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Abstract The use of Bateman method for solving the two-variable version of the two-
body Lippmann–Schwinger equation without recourse to partial-wave decomposition
is investigated. Bateman method is based on a special kind of interpolation of the
momentum representation of the potential on a multi-variate grid. A suitable scheme
for the generation of a multi-variate Cartesian grid is described. The method is tested
on the Hartree potential for electron-hydrogen scattering in the static no-exchange
approximation. Our results show that the Bateman method is capable of producing
quite accurate solutions with relatively small number of grid points.

Keywords Quantum scattering theory · Lippmann–Schwinger equation · Few-body
collisions · Multi-variate interpolation and approximation · Bateman interpolation ·
Degenerate-kernel methods for integral equations · Nystrom method ·
Faddeev equations

1 Introduction

The traditional approach to scattering problems has been through angular momentum
decomposition. Recent years have seen a growing interest, especially in the context of
few-body problems, for computational methods that avoid the decomposition of wave
functions and scattering amplitudes into partial waves. Various direct multi-variable
solution techniques for the two-body Lippmann–Schwinger (LS) equation have been
investigated [1–10]. Most studies [1,3,5–9] employed the Nystrom method [11] which
converts the multi-variable integral equation into a system of equations via a suitable
multi-variate quadrature. The Nystrom method is capable of producing very accurate
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results. However, the matrix dimensions in the multi-variable Nystrom approach can
grow very fast to computationally prohibitive levels.

The off-shell two-body T-matrix is the essential input into the Faddeev equations
[12,13] for three-particle scattering. In the Faddeev approach to the three-atom prob-
lem, as formulated in Refs. [14–16], T-matrix elements for the diatomic potentials
[17] have to be generated at a large number of energies and off-shell momenta. There
is a growing awareness that, to solve Faddeev equations in momentum space, direct
multi-variable approaches might be more appropriate than the traditional procedure of
eliminating angular variables via partial-wave expansions [1,18]. In fact, in the con-
text of nuclear three-body problems, considerable progress has been made towards the
solution of Faddeev equations without invoking the angular-momentum decomposi-
tion [18–20]. Therefore, there is considerable interest in multi-variable methods that
could produce the three-dimensional off-shell T-matrix in more economical manner
than the Nystrom method. Galerkin [2,4], collocation [10], and Schwinger variational
methods [10] have been investigated with various choices of multi-variable bases.
These methods can effectively be viewed as contractions of the linear system of equa-
tions that the Nystrom approach gives rise to. In other words, the (large) equation
system of the Nystrom method is replaced by a smaller set of approximate equations,
by demanding that a residual vanishes on a chosen test space [10].

In this article we consider the Bateman method for solving the multi-variable inte-
gral equations of the two-body scattering problem. This method was originally pro-
posed by Bateman [21] for the solution of single-variable integral equations. The
bi-variate kernel of the integral equation is approximated by a separable expansion
obtained from an interpolation of the bi-variate kernel on a grid. Its convergence and
error bound has been studied in Refs. [22] and [23]. The best mean approximation
for certain bi-variate kernels studied in Refs. [24,25] is in fact equivalent to the Bate-
man method. Bateman method involves two multi-variate grids: a primary grid for
interpolation and a quadrature grid for evaluating the multi-dimensional integrals. It is
interesting to note that a Nystrom calculation (with a given quadrature grid) can also
be viewed as a Bateman calculation in which the same quadrature grid serves also as
the interpolation grid.

Early discussions of the Bateman method in the context of few-body scattering
calculations can be found in Refs. [26–30], where applications have been restricted
to partial-wave (single-variable) LS equations. One notable exception is the work of
Gianini and Lim [30] who applied the Bateman method to solve the two-variable LS
equation for a Yukawa potential. Their application, however, suffered from limiting
the interpolation grid to on-shell momenta and this prevented a true assessment of the
full potential of the method.

The present paper aims to explore the potential utility of the Bateman method
to solve the reduced (two-variable) Lippmann–Schwinger equation for two-body T-
matrix. Of course, it could also be applied to the full three-dimensional LS equation, but
matrix dimensions arising from three-dimensional grids grow very quickly to require
special computational platforms. At the two-variable level, Bateman calculations may
be staged on commonly available computers. A finite-element like partitioning of the
two-dimensional computational domain provides a sufficiently balanced interpolation
grid for Bateman method to show its real potential. Our expectations of the Bateman
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method as a simple and practical tool are in fact borne out by the results of our
test calculations on the Hartree potential, for which accurate scattering amplitudes at
several energies are available in Ref. [2] from a finite-element solution of the two-
variable Schrodinger equation.

Plan of this article is as follows: Sect. 2 introduces the notation and the Lippmann–
Schwinger equation, as well as giving a brief review of the reduction of the three-
dimensional Lippmann–Schwinger equation into a two-dimensional integral equation.
Sect. 3 discusses the basic structure of the Bateman method for the two-variable LS
equation. Computational implementation is discussed in Sect. 4. In particular, the
treatment of the singular integrals and the selection of the interpolation and quadrature
grids is described. In Sect. 5, the results of Bateman calculations for the Hartree model
are presented and compared with results of Ref. [2], and the benchmark Nystrom results
of Ref. [10]. In Sect. 6, we summarize our conclusions.

Atomic units are used throughout this article.

2 Lippmann–Schwinger equation

The Lippmann-Schwinger (LS) equation for two-body scattering in operator form
reads

T (z) = V + V G0(z) T (z) , (1)

where T is the transition operator, V the two-body potential, G0 = (z − H0)
−1,

with H0 being the free hamiltonian and z the (complex) energy of the two-body
system. Working in the center-of-mass frame, the eigenstates of H0 are the relative
momentum states |q >, viz., H0|q >= (q2/2μ)|q > . For on-shell scattering, z =
E + i0, with E = q2

0/2μ, where μ is the reduced mass. The momentum-space matrix
elements T (q, q0 ; z) (≡< q|T (z)|q0 > ) (referred to as the T -matrix) satisfy the
three-dimensional integral equation

T (q, q0 ; z) = V (q, q0) +
∫

dq′ V (q, q′) T (q′, q0 ; z)

z − q ′2/2μ
(2)

The z-dependence of the T -matrix elements T (q, q0 ; z) will be suppressed, unless
there is a need to explicitly show the energy dependence. The momentum-space rep-
resentation V (q, q′) of the potential V is given as

V (q, q′) = < q|V |q′ > =
∫

dr < q|r > V (r) < r|q′ >, (3)

with < r|q >= eir·q/(2π)3/2. For central potentials, V (q, q′) and T (q, q′) depend
only on q, q ′ and xqq ′ . Here, xqq ′ denotes the cosine of the angle between vectors q
and q′ . We denote the polar and azimuthal angles of the momentum vectors q by θ

and φ, respectively. We then have xqq ′ = q̂ · q̂′ = cos θqq ′ = xx ′ + ss′ cos (φ − φ′),
where x = cos θ and s = √

1 − x2. To emphasize this functional dependence on xqq ′ ,
we will occasionally use the notation T (q, q ′, xqq ′) to stand for T (q, q′ ) .
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For central potentials, the azimuthal-angle dependence in Eq. (2) can be integrated
out to obtain a two-dimensional integral equation [1]. Towards this end, we introduce
the averaged momentum states |qx > via

|qx > = (2π)−1/2

2π∫

0

dφ |q >= (2π)−1/2

2π∫

0

dφ |qθφ > . (4)

For a two-body operator A, we introduce reduced matrix elements by

A(q, x; q ′, x ′) =< qx |A|q ′x ′ >=
2π∫

0

dφ A(q, q′) =
2π∫

0

dφ A(q, q ′, xqq ′). (5)

For a rotationally invariant operator A, the above integral is independent of the variable
φ′. Integrating Eq. (2) over φ, we obtain the two-variable LS equation for the reduced
T −matrix:

T (q, x; q0, x0) = V (q, x; q0, x0)

+ 2μ

∞∫

0

q ′2dq ′
1∫

−1

dx ′ V (q, x; q ′, x ′) T (q ′, x ′; q0, x0)

q2
0 − q ′2 + i0

. (6)

If we take the initial momentum vector q0 along the z-axis, the half-off-shell T -
matrix element for a general final momentum vector q f is then given by

< qf |T |q0ẑ >= T (q f , q0, x f ) = (2π)−1 T (q f , x f ; q0, 1).

Direct numerical solution of this two-variable Lippmann–Schwinger (LS) equation
without invoking the partial wave expansion can be performed nowadays in commonly
available computational platforms. The approach used most frequently is the so-called
Nystrom method [15] in which the integrals over q ′ and x ′ are approximated by a suit-
able two-variable quadrature and then x and q variables are collocated at the quadrature
points, giving rise to a system of linear equations. Although the matrix dimension for
the two-variable case is manageable and does not require special computing envi-
ronment, going beyond two variables makes the matrix dimension quickly become
computationally prohibitive. Therefore, in the contexts of three and four body prob-
lems, alternatives to Nystrom method would be welcome. Bateman method described
in the next section is such an alternative.

3 Bateman method

Bateman method is based on a special kind of interpolation of V (q, x; q ′, x ′) on a finite
set of grid points (nodes) in the q − x computational domain [0, qmax ] × [−1,+1].
Here, qmax is a momentum cutoff whose specification will be discussed in the next
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section. Bateman method involves an interpolation grid of K distinct points in this
computational domain. While there may be many different possibilities for choosing
this bi-variate grid, we will use in this paper a cartesian grid.

Suppose two sets of nodes have been prescribed: N distinct points {q1, q2, ..., qN }
for q in the interval [0, qmax ] and M distinct points {x1, x2, ..., xM } for x in the
interval [−1,+1]. The Cartesian product of these two sets generates a Cartesian grid
of K (= N M) points:

N = {q1, q2, ..., qN } × {x1, x2, ..., xM } (7)

= {(qn, xm) : 1 ≤ n ≤ N , 1 ≤ m ≤ M}. (8)

The set N will be referred to as the interpolation grid. The Bateman interpolate
V B(q, x; q ′, x ′) of V (q, x; q ′, x ′) is defined as

V B(q, x; q ′, x ′) =
N∑

n=1

M∑
m=1

N∑
n′=1

M∑
m′=1

V (q, x; qn, xm)�nm,n′m′ V (qn′ , xm′ ; q ′, x ′) ,

(9)
where the matrix � is defined via

(�−1)nm,n′m′ = V (qn, xm; qn′ , xm′) . (10)

The (exact) transition operator T B for the separable potential V B is then given as

T B(q, x; q ′, x ′) =
N∑

n=1

M∑
m=1

N∑
n′=1

M∑
m′=1

V (q, x; qn, xm) Dnm,n′m′ V (qn′ , xm′ ; q ′, x ′) ,

(11)
where the matrix D is defined via

(D−1)nm,n′m′ = < qn xm |V − V G0V |qn′ xm′ >,

= V (qn, xm; qn′ xm′)

−2μ

∞∫

0

q ′2dq ′
1∫

−1

dx ′ V (qn, xm; q ′, x ′) V (q ′, x ′; qn′ , xm′)

q2
0 − q ′2 + i0

. (12)

This result corresponds to another instance of the weighted-residual approach [10] for
the solution of the LS equation. It also follows from Schwinger variational method
[31,32] if the wave function is expanded in the set of reduced momentum states
{|qn xm >, n = 1, ..., N , m = 1, ..., M }. On the other hand, in the terminology of
Ref. [33], V B is an inner-projection approximation of V .

We note in passing that the Bateman method could directly be used for the full three-
dimensional LS equation as well. In this case, we would choose K distinct momentum
vectors qk in the computational domain [0, qmax ] × [−1,+1] × [0, 2π ] of variables
q, cosθ, φ. The Bateman approximation for the full T-matrix elements would then
read
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T B(q, q′) =
K∑

k=1

K∑
k′=1

V (q, qk) Dk,k′ V (qk′ , q′) , (13)

where

(D−1)k,k′ =< qk |V − V G0V |qk′ > . (14)

Here the inner-product is to be understood in its full three-dimensional sense.

4 Computational implementation

4.1 Singular integrals

To computationally implement the Bateman method, we need to introduce a quadrature
rule on the q − x computational domain for the evaluation of the matrix elements
< qn xm |V G0V |qn′ xm′ >. Again we opt for a direct-product quadrature scheme.
Suppose {qα, α = 1, ..., Nq} denote a suitable set of quadrature points for the q-
variable, with corresponding weights {wα, α = 1, ..., Nq}. Similarly, let {xβ, β =
1, ..., Nx } denote a set of quadrature points for the x-variable, with corresponding
weights {ρβ, β = 1, ..., Nx }. A quadrature rule of order Nq Nx is thus provided by
the set {(qα, xβ) } of quadrature points (referred to as the quadrature grid) and the set
{(wα, ρβ) } of quadrature weights.

The evaluation of the matrix elements < qn xm |V G0V |qn′ xm′ > are carried out
using essentially the same subtraction procedure described in detail in Ref. [10]. The
singular integral is separated into its real and imaginary parts as

< qn xm |V G0V |qn′xm′ >= 2μ Anm,n′m′ − iπμq0 Bnm,n′m′(q0) ,

where

Anm,n′m′ = P
qmax∫

0

dq
q2 Bnm,n′m′(q)

q2
0 − q2

Bnm,n′m′(q) =
1∫

−1

dx < qn xm |V |qx >< qx |V |qn′ xm′ >,

where P stands for principle-value integral. By adding and subtracting a singular
integral that can be evaluated analytically, singular term Anm,n′m′ is rearranged as a
sum of non-singular and singular terms:

Anm,n′m′ = A(ns)
nm,n′m′ + A(s)

nm,n′m′ ,
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where

A(ns)
nm,n′m′ =

qmax∫

0

dq
q2 Bnm,n′m′(q) − q2

0 Bnm,n′m′(q0)

q2
0 − q2

,

A(s)
nm,n′m′ = Bnm,n′m′(q0)

qmax∫

0

dq
q2

0

q2
0 − q2

= Bnm,n′m′(q0)
q0

2
ln

qmax + q0

qmax − q0
.

As the integrals involved in Bnm,n′m′(q) and A(ns)
nm,n′m′ are non-singular, they are

amenable to approximation by quadrature with the result

Bnm,n′m′(q) ≈ �
Nx
β=1 ρβ < qn xm |V |qxβ >< qxβ |V |qn′ xm′ >

Anm,n′m′ ≈ �
Nq
α=1 wα q2

α

Bnm,n′m′(qα)

q2
0 − q2

α

+ Csing q2
0 Bnm,n′m′(q0)

where

Csing = 1

2q0
ln

qmax + q0

qmax − q0
−

Nq∑
α=1

wα

q2
0 − q2

α

.

4.2 Interpolation grid and quadrature

To construct the Cartesian interpolation grid, we need to specify two uni-variate grids,
one in q and one in x . To define the q-grid {qn} , the full q-domain is divided into two
intervals: [0, 2q0], and [2q0,∞). This scheme is adopted to treat the singularity of
the LS kernel at q ′ = q0 in Eqs. (2) or (6) as symmetrically as possible, and to have
q-grid denser in the vicinity of q0. To this end, the first interval [0, 2q0], is subdivided
into I1 (equal) subintervals (finite elements).

The second interval [2q0,∞), however, is first mapped to [−1,+1] via the trans-
formation

u = q − 2q0 − f

q − 2q0 + f
, or q = 2q0 + f

1 + u

1 − u
, (15)

where f is a scale factor. The q-variable is cut off at some large but finite value
qmax by adopting an upper limit umax (< 1) to the variable u. In the calculations
reported in this paper, we used umax = 0.99, which corresponds to qmax values of
several thousand in atomic units. This variable transformation is instrumental for a
discretization of the semi-infinite interval [0,∞) with relatively few finite elements.
The interval [−1, umax ] is divided into I2 equal finite elements. Note that this gives rise
to a non-uniform partitioning for the q-variable in the interval [2q0, qmax ]. The total
number of finite elements covering the computational interval [0, qmax ] is I (≡ I1+I2).
The choice I2 = 3I1 (hence I = 4I1) was found adequate after some experimentation.
The q-grid {q1, q2, ..., qN } consists of the end points and mid-points of this finite-
element partitioning. Note that N = 2I + 1, q1 = 0, and qN = qmax .
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The specification of the x-grid proceeds similarly to that of the q-grid. The inter-
val [−1, 1] is partitioned into J equal subintervals (finite-elements). Collecting and
ordering the endpoints and midpoints of the finite elements together, we define the set
of grid points {x1, x2, ..., xM } , where M = 2J + 1, x0 = −1 and xM = +1.

To construct a composite Gauss–Legendre quadrature rule for q, each finite-element
[q2i−1, q2i+1] , i = 1, 2, ..., I1 in the interval [0, 2q0], is mapped to [−1, 1] via s =
(2q −q2i−1 −q2i+1)/(q2i+1 −q2i−1) . For finite elements in [2q0, qmax ], we map the
finite elements [u2i−1, u2i+1] , for i = 1, ..., I2 , into [−1,+1] via the map s = (2u −
u2i−1 − u2i+1)/(u2i+1 − u2i−1) . We choose a set of nq Gauss–Legendre quadrature
points in the local variable s, and then transform them back to q-variable. The Gauss–
Legendre quadrature points for all elements are then combined and ordered to form a
composite quadrature rule with the set of quadrature points { qα, α = 1, 2, ..., Nq } ,
where Nq = I nq . The quadrature weights are similarly collected in the set {wα, α =
1, 2, . . . , Nq } . In the calculations reported in the next section, values of nq ranged from
4 to 32, depending on the fineness of the finite-element partitioning. To ensure results
stable within 6-7 digits after the decimal point, the total number Nq of quadrature
points were typically in the order of 160-200, although 3-4 digit accuracy could be
achieved with, say, Nq = 64.

For the x-variable, each finite element [ x2 j−1, x2 j+1 ] , is mapped to [−1,+1] via
the map s = (2x − x2i−1 − x2i+1)/(x2i+1 − x2i−1) . We choose nx Gauss–Legendre
quadrature points in s and transform back to the x-variable. The quadrature points
and their weights over individual finite elements are collected in the sets {xβ , β =
1, 2, ..., Nx }, and {ρβ , β = 1, 2, . . . , Nx }, where Nx = J nx . In our calculations,
typically Nx = 80 was sufficient to obtain results stable within 6 digits.

5 Results

To test the multi-variate Bateman method we used the Hartree potential

V (r) = V0 e−λr
(

1 + 1

r

)
.

The values used for the potential parameters are V0 = −2.0 and λ = −2.0, and the
reduced mass is μ = 0.5. This potential corresponds to static no-exchange treatment
of the electron-hydrogen scattering [2].

The momentum-space representation of the Hartree potential is given as

V (q, q′) = λV0

π2

1

[ (q − q′)2 + λ2 ]2 − V0

2π2

1

(q − q′)2 + λ2

For this potential the azimuthal integration in Eq. (4) can be carried out analytically
to give

V (q, x; q ′, x ′) = 2λV0

π

(q2 + q ′2 − 2qq ′xx ′ + λ2)

[ (q2 + q ′2 − 2qq ′xx ′ + λ2)2 − 4q2q ′2(1 − x2)(1 − x ′2) ]3/2

− V0

π

1

[ (q2 + q ′2 − 2qq ′xx ′ + λ2)2 − 4q2q ′2(1 − x2)(1 − x ′2) ]1/2
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In situations where V (q, x; q ′, x ′) is not available analytically, it can be generated
numerically by applying a suitable quadrature to the integral over the azimuthal angle
φ. In fact, this aspect was tested on the present potential. A composite 64-point Gauss–
Legendre rule for the φ-integral produced results that are indistinguishable within 7-8
digits from those of the analytical reduced potential.

Tables 1, 2, 3 and 4 show the convergence pattern of the Bateman results as the
number of grid points in q and x variables are increased. Two collision energies
considered are E = 0.25 and E = 4.0. Shown are the real and imaginary parts of the
scattering amplitude

A(x; E) ≡ −4π2μ T (q0, x; q0, x0 = 1.0; E)

for three values of x . Also shown is the s-wave component of the scattering amplitude,
obtained by numerically averaging A(x, E) over x .

Reference values in these tables were obtained using Nq = 200 and Nx = 80 in the
Nystrom method. These are stable to within at least the number of digits shown against
further increases in the computational parameters like Nq , Nx , qmax and against the

Table 1 Convergence of the
Bateman method with respect
to the number of interpolation
points in the q-grid

Shown are the scattering
amplitudes A(x; E) at
E = 0.25. Parameters N and M
denote the number of points in
the q- and x-grids, respectively

N M s-wave x = 1.0 x = 0.0 x = −1.0

Real part of scattering amplitude

9 41 0.869160 1.040426 0.862265 0.725922

17 41 0.868613 1.039856 0.861694 0.725350

25 41 0.868570 1.039813 0.861651 0.725307

33 41 0.868561 1.039804 0.861641 0.725297

41 41 0.868557 1.039800 0.861638 0.725294

49 41 0.868556 1.039799 0.861637 0.725292

65 41 0.868555 1.039798 0.861635 0.725291

81 41 0.868554 1.039797 0.861635 0.725291

81 51 0.868553 1.039796 0.861634 0.725290

Nystrom 0.868552 1.039795 0.861633 0.725289

Ref. [2] 0.869 1.040 0.862 0.725

Imaginary part of scattering amplitude

9 41 1.494530 1.498614 1.494521 1.490485

17 41 1.495490 1.499574 1.495481 1.491445

25 41 1.495566 1.499650 1.495557 1.491521

33 41 1.495583 1.499667 1.495573 1.491538

41 41 1.495589 1.499673 1.495579 1.491544

49 41 1.495589 1.499675 1.495582 1.491546

65 41 1.495593 1.499677 1.495584 1.491548

81 41 1.495594 1.499678 1.495585 1.491549

81 51 1.495596 1.499680 1.495586 1.491550

Nystrom 1.495598 1.499682 1.495589 1.491553

Ref. [2] 1.495 1.500 1.496 1.491
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Table 2 Convergence of the
Bateman method with respect to
the number of interpolation
points in the x-grid

Shown are the scattering
amplitudes A(x; E) at
E = 0.25. Parameters N and M
denote the number of points in
the q- and x-grids, respectively

N M s-wave x = 1.0 x = 0.0 x = −1.0

Real part of scattering amplitude

41 11 0.868724 1.039964 0.861805 0.725461

41 15 0.868611 1.039854 0.861692 0.725348

41 21 0.868572 1.039816 0.861653 0.725309

41 25 0.868564 1.039808 0.861646 0.725302

41 31 0.868560 1.039803 0.861641 0.725297

41 41 0.868557 1.039800 0.861638 0.725294

41 51 0.868556 1.039799 0.861637 0.725293

Nystrom 0.868552 1.039795 0.861633 0.725289

Imaginary part of scattering amplitude

41 11 1.495293 1.499375 1.495284 1.491246

41 15 1.495493 1.499576 1.495484 1.491447

41 21 1.495562 1.499645 1.495552 1.491516

41 25 1.495575 1.499659 1.495566 1.491530

41 31 1.495584 1.499668 1.495574 1.491539

41 41 1.495589 1.499673 1.495579 1.491544

41 51 1.495591 1.499674 1.495581 1.491545

Nystrom 1.495598 1.499682 1.495589 1.491553

Table 3 Convergence of the
Bateman method with respect
to the number of interpolation
points in the q-grid

Shown are the scattering
amplitudes A(x; E) at E = 4.0.
Parameters N and M denote the
number of points in the q- and
x-grids, respectively

N M s-wave x = 1.0 x = 0.0 x = −1.0

Real part of scattering amplitude

9 41 0.244835 0.976089 0.161554 0.0507304

17 41 0.245864 0.978461 0.162482 0.0508273

25 41 0.245917 0.978598 0.162528 0.0508275

33 41 0.245919 0.978603 0.162530 0.0508274

41 41 0.245919 0.978604 0.162530 0.0508274

41 51 0.245919 0.978604 0.162530 0.0508274

Nystrom 0.245919 0.978604 0.162530 0.0508275

Ref. [2] 0.246 0.979 0.164 0.051

Imaginary part of scattering amplitude

9 41 0.199444 0.292994 0.191600 0.139506

17 41 0.204711 0.298829 0.196851 0.144271

25 41 0.205001 0.299153 0.197139 0.144531

33 41 0.205013 0.299167 0.197151 0.144541

41 41 0.205013 0.299167 0.197151 0.144542

41 51 0.205014 0.299168 0.197152 0.144542

Nystrom 0.205014 0.299168 0.197152 0.144543

Ref. [2] 0.205 0.300 0.197 0.145
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Table 4 Convergence of the
Bateman method with respect to
the number points in the x-grid

Shown are the scattering
amplitudes A(x; E) at E = 4.0.
Parameters N and M denote the
number of points in the q- and
x-grids, respectively

N M s-wave x = 1.0 x = 0.0 x = −1.0

Real part of scattering amplitude

41 11 0.245890 0.978503 0.162522 0.0508334

41 15 0.245910 0.978572 0.162525 0.0508253

41 21 0.245917 0.978597 0.162528 0.0508264

41 25 0.245918 0.978601 0.162529 0.0508269

41 31 0.245919 0.978603 0.162530 0.0508272

41 41 0.245919 0.978604 0.162530 0.0508274

41 51 0.245919 0.978604 0.162530 0.0508274

Nystrom 0.245919 0.978604 0.162530 0.0508275

Imaginary part of scattering amplitude

41 11 0.204881 0.298973 0.197048 0.144436

41 15 0.204980 0.299120 0.197123 0.144511

41 21 0.205006 0.299157 0.197144 0.144534

41 25 0.205010 0.299163 0.197148 0.144539

41 31 0.205012 0.299166 0.197151 0.144541

41 41 0.205013 0.299167 0.197152 0.144542

41 51 0.205014 0.299168 0.197152 0.144542

Nystrom 0.205014 0.299168 0.197152 0.144543

variations in the the distribution pattern of quadrature points in the q − x plane. Also
shown in Tables 1 and 3 are the results of Ref. [2], obtained via a finite element solution
of two-variable Schrodinger equation for the same model.

Matrix dimensions (or number of grid points) for Bateman calculations reported in
Table 1 range from 369 to 4,131, while the reference Nystrom calculation involved a
kernel matrix dimension of 16,000. An examination of these tables show that results
accurate to 3–4 digits can be obtained with relatively few grid points. However, going
beyond this level of accuracy may require much finer interpolation grids. Neverthe-
less, even with fairly dense interpolation grids, there is considerable reduction in the
matrix size.

One can argue that whenever the number of interpolation points are comparable
to the number of quadrature points, the Bateman and Nystrom methods will yield
similar levels of accuracy. In fact, as mentioned earlier, when a quadrature grid is also
used as interpolation grid, Bateman method degenerates into the Nystrom method.
Conversely, a Nystrom calculation is at the same time a Bateman calculation. In a sense,
Nystrom is a restricted type of Bateman method in which interpolation and quadrature
grids are the same. That Bateman approach distinguishes between interpolation and
quadrature grids is a strength of the Bateman approach over the Nystrom approach.
For a given (crude) interpolation grid, the integral involved in the matrix element
< qn xm |V G0V |qn′ xm′ > can be calculated with a finer quadrature grid, without
affecting the the order of the matrix D. In contrast, in Nystrom method, the quadrature
grid used to discretize the integral will have to be used also as collocation points in
order to obtain a consistent set of equations.
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6 Discussion and conclusions

We have shown that the multi-variate Bateman interpolation of V (q, x; q ′, x ′) on a grid
provide a simple and viable computational scheme to solve the LS equation without
invoking angular momentum decomposition. In terms of computational complexity,
Bateman approach is quite comparable to the Nystrom method. Although more com-
puting time is needed to form the D−1-matrix than to assemble the kernel matrix of the
Nystrom method, Bateman method (and other weighted residual methods) represent
a contraction of the system of equations of the Nystrom method. In fact, when inter-
polation and quadrature grids are taken to coincide, Bateman and Nystrom methods
become equivalent.

The use of two grids in the Bateman approach, one for interpolation and one for
quadrature evaluation of matrix elements, gives it an additional flexibility. The matrix
dimension is determined by the interpolation grid. However, calculation of the integral
in Eq. (12) for the construction of the matrix D−1 can be carried out with a higher-order
quadrature rule without affecting the matrix size. From this point of view, Nystrom
approach is a restricted type of Bateman method with the same grid used for the
purposes of interpolation and quadrature both.

We find that Bateman method can yield 3–4 digit accuracy with relatively small
numbers of interpolation points. However, as the size of the interpolation grid is
increased to achieve higher level of accuracy, the advantage associated with the reduc-
tion in matrix dimension may disappear to some extent. With large sets of interpolation
and quadrature points, both Nystrom and Bateman methods are expected to perform
satisfactorily.

In three- and four-particle contexts, the two-particle T -matrix < q|T (E)|q′ > is
needed at very many different two-particle energies E and for many different off-shell
momenta q and q′. Bateman method could be an effective way of generating arbitrary
off-shell T -matrix elements needed in direct momentum-vector approaches to solve
three-particle Faddeev equations without employing partial-wave decomposition as in
Refs.[19,20].
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16. Z.C. Kuruoğlu, D.A. Micha, Calculation of resonances in the H+H2 reaction using the Faddeev-AGS

method. Int. J. Quantum Chem. S23, 105 (1989)
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