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Abstract We consider reliable mixed line flow shop systems that are composed of
controllable and uncontrollable machines. These systems are assumed to receive
arrivals at random instants and process jobs deterministically in the order of arrival
so as to depart them before their deadlines that are revealed at the time of arrival.
We model these flow shops as serial networks of queues operating under a non-
preemptive first-come-first-served policy. Defining completion-time costs for jobs
and process costs at controllable machines, a stochastic convex optimization problem
is formulated where the control variables are the constrained service times of jobs
at the controllable machines. As an on-line solution method to determine these
service times, we propose a receding horizon controller, which solves a deterministic
problem at each decision instant. We quantify the available future information by the
look-ahead window size. Numerical examples demonstrate the value of information
and that the no-waiting property of the full-information case is not observed in the
partial-information case.

Keywords Manufacturing · Queueing systems · Receding horizon control ·
Controllable service times · Value of information

1 Introduction

We consider reliable manufacturing flow shop systems composed of CNC (Computer
Numerical Control) and conventional machines. Job arrivals occur at random times
with possibly nonstationary interarrival time distributions. The service times at
machines, however, are deterministic, and jobs are processed in the order they
arrive; therefore, we model these systems as serial networks of G/D/1 queues
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with FIFO (first-in-first-out) discipline. Assuming that conventional machines are
uncontrollable with fixed service times, our objective is to determine the service
times at the CNC machines so as to depart jobs before their deadlines, which are
revealed at the times of their arrivals.

While determining the service times at the CNC machines, in addition to satisfying
the hard deadline constraints, we want to minimize a total cost of production formed
of process and completion-time costs. Selecting smaller service times, which corre-
sponds to faster processing, incurs higher tooling costs due to wear and tear caused by
increased surface temperatures. The quality losses due to faster processing are also
lumped into the process costs along with the tooling costs. Therefore, we assume
that the process costs are decreasing in the service times. The completion-time
costs, on the other hand, are the work-in-process inventory costs that are assumed
to be increasing in the completion times. Note that, even though the completion-
times are upper bounded by deadlines that are promised to the customers, different
completion-times within these bounds occur different costs for the system; therefore,
the completion-time costs are also included in the objective. Since longer services
may delay completions increasing completion-time costs while decreasing process
costs, a trade-off is observed in the service time selection. A stochastic optimal
control problem defined over a max-plus algebra is formulated in the next section
demonstrating this trade-off.

The work in Gazarik and Wardi (1998) started the literature on optimal control
of discrete-event dynamic processes defined over a max-plus algebra. In that work,
a single machine processing a given sequence of jobs is considered. The problem in
question is how to optimally control the completion times of the jobs by assigning
their release (arrival) times, so as to minimize a measure of the discrepancy between
the completion times and given desired due dates. In Pepyne and Cassandras (2000),
Pepyne and Cassandras considered the same single machine system with a similar
problem where instead of assigning release times, service times were assigned. The
objective function was designed to complete jobs with the minimal effort penalizing
deviations from given due dates. The uniqueness of the optimal solution for this prob-
lem was shown in Cassandras et al. (2001). Exploiting the structural properties of the
optimal sample path, efficient solution algorithms to obtain this unique solution were
developed in Wardi et al. (2001), Cho et al. (2001), and Zhang and Cassandras (2002).
For the case where job arrival times are random, in Cassandras and Mookherjee
(2003a, b, c), Cassandras and Mookherjee proposed a receding horizon controller
employing the forward decomposition algorithm developed in Cho et al. (2001) and
analyzed the effect of the look-ahead window size on the optimal costs. Adding job
completion deadlines as hard constraints and removing the completion time costs,
Mao et al., in Mao et al. (2007), considered an optimization problem for a single
machine system based only on process costs. Under the assumption that these costs
are decreasing convex, they showed that the optimal solution characteristics lead
to the highly efficient Critical Task Decomposition Algorithm (CTDA). Employing
CTDA, Miao and Cassandras, in Miao and Cassandras (2007), developed a receding
horizon controller for this system for the case where the job arrival times and
deadlines are random. Analyzing sample paths obtained under this controller and
comparing them to optimal sample paths (obtained when all event times are known),
they derived a number of properties of the controller. Unfortunately, the receding
horizon controllers developed for single machine systems cannot be directly applied
to flow shop systems due to interactions between machines.
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The optimal control of flow shop systems with regular costs on completion times
and decreasing costs on service times was considered in Gokbayrak and Selvi (2007)
by Gokbayrak and Selvi for the case where all machines are controllable and all
arrival times are initially known. Under strict convexity assumptions for costs, it was
shown that, on the optimal path, jobs do not wait between machines, a property
that enables the transformation of the non-smooth discrete-event optimal control
problem into a simple convex programming problem. An efficient forward-in-time
decomposition algorithm was also proposed for its solution. In Gokbayrak and
Selvi (2008, 2009), Gokbayrak and Selvi proved waiting characteristics in flow shop
systems composed of only fixed-service-time machines. Building on the findings from
these three papers, Gokbayrak and Selvi generalized the no-wait property to mixed
line flow shop systems formed of controllable and uncontrollable machines operating
under the cost structure in Gokbayrak and Selvi (2007) with the additional hard
deadline constraints: no waiting is observed downstream to the first controllable
machine. The generalized version of the forward decomposition algorithm was also
proposed in Gokbayrak and Selvi (2010).

In this paper, we consider the optimization problem in Gokbayrak and Selvi
(2010), with the modification that arrival time and deadline information are only
available for jobs that already arrived or are about to arrive within a look-ahead
window. As an on-line solution method for the resulting stochastic optimal control
problem, we propose a receding horizon controller. The amount of available future
information is quantified by the look-ahead window size. We show, by numerical
examples, that the sample path costs decrease with increasing window sizes down to
the cost of the full-information case, the case where all arrival times and deadlines
are initially available.

The rest of the paper is organized as follows: In Section 2, we formulate the
stochastic optimization problem under consideration, which is defined over a non-
convex domain. Under the same cost assumptions as in Gokbayrak and Selvi (2010),
an equivalent stochastic convex optimization problem is formulated and the receding
horizon controller is proposed for its solution. Section 3 demonstrates the effect
of look-ahead window size, and presents a counter-example for the no-waiting
property. Finally, in Section 4, the conclusion is presented.

2 Problem formulation

Let us consider an M-machine flow shop system consisting of controllable and
uncontrollable machines. The machines are indexed from the set {1, ..., M} according
to their location in the flow shop. A sequence of N jobs arrive at random times
{ai}N

i=1 and are indexed so that 0 ≤ a1 ≤ a2 ≤ ... ≤ aN . These jobs, which we denote
by {Ci}N

i=1, are processed at all machines sequentially on a first-come first-served
nonpreemptive basis. There are completion deadlines, represented by {di}N

i=1, that
are revealed at each job’s arrival time. In the following, we denote the departure
time of job Ci from machine j by xi, j, and the completion-time cost for this job is
represented by φi(xi,M).

We define the sets IC and IU , both subsets of the set I = {1, ..., M}, as the index
sets of the controllable and the uncontrollable machines, respectively. The durations
of processes at each machine j are denoted by the service times {si, j}N

i=1. Due to
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physical limitations of the machines, we assume that each job at a controllable
machine j ∈ IC needs at least a service of S j duration. There is no upper bound on the
service times at the controllable machines. A process cost θ j(si, j) is associated with
each job served at a controllable machine j for a duration of si, j. We assume that the
service times at the uncontrollable machines j ∈ IU are fixed to values s j for all jobs.

We consider the discrete-event stochastic optimal control problem, denoted by P,
which has the following form:

P : min

⎧
⎨

⎩
J = E

⎡

⎣
N∑

i=1

∑

j∈IC

θ j(si, j) +
N∑

i=1

φi(xi,M)

⎤

⎦

⎫
⎬

⎭
(1)

subject to

xi, j = max(xi, j−1, xi−1, j) + si, j ∀ j ∈ I (2)

xi,M ≤ di (3)

si, j = s j ∀ j ∈ IU (4)

si, j ≥ S j ∀ j ∈ IC (5)

xi,0 = ai, x0, j = −∞ ∀ j ∈ I (6)

for all i = 1, ..., N.
Note that since the arrival times and the deadlines are random, we define an

expected total cost J. The Lindley-type equation (2) and its boundary conditions
(6) define the departure time dynamics of jobs in a serial queueing network. Job
deadlines and physical constraints on service times at the controllable machines are
given in Eqs. 3 and 5, respectively. The service times at the uncontrollable machines
are set to fixed values as in Eq. 4.

As in Gokbayrak and Selvi (2010), we assume that the first machine of the
flow shop is controllable. For flow shop systems starting out with a number of
uncontrollable machines, we can reformulate the problem so that the uncontrollable
portion at the beginning is dropped. Since the service times at these machines are
fixed, this modification has no effect on the optimal service times at the controllable
machines. Note that the arrival times also have to be redefined via Eqs. 2 and 6 to
reflect the arrival times at the first controllable machine.

Since the service times are either fixed or lower-bounded, it may not be possible
to satisfy the deadline constraints in Eq. 3. In this work, we assume that a feasible
solution exists for P. If not, a mixed integer programming problem can be formulated
as in Mao and Cassandras (2010) to reject some of the jobs for feasibility. The job
admission problem is a subject of ongoing research, and it is not considered here.

Following upon the discussion in the previous section, two standing assumptions
are stated to make the problem somewhat more tractable while preserving the
originality of the problem.

Assumption 1 θ j(·), for j ∈ IC, is continuously differentiable, monotonically decreas-
ing, and strictly convex.
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Assumption 2 φi(·), for i = 1, ..., N, is continuously differentiable, monotonically
increasing, and convex.

Due to the max functions in the constraints, P is defined over a non-convex do-
main. Linearizing these constraints in Eq. 2 and employing the boundary constraints
in Eq. 6, we can formulate a stochastic convex optimization problem:

P̄ : min

⎧
⎨

⎩
J = E

⎡

⎣
N∑

i=1

∑

j∈IC

θ j(si, j) +
N∑

i=1

φi(xi,M)

⎤

⎦

⎫
⎬

⎭

subject to

xi,1 ≥ ai + si,1 ∀i (7)

xi, j ≥ xi, j−1 + si, j ∀i, ∀ j > 1 (8)

xi, j ≥ xi−1, j + si, j ∀i > 1,∀ j (9)

xi,M ≤ di ∀i (10)

si, j = s j ∀i ,∀ j ∈ IU (11)

si, j ≥ S j ∀i , ∀ j ∈ IC (12)

Note that the feasible region for P̄ includes the feasible region for P. Therefore, one
can argue that P̄ can have an optimal solution outside the feasible region of P. Due
to the standing assumptions, however, it can be shown as in Gokbayrak and Selvi
(2007) that the optimal solution of P̄ resides in the feasible set of P and it is also the
optimal solution of P. (The idea behind this claim is that if the optimal solution of
P̄ were not in the feasible region of P, then for some i and j we would have none of
the constraints (7–9) active. In that case, we could decrease xi, j further until one of
these constraints became active. By Assumption 2, this modified solution would have
a lower cost than the optimal solution resulting with a contradiction.) Hence, we can
concentrate on solving P̄ instead.

Since the arrival times and the deadlines are random with possibly nonstationary
and unknown distributions, in order to determine the service times we resort to
receding horizon techniques described next.

2.1 Receding horizon control

Receding horizon controllers operate on-line with the available information as if no
other job is expected to arrive. Every time a service time decision needs to be made,
receding horizon controllers solve deterministic optimization problems for jobs that
are either already observed or to be observed within a look-ahead window of size ω.
Since previous decisions, which are already applied, cannot be changed, they have to
be incorporated in the optimization problem as constraints.



6 Discrete Event Dyn Syst (2011) 21:1–10

At a decision time t when a job is about to start service at some controllable
machine, we have the arrival and deadline information available for jobs {Ci}n

i=1
where n satisfies

an ≤ t + ω < an+1 (13)

Let us represent the lowest index job in the system by Ck. Then, the following
deterministic problem is solved to determine the service times:

Q(k, n, Dt) : min

⎧
⎨

⎩

n∑

i=k

∑

j∈IC

θ j(si, j) +
n∑

i=k

φi(xi,M)

⎫
⎬

⎭

subject to

xi,1 ≥ ai + si,1 ∀i (14)

xi, j ≥ xi, j−1 + si, j ∀i,∀ j > 1 (15)

xk, j ≥ x̄k−1, j + sk, j ∀ j (16)

xi, j ≥ xi−1, j + si, j ∀i > k, ∀ j (17)

xi,M ≤ di ∀i (18)

si, j = s j ∀i, ∀ j ∈ IU (19)

si, j ≥ S j ∀i,∀ j ∈ IC (20)

si, j = s̄i, j ∀(i, j) ∈ Dt (21)

where Dt is the set of job and controllable machine index pairs for service times
that are previously decided and already applied by time t (i.e., these services have
started with service times s̄i, j) and x̄k−1, j is the realized departure time of job Ck−1

from machine j. In the case of k = 1, we assume x̄k−1, j = 0 for all j.
In the random arrivals and deadlines setting, we quantify the amount of future

information by the look-ahead window size ω. From Eq. 13, we conclude that a larger
window size ω may increase the index nr. As a result, the effect of additional future
jobs can also be taken into account. Next, we show by numerical examples that more
future information improves the service time decisions lowering the sample path
costs.

3 Numerical examples

In this section, we present two numerical examples to illustrate the value of future
information and that no waiting property of the full-information case may not hold
when receding horizon controllers are employed.
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Example 1 We consider the example from Gokbayrak and Selvi (2007) where the
number of machines is M = 4 and the number of jobs is N = 10. Service and
completion-time costs are selected to be

θ j(si, j) = β j

si, j

and

φi(xi,M) = α(xi,M − ai)
2,

respectively, where β = [10, 5, 20, 10] and α = 10. Job completion deadlines and
lower bounds on service times are selected such that the corresponding constraints
are never active.

We analyze the effect of a look-ahead window size ω on a single sample path,
where the arrival times are a = [0.0, 2.3, 2.4, 4.9, 5.0, 5.5, 9.0, 9.5, 11.0, 13.0]. From
Gokbayrak and Selvi (2007), the optimal cost, when all arrival times are initially
available (full information case, ω = ∞), is known to be 1290.15. The effect of
window size on cost is illustrated in Fig. 1. For ω = 0, the cost comes out as 1308.9.
(Small cost differences are typical when the full information optimal sample path has
busy periods formed of small numbers of jobs). Note that for ω = 0.6, we already
have enough information to obtain the full-information optimal solution.

As expected, the solution cost is a non-increasing function of the window size: For
a range of window sizes, the same sequence of problems are solved. We see drops in
the cost value only when an additional job is introduced to one of these problems by
an increase in the ω value. Hence, for each sample path, a descending step behavior
is observed.

If one observes several sample paths, the ensemble average should come out as a
smoother decreasing function, which is illustrated in the next example.

Fig. 1 Value of information
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Fig. 2 Ensemble average cost
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Example 2 We modify the first example to a five-machine flow shop system with
β = [10, 5, 20, 10, 30] and α = 10, processing 20 jobs arriving according to a Poisson
process with rate 1. Fifty sample paths are observed and the ensemble averages are
plotted in Fig. 2 for various window sizes to illustrate the value of information.

Note that the incremental value of information decreases by the window size, i.e.,
for small ω values, additional information has more expected value.

In Gokbayrak and Selvi (2010), it was shown that no waiting is observed after the
first controllable machine. Receding horizon controllers, however, solve a similar
problem with additional previous decision constraints. The next example illustrates
that waiting is possible due to these additional constraints.

Example 3 Let us modify the first example to have only three jobs with arrivals
at a = [0, 1, 1] and two controllable machines with β = [10, 10000]. The resulting
system size (the total number of jobs in the queue and in the server) for the second
machine is shown in Fig. 3: The receding horizon controller forces the second job

Fig. 3 System size at the
second machine
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to wait for service at the second machine, so the ’no-waiting’ property of the full-
information case does not hold for the problems solved by the receding horizon
controllers.

4 Conclusion

We considered a stochastic version of the optimization problem in Gokbayrak
and Selvi (2010) for flow shop systems composed of both controllable and un-
controllable machines. In the absence of a priori knowledge of arrival times and
job deadlines, we proposed a receding horizon controller that solves deterministic
optimization problems formulated with the information available at each decision
instant.

The value of future information was shown by two numerical examples. The lack
of information causes the controller to be myopic. Previous decisions, which may
not be optimal for the full information problem, result with additional constraints
for the optimization problems, possibly removing the full information solution
from the feasible set and therefore increasing the costs. We also showed by a
counter-example that the ’no-waiting’ property for the full information case does
not necessarily hold for the partial information case, due to these previous decision
constraints.
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