2[v∞],∞), where v∞(·) coincides with h(·) by (4.22). The re-
verse inequality shown before Lemma 4.5 and this complete the proof of the following main
result.

Proposition 4.2 For every φ > 0, we have v∞(φ) = V (φ), and τ̃ [v∞] = τ̃φ1[v∞],φ2[v∞] =
inf{t ≥ 0; Φt ∈ (0, φ1[v∞]] ∪ [φ2[v∞],∞)} is optimal for the problem in (2.10).

We will next show that v∞(·) ≡ V (·) is the uniform limit of successive approximations
(vn(·))n≥0 in (3.6) with an explicit error bound, which leads to an efficient numerical algo-
rithm. Let us denote by w : R+ 	→ R the constant function

w(φ) = −b for every φ > 0.

The function w(·) is concave, nondecreasing, and bounded between −b and h(·); namely,
it satisfies the assumption on page 109. Therefore, by Proposition 4.1 there are numbers
0 < φ1[w ] < b/a < φ2[w ] < ∞ such that

(Jw)(φ) = E
φ

0

[∫ τ [w ]

0
e−λ0t

(
1 + Y

Φ0
t + λ0(Kw)

(
Y

Φ0
t

))
dt + e−λ0τ [w ]h

(
Y

Φ0
τ [w ]
)]

, φ > 0,

where τ [w ] = τφ1[w ],φ2[w ] = inf{t ≥ 0; Y
Φ0
t ∈ (0, φ1[w ]] ∪ [φ2[w ],∞)} is an optimal

stopping rule for (Jw)(·). We denote by ‖f ‖ the sup-norm supφ∈R+ |f (φ)| of any func-
tion f : R+ 	→ R.

Proposition 4.3 Let w1(·) ≤ w2(·) be any two functions satisfying the assumption on
page 109. Then we have 0 < φ1[w ] ≤ φ1[w1] ≤ φ1[w2] ≤ b/a ≤ φ2[w2] ≤ φ2[w1] ≤
φ2[w ] < ∞, and

‖Jw1 − Jw2‖ ≤ β‖w1 − w2‖, where β := 1 −
(

φ1[w ]
φ2[w ]

)(−α0)∧α1

∈ (0,1).

Hence, J is a contraction mapping acting on functions satisfying the assumption on
page 109.

Proof Lemma 3.1 implies that (Jw1)(·) ≤ (Jw2)(·), and (0, φ1[w1]] ∪ [φ2[w1],∞) =
Γ [w1] = {φ > 0; (Jw1)(φ) ≥ h(φ)} ⊆ {φ > 0; (Jw2)(φ) ≥ h(φ)} = Γ [w2] = (0, φ1[w2]]
∪ [φ2[w2],∞). Therefore, 0 < φ1[w1] ≤ φ1[w2] ≤ b/a ≤ φ2[w2] ≤ φ2[w1] < ∞. Because
we also have w(·) ≤ w1(·) and w(·) ≤ w2(·), we obtain by the same reasoning that 0 <

φ1[w ] ≤ φ1[w1] ≤ φ1[w2] ≤ b/a ≤ φ2[w2] ≤ φ2[w1] ≤ φ2[w ] < ∞, which implies that the
optimal stopping times τ [w ], τ [w1], and τ [w2], respectively, for the problems (Jw)(φ),
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(Jw1)(φ), and (Jw2)(φ) are ordered as τ [w ] ≥ τ [w1] ≥ τ [w2] almost surely. For every
φ > 0 observe that

(Jw1)(φ) − (Jw2)(φ)

≤ E
φ

0

[∫ τ [w2]

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw1)
(
Y

Φ0
t

)]
dt + e−λ0τ [w2] h

(
Y

Φ0
τ [w2]

)]

− E
φ

0

[∫ τ [w2]

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0(Kw2)
(
Y

Φ0
t

)]
dt + e−λ0τ [w2] h

(
Y

Φ0
τ [w2]

)]

= E
φ

0

[∫ τ [w2]

0
e−λ0t

[
g
(
Y

Φ0
t

)+ λ0

(
K(w1 − w2)

)(
Y

Φ0
t

)]
dt

]

= ‖w1 − w2‖E
φ

0

[∫ τ [w2]

0
λ0e

−λ0t dt

]
= ‖w1 − w2‖

(
1 − E

φ

0

[
e−λ0τ [w2]])

≤ ‖w1 − w2‖
(
1 − E

φ

0

[
e−λ0τ [w ]]). (4.24)

Because for every φ ∈ (φ1[w ], φ2[w ]) Lemma 4.1 implies that

E
φ

0

[
e−λ0τ [w ]]≥ E

φ

0

[
e−λ0τφ1[w ]]≥ E

φ2[w ]
0

[
e−λ0τφ1[w ]]= η(φ2[w ])

η(φ1[w ]) =
(

φ2[w ]
φ1[w ]

)α0

,

E
φ

0

[
e−λ0τ [w ]]≥ E

φ

0

[
e−λ0τφ2[w ]]≥ E

φ1[w ]
0

[
e−λ0τφ2[w ]]= ψ(φ1[w ])

ψ(φ2[w ]) =
(

φ1[w ]
φ2[w ]

)α1

,

and E
φ

0 [e−λ0τ [w ]] = 1 for every φ ∈ (0, φ1[w ]] ∪ [φ2[w ],∞), we get

E
φ

0

[
e−λ0τ [w ]]≥ max

{(
φ2[w ]
φ1[w ]

)α0

,

(
φ1[w ]
φ2[w ]

)α1
}

=
(

φ1[w ]
φ2[w ]

)(−α0)∧α1

.

Therefore, it follows from (4.24) that (Jw1)(φ)− (Jw2)(φ) ≤ β‖w1 −w2‖ for every φ > 0.
Interchanging w1(·) and w2(·) gives the opposite inequality, which completes the proof. �

Corollary 4.3 The successive approximation vn(φ) in (3.6) converges to v∞(φ) as n → ∞
uniformly in φ > 0. More precisely, 0 ≤ vn(φ) − v∞(φ) ≤ βnb for every φ > 0 and n ≥ 0,
where 0 < β < 1 is defined as in Proposition 4.3.

Proof By Lemma 3.2, vn(·) for every n ≥ 0 and v∞(·) satisfy the assumption on page 109,
and 0 ≤ vn(φ)− v∞(φ) for every φ > 0 and n ≥ 0. Because (J vn−1)(·) = vn(·) by definition
and (J v∞)(·) = v∞(·) by Lemma 3.3, Proposition 4.3 implies that ‖vn − v∞‖ = ‖Jvn−1 −
Jv∞‖ ≤ β‖vn−1 − v∞‖ ≤ · · · ≤ βn‖v0 − v∞‖ ≤ βnb. �

Corollary 4.4 The optimal stopping regions Γ [vn] = {φ > 0; (J vn)(φ) ≥ h(φ)} =
(0, φ1[vn]] ∪ [φ2[vn],∞), n ∈ {0,1, . . .} ∪ {∞} are decreasing: Γ [v0] ⊇ Γ [v1] ⊇ · · · ⊇
Γ [v∞], and 0 < φ1[w ] ≤ φ1[v∞] ≤ · · · ≤ φ1[v1] ≤ φ1[v0] ≤ b/a ≤ φ2[v0] ≤ φ2[v1] ≤ · · ·
≤ φ2[v∞] ≤ φ2[w ] < ∞. Moreover, φ1[v∞] = limn→∞ ↓ φ1[vn] and φ2[v∞] =
limn→∞ ↑ φ2[vn].

Proof Because w(·) ≤ v∞(·) ≤ · · · ≤ v1(·) ≤ v0(·), the monotonicity of the optimal stopping
regions and optimal decision boundaries follow from Proposition 4.3. Because (φ1[vn])n≥0 is
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decreasing, and (φ2[vn])n≥0 is increasing, the limits limn→∞ φ1[vn] and limn→∞ φ2[vn] exist,
and φ1[v∞] ≤ limn→∞ φ1[vn] and φ2[v∞] ≥ limn→∞ φ2[vn]. For the proof of the reverse
inequalities, note that Corollary 4.3 implies that

(J v∞)
(

lim
n→∞φi[vn]

)
= v∞

(
lim

n→∞φi[vn]
)

≥ vk+1

(
lim

n→∞φi[vn]
)

− bβk+1

= (J vk)
(

lim
n→∞φi[vn]

)
− bβk+1

= h
(

lim
n→∞φi[vn]

)
− bβk+1 for every k ≥ 0 and i = 1,2,

since limn→∞ φ1[vn] ≤ φ1[vk], limn→∞ φ2[vn] ≥ φ2[vk], and limn→∞ φi[vn] ∈ Γ [vk] =
(0, φ1[vk]] ∪ [φ2[vk],∞) = {φ > 0; (J vk)(φ) = h(φ)} for i = 1,2. Because 0 < β < 1,
taking limits of both sides as k → ∞ leads to (J v∞)(limn→∞ φi[vn]) ≥ h(limn→∞ φi[vn])
for i = 1,2. Hence, limn→∞ φi[vn] belongs to Γ [v∞] = (0, φ1[v∞]] ∪ [φ2[v∞],∞) for ev-
ery i = 1,2, which implies φ1[v∞] ≥ limn→∞ φ1[vn] and φ2[v∞] ≤ limn→∞ φ2[vn], since
φ1[v∞] ≤ b/a ≤ φ2[v∞] and limn→∞ φ1[vn] ≤ b/a ≤ limn→∞ φ2[vn] because of the first
part of Corollary 4.4. �

Proposition 4.4 For every n ≥ 1 and φ > 0, we have V (φ) ≤ E
φ

0 [∫ τ̃ [vn]
0 (1 + Φt)dt +

1{̃τ [vn]<∞}h(Φτ̃ [vn])] ≤ V (φ) + bβn+1. Therefore, for every ε > 0 and integer n ≥ 1 such
that bβn+1 ≤ ε, the stopping time τ̃ [vn] is ε-optimal for the auxiliary problem in (2.10).

Proof The first inequality follows from the definition of V (·) in (2.10). For the proof
of the second inequality, recall from Proposition 4.2 that V (·) ≡ v∞(·). If we replace
τ and τ̃�,r in the equality in (4.23) with τ̃ [vn] = τ̃φ1[vn],φ2[vn], then the equality becomes
E

φ

0 [v∞(Φt∧τ̃ [vn])] = v∞(φ)+ E
φ

0 [∫ t∧τ̃ [vn]
0 (Av∞)(Φs)ds] = v∞(φ)− E

φ

0 [∫ t∧τ̃ [vn]
0 (1 +Φs)ds]

for every t ≥ 0, where the second equality follows from that Γ [vn] ⊇ Γ [v∞] and τ̃ [vn] ≤
τ̃ [v∞] a.s. by Corollary 4.4, and that Φt ∈ (φ1[v∞], φ2[v∞]) and (Av∞)(Φt ) = −(1+Φt) for
every 0 ≤ t ≤ τ̃ [vn] by (i) of (4.22). Since τ̃ [vn] = τ̃φ1[vn],φ2[vn] is finite a.s. by Lemma 4.5,
after taking limits of both sides as t → ∞, the bounded and monotone convergence theo-
rems give that E

φ

0 [v∞(Φτ̃ [vn])] = v∞(φ) − E
φ

0 [∫ τ̃ [vn]
0 (1 + Φs)ds], and Corollary 4.3 implies

v∞(φ) ≥ E
φ

0 [∫ τ̃ [vn]
0 (1 + Φs)ds + 1{̃τ [vn]<∞}h(Φτ̃ [vn])] − bβn+1 for every φ > 0 since Φτ̃ [vn]

belongs almost surely to Γ [vn], on which vn+1(·) ≡ (J vn)(·) = h(·) by (4.13). �

Corollary 4.5 The decision rule (̃τ [v∞], d(̃τ [v∞])), with d(·) as in (2.8), is Bayes optimal
for the Bayesian sequential binary hypothesis testing problem in (2.1); namely, U(π) =
Rτ̃ [v∞],d(̃τ [v∞])(π) for every π ∈ (0,1). We also have U(π) ≤ Rτ̃ [vn],d(̃τ [vn])(π) ≤ U(π) +
bβn+1 for every π ∈ (0,1) and n ≥ 1. Therefore, for every ε > 0 and integer n ≥ 1 such that
bβn+1 < ε, the decision rule (̃τ [vn], d(̃τ [vn])) is Bayes ε-optimal for the problem in (2.1).

Proof By (2.9) and Proposition 4.2, U(π) = b(1−π)+ (1−π)v∞( π
1−π

) equals b(1−π)+
(1 − π)E

π
1−π

0 [∫ τ̃ [v∞]
0 (1 + Φt)dt + 1{̃τ [v∞]<∞}h(Φτ̃ [v∞])] = Rτ̃ [v∞],d(̃τ [v∞])(π). On the other

hand, (̃τ [vn], d(̃τ [vn])) is admissible, and Proposition 2.1 implies U(π) ≤ Rτ̃ [vn],d(̃τ [vn]) =
b(1 − π) + (1 − π)E

π
1−π

0 [∫ τ̃ [vn]
0 (1 + Φt)dt + 1{̃τ [vn]<∞}h(Φτ̃ [vn])] ≤ b(1 − π) + (1 −

π)[v∞( π
1−π

) + bβn+1] ≤ U(π) + bβn+1 for every π ∈ (0,1), where the first inequality fol-
lows from Proposition 4.4. �
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5 Bayesian sequential binary hypothesis testing for several independent Brownian
motions and compound Poisson processes

Let us now turn to the multisource Bayesian sequential binary hypothesis testing problem in
(1.1) described in the introduction. The problem is to find a decision rule (τ, d), consisting
of a stopping rule τ of the observation filtration F = (Ft )t≥0 with

Ft := σ
{
X(i)

s ; 0 ≤ s ≤ t, 1 ≤ i ≤ d
}

∨ σ
{(

T (j)
n ,Z(j)

n

); 0 < T (j)
n ≤ t, n ≥ 1, 1 ≤ j ≤ m

}
, t ≥ 0, (5.1)

and a {0,1}-valued Fτ -measurable random variable d , with the smallest Bayes risk Rτ,d(π)

in (1.2). As in the model on page 103, we start on (Ω, F ,P0) with some auxiliary
probability measure P0, under which the following stochastic elements are independent:
(i) X(i), 1 ≤ i ≤ d are independent Brownian motions with drifts rate μ

(i)

0 , 1 ≤ i ≤ d ;
(ii) (T

(j)
n ,Z

(j)
n )n≥1, 1 ≤ j ≤ m are independent compound Poisson processes with arrival

rates λ
(j)

0 , 1 ≤ j ≤ m and mark distributions ν
(j)

0 , 1 ≤ j ≤ m; (iii) Θ is a Bernoulli ran-
dom variable with success probability π ∈ (0,1). The filtration G = (Gt )t≥0 obtained by
enlarging the observation filtration F with the information about Θ ; i.e., Gt = Ft ∨σ(Θ) for
every t ≥ 0, remains the same, except that Ft is now given by (5.1). Finally, true probability
measure P is obtained from P0 after a change of measure with the same Radon–Nikodym
derivative ξt , t ≥ 0 in (2.5), except that the likelihood-ratio process in (2.4) becomes

Lt = exp

{
d∑

i=1

(
μ

(i)

1 − μ
(i)

0

)(
X

(i)
t − X

(i)

0 − μ
(i)

0 t
)− t

2

d∑
i=1

(
μ

(i)

1 − μ
(i)

0

)2}

× exp

{
−
(

m∑
j=1

λ
(j)

1 −
m∑

j=1

λ
(j)

0

)
t +

m∑
j=1

∑
0<T

(j)
n ≤t

log

(
λ

(j)

1

λ
(j)

0

dν
(j)

1

dν
(j)

0

(
Z(j)

n

))}
.

Let us define for every t ≥ 0,

Xt :=
∑d

i=1(μ
(i)

1 − μ
(i)

0 )X
(i)
t√∑d

i=1(μ
(i)

1 − μ
(i)

0 )2
, μ0 :=

∑d

i=1(μ
(i)

1 − μ
(i)

0 )μ
(i)

0√∑d

i=1(μ
(i)

1 − μ
(i)

0 )2
,

μ1 :=
∑d

i=1(μ
(i)

1 − μ
(i)

0 )μ
(i)

1√∑d

i=1(μ
(i)

1 − μ
(i)

0 )2
.

Then μ1 − μ0 =
√∑d

i=1(μ
(i)

1 − μ
(i)

0 )2, and μ0 �= μ1 if and only if μ
(i)

0 �= μ
(i)

1 for some
1 ≤ i ≤ d . Moreover, X is a Brownian motion whose drift rate μ equals μ0 under H0 and
μ1 under H1.

In the meantime, let (Tn,Zn)n≥1 be the new point process on the extended mark space
Ẽ := {1, . . . ,m} × E obtained by the superposition of point processes (T

(j)
n ,Z

(j)
n )n≥1, 1 ≤

j ≤ m. More precisely, (Tn)n≥1 is obtained by relabeling the superposition of (T
(j)
n )n≥1,

1 ≤ j ≤ m in the increasing order, and

Zn := (j,Z(j)

k

)
if Tn = T

(j)

k for some 1 ≤ j ≤ m and k ≥ 1.
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Then (Tn,Zn)n≥1 is a compound Poisson process with arrival rate λ =∑m

j=1 λ(j) and mark
distribution ν({j} × A) = [λ(j)/λ]ν(j)(A) for 1 ≤ j ≤ m and A ∈ E , which equal

λ0 :=
m∑

j=1

λ
(j)

0 and ν0

({j} × A
) := λ

(j)

0

λ0
ν

(j)

0 (A) under hypothesis H0,

λ1 :=
m∑

j=1

λ
(j)

1 and ν1

({j} × A
) := λ

(j)

1

λ1
ν

(j)

1 (A) under hypothesis H1,

respectively. Then the likelihood-ratio process L can be rewritten as

Lt = exp

{
(μ1 − μ0)(Xt − X0) −

[
μ2

1 − μ2
0

2
+ λ1 − λ0

]
t +
∑
Tn≤t

log

(
λ1

λ0

dν1

dν0
(Zn)

)}
,

which has the same form as (2.4). Hence, the multisource Bayesian sequential binary hy-
pothesis testing problem becomes exactly the same as the problem formulated and solved
in Sects. 2–4 for the new processes X and (Tn,Zn)n≥1 with new drift rates μ0, μ1 and new
arrival rates and mark distributions (λ0, ν0), (λ1, ν1) under hypotheses H0 and H1.

6 Numerical algorithm and examples

In Fig. 2, we describe a numerical algorithm to calculate the successive approximations
vn(·), n ≥ 0 in (3.6) of the value function V (·) ≡ v∞(·) of the auxiliary optimal stopping
problem in (2.10) and Bayes ε-optimal decision rules for the Bayesian sequential binary hy-
pothesis testing problem in (2.1). In the examples described below and illustrated in Fig. 3,
that algorithm is used to calculate the approximations vn(·), n ≥ 0 until the maximum ab-
solute difference between successive approximations is reduced below an acceptable level.
Corollary 4.3 guarantees the termination of the algorithm after finite number of iterations
with any specified positive error bound. Corollary 4.3 also provides an upper bound on the
number of iterations necessary to attain the desired error bound.

Nine panels in Fig. 3 display the approximate value functions and minimum Bayes risks
corresponding to nine examples. In each example, the observation process consists of a
Brownian motion X with drift μ and a simple Poisson process (Tn)n≥1 (i.e., marks Zn,
n ≥ 1 are known and equal to one almost surely) with arrival rate λ. Under the null hypoth-
esis H0, we assume that the unknown drift and arrival rates are equal to μ0 = 0 and λ0 = 1,
respectively. We also assume that the costs of wrongly choosing H0 and H1 are the same and
equal to a = b = 0.5. However, drift rate μ1 and arrival rate λ1 under alternative hypothesis
H1 are different in nine examples; drift rate μ1 takes values 2, 3, 4 along three columns,
respectively, and arrival rate λ1 takes values 7,9,11 along three rows, respectively.

Each panel is divided in two parts. The upper part shows the optimal Bayes risk U(·) of
(2.3) on [0,1] displayed on the upper horizontal axis, and the lower part shows the value
function V (·) of the auxiliary optimal stopping problem in (2.10) on R+ displayed on the
lower horizontal axis. Both U(·) and V (·) are plotted with solid curves. These functions
are compared with Up(·), Vp(·), UX(·), and VX(·), where Up(·) and UX(·) are obtained by
taking the infimum in (2.3) over the stopping times of smaller natural filtrations F

p and F
X

of Poisson process and Brownian motion, respectively. On the other hand, Vp(·) and VX(·)
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Initialization: Set v0(φ) = h(φ) and w(φ) = −b for every φ > 0. Calculate F(φ) = ψ(φ)/η(φ) =
φα1−α0 for every φ > 0. Set n = 1.

Step 1: Calculate

(Lvn)(ζ ) =
(

Hvn − h

η

)
◦ F−1(ζ ), ζ ≥ 0.

Step 2: Calculate critical boundaries ζ1[vn] and ζ2[vn], which are unique solutions of

(Lvn)′
(
ζ1[vn])= (Lvn)(ζ2[vn]) − (Lvn)(ζ1[vn])

ζ2[vn] − ζ1[vn] = (Lvn)′
(
ζ2[vn]).

Recall that 0 < ζ1[w ] ≤ ζ [vn] ≤ F(b/a) ≤ ζ2[vn] ≤ ζ2[w ] < ∞, and the lower bound ζ1[w ] and
upper bound ζ2[w ] on the critical boundaries ζ1[vn] and ζ2[vn] for n ∈ {1,2, . . .} ∪ {∞} are useful
to control the computer memory. Calculate the smallest nonnegative concave majorant (Mvn)(·) of
(Lvn)(·) on R+ by

(Mvn)(ζ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Lvn)(ζ ), if ζ ∈ [0, ζ1[vn]] ∪ [ζ2[vn],∞),

ζ2[vn]−ζ
ζ2[vn]−ζ1[vn] (Lvn)(ζ1[vn])

+ ζ−ζ1[vn]
ζ2[vn]−ζ1[vn] (Lvn)(ζ2[vn]),

if ζ ∈ (ζ1[vn], ζ2[vn]).

Step 3: Calculate φ1[vn] = F−1(ζ1[vn]) and φ2[vn] = F−1(ζ2[vn]) and

(Gvn)(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Hvn)(φ) − h(φ), φ ∈ (0, φ1[vn]] ∪ [φ2[vn],∞),

(φ2[vn])α1−α0 −φα1−α0

(φ2[vn])α1−α0 −(φ1[vn])α1−α0
(Hvn − h)(φ1[vn])

+ φα1−α0 −(φ1[vn])α1−α0

(φ2[vn])α1−α0 −(φ1[vn])α1−α0
(Hvn − h)(φ2[vn]),

φ ∈ (φ1[vn], φ2[vn]).
Step 4: Calculate vn+1(φ) = (Jvn)(φ) = (Hvn)(φ) − (Gvn)(φ) for every φ > 0.
Step 5: If some stopping criterion has not yet been satisfied (e.g., the uniform bound bβn on ‖v∞ − vn‖
has not yet been reduced below some desired error level), then set n to n+1 and go to Step 1, otherwise
stop.

Outcome: After the algorithm terminates with vn+1(·), φ1[vn], and φ2[vn],
(i) we have vn+1(φ) − bβn+1 ≤ V (φ) ≤ vn+1(φ) for every φ > 0,

(ii) the stopping time τ̃ [vn] = inf{t ≥ 0; Φt /∈ (φ1[vn], φ2[vn])} is ε-optimal for every ε > bβn+1 for
the auxiliary optimal stopping problem in (2.10); i.e.,

V (φ) ≤ E
φ
0

[∫ τ̃ [vn]
0

(1 + Φt )dt + h(Φτ̃ [vn])
]

≤ V (φ) + bβn+1, φ > 0,

(iii) the decision rule (̃τ [vn], d(̃τ [vn])) is Bayes ε-optimal for every ε > bβn+1 for the Bayesian se-
quential binary hypothesis testing problem in (2.1); i.e.,

U(π) ≤ Rτ̃ [vn],d(̃τ [vn])(π) ≤ U(π) + bβn+1, π ∈ (0,1).

Fig. 2 Numerical algorithm to solve the Bayesian sequential binary hypothesis testing problem in (2.1)

are the value functions of the optimal stopping problems analogous to (2.10); i.e.,

Vp(φ) := inf
τ∈Fp

E
φ

0

[∫ τ

0
g
(
Φ

(p)
t

)
dt + 1{τ<∞}h

(
Φ(p)

τ

)]
, φ ≥ 0,

VX(φ) := inf
τ∈FX

E
φ

0

[∫ τ

0
g
(
Φ

(X)
t

)
dt + 1{τ<∞}h

(
Φ(X)

τ

)]
, φ ≥ 0,
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Fig. 3 In all of nine examples above, λ0 = 1, μ0 = 0, and the cost parameters are a = b = 0.5. Jumps are of
unit size under both hypotheses

where

Φ
(p)
t := P{Θ ≤ t | F p

t }
P{Θ > t | F p

t } and Φ
(X)
t := P{Θ ≤ t | F X

t }
P{Θ > t | F X

t } for every t ≥ 0.

The functions Up(·), Vp(·) and UX(·), VX(·) are related each other in the same way as U(·),
V (·) are in (2.9).

The differences in the Bayes risks Up(·), UX(·), and U(·) are due to the contributions of
observing the processes X and (Tn)n≥1 separately or simultaneously to the efforts to identify
the correct hypothesis about the drift rate X and arrival rate of (Tn)n≥1. Poisson process ob-
servations provide more information than Brownian motion observations in Figs. 3 (d), (e),
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(g), (h), and (i). Brownian motion observations provide more information than Poisson pro-
cess observations in Figs. 3 (a), (b), and (f). In every case, however, observing both Poisson
process and Brownian motion provides more information, which is often significantly more
than two processes provide separately, as in Figs. 3 (a), (b), (c), (d), (e), (f), and (i).

Intuitively, we expect the contributions of both information sources, observed separately
or concurrently, to increase as μ1 and λ1 get farther away from μ0 = 0 and λ0 = 1, respec-
tively, and the results reported in Fig. 3 support these expectations: the Bayes risks Up(·) and
U(·) shift downward along the rows, and UX(·) and U(·) do the same along the columns.

Acknowledgements The authors would like to thank the editor and the anonymous referee for the very
helpful comments, which improved the presentation in the paper.

Appendix

A.1 The proof of Lemma 4.2

Let G�,r (φ, ξ) = ψ�(φ∧ξ)ηr (φ∨ξ)

p2(ξ)W�,r (ξ)
, 0 < φ,ξ < ∞ be the Green’s function of the boundary value

problem (A0f )(φ) − λ0f (φ) = −k(φ) for every � < φ < r and f (�) = f (r) = 0. Then
f (φ) = ∫ r

�
G�,r (φ, ξ)k(ξ)dξ = ηr(φ)

∫ φ

�

2ψ�(ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ + ψ�(φ)

∫ r

φ

2ηr (ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ ,

which is also the right-hand side of (4.5), is twice continuously differentiable and solves
uniquely the boundary value problem above. Then e−λ0(τ�,r∧t)f (Y

Φ0
τ�,r∧t ) = f (Y

Φ0
0 ) +∫ τ�,r∧t

0 e−λ0s(A0f − λ0f )(Y
Φ0
s )ds + ∫ τ�,r∧t

0 e−λ0sf ′(Y Φ0
s )p(Y

Φ0
s )(dXs − μ0 ds) for every

t ≥ 0 by Itô rule. Because f ′(·) and p(·) are continuous on [�, r] ⊂ (0,∞), they
are bounded, and the stochastic integral on the right-hand side is a square-integrable
(P0,F

X)-martingale. Taking firstly the expectations of both sides and then their limits
as t → ∞, and finally rearranging the terms lead to f (φ) = E

φ

0 [∫ τ�,r
0 e−λ0sk(Y

Φ0
s )ds] +

E
Φ0
0 [e−λ0τ�,r f (Y Φ

τ�,r
)] = E

φ

0 [∫ τ�,r
0 e−λ0sk(Y

Φ0
s )ds], because f (�) = f (r) = 0. For the proof of

(4.6), note lim�↓0,r↑∞ τ�,r = ∞ P
φ

0 -a.s. for all φ ∈ (0,∞) since 0 and ∞ are natural bound-
aries of Y Φ0 . Moreover,

∫ τ�,r
0 e−λ0t |k(Y

Φ0
t )|dt ≤ c

∫ τ�,r
0 e−λ0t (1 + Y

Φ0
t )dt ≤ c

∫∞
0 e−λ0t (1 +

Y
Φ0
t )dt , and since E

φ

0 [Y Φ0
t ] = φe−(λ1−λ0)t as in (4.4), we have E

φ

0 [∫∞
0 e−λ0t (1 + Y

Φ0
t )dt] =

1
λ0

+ ∫∞
0 e−λ0t

E
φ

0 [Y Φ0
t ]dt = 1

λ0
+ φ

λ1
< ∞. Therefore, lim�↓0,r↑∞

∫ τ�,r
0 e−λ0t k(Y

Φ0
t )dt =∫∞

0 e−λ0t k(Y
Φ0
t )dt -a.s. and the dominated convergence theorem implies E

φ

0 [∫∞
0 e−λ0t ×

k(Y
Φ0
t )dt] = lim�↓0,r↑∞ E

φ

0 [∫ τ�,r
0 e−λ0t k(Y

Φ0
t )dt] equals

lim
�↓0,r↑∞

[
ηr(φ)

∫ φ

�

2ψ�(ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ + ψ�(φ)

∫ r

φ

2ηr(ξ)

p2(ξ)W�,r (ξ)
k(ξ)dξ

]

= lim
�↓0,r↑∞

[
ηr(φ)

1 − η(r)

η(�)

ψ(�)

ψ(r)

∫ φ

�

2ψ�(ξ)

p2(ξ)W(ξ)
k(ξ)dξ

+ ψ�(φ)

1 − η(r)

η(�)

ψ(�)

ψ(r)

∫ r

φ

2ηr(ξ)

p2(ξ)W(ξ)
k(ξ)dξ

]
. (A.1)

We have lim�↓0 ↑ ψ�(ξ) = ψ(ξ) and limr↑∞ ↑ ηr(ξ) = η(ξ) for every ξ > 0. Because
α0 < 0,

∫ φ

�

2ψ�(ξ)

p2(ξ)W(ξ)
|k(ξ)|dξ ≤ c

∫ φ

0
2ψ(ξ)

p2(ξ)W(ξ)
(1 + ξ)dξ = c

∫ φ

0 ξ−1−α0(1 + ξ)dξ < ∞,

and the dominated convergence theorem implies that lim�↓0

∫ φ

�

2ψ�(ξ)

p2(ξ)W(ξ)
k(ξ)dξ =
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∫ φ

0
2ψ(ξ)

p2(ξ)W(ξ)
k(ξ)dξ . Similarly, because α1 > 0, we have

∫ r

φ

2ηr (ξ)

p2(ξ)W(ξ)
|k(ξ)|dξ ≤

c
∫∞

φ

2η(ξ)

p2(ξ)W(ξ)
(1 + ξ)dξ = c

∫∞
α

ξ−1−α1(1 + ξ)dξ < ∞, and by the dominated convergence,

limr↑∞
∫ r

φ

2ηr (ξ)

p2(ξ)W(ξ)
k(ξ)dξ = ∫∞

φ

2η(ξ)

p2(ξ)W(ξ)
k(ξ)dξ . Taking the limits on the right-hand side

of (A.1) and using (4.12) complete the proof of (4.6), which can be directly shown to satisfy
(A0f − λ0f )(φ) + k(φ) = 0 for every φ > 0.

Finally, suppose that the limit k(0+) = limφ↓0 k(φ) exists. For every 0 < φ ≤ 1, we have
Y

φ
t ≤ Y 1

t for every t ≥ 0 P
1
0-a.s. Note that E

φ

0 [∫∞
0 e−λ0t k(Y

Φ0
t )dt] = E

1
0[
∫∞

0 e−λ0t k(Y
φ
t )dt]

for every φ > 0, where |k(Y
φ
t )| ≤ c(1 + Y

φ
t ) ≤ c(1 + Y 1

t ), and E
1
0[
∫∞

0 e−λ0t (1 + Y 1
t )dt] =∫∞

0 e−λ0t (1 + E
1
0Y

1
t )dt = ∫∞

0 e−λ0t (1 + e−(λ1−λ0)t )dt = ∫∞
0 e−λ0t dt + ∫∞

0 e−λ1t dt = 1
λ0

+
1
λ1

< ∞. Because limφ↓0 Y
φ
t = 0 and limφ↓0 k(Y

φ
t ) = k(0+) for every t ≥ 0 P

1-a.s., the

dominated convergence implies that limφ↓0 E
φ

0 [∫∞
0 e−λ0t k(Y

Φ0
t )dt] = limφ↓0 E

1
0[
∫∞

0 e−λ0t ×
k(Y

φ
t )dt] = E

1
0[
∫∞

0 e−λ0t (limφ↓0 k(Y
φ
t ))dt] = k(0+)

∫∞
0 e−λ0t dt = k(0+)

λ0
, which completes

the proof.

A.2 The proof of Lemma 4.3

Recall w : R+ 	→ R is increasing and −b ≤ w(φ) ≤ h(φ), φ ∈ R+. Then w(0+) < 0,
since otherwise w(·) ≡ 0. Also (Kw)(φ) = ∫

E
w(

λ1
λ0

dν1
dν0

(z)φ)ν0(dz) is increasing and −b ≤
(Kw)(φ) ≤ 0, φ ∈ R+. Then limφ↓0

∫ φ

0 ξ−1−α0 |(Kw)(ξ)|dξ ≤ b limφ↓0

∫ φ

0 ξ−1−α0 dξ =
b limφ↓0

φ−α0

(−α0)
, since α0 < 0, and (i) follows.

Next notice that limφ↓0(Kw)(φ) = (Kw)(0+) = w(0+) by the bounded convergence
theorem. For every fixed ε > 0, there exists some δ > 0 such that φ ∈ (0, δ) implies that
w(0+) ≤ (Kw)(φ) ≤ w(0+)(1 − ε). Then for every φ ∈ (0, δ) w(0+)

∫ φ

0 ξ−1−α0 dξ ≤∫ φ

0 ξ−1−α0(Kw)(ξ)dξ ≤ w(0+)(1 − ε)
∫ φ

0 ξ−1−α0 dξ or w(0+)

(−α0)
≤ φα0

∫ φ

0 ξ−1−α0(Kw)(ξ)dξ

≤ w(0+)

(−α0)
(1 − ε), which proves (ii) after taking limits as φ ↓ 0, since ε > 0 was arbitrary.

Because w(0+) ≡ (Kw)(0+) < 0, there exists some δ such that φ ∈ (0, δ) implies
that (Kw)(φ) < (1/2)(Kw)(0+). Then

∫∞
φ

ξ−1−α1(Kw)(ξ)dξ ≤ ∫ δ

φ
ξ−1−α1(Kw)(ξ)dξ ≤

w(0+)

2

∫ δ

φ
ξ−1−α1 dξ = w(0+)(δ−α1 −φ−α1 )

2(−α1)
for every φ ∈ (0, δ), and because w(0+) < 0 and

α1 > 1, we have limφ↓0

∫∞
φ

ξ−1−α1(Kw)(ξ)dξ ≤ −∞, which completes the proof of (iii).
For every fixed ε > 0, there exists some δ > 0 such that φ ∈ (0, δ) implies that

w(0+) ≡ (Kw)(0+) ≤ (Kw)(φ) ≤ w(0+)(1 − ε). Therefore, for every φ ∈ (0, δ) we
have w(0+)

α1
(φ−α1 − δ−α1) ≤ ∫ δ

φ
ξ−1−α1(Kw)(ξ)dξ ≤ w(0+)

α1
(1 − ε)(φ−α1 − δ−α1). Adding∫∞

δ
ξ−1−α1(Kw)(ξ)dξ , which is finite, and multiplying by φα1 all three sides give

φα1

∫ ∞

δ

ξ−1−α1(Kw)(ξ)dξ + w(0+)

α1

[
1 − (φ/δ)α1

]

≤ φα1

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ

≤ φα1

∫ ∞

δ

ξ−1−α1(Kw)(ξ)dξ + w(0+)

α1
(1 − ε)

[
1 − (φ/δ)α1

]
.

Since α1 > 0, w(0+)

α1
≤ limφ↓0 φα1

∫∞
φ

ξ−1−α1(Kw)(ξ)dξ ≤ limφ↓0 φα1
∫∞

φ
ξ−1−α1(Kw)(ξ) ×

dξ ≤ w(0+)

α1
(1 − ε), which completes the proof of (iv) because ε > 0 is arbitrary.

For the proof of (v), firstly note that the monotonicity of w(·) and the bounded conver-
gence theorem implies that (Kw)(∞) = limφ↑∞(Kw)(φ) = limφ↑∞

∫
w(

λ1
λ0

dν1
dν0

(z)φ)ν0(dz)
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exists and equals w(∞). Then for every ε > 0 there exists some M > 0 such that φ > M

implies that w(∞) − ε ≤ (Kw)(φ) ≤ w(∞). Therefore, for every φ > M

[
w(∞) − ε

] ∫ φ

M

ξ−1−α0 dξ ≤
∫ φ

M

ξ−1−α0(Kw)(ξ)dξ ≤ w(∞)

∫ ∞

M

ξ−1−α0 dξ,

w(∞) − ε

(−α0)

(
φ−α0 − M−α0

)≤ ∫ φ

M

ξ−1−α0(Kw)(ξ)dξ ≤ w(∞)

(−α0)

(
φ−α0 − M−α0

)
.

Adding
∫ M

0 ξ−1−α0(Kw)(ξ)dξ , which is finite, and multiplying by φα0 all three sides give

φα0

∫ M

0
ξ−1−α0(Kw)(ξ)dξ + w(∞) − ε

(−α0)

[
1 − (φ/M)α0

]

≤ φα0

∫ φ

M

ξ−1−α0(Kw)(ξ)dξ ≤ φα0

∫ M

0
ξ−1−α0(Kw)(ξ)dξ + w(∞)

(−α0)

[
1 − (φ/M)α0

]
.

Letting φ ↑ ∞ and recalling that α0 < 0 gives w(∞)−ε

(−α0)
≤ limφ↑∞ φα0

∫ φ

M
ξ−1−α0(Kw)(ξ)dξ ≤

limφ↑∞ φα0
∫ φ

M
ξ−1−α0(Kw)(ξ)dξ ≤ w(∞)

(−α0)
. Because ε > 0 is arbitrary, this proves (v). And

(vi) follows from α1 > 0 and that limφ↑∞
∫∞

φ
ξ−1−α1 |(Kw)(ξ)|dξ ≤ b ·limφ↑∞

∫∞
φ

ξ−1−α1 dξ

= b · limφ↑∞ φ−α1

α1
= 0. To prove (vii), let ε and M be as in the proof of (v). Then for φ > M

(
w(∞) − ε

)∫ ∞

φ

ξ−1−α1 dξ ≤
∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ ≤ w(∞)

∫ ∞

φ

ξ−1−α1 dξ,

w(∞) − ε

α1
φ−α1 ≤

∫ ∞

φ

ξ−1−α1(Kw)(ξ)dξ ≤ w(∞)

α1
φ−α1 .

Multiplying all sides by φα1 gives w(∞)−ε

α1
≤ φα1

∫∞
φ

ξ−1−α1(Kw)(ξ)dξ ≤ w(∞)

α1
for all

φ > M , which proves (vii) and Lemma 4.3 after taking limit as φ ↑ ∞ because ε > 0 is
arbitrary.

A.3 The proof of Lemma 4.5

Because Y Φ0 is a regular diffusion on R+, P
r
0{τ� < ∞} > 0 and there exists some 0 <

t < ∞ such that P
r
0{τ� < t} > 0. On the other hand, the sample-path decomposition in

(2.16) of jump-diffusion process Φ into diffusion part Y Φ0 and jump part, which are P0-
independent, implies that δ := P

r
0{̃τ�,∞ ≤ t} ≥ P

r
0{̃τ�,∞ ≤ t, T1 > t} = P

r
0{τ� ≤ t, T1 > t} =

P
r
0{τ� ≤ t}Pr

0{T1 > t} = P
r
0{τ� ≤ t}e−λ0t > 0. Next for every φ ∈ (�, r),

P
φ

0 {̃τ�,r > t} ≤ P
φ

0 {̃τ�,∞ > t}
= P

φ

0

{
Φu ≥ � for every u ∈ [0, t]}

= P
φ

0

{
Lu ≥ �/φ for every u ∈ [0, t]}≤ P

φ

0

{
Lu ≥ �/r for every u ∈ [0, t]}

= P
r
0

{
Φu ≥ � for every u ∈ [0, t]}= P

r
0{̃τ�,∞ > t} = 1 − δ.



Ann Oper Res (2012) 201:99–130 129

Hence, supφ∈[�,r] P
φ

0 {̃τ�,r > t} ≤ 1 − δ < 1, and E
φ

0 τ̃ k
�,r =∑∞

m=0 E
φ

0 [̃τ k
�,r1{mt<τ̃�,r≤(m+1)t}] ≤

tk
∑∞

m=0(m + 1)k
P

φ

0 {̃τ�,r > mt} for all k > 0. Since Φ is a strong (P0,F)-Markov process,

P
φ

0 {̃τ�,r > mt} = P
φ

0

{
τ̃�,r > (m − 1)t, τ̃�,r > mt

}= E
φ

0

[
1{̃τ�,r>(m−1)t}P

Φ(m−1)t

0 {̃τ�,r > t}]
≤ (1 − δ)P

φ

0

{
τ̃�,r > (m − 1)t

}≤ · · · ≤ (1 − δ)m for every m ≥ 1,

and E
φ

0 τ̃ k
�,r ≤ tk

∑∞
m=0(m+ 1)k(1 − δ)m < ∞ for every φ ∈ [�, r], which proves Lemma 4.5.
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