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Abstract We describe a challenging class of large mixed-integer second-order cone
programming models which arise in computing the maximum price that a buyer is
willing to disburse to acquire an American contingent claim in an incomplete finan-
cial market with no arbitrage opportunity. Taking the viewpoint of an investor who
is willing to allow a controlled amount of risk by replacing the classical no-arbitrage
assumption with a “no good-deal assumption” defined using an arbitrage-adjusted
Sharpe ratio criterion we formulate the problem of computing the pricing and hedging
of an American option in a financial market described by a multi-period, discrete-time,
finite-state scenario tree as a large-scale mixed-integer conic optimization problem.
We report computational results with off-the-shelf mixed-integer conic optimization
software.

Keywords American options · Mixed-integer second-order cone optimization

1 Introduction

Hard discrete optimization problems and novel approaches to solve them have been an
important part of research in optimization in the last decade; see, e.g., [19]. Mathemat-
ical finance offers a rich source of interesting optimization problems. The emergence
of integer programming in mathematical finance has been so far limited mainly to
portfolio optimization problems where buying and selling securities were subject to
fixed transaction costs or when minimum lot restrictions were present. Cardinality
constraints in the context of portfolio optimization may also lead to the use of discrete
variables; see, e.g., [11,22].
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In the present paper, we report on a different area of mathematical finance where
finite dimensional optimization models with discrete-valued variables is of interest:
pricing of stochastic cash flows. The pricing problem of stochastic cash flows is compli-
cated by the fact that most financial markets are incomplete, i.e., not all future uncertain
cash flows can be replicated exactly using the existing instruments. This observation
leads to a wealth of literature on pricing and hedging in incomplete markets; see, e.g.,
[4,6,9,21]. When markets are incomplete state prices and claim prices are not unique.
Since markets are almost never complete due to market imperfections as discussed in
Carr et al. [6], and characterizing all possible future states of economy is impossible,
the common practice is to find the cheapest portfolio dominating a stochastic future
cash flow and the most expensive portfolio dominated by it, and use these respective
values as bounds on the price of the stochastic cash flow. These bounds are referred to as
super-replication and sub-replication bounds or no-arbitrage (or equilibrium) bounds.
They are also known as upper hedging and the lower hedging prices. In the absence
of arbitrage, the lower hedging price is the value of the most precious self-financing
portfolio strategy composed of market instruments whose payoff is dominated by the
contingent claim payoff at expiration. The lower hedging price can also be interpreted
as the largest amount the contingent claim buyer can borrow (in the form of cash or
by short-selling stocks) to acquire the claim while paying off his/her debt in a self-
financed manner using the contingent claim payoff at expiration [10]. Hence, we refer
to this price as the buyer’s price as well as the lower hedging price. For European
contingent claims with no early exercise and termination possibility, the upper and
lower hedging prices are expressed as supremum and infimum, respectively, of the
expectation of the discounted contingent claim payoff (at expiration) over all proba-
bility measures that make the underlying stock price a martingale. We direct the reader
to the book by Föllmer and Schied [14] for an in-depth treatment of pricing contingent
claims in discrete time, and to Chalasani and Jha [10] for American contingent claims
(ACC), which can be exercised at any time until expiration. The upper hedging price
for ACC is the supremum of the expectation of the discounted contingent claim payoff
(at some time between now and expiration) over all stopping times and all probability
measures that make the underlying stock-price process a martingale. While the upper
hedging price for ACC can be cast as a linear programming problem in discrete time
[10,20], the lower hedging price is harder to compute since it requires the solution of
a mixed-integer programming problem [20]. Recently, Camcı and Pınar [5] showed
that the lower hedging price can also be computed by solving the LP relaxation of the
mixed-integer model, i.e., the LP relaxation is exact. On the other hand, as indicated
in [14], the computed upper and lower hedging prices may be far apart, and useless in
practice. Furthermore, as we shall see in Sect. 6, the lower hedging bound may even
turn out to be equal to zero!

In the present work, we are interested in pricing ACCs using a risk criterion intro-
duced in [12] and further developed in [7,9]. Our work is based on good-deals defined
as investments with high arbitrage adjusted Sharpe ratio [9]. Our motivation is to derive
a higher (thus, more meaningful) lower hedging price for an ACC in an incomplete mar-
ket. In a multi-period, discrete time, discrete state space framework we define the stock
price process as a non-recombinant tree and formulate a mixed-integer second-order
cone programming problem for computing the lower hedging price under the Sharpe
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ratio risk criterion (for recent work on second-order cone nonlinear programming,
see [15]). After a brief introduction to the financial market setting, we describe our
pricing measure and give our mixed-integer second-order cone optimization formula-
tion. We develop an application using S&P 500 index options data, and report our pre-
liminary computational experience on these very difficult and large problem instances
whose even convex relaxation may prove tough to handle. These instances clearly pose
a challenge to the numerical optimization community. We obtain the optimal solution
of the instances using duality theory.

The rest of the paper is organized as follows. In Sect. 2 we describe the financial mar-
ket structure assumed in the paper. Section 3 introduces the Sharpe ratio risk criterion,
and our initial formulation is given in Sect. 4. Section 5 describes the calibrated option
bounds model used for numerical testing purposes. In Sect. 6 we present our numerical
experiences with the instances generated using the calibrated option bounds setting,
and our approach via duality to obtain an optimal solution to challenging instances.
We conclude in Sect. 7.

2 The stochastic scenario tree

We approximate the behavior of the stock market by assuming that security prices and
other payments are discrete random variables supported on a finite probability space
(�,F , P) whose atoms are sequences of real-valued vectors (asset values) over the
discrete time periods t = 0, 1, . . . , T as in [16]. We further assume the market evolves
as a discrete, non-recombinant scenario tree (hence, suitable for incomplete markets)
in which the partition of probability atoms ω ∈ � generated by matching path his-
tories up to time t corresponds one-to-one with nodes n ∈ Nt at level t in the tree.
The set N0 consists of the root node n = 0, and the leaf nodes n ∈ NT corre-
spond one-to-one with the probability atoms ω ∈ � . The σ -algebras are such that,
F0 = {∅,�},Ft ⊂ Ft+1 for all 0 ≤ t ≤ T − 1 and FT = F . A stochastic process is
said to be (Ft )

T
t=0 -adapted if for each t = 0, . . . , T , the outcome of the process only

depends on which element of Ft has been realized at stage t . Similarly, a decision
process is said to be (Ft )

T
t=0 -adapted if for each t = 0, . . . , T , the decision depends

on which element of Ft has been realized at stage t . In the scenario tree, every node
n ∈ Nt for t = 1, . . . , T has a unique parent denoted π(n) ∈ Nt−1 , and every node
n ∈ Nt , t = 0, 1, . . . , T − 1 has a non-empty set of child nodes C(n) ⊂ Nt+1 . We
denote the set of all nodes in the tree by N . We use the function t (n) to hold the
time period to which node n belongs, i.e., n ∈ Nt (n) . The symbol A(n) denotes
the ascendant nodes or path history of node n including itself, and D(n) represents the
descendant nodes from n including itself. The probability distribution P is obtained
by attaching positive weights pn to each leaf node n ∈ NT so that

∑
n∈NT

pn = 1.
For each non-terminal (intermediate level) node in the tree we have, recursively,

pn =
∑

m∈C(n)

pm, ∀ n ∈ Nt , t = T − 1, . . . , 0.

Hence, each intermediate node has a probability mass equal to the combined mass of
the paths passing through it.
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Fig. 1 A sample scenario tree

A random variable X is a real valued function defined on � . It can be lifted to the
nodes of a partition Nt of � if each level set {X−1(a) : a ∈ R} is either the empty set
or is a finite union of elements of the partition. In other words, X can be lifted to Nt

if it can be assigned a value on each node of Nt that is consistent with its definition
on � , [16]. This kind of random variable is said to be measurable with respect to the
information contained in the nodes of Nt . A stochastic process {Xt } is a time-indexed
collection of random variables such that each Xt is measurable with respect Nt . The
expected value of Xt is uniquely defined by the sum E

P [Xt ] := ∑
n∈Nt

pn Xn .
The market consists of J + 1 traded securities indexed by j = 0, 1, . . . , J with

prices at node n given by the vector Zn =(Z0
n, Z1

n, . . . , Z J
n ) . We assume as in [8,20]

that the security indexed by 0 has strictly positive prices at each node of the scenario
tree.

The amount of security j held by the investor in state (node) n ∈ Nt is denoted θ
j

n .
Therefore, to each state n ∈ Nt is associated a vector θn ∈ R

J+1 . The value of the
portfolio at state n is Zn · θn = ∑J

j=0 Z j
nθ

j
n . A sample scenario tree for a market

with three trading points is depicted in Fig. 1.
In our finite probability space setting an American contingent claim H is a stochas-

tic process measurable with respect to Nt , and hence, generates payoff opportunities
Hn, (n ≥ 0) to its holder depending on the states n of the market.

The prevailing approach in the mathematical finance literature to the pricing of
options is to find the fair price that does not allow arbitrage opportunities to the par-
ticipants of the market. In an arbitrage-free financial market the lower hedging bound
(or lower hedging price) is found by solving the following mixed-integer linear opti-
mization problem NALHP (No-Arbitrage Lower Hedging Problem):

max −Z0 · θ0 + H0e0
s.t. Zn · (θn − θπ(n)) = en Hn, ∀ n ∈ Nt , t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT ,∑

m∈A(n)

em ≤ 1, ∀ n ∈ NT

en ∈ {0, 1}, ∀ n ∈ N .
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where the optimal value gives the lower hedging price [5,20]. However, as we shall see
in Sect. 6, this model may yield unreasonable bounds (equal to zero), and may there-
fore be of limited use in practice. This situation can be remedied by the Sharpe-ratio
based lower hedging bound of the present paper.

3 Arbitrage-adjusted Sharpe ratio good-deals

To motivate the good-deal opportunity in our context we shall use the following rea-
soning as in [7]. Let us relax the constraint that final wealth positions Zn · θn be
non-negative for all n ∈ NT by splitting every final wealth position Zn · θn into the
sum of a non-negative component vn and an unrestricted-in-sign (free) component xn :

Zn · θn = vn + xn ∀ n ∈ NT , (3.1)

and replacing the inequalities Zn · θn ≥ 0,∀ n ∈ NT by Eq. (3.1). The above relax-
ation of the pricing problem might result in extremely large negative final wealth
positions that are unacceptable for the person trying to construct a sequence of hedg-
ing portfolios for a given contingent claim. To limit the magnitude of negative final
wealth positions, we impose the restriction that the expected value of free component
xn of the final wealth remain non-negative and be at least a positive multiple of its
standard deviation. In other words, if xn , for n ∈ NT represent the realizations of
random variable X , using some positive real λ we impose the restriction

E[X ] ≥ λ
√

V [X ] (3.2)

where E[X ] denotes expectation, V [X ] denotes variance of X . More precisely, in
our setting this restriction translates into

∑

n∈NT

pn xn ≥ λ

√
√
√
√
√

∑

n∈NT

pn

⎛

⎝xn −
∑

n∈NT

pn xn

⎞

⎠

2

. (3.3)

We note that inequality (3.2) could be also be viewed as

E[X ]√
V [X ] ≥ λ

which is precisely a lower-bound restriction on the Sharpe ratio [9] of the unre-
stricted-in-sign component of the final wealth position. We term the Sharpe ratio of
the unrestricted-in-sign component of the final wealth position the “arbitrage-adjusted
Sharpe ratio”. Put in other words, we take the viewpoint of the investor who is will-
ing to give up non-negative final wealth in all states of nature, and can accept some
negative wealth positions provided that they satisfy restriction (3.3). The term “arbi-
trage-adjusted” reflects the feature that the new pricing problem introduced below
tends to give identical results with no-arbitrage pricing problem (NAHLP) in the
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limit when λ approaches infinity [7]. This development is motivated by the classical
problem of finance where investors are interested in identifying zero cost investment
opportunities with the highest possible Sharpe ratio. In our context, an investor who
identifies a sequence of portfolio holdings resulting in non-negative wealth positions
in all states of nature while hedging the cash outlays of a contingent claim can be
thought of having achieved an infinite Sharpe ratio as follows. He/she can set the x
component of the final wealth position to zero in all states of nature while keeping the
non-negative wealth positions in the variables vn , which results in both zero expected
value and zero variance of x , which may be combined with an infinitely large λ .
Hence, we can identify a sequence of hedging portfolios for a contingent claim result-
ing in non-negative final wealth positions with an infinitely large arbitrage-adjusted
Sharpe ratio.

Assume that there exist a set of vectors θ0, θ1, . . . , θ|N | such that

Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt , t ≥ 1

and

∑

n∈NT

pn xn − λ

√
√
√
√
√

∑

n∈NT

pn

⎛

⎝xn −
∑

n∈NT

pn xn

⎞

⎠

2

> 0

for λ > 0. This sequence of portfolio holdings is said to yield a “Sharpe ratio good-
deal opportunity” at level λ . This formulation is similar to the Sharpe ratio criterion
treated in [9,12]. Here, the parameter λ can be interpreted as a loss aversion parameter
of the individual investor because as λ gets larger the investor is closer to seeking an
arbitrage.

4 The formulation

Now, let us assume that an American contingent claim H is available in our finan-
cial market setting. The potential buyer is interested in borrowing cash to acquire the
claim, and with the remaining cash to form a portfolio of traded instruments. She/he
will modify this portfolio later using proceeds from the claim (if exercised) or through
self-financing transactions. At the expiry date of the option the final positions that the
buyer carries should satisfy the Sharpe ratio risk constraint, i.e., the ratio of the average
position to the standard deviation of the position should remain bounded by λ . The
exercise of the American contingent claim is controlled by means of binary variables
en, n ∈ N . Hence, under the assumption of no good-deal opportunities for the stock
price process, the price of the ACC that provides no good-deals to the buyer must be
greater than or equal to the optimal value of the following optimization problem (SP)
(Sharpe Problem)
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max V
s.t. Z0 · θ0 = H0e0 − V

Zn · (θn −θπ(n)) = Hnen, ∀ n ∈Nt , 1≤t≤T
Zn · θn − xn − vn = 0, ∀ n ∈ NT

∑

n∈NT

pn xn − λ

√ ∑

n∈NT

pn(xn −
∑

n∈NT

pn xn)2 ≥ 0

∑

m∈A(n)

em ≤ 1, ∀ n ∈ NT

vn ≥ 0, ∀ n ∈ NT

en ∈ {0, 1}, ∀ n ∈ N .

This problem is a mixed integer second-order cone programming (MISOCP)
problem. The first constraint ties the initial wealth (borrowed) to the value of
an initial portfolio. The second set of constraints represent the portfolio trans-
actions at the nodes of subsequent periods. The third constraint is the Sharpe
ratio good-deal constraint while the fourth set of constraints limits exercise to
a single node over each sample path. This problem is less tightly constrained
since every feasible solution to (NALHP) is a feasible solution for (SP) by
taking xn = 0 for all n and vn = Zn · θn . Therefore, we expect to obtain a
lower hedging value at least as large as in (NALHP) by solving (SP). For reasons
due to availability of data we shall work on a slightly different model described
next.

5 Calibrated option bounds

In the setting of [17] adopted for our numerical tests, liquid European options traded in
the market are used for hedging purposes in addition to securities. These liquid options
give the investor the possibility of forming buy-and-hold strategies in the hedging port-
folio sequence. That is, every liquid option can be bought or shorted by the investor at
time zero with the purpose of hedging a contingent claim, and no intermediary trading
is available for these options, i.e., once a position (long or short) is taken in an option,
this position is kept fixed until maturity of the option. Assuming there are M such
liquid options, we denote them by Gk, k = 1, . . . , M . Bid and ask prices observed in
the market at time 0 for option k are denoted by Ck

b and Ck
a , respectively, with the

latter greater than or equal to the former. Gk
n is the payoff of option k at node n of

the scenario three and Gn is the vector of option payoffs at node n . At this point we
will assume that S0

n = 1,∀n ∈ N , to use normal stock prices instead of discounted
prices. This assumption is consistent with our numerical experiments since we use
a zero interest rate. The non-negative M -vectors ξ+ and ξ− denote, respectively,
the long and short initial buy-and-hold positions in the liquid options. Under these
assumptions the buyer’s problem we shall be solving is modified as [referred to as (P)]
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max −Z0 · θ0 − Ca · ξ+ + Cb · ξ− + H0e0
s.t. Zn · (θn − θπ(n)) = Gn · (ξ+−ξ−)+en Hn , ∀ n ∈Nt , t ≥1

∑

n∈NT

pn xn − λ

√ ∑

n∈NT

pn(xn −
∑

n∈NT

pn xn)2 ≥ 0

vn + xn = Zn · θn , ∀ n ∈ NT ,∑

m∈A(n)

em ≤ 1, ∀ n ∈ NT

en ∈ {0, 1}, ∀ n ∈ N
ξ+, ξ− ≥ 0,

vn ≥ 0, ∀ n ∈ NT .

6 Numerical results and solution via duality

We use 48 European options written on the S&P 500 index. The option data were
available in the market on 10 September 2002. The first 21 are call options and
the remaining ones are put options. Strikes and maturities as well as actual bid and
ask prices (columns Cb and Ca ) of these options are given in Table 1. We com-
pute “calibrated” pricing bounds for each option treating that option as an American
option. This means that the buyer or writer of the option can include buy-and-
hold positions in the 47 remaining European options into his/her hedge portfolio
sequence.

We use Z = (1, Z1) as the traded securities. Having Z0 = 1 for all dates
means that interest rate is zero. We assume that the price of the S&P 500 index
(i.e., Z1 ) follows a geometric Brownian motion. Under this assumption, we gener-
ate a scenario tree by the Gauss–Hermite process which was discussed in [17,18] in
detail. We use a branching structure of (50,10,10). It means that the tree divides
into 50 nodes at the second period. Then, each node branches into ten nodes
in the second period hence there are additional 500 nodes in the third period.
Then, again each node of the third period is divided into 10 and there are 5,000
leaf nodes of the tree. We assume that investors can trade at days 0, 17, 37
and 100, and form instances of problem (P) with four periods, which already
yields huge MISOCP instances with up to 25,553 constraints and 31,749 vari-
ables of which 5,551 are binary. Let K denote the strike price. We have now
Hn = (Z1

n − K )+ for call options and Hn = (K − Z1
n)+ for put options for all

n ∈ N .
We used the conic interior point optimizer MOSEK version 5.0.0.127 [2] under

default settings through GAMS version 23.2 [1] to determine buyer’s prices for each
option for λ = 5.7, a value that was chosen because it leads to price bounds that are
closer to reported bid and ask prices for all the options and also leads to improved
price bounds in most cases (see Table 2). We report computational results in Table 1. It
proved impossible to get most MINLP solvers to work on the present instances using
the primal formulation (P). MOSEK was the only code to solve the convex relaxations
with some success, but it stopped immediately with an error message when the models
were input as mixed-integer conic models. In Table 1 below, the continuous (relaxed)
models marked with a B for “binary” solution, and solver and model status both
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Table 1 Numerical results for the continuous relaxation of Sharpe ratio lower hedging primal problem (P)
with λ = 5.7

Option no. Type Strike Maturity Cb Ca Buyer’s price Solver & model status Solution

1 Call 890 17 31.5 33.5 31.22 1, 1 B

2 Call 900 17 24.4 26.4 24.67 1, 1 B

3 Call 905 17 21.2 23.2 21.80 1, 1 B

4 Call 910 17 18.5 20.1 18.92 1, 1 B

5 Call 915 17 15.8 17.4 16.09 1, 1 B

6 Call 925 17 11.2 12.6 − 4, 6 –

7 Call 935 17 7.6 8.6 7.68 1, 1 B

8 Call 950 17 3.8 4.6 3.39 1, 1 B

9 Call 955 17 3 3.7 2.99 1, 1 B

10 Call 975 17 0.95 1.45 0.65 1, 1 B

11 Call 980 17 0.65 1.15 0.66 1, 1 B

12 Call 900 37 42.3 44.3 40.58 1, 1 F

13 Call 925 37 28.2 29.6 − 4, 6 –

14 Call 950 37 17.5 19 − 4, 6 –

15 Call 875 100 77.1 79.1 75.49 1, 1 F

16 Call 900 100 61.6 63.6 59.87 1, 1 F

17 Call 950 100 35.8 37.8 − 4, 6 –

18 Call 975 100 26 28 − 4, 6 –

19 Call 995 100 19.9 21.5 − 4, 6 –

20 Call 1,025 100 12.6 14.2 − 4, 6 –

21 Call 1,100 100 3.4 3.8 − 4, 6 –

22 Put 750 17 0.4 0.6 − 4, 6 –

23 Put 790 17 1 1.3 1.01 1, 1 B

24 Put 800 17 1.3 1.65 1.21 1, 1 B

25 Put 825 17 2.5 2.85 2.05 1, 1 B

26 Put 830 17 2.6 3.1 2.74 1, 1 B

27 Put 840 17 3.4 3.8 3.41 4, 6 –

28 Put 850 17 3.9 4.7 4.41 1, 1 B

29 Put 860 17 5.5 5.8 5.39 4, 6 –

30 Put 875 17 7.2 7.8 7.60 4, 6 –

31 Put 885 17 9.4 10.4 10.40 1, 1 B

32 Put 750 37 5.5 5.9 − 2, 6 –

33 Put 775 37 6.9 7.7 7.60 1, 1 F

34 Put 800 37 9.3 10 9.89 1, 1 F

35 Put 850 37 16.7 18.3 − 4, 6 –

36 Put 875 37 23 24.3 22.39 1, 1 F

37 Put 900 37 31 33 32.70 1, 1 F

38 Put 925 37 41.8 43.8 43.61 1, 1 F

39 Put 975 37 73 75 72.57 1, 1 F

40 Put 995 37 88.9 90.9 − 4, 6 –
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Table 1 continued

Option no. Type Strike Maturity Cb Ca Buyer’s price Solver & model status Solution

41 Put 650 100 5.7 6.7 2.73 1, 1 F

42 Put 700 100 9.2 10.2 10.10 1, 1 F

43 Put 750 100 14.7 15.8 − 4, 6 –

44 Put 775 100 17.6 19.2 − 4, 6 –

45 Put 800 100 21.7 23.7 − 4, 6 –

46 Put 850 100 33.3 35.3 32.93 1, 1 F

47 Put 875 100 40.9 42.9 − 4, 6 –

48 Put 900 100 50.3 52.3 51.99 1, 1 F

Solver Status Codes: 1, Normal Completion; 2, Iteration Interrupt; 4, Terminated by Solver
Model Status Codes: 1, Optimal; 6, Intermediate Infeasible; F, Fractional; B, Binary

equal to 11 were solved successfully with MOSEK, and yielded an integer e com-
ponent hence the optimal solution to the original model for claims with the earliest
maturity date (day 17). However, for the remaining models either the solver success-
fully returned an optimal fractional solution (hence, an upper bound on the buyer’s
price), or stopped with an error message (reported in the table). It is conjectured that
the solvers run into numerical problems due to the very small entries for the node
probabilities generated from the Gauss–Hermite process. For models with five trad-
ing dates that are even larger, it is expected that the problems will grow even more
challenging.

The key to turn this situation around is via duality. Before we can carry on, we need
the following definition (see [16] for details).

Definition 1 If there exists a probability measure Q = {qn}n∈NT such that

Zt = E
q [Zt+1|Nt ] (t ≤ T − 1),

i.e.,

qm Zm =
∑

n∈C(m)

qn Zn, ∀ m ∈ Nt , 0 ≤ t ≤ T − 1 (6.1)

q0 = 1, (6.2)

qn ≥ 0, ∀n ∈ N , (6.3)

then the vector process {Zt } is called a vector-valued martingale under Q , and Q is
called a martingale probability measure for the process.

Let E be the set {en| ∑m∈A(n) em ≤ 1, ∀ n ∈ NT and en ∈ {0, 1}, ∀ n ∈ N } .
Consider problem (P) for fixed e ∈ E . Based on our earlier work [7], for fixed e ∈ E

1 The Solver Status refers to the state (e.g., Normal completion, iteration or CPU limit interrupt, or some
other termination status) of the solver program (e.g., CPLEX or MOSEK) on exit, and the Model Status
gives a description of what the solution looks like (e.g., whether the solution reported is optimal, or locally
optimal, or infeasible etc.)
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Table 2 Numerical results on the most difficult instances of Table 1 for Sharpe ratio lower hedging bound-
ing problems (DL) and (DU) with λ = 5.7

Option no. Type Strike Maturity UB LB LHB

6 Call 925 17 10.57 10.57 10.42

12 Call 900 37 40.58 40.58 40.58

13 Call 925 37 26.86 26.86 26.86

14 Call 950 37 14.32 14.32 13.82

15 Call 875 100 75.48 75.48 75.48

16 Call 900 100 59.88 59.88 59.88

17 Call 950 100 33.81 33.80 32.27

18 Call 975 100 24.99 24.99 23.70

19 Call 995 100 18.90 18.90 17.72

20 Call 1,025 100 10.06 10.03 8.01

21 Call 1,100 100 0.389 0.384 0

22 Put 750 17 0.545 0.545 0

27 Put 840 17 3.44 3.44 3.20

29 Put 860 17 5.41 5.41 4.60

30 Put 875 17 7.65 7.65 6.80

32 Put 750 37 3.80 3.80 3.80

33 Put 775 37 7.60 7.60 6.32

34 Put 800 37 9.89 9.89 7.90

35 Put 850 37 15.84 15.84 13.48

36 Put 875 37 22.43 22.43 21.77

37 Put 900 37 32.72 32.72 32.72

38 Put 925 37 43.62 43.62 43.62

39 Put 975 37 72.70 72.70 72.23

40 Put 995 37 87.72 87.72 87.08

41 Put 650 100 2.72 2.72 2.60

42 Put 700 100 10.02 10.02 6.65

43 Put 750 100 15.02 15.02 11.79

44 Put 775 100 17.84 17.84 16.95

45 Put 800 100 21.04 21.03 20.06

46 Put 850 100 32.97 32.97 32.74

47 Put 875 100 42.52 42.52 42.52

48 Put 900 100 52.02 52.02 52.02

the maximization over the remaining variables admits the dual problem (DL) below
over the variables qn . The primal problem (P) with fixed variables en and the dual
problem (DL) below have a common optimal value under a strict feasibility assumption
to guarantee zero duality gap:2

2 There exists feasible θ, x, v such that the conic constraint in problem SP is satisfied as a strict inequality,
and there exists feasible q in DL such that constraint (6.5) holds as a strict inequality, see [3].
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min
∑

n∈N

enqn Hn (6.4)

subject to (6.1)–(6.3), (6.5), (6.6) as defined below:

√
√
√
√

∑

n∈NT

pn

(
qn

pn
− 1

)2

≤ λ, (6.5)

Cb ≤
T∑

t=1

∑

n∈Nt

qnGn ≤ Ca . (6.6)

Now, defining Q̃ to be set of all martingale measures satisfying the side conditions
(6.5), (6.6), i.e., all vectors with components {qn} satisfying (6.1)–(6.3), (6.5), (6.6),
we can express problem P as the computation of

V0 ≡ max
e∈E

min
q∈Q̃

E
q

[
T∑

t=0

Ht et

]

≡
∑

n∈N

enqn Hn, (6.7)

where V0 denotes the lower hedging value at node 0, i.e., at t = 0.
We denote by Vn the value of the index option at node n of the scenario tree at

time t (n) . Let us define

En =
⎧
⎨

⎩
e	|

∑

m∈A(ñ)∩D(n)

em ≤ 1, ∀ñ ∈NT ∩ D(n) and e	 ∈{0, 1}, ∀ 	∈D(n)

⎫
⎬

⎭

as the set of exercise constraints for the sub-tree starting at node n . Likewise we define
Q̃n be the set of q	 ≥ 0 for 	 ∈ D(n) satisfying

q	Z	 =
∑

m∈C(	)

qm Zm, ∀ 	∈Nt ∩ (D(n)\(D(n) ∩ NT )), t (n) ≤ t ≤ T − 1 (6.8)

qn = 1, (6.9)
√
√
√
√

∑

	∈NT ∩D(n)

p	

(
q	

p	

− 1

)2

≤ λ, (6.10)

C̃n
b ≤

T∑

t=t (n)+1

∑

	∈Nt ∩D(n)

q	G	 ≤ C̃n
a , (6.11)

where C̃n
b and C̃n

a are the bid and ask prices for the liquid options available for buy-
and-hold strategy at time point t = t (n) and node n . Using the above definitions, the
value Vn of the index option at node n is given as the solution to the problem
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Vn ≡ max
e∈En

min
q∈Q̃n

E
q

⎡

⎣
T∑

t=t (n)

Ht et

⎤

⎦ . (6.12)

As an example, consider the scenario tree in Fig. 1. Choosing node 1, i.e., n = 1, the
set Q̃1 is the set of non-negative q1, q3, q4 with q1 = 1 such that

1 = q3 + q4,

Z1
1 = Z1

3q3 + Z1
4q4,

√

p3(q3/p3 − 1)2 + p4(q4/p4 − 1)2 ≤ 1,

and

C̃1
b ≤ q3G3 + q4G4 ≤ C̃1

a

where C̃1
b and C̃1

a are the bid and ask prices for the liquid options available for pur-
chase/short sale at time point t = 1 and node n = 1. Now, we can prove the following
result.

Theorem 1 For problem (P), early exercise (before maturity T ) is never strictly
optimal, i.e., there always exists an optimal solution where the optimal values of exer-
cise variables are e∗

n = 1 for all n ∈ NT .

Proof To prove the assertion we shall compare the value Vn at an arbitrary interme-
diate node n (i.e., t (n) < T ) of the scenario tree to the call option payoff Zn − X at
that node:

Vn = max
e∈En

min
q∈Q̃n

E
q

⎡

⎣
T∑

t=t (n)

Ht et

⎤

⎦

= max
e∈En

min
q∈Q̃n

E
q

⎡

⎣
T∑

t=t (n)

et (Zt − X)+

⎤

⎦

= max
e∈En

E
q∗

⎡

⎣
T∑

t=t (n)

et (Zt − X)+

⎤

⎦

≥ E
q∗ [(ZT − X)+]

≥ E
q∗ [ZT − X ]

= Zt − X,

where the last equality follows since the price process Zt is a martingale under any
member of Q̃n (we suppressed the possible dependence of q∗ on e to avoid fur-
ther notational confusion). This chain of equations and inequalities proves that the
option’s intrinsic value Vn at any node n is at least as high as the benefit from imme-
diate exercise, hence, exercise can be delayed without incurring a loss. Therefore, even
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if it is optimal to early exercise the option there must exist another optimal solution
where exercise at the leaf nodes is optimal. The proof is identical for a put option with
payoff X − Z after the necessary changes. �

Remark 1 The above result is valid under the condition that the riskless asset, Z0 ,
has price equal to one at all time periods and all nodes of the scenario tree, which
is equivalent to saying that the risk-free interest rate is zero. If this condition is not
satisfied, but Z0 has strictly positive prices at all nodes, representations for the value of
the option similar to (6.7) and (6.12) can be shown, after normalizing all stock prices
and option payoffs at all nodes by dividing the stock price by the riskless security
price, thereby introducing a discount factor βt ∈ (0, 1] (with components βn for all
n ∈ Nt ) for all time periods t = 1, . . . , T . So, one would obtain the representation

V0 ≡ max
e∈E

min
q∈Q̃

E
q

[
T∑

t=0

βt Ht et

]

≡
∑

n∈N

βnenqn Hn . (6.13)

However, the proof of Theorem 1 breaks down in this case, and, indeed early exercise
may become strictly optimal.

On the other hand, the result does not hold true for ACC with an arbitrary payoff
structure Hn even with zero riskless interest rate.

Solving the problem (DL) with e fixed gives a lower bound to the optimal value
O PT (P) . Using the above result we fix en = 1 for all n ∈ NT (and thereby
force all other e ’s to zero) and solve the above problem (DL) successfully using
GAMS/MOSEK (solver returns an optimal solution with default parameter settings).
The results are reported in Table 2 under column “LB” for lower bound.

As a verification we also solve the dual of the continuous relaxation of (P) to give an
upper bound. This dual problem, referred to as (DU), is the following problem (after
some algebra and elimination of variables, the details of which are left to the reader):

min
∑

n∈NT

qn Hn (6.14)

subject to (6.1)–(6.3), (6.5), (6.6), (6.15) where (6.15) is as defined below:

qn Hn ≤
∑

m∈C(n)

qm Hm ∀ n ∈ Nt , 0 ≤ t ≤ T − 1. (6.15)

Solving problem (DU) successfully (solver returned optimal solution with default
settings) in GAMS/MOSEK we find that the lower and upper bounds collapse for
almost all the difficult instances, as expected. The results are reported in Table 2. The
small discrepancies (always after the decimal point) between upper bounds of Table 1
and those of Table 2 are attributed to the numerical difficulties experienced by the
conic solver when faced with the primal problem that is deemed less stable compared
to the dual models.
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In Table 2 we also report in the last column under “LHB” (for lower hedging
bound) the no-arbitrage lower hedging price obtained for the given option by solving
the problem (CNALHP) (calibrated no-arbitrage lower hedging problem):

max −Z0 · θ0 − Ca · ξ+ + Cb · ξ− + H0e0
s.t. Zn · (θn − θπ(n)) = Gn · (ξ+ − ξ−) + en Hn, ∀ n ∈ Nt , t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT ,∑

m∈A(n)

em ≤ 1, ∀ n ∈ NT

en ∈ {0, 1}, ∀ n ∈ N
ξ+, ξ− ≥ 0.

Notice that (CNALHP) is a mixed-integer linear optimization problem which is
solved easily by GAMS/CPLEX version 12.1 mixed-integer linear programming
solver [13]. Incidentally, a result similar to Theorem 1 holds in this case too, but
since GAMS/CPLEX easily handles our instances we do not need to make use of this
property here.

As expected, in some options the lower hedging bound obtained using the Sharpe-
ratio based criterion is significantly higher than the no-arbitrage lower hedging bound
which can even be equal to zero (option nos. 21 and 22)! Therefore, the Sharpe-ratio
based lower hedging bound indeed delivers in some cases a more reasonable price
bound in comparison with the no-arbitrage bound.

7 Conclusions

We presented a mixed-integer second-order cone programming formulation to com-
pute a lower hedging price under a Sharpe ratio risk criterion for ACC in incomplete
financial markets. The lower hedging price computed under the no-arbitrage criterion
can be too low (even zero) in these markets while the Sharpe ration criterion rem-
edies this problem. We constructed very challenging, large MISOCP instances that
cannot be solved by state-of-the-art software. We managed to obtain an optimal solu-
tion to these instances using duality theory and a structural property of the optimal
solution. Nonetheless, the instances remain a challenge for the numerical optimization
developers.
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