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Abstract The paper studies a relaxation of the basic multidimensional variational problem, when

the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is

shown that in this setup, the integral of a variational problem must satisfy a classical growth condition,

unlike the case of uniform convergence. The relaxations constructed here imply the existence of a

Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the

Lavrentiev phenomenon does not occur for a class of nonconvex problems.
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1 Introduction

Let (X, τ ) be a topological space and consider a pair of real functions I, J defined on X. The
(abstract) variational problem P2 : inf{J(x) : x ∈ X} is said to be a relaxation of P1 : inf{I(x) :
x ∈ X} if (i) J(x) ≤ I(x) for each x ∈ X; and (ii) for each x ∈ X, there exists a sequence
xk in X (k ∈ N) such that J(x) = limk I(xk) and x = τ -limk xk. A point x0 in X is said to
be a generalized solution of the problem P1 if there exists a minimizing sequence of P1 that
converges to x0. Clearly, point x0 is a generalized solution to problem P1 if and only if it is a
solution to problem P2.

Given two topologies τ1, τ2 on X, if τ1 is weaker than τ2, a relaxation with respect to τ2 is
also a relaxation with respect to τ1. Put differently, strengthening the topology on X narrows
the class of relaxations of a given problem. In particular, in the extreme case of the discrete
topology, i.e., the strongest topology on X, there does not exist a variational problem that
admits a relaxation which is distinct from itself. Thus, in this case, the notion of a generalized
solution coincides with the classical solution concept. More generally, the stronger the topology
on X, the closer the generalized solution to the classic one, in a certain sense. Therefore, when
dealing with a variational problem that does not have a (classical) solution, it is natural to
search for a generalized solution in the strongest possible topology.

On the other hand, narrowing down the set of admissible elements X in a variational
problem may be useful on occasion. Suppose, for instance, that P20 : inf{J0(x) : x ∈ X0} is a
relaxation of problem P10 : inf{I(x) : x ∈ X0} where X0 is a subset of X that represents the set
of (regular) admissible elements. Let us also assume that the function J0 admits an extension
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J to X such that (i) J(x) ≤ I(x) for every x ∈ X; and (ii) the problem P2 : inf{J(x) : x ∈ X}
has a solution that belongs to X0 (regularity theory). These conditions would imply that there
exists a regular minimizing sequence for problem P1 that converges in the underlying topology
τ to an element of X0, namely to the solution of P2. In particular, the (X − X0)-Lavrentiev
phenomenon could be ruled out in the original problem P1. Theorems 4.1 and 4.2 below
examplify such a combination of the relaxation and the regularity theories. A crucial step in
the implemention of this scheme is to “translate” the assumptions on the data of problem P1

to those of problem P2 (see, for example, Lemma 4.2 below).
In this paper, we study a relaxation of the basic multidimensional variational problem,

when the class of admissible functions is endowed with the Lipschitz convergence. It turns
out that, unlike the case of uniform convergence, this setup requires the integrand to satisfy a
superlinear growth condition that is familiar from the theory of existence of a solution. As we
have argued above, in this topology the existence of a relaxation that has a Lipschitz solution
implies the existence of a Lipschitz converging minimizing sequence for the original problem at
hand. Such “regularity” of a minimizing sequence can be seen as a substitute for the notion
of a regular solution, just as a minimizing convergent sequence is considered as a substitute
for the classical solution concept. Two features of the notion of a regular minimizing sequence
are worth mentioning: (i) each function in the sequence possesses some nice properties of a
regular solution in the traditional sense such as being Lipschitz or of class C1; (ii) the sequence
converges in some strong topology.

Most importantly, we show here that the existence of a regular minimizing sequence rules
out the Lavrentiev phenomenon (LP) for some classes of nonconvex integrands. In 1926, Lavren-
tiev [1] constructed an example of a one-dimensional integral functional J(x) having the fol-
lowing property:

inf{J(x) : x ∈ AC} < inf{J(x) : x ∈ C2},
where AC and C2 denote, respectively, the set of absolutely continuous and twice continuously
differentiable functions on an interval [a, b] that satisfy some boundary conditions. It is easy
to show that the latter infimum coincides with the one over the class of Lipschitz functions.
A somewhat simpler example exhibiting the LP was given by Mania in 1934 (see [2, p. 514]).
Tihomirov [3] offered a series of even simpler examples of LP. In the examples of Mania and
Tihomirov the integrands are convex in the velocity variable, but they are not coercive. Ball
and Mizel [4] suggested an example of LP where the integrand is strictly convex and coercive,
the requirements of a classical existence theorem due to Tonelli. Loewen [5] devised a simple
trick for deriving such an integrand from Mania’s example. Applying this trick to Tihomirov’s
example, one can obtain an even simpler instance of LP that satisfies the assumptions of the
existence theorem. Buttazzo and Mizel [6] suggested treating the Lavrentiev gap as a relaxation
phenomenon. For developments concerning the LP, see the surveys by Buttazzo and Belloni [7]
and Mizel [8], and papers [9–13].

The importance of LP from the viewpoint of numerical calculation is discussed by Ball and
Knowles [14], Loewen [5] and Clarke [15]. Indeed, when applied to problems displaying LP,
the usual numerical methods often fail because they use suitable classes of Lipschitz functions
for approximation. Ball and Knowles [14] offered a special method for handling this problem.
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Similar difficulties arise when one tries to calculate numerically a non-regular convergent mini-
mizing sequence. An essential factor for the success of this sort of a calculation is the uniform
boundedness of derivatives which follows from the Lipschitz convergence criterion demanded
by the definition of a regular minimizing sequence that we study in this paper.

Proofs of the main results are based on some preliminary findings on spannability of func-
tions which we present in the next section. In the third section, we apply these findings to
relaxation of multidimensional variational problems in which the set of admissible functions is
endowed with Lipschitz convergence. In the last section, we establish the existence of a reg-
ular minimizing sequence for one-dimensional variational problems and relate this finding to
non-occurrence of Lavrentiev phenomenon.

2 Spannability

Set R = R ∪ {+∞}, and let epi f denote the epigraph of a function f : R
n → R̄. The convex

envelope conv f and the convexification f∗∗ of f are defined as the greatest convex function
and the greatest lower semicontinuous convex function not exceeding f on R

n, respectively.
Notation f∗∗ refers to the fact that the convexification of f coincides with its second conjugate
by Young–Fenchel (see [16]).

Recall that a function f : R
n → R̄ is said to be spannable if for each point x ∈ R

n there
exist points x1, . . . , xn ∈ R

n and nonnegative numbers λ1, . . . , λn with λ1 + · · · + λn = 1 such
that

x =
m∑

i=1

λixi and f∗∗(x) =
m∑

i=1

λif(xi).

This is equivalent to saying that the graph of f∗∗ is contained in the convex hull of the graph
of f .

Following Klee [17], we say that a set A in R
n is coterminal with a ray ρ = {x + ry : r > 0}

provided sup{r : r > 0 and x + ry ∈ A} = ∞.
The following theorem on the spannability is proved in Husseinov [18]:

Theorem 2.1 Let f : R
n → R̄ be a lower semi-continuous function such that epi f∗∗contains

no line. Then f is spannable if, and only if, its graph is coterminal with every nonvertical
extreme ray of the epigraph of f∗∗.

It is easy to show that superlinear coercivity is preserved under convexification. On the
other hand, the graph of a superlinearly coercive convex function can not contain a nonvertical
extreme ray. Therefore, by Theorem 2.1, a superlinearly coercive lower semicontinuous function
is spannable, which is a well-known result (see [16–21]).

We generalize Theorem 2.1 for a function depending on a parameter varying in a topological
space. This generalization simultaneously specifies the representation of convexification f∗∗

given in Theorem 2.1; it shows that for any bounded part K of R
n, there is a ball B such that

for the points from K the representation in question involves only points of this ball B. We
would like to stress here that the central result of the present paper on relaxation is intimately
related to these results on spannability.

Cellina [21] proves a spannability theorem (Theorem 1 in [21]) which is a straightforward
consequence of Theorem 2.1. Theorem 1 in [21] assumes the following Bounded Intersection
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Property (BIP): If for every x̄ ∈ R
n, there exists p̄ ∈ ∂f∗∗(x̄) such that

{x ∈ R
n : f∗∗(x) = f∗∗(x̄) + p̄ · (x − x̄)}

is bounded. Here ∂f∗∗(x̄) denotes the subdifferential of function f∗∗ at point x̄. It is easy to
see that BIP implies that the epigraph epif∗∗ contains no extreme rays. Indeed, assuming that
r = {a + βb : bβ ≥ 0} is an extreme ray of epif∗∗, we will have

r ⊂ {x ∈ Rn : f∗∗(x) = f∗∗(x̄) + p̄ · (x − x̄)}
for every point x̄ in the relative interior of r and p̄ ∈ ∂f∗∗(x̄), which contradicts BIP. Note also
that the assumption of continuity of function f in Theorem 1 of [21] can be relaxed to the lower
semicontinuity.

Corollary 2.2 ([21, Theorem 1]) Let f be a continuous function, affinely minorized, satisfying
BIP. Then, for every x̄ ∈ R

n, there exist at most m ≤ n + 1 points xi and coefficients of a
convex combination λi such that

x̄ =
m∑

i=1

λixi and f∗∗(x̄) =
m∑

i=1

λif(xi).

Moreover, xi belongs to {x ∈ R
n : f(x) = f∗∗(x̄) + p̄ · (x − x̄)}.

Corollary 2.3 Let f : R
n → R be a lower semicontinuous function satisfying the following

superlinear growth condition
lim

‖x‖→∞
f(x)/‖x‖ = ∞. (2.1)

Then for an arbitrary point x ∈ R
n,

f��(x) = min
{ n+1∑

i=1

λif(xi) :
n+1∑

i=1

λixi = x, (λ1, . . . , λn+1) ∈ Sn

}
.

We will need one auxiliary result on the estimation of the subdifferential of a convex function.

Lemma 2.4 Let B be a convex closed body in R
n, f : B → R be a convex function and B0 be

a subset of B, such that B0 is compact and B0 ⊂ int B. Then

sup{‖y�‖ : y� ∈ ∂f(y), y ∈ B0} ≤ M

d
,

where M = sup{|f(y1) − f(y2)| : y1 ∈ ∂B1, y2 ∈ ∂B0} and d = dist(B0, ∂B).

Proof Denote by S1 the unit sphere in R
n. Fix x ∈ B0 and let h ∈ S1 be an arbitrary vector.

Let l be the straight line passing through x and parallel to vector h. Then the convexity of
function f prompts

|f ′(y, h)| ≤ max
{ |f(d) − f(b)

|d − b| ,
|f(a) − f(c)|

|a − c|
}

≤ M

d
.

Thus
|f ′(y, h)| ≤ M

d
, ∀h ∈ S1.

Then by the well-known fact (see [22, Theorem 23.4]),

sup
y�∈∂f(y)

〈y�, h〉 = f ′(y, h) ≤ M

d
, ∀h ∈ S1
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or
〈y�, h〉 ≤ M

d
, ∀h ∈ S1, ∀ y� ∈ ∂f(y).

From this relation, it easily follows

‖y�‖ ≤ M

d
, ∀ y� ∈ ∂f(y). �

We now formulate a uniform variant of Theorem 2.1 and prove it for a function depending
on a parameter. Simultaneously, this result specifies Theorem 2.1.

Theorem 2.5 Let T be a topological space and f : T ×R
n → R. Let function f(τ, ·) : R

n → R

be bounded from below on any compact from R
n and satisfy the growth condition (2.1) locally

uniformly in τ ∈ T. Moreover, let functions f(τ, ·) be lower semicontinuous for all τ ∈ T. Then,
if T0 ⊂ T is a compact subset, for an arbitrary r > 0, there exists R > 0 such that

a) For each τ ∈ T0, and y ∈ Br(0), there exist y1, . . . , yn+1 ∈ BR(0) and (λ1, . . . , λn+1) ∈ Sn

such that

y =
n+1∑

i=1

λiyi and f��(τ, y) =
n+1∑

i=1

λif(τ, yi).

In other words,
f��(τ, ·)|Br(0) = f��

R (τ, ·)|Br(0) for τ ∈ T0,

and the representation above holds with

fR(τ, y) =

⎧
⎨

⎩
f(τ, y), for ‖y‖ ≤ R,

∞, for ‖y‖ > R.

b) If at least one of the points y1, . . . , yn+1 does not belong to BR(0) and the corresponding
coordinate of vector (λ1, . . . , λn+1) ∈ Sn is positive, then for y =

∑n+1
i=1 λiyi,

f��(τ, y) <

n+1∑

i=1

λif(τ, yi) for τ ∈ T0.

Proof Fix an arbitrary point τ0 ∈ T0. By the above assumption, there exists a neighbourhood
U(τ0) of τ0 such that functions f(τ, ·) (τ ∈ U(τ0)) are bounded on any compact K in R

n and
satisfy the growth condition (2.1) uniformly in τ ∈ U(τ0). Denote

M = 2 sup{|f(τ, y)| : τ ∈ U(τ0), y ∈ Br+1(0)}.
For any points τ ∈ U(τ0) and y ∈ Br(0), fix some support hyperplane Πy(τ ) to epif��(τ, ·) at
the point (y, f��(τ, y)). Obviously, it is not vertical and therefore is the graph of some affine
function l(τ,y)(y′) = (ay(τ ), y′) + by(τ ). By Lemma 2.4,

a = sup{‖ay(τ )‖ : τ ∈ U(τ0), y ∈ Br(0)} < M < ∞.

Consequently,
b = sup{by(τ ) : τ ∈ U(τ0), y ∈ Br(0)} < (r + 1)M < ∞.

It follows from the growth condition that there exists a number R0 > 0 such that f(τ, y′) >

a‖y′‖ + b for τ ∈ U(τ0), ‖y′‖ ≥ R0, and therefore,

f(τ, y′) > l(τ,y′)(y′) for τ ∈ U(τ0), y′ ∈ BR0(0), y ∈ Br(0). (2.2)
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Thus, for any point τ ∈ T0, there exist its neighbourhood U(τ ) and a number R(τ ) such
that (2.2) is satisfied with the replacement U(τ0) by U(τ ) and R0 by R(τ ), respectively. Choose
a finite subcover {U(τ1), . . . , U(τn)} of the cover {U(τ ) : τ ∈ T0} of compact T0 and denote
R = max{R(τk) : k = 1, . . . , N}. Then

f(τ, y′) > l(τ,y)(y′) for τ ∈ T0, y′ ∈ BR(0), y ∈ Br(0). (2.3)

Fix an arbitrary point (τ0, y0) ∈ T0 × Br(0). By Theorem 2.1, there exist points yi ∈ R
n(i =

1, . . . , n + 1) and λ = (λ1, . . . , λn+1) ∈ Sn such that

y0 =
n+1∑

i=1

λiyi and f��(τ0, y0) =
n+1∑

i=1

λif(τ0, yi). (2.4)

We assert that yi ∈ BR(0)(i = 1, . . . , n+1). Suppose on the contrary, there exists index i0 such
that yi0 /∈ BR(0). Then from (2.3), we get

f(τ0, yi0) > l(τ0,y)(yi0) for y ∈ Br(0).

In particular, for y = y0, we get that (yi0 , f(τ0, yi0)) is contained in upper open halfspace
Π+

y0
(τ0), defined by hyperplane Πy0(τ0). But it is obvious that for remaining indices i, point

(yi, f(yi)) belongs to the closed upper half-space Π
+

y0
(τ0). It is easy to conclude from this that

point (y0, f
��(τ0, y0)) = (

∑n+1
i=1 λiyi,

∑n+1
i=1 λif(τ0, yi)) belongs to the open half-space Π+

y0
(τ0).

But this contradicts the inclusion (y0, f
��(τ0, y0)) ∈ Πy0(τ0).

b) Suppose the opposite: for any R1 > 0, there exist yi (i = 1, . . . , n + 1) and vector
(λ1, . . . , λn+1) ∈ Sn, such that y0 =

∑n+1
i=1 λiyi and f��(τ, y) ≤ ∑n+1

i=1 λif(τ , yi), ∃ τ ∈ T0,

where yi0 ∈ Br1(0) for some i0 ∈ {1, . . . , n + 1}. Putting R1 = R, where number R is chosen
as in the proof of point a), τ0 = τ , and repeating reasoning of the proof of point a) beginning
from the formula (2.4), we prove b). �

In the case, when the space T consists of a single point, Theorem 2.5 transforms to the
following

Corollary 2.6 Let a function f : R
n → R satisfy the growth condition (2.1) and be bounded

on any compact subset of R
n. Then for any number r > 0 there exists R > 0 such that, for any

point y ∈ Br(0) there exist vectors y1, . . . , yn+1 ∈ BR(0) and (λ1, . . . , λn+1) ∈ Sn such that

y =
n+1∑

i=1

λiyi and f��(y) =
n+1∑

i=1

λif(yi).

If Theorem 2.1 asserts that to represent a value of convexification f�� at a point y it is
sufficient to restrict within some bounded part of the space R

n, Corollary 2.6 shows that this
is true for any bounded part of the space R

n instead of for a single point. In other words,
Theorem 2.1 asserts that for any y ∈ R

n there exists R > 0 such that, f��(y) = (f |BR
(0))��(y),

whereas Corollary 2.6 asserts that, for any r > 0, there exists R > 0 such that

f��(y) = (f |BR
(0))��(y) for all y ∈ Br(0).

Remark 2.7 It is obvious that one can count that a function R(·) is monotonically increasing.
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3 Relaxation

Now we consider the basic multidimensional variational problem in a slightly generalized form.
First, we introduce some notations. Let Ω be an arbitrary bounded open subset of R

n, Ω and
∂Ω its closure and boundary, respectively, and let Γ be an arbitrary subset of the boundary
∂Ω. Denote by W 1

∞(Ω) the space of Lipschitz functions defined on Ω. Denote also by Ln
∞(Ω)

and Ln
1 (Ω) the linear normed spaces of essentially bounded and integrable n-vector-functions

defined on Ω. Norm of space Ln
∞(Ω) will be denoted by ‖ · ‖∞. In the case n = 1, the upper

index in all three notations will be omitted.
Let f : Ω× R × R

n be continuous and let ϕ : Γ → R be arbitrary fixed functions. Consider
the following multidimensional basic variational problem

⎧
⎪⎨

⎪⎩

Jf (x(·)) =
∫

Ω

f(t, x(t), x′(t)dt → inf;

x(·)|Γ = ϕ,
(P)

where x′(t) denotes the gradient of Lipschitz function x(·) defined on domain Ω, at the point
t ∈ Ω. In this section, problem (P) will be considered with the set of admissible functions
x(·) ∈ W 1

∞(Ω).
The main purpose of this point is to construct a relaxation of problem (P) when the set of

admissible functions in this problem E(ϕ) = {x(·) ∈ W 1
∞(Ω) : x(·)|Γ = ϕ} is considered with

the topology of the Lipschitz convergence. It turns out that, in this case, integrand f should
satisfy some growth condition on the third variable, traditional in the theory of existence of
solutions of variational problems. Example 3.7 below shows that this condition is minimal.

We shall suppose that integrand f is continuous and satisfies the growth condition

lim
‖ζ‖→∞

f(t, x, ζ)/‖ζ‖ = ∞ (3.1)

locally uniformly in (t, x).

Definition 3.1 (Morrey [23, p. 113]) A sequence xn(·), n = 1, 2, . . . , in W 1
∞(Ω) is said to

converge Lipschitz to x(·) ∈ W 1
∞(Ω), if xn(·) converges uniformly to x(·) and xn(·), n = 1, 2, . . . ,

satisfy the uniform Lipschitz condition.

Remark 3.2 In fact, the Lipschitz convergence is a convergence in a τ -topology defined in
the following way: the base of neighborhoods of 0 ∈ W 1

∞(Ω) is a family of subsets T = {Uε,V },
where Uε,V = {x(·) ∈ W 1

∞(Ω) : ‖x(·)‖∞ < ε, x′(·) ∈ V } for a positive number ε and open
neighbourhood V of 0 ∈ Ln

∞(Ω) in 
-weak topology. It is clear that the Lipschitz convergence
implies ∗-weak convergence of derivatives and then a convergence in topology τ. Conversely,
since 
-weak convergence of a sequence in Ln

∞(Ω) implies its boundedness, we have that τ -
convergence implies the Lipschitz convergence. On the other hand, the Lipschitz convergence
is a convergence in 
-W 1

∞ topology (in the notations of Marcellini–Sbordone [24], 
-H1−∞

topology). Apparently, τ -convergence implies 
-W 1
∞ convergence. Conversely, it is a trivial

consequence of Arzela’s theorem that 
-W 1
∞ convergence implies τ -convergence.

Since the restriction of 
-weak topology to any part of space Ln
∞(Ω) is metrizable (see [25,

p. 426]), for an arbitrary positive number M , the subset {x(·) ∈ W 1
∞(Ω) : ‖x′(·)‖∞ ≤ M} of

W 1
∞(Ω) is metrizable.
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Furthermore, we shall assume that the set of admissible functions E(ϕ) is endowed with
the Lipschitz convergence.

Along with problem (P), we consider the following problem
⎧
⎪⎨

⎪⎩

J��
f (x(·)) =

∫

Ω

f��(t, x(t), x′(t))dt → inf;

x(·)|Γ = ϕ,
(PR1)

where f�� is a convexification of the integrand with respect to the third variable ζ ∈ R
n.

As in problem (P), the set of admissible functions in (PR1) is E(ϕ).

Theorem 3.3 Let integrand f : Ω×R×R
n → R satisfy the growth condition (3.1) and let the

set of admissible in problem (P) functions E(ϕ) be endowed with the topology of the Lipschitz
convergence. Then problem (PR1) is a lower semicontinuous relaxation of problem (P).

For the proof of Theorem 3.3, we need the following:

Lemma 3.4 Let T be a locally compact metric space, and let f : T × R
n → R be continuous

and satisfy the growth condition

lim
‖ζ‖→∞

‖f(t, ζ)‖/‖ζ‖ = ∞ (3.2)

locally uniformly with respect to t ∈ T. Then function f�� is continuous and

lim
‖ζ‖→∞

‖f��(t, ζ)‖/‖ζ‖ = ∞ (3.3)

locally uniformly with respect to t ∈ T.

Proof The proof of the continuity of f�� is based on part (a) of Theorem 2.5 and is omitted
here. Fix t0 ∈ T and c > 0. By the assumption, there is R > 0, such that

f(t, y)
‖y‖ ≥ c for all BR(0), t ∈ BR(t0).

It follows that there is a number α such that

f(t, y) ≥ c‖y‖ − α for all y ∈ R
n, t ∈ BR(t0).

Thus, the convex function c‖y‖ − α does not exceed function f(t, ·). By the definition of the
second conjugate f��, we have

f��(t, y) ≥ c‖y‖ − α for all y ∈ R
n, t ∈ BR(t0).

Therefore,

lim‖y‖→∞ inf
t∈BR(t0)

f��(t, y)
‖y‖ ≥ c.

Since c > 0 is arbitrary this implies property (3.3) locally uniformly with respect to t ∈ T . �

Remark 3.5 It is seen from the above proof that if function f is bounded below and satisfies
the growth condition (3.2) uniformly with respect to t ∈ T , then function f�� also will possess
the same properties.

Proof of Theorem 3.3 Fix x(·) ∈ E(ϕ), and denote p = 1 + ‖x(·)‖C and r = 1 + ‖x′(·)‖∞. For
a positive number ρ, put

fρ(t, x, ζ) =

⎧
⎨

⎩
f(t, x, ζ), for ‖ζ‖ ≤ ρ,

∞, for ‖ζ‖ > ρ.
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By Theorem 2.5, there exists a number R > r such that

f��(t, x, ζ) = f��
R (t, x, ζ) for t ∈ Ω, |x| < p, ζ ∈ Br(0). (3.4)

Consider problems (P′) and (PR′
1) obtained by adding the constraint

x′(t) ∈ BR(0) for a.a. t ∈ Ω,

to problems (P) and (PR1), respectively.
Thus, in problems (P′) and (PR′

1), the set of admissible functions is

E(R, ϕ) = {x(·) ∈ W 1
∞(Ω) : x′(t)ϕ}.

By Theorem 2 from [26], there exists a sequence of infinitely differentiable functions xk(·) ∈
E(R, ϕ)(k ∈ N) converging uniformly to x(·), and such that

lim
k→∞

Jf (xk(·)) = lim
k→∞

JfR
(xk(·)) =

∫

Ω

f��(t, x(t), x′(t))dt. (3.5)

Taking into account the definitions of numbers p, r and relation (3.3), we get
∫

Ω

f��
R (t1, x(t), x′(t))dt =

∫

Ω

f��(t, x(t), x′(t))dt.

The latter relation, together with (3.5), yields

lim
k→∞

Jf (xk(·)) = Jf��(x(·)). (3.6)

Thus, for an arbitrary function x(·) ∈ E(ϕ), there exists a sequence of functions xk(·) ∈
E(ϕ) (k ∈ N) converging uniformly to x(·), and such that their gradients are uniformly bounded
and (3.6) is satisfied. The theorem will be proved if we show that functional Jf��(·) is lower
semicontinuous.

Let p be an arbitrary positive number. Put

f̃p(t, x, ζ) =

⎧
⎨

⎩
f��(t, x, ζ), for |x| ≤ p,

f��(t, p · sgn (x − p), ζ), for |x| > p.

Then it follows from the uniform variant of Lemma 3.4 (see Remark 3.5 after Lemma 3.4) that

lim
‖ζ‖→∞

inf
(t,x)∈Ω×R

f̃p(t, x, ζ)/‖ζ‖ = ∞.

By Lemma 3.4 integrand f�� is continuous jointly on variables, and therefore, integrand f̃p is also
continuous. Thus, integrand f̃p satisfies all assumptions of the theorem on lower semicontinuity
from Ekeland–Temam [16, p. 243].

It is easy to see that, if a sequence xk(·) ∈ W 1
∞(Ω) (k ∈ N) converges Lipschitz to x(·), then

the sequence of gradients of these functions x′
k(·) ∈ Ln

∞(Ω)(k ∈ N) converges in σ(Ln
1 , Ln

∞)-
topology to the vector-function x′(·). It follows from that and the Lower Semicontinuity The-
orem that functional Jf̃p

(x(·)) =
∫
Ω

f̃p(t, x(t), x′(t))dt is lower semicontinuous relative to the
Lipschitz convergence in space W 1

∞(Ω). Note that functional Jf��(·) coincides with functional
Jf̃p

(·) on the ball Bp(0) ⊂ W 1
∞(Ω). Since number p was arbitrary, we get that functional Jf��(·)

is lower semicontinuous on the entire space W l
∞(Ω). �
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Corollary 3.6 Let problem (PR1) have a solution. Then problem (P) has a minimizing
sequence Lipschitz converging to the solution of problem (PR1).

Example 3.7 It is easy to see that for problem (P) with Ω = [0, 1], ϕ(0) = 0, ϕ(1) = 1, f(ζ) =
2|ζ| for |ζ| ≤ 1 and f(ζ) = 2 + |ζ − sgn ζ| for |ζ| > 1, the assertion of Theorem 3.3 is not valid.

Remark 3.8 It follows from Serrin’s theorem on lower semicontinuity (see [27]) that functional
Jf��(·) of problem (PR1) is lower semicontinuous relative to the topology of uniform convergence
on E(ϕ).

Remark 3.9 It is a mere technicality to generalize Theorem 3.1 to the case of normal inte-
grands assuming value +∞.

Marcellini–Sbordone [24, Theorem 4.4] obtained a result concerning a relaxation of problem
(P) with the additional restriction ‖x′(.)‖L∞ ≤ r. Since uniform convergence and the Lipschitz
convergence coincide on the set of admissible functions of problem (P) with that additional
restriction (see also Remark 4), Theorem 4.4 of [24] is a particular case of Theorem 2 from [26],
which was used in the proof of Theorem 3.3 above.

It follows from the results of Morrey’s monograph [23] that, if in problem (P) the set
of admissible functions is extended to the class of functions from the space W 1

1 (Ω) whose
restriction into Γ is ϕ, E1(ϕ), and if integrand f has continuous partial derivatives with respect
to ζ1, . . . , ζn, then problem (PR1) has a solution. On the other hand, many cases are known,
where a solution of problem (PR1) (with the class of admissible functions E1(ϕ)) is Lipschitz,
i.e. belongs to the subspace W 1

∞(Ω) ⊂ W 1
1 (Ω) (see [23] and [28]). These results, in combination

with Theorem 3.3, allow one to formulate different assertions on the existence of minimizing
Lipschitz converging sequences of the problem (P).

4 Existence of Lipschitz Convergent Minimizing Sequences and the Lavrentiev
Phenomenon

We apply in this section Theorem 3.3 to establish the existence of the Lipschitz convergent min-
imizing sequences and therefore the absence of the Lavrentiev phenomenon in one-dimensional
variational problems. We shall need the following two lemmas.

Lemma 4.1 Let f : Ω×R
m ×R

n → R satisfy the assumptions of Theorem 2.5 and be locally
Lipschitz in (x, v) uniformly in t, that is, for each bounded subset C of R

m × R
n there exists a

constant K such that, for all (x, u), (x′, u′) in C and for all t ∈ Ω,

|f(t, x, u) − f(t, x′, u′)| ≤ K‖(x − x′, u − u′)‖. (4.1)

Then the convexification f(t, x, u) is also locally Lipschitz in (x, u) uniformly in t.

Proof First show that f∗∗ is locally Lipschitz in x uniformly in (t, u) ∈ Ω × C1, where C1 is
an arbitrary bounded part of R

n. Let R > 0 be such that the ball Bn
R in R

m with radius R and
center at the origin contains C1. Then by Theorem 2.5, there exists R′ > R such that

f∗∗(t, x, u) = min
{ n+1∑

k=1

αkf(t, x, uk)
∣∣∣∣ αk ≥ 0,

∑

k

αk = 1, uk ∈ Bn
R′ ,

∑

k

αkuk = u

}
, (4.2)

for an arbitrary t ∈ Ω, x ∈ Bm
R , and u ∈ Bn

R. Let K be the Lipschitz coefficient in (4.1) for
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compact C = Bm
R+1 × Bn

R′ . It easily follows from (4.1) and (4.2) that

|f∗∗(t, x, u) − f∗∗(t, x, u)| ≤ K‖x − x′‖m, (4.3)

for each t ∈ Ω, x′m
R , u ∈ Bn

R.

Now show that f∗∗ is locally Lipschitz in u uniformly in (t, x) ∈ Ω × BR. Let u, u′n
R . Then

f∗∗(t, x, u) =
∑

k

αkf(t, x, uk),

for uk ∈ BR′ and αk ≥ 0, k = 1, . . . , n + 1 as in (4.2). Put u′
k = uk + (u′ − u), k = 1, . . . , n + 1.

Then
∑

k αku′
k = u′ and

∑

k

αkf(t, x, u′
k) ≤

∑

k

f(t, x, uk) + K‖u′
k − u‖ = f∗∗(t, x, u) + K‖u′ − u‖n.

This implies

f∗∗(t, x, u) ≤ f∗∗(t, x, u) + K‖u′ − u‖n.

Symmetrically,

f∗∗(t, x, u) ≤ f∗∗(t, x, u) + K‖u′ − u‖n.

Uniting the last two inequalities, we obtain

|f∗∗(t, x, u) − f∗∗(t, x, u′)| ≤ K‖u′ − u‖n.

Thus, f∗∗ is locally Lipschitz in x locally uniformly in (t, u) and is Lipschitz in u locally
uniformly in (t, x). It easily follows from this, that f∗∗ is locally Lipschitz in (x, u) uniformly
in t. �

Lemma 4.2 Let f : [a, b] × R
m × R

n → R be a lower semicontinuous function differentiable
with respect to t and such that f(t, x, u) ≥ γ1(t) for all (t, x, u) ∈ [a, b]×R

m×R
n, where γ1(·) ∈

L1[a, b], and let f satisfy the growth condition f(t,x,u)
‖u‖ → ∞ for ‖u‖ → ∞ locally uniformly in

(t, x), and the inequality

|ft(t, x, u)| ≤ c|f(t, x, u)| + γ2(t), ∀(t, x, u), (4.4)

where γ2(·) ∈ L1[a, b] and c is a positive constant. Then there exists γ(·) ∈ L1[a, b] such that

f∗∗
t (t, x, u)| ≤ c|f∗∗(t, x, u)| + γ(t),

for each (t, x, u) such that function σ �→ f∗∗(σ, x, u) is differentiable at t.

Proof We assume, without loss of generality, that γ1(t) ≤ 0 and γ2(t) ≥ 0. By the assumption
f(t, x, u) ≥ γ1(t) and then

|f(t, x, u)| ≤ |f(t, x, u) − 2γ1(t)|, ∀(t, x, u) ∈ [a, b] × R
m × R

n.

Using this in (4.4), we obtain

|ft(t, x, u)| ≤ c|f(t, x, u) − 2γ1(t)| + γ2(t), ∀(t, x, u) ∈ [a, b] × R
m × R

n.

Since f(t, x, u) − 2γ1(t) ≥ 0,

−cf(t, x, u) − γ(t) < ft(t, x, u) < cf(t, x, u) + γ(t), ∀(t, x, u) ∈ [a, b] × R
m × R

n,
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where γ(t) = γ2(t) − 2cγ1(t) + 1. Fix (t0, x0) ∈ [a, b] × R
m. Then for each u ∈ R

n there exists
δ(t0, x0, u) > 0 such that

f(t0, x0, u)−[cf(t0, x0, u)+γ(t0)](t−t0) < f(t, x0, u) < f(t0, x0, u)+[cf(t0, x0, u)+γ(t0)](t−t0),

for all u ∈ R
n and 0 < t − t0 < δ(t0, x0, u) or

[1 − c(t − t0)]f(t0, x0, u) − γ(t0)(t − t0) < f(t, x0, u)

< [1 + c(t − t0)]f(t0, x0, u) + γ(t0)(t − t0), (4.5)

for all u ∈ R
n, 0 < t − t0 < δ(t0, x0, u).

By Theorem 2.5, there are (uk, αk) ∈ R
n × R

1 (k = 1, . . . , n + 1) for fixed u0 such that

f∗∗(t0, x0, u0) =
n+1∑

k=1

αkf(t0, x0, uk),
n+1∑

k=1

αkuk = u0, α > 0, and
n+1∑

k+1

αk = 1.

Let (t0, x0, u0) ∈ [a, b] × R
m × R

n be such that function σ �→ f∗∗(σ, x0, u0) is differentiable at
t0. Multiplying by αk the second of inequalities (4.5) for u = uk and summing up, we obtain

n+1∑

k=1

αkf(t, x0, uk) ≤ [1 + c(t − t0)]f∗∗(t0, x0, u0) + γ(t0)(t − t0),

for 0 < t − t0 < δ, where δ = min{min1≤k≤n+1 δ(t0, x0, uk), 1
2c}, and then by the definition of

f∗∗, we have

f∗∗(t, x0, u0) ≤ [1 + c(t − t0)]f∗∗(t0, x0, u0) + γ(t0)(t − t0) for 0 < t − t0 < δ. (4.6)

Similarly, for an arbitrary 0 < t − t0 < δ, let

f∗∗(t, x0, u0) =
n+1∑

k=1

βk(t)f(t, x0, vk(t)),
n+1∑

k=1

βk(t)vk(t) = u0, βk(t) ≥ 0,
n+1∑

k=1

βk(t) = 1.

Multiplying by βk(t) the first of inequalities (4.5) for u = vk(t) and summing up, we obtain

[1 − c(t − t0)]
n+1∑

k=1

βk(t)f(t0, x0, vk(t)) − γ(t0)(t − t0) ≤ f∗∗(t, x0, u0),

and then since 1 − c(t − t0) > 0, by the definition of f∗∗, we have

[1 − c(t − t0)]f∗∗(t0, x0, u0) − γ(t0)(t − t0) ≤ f∗∗(t, x0, u0) for 0 < t − t0 < δ. (4.7)

Using (4.6) and (4.7), we obtain

−cf∗∗(t0, x0, u0) − γ(t0) ≤ f∗∗(t, x0, u0) − f∗∗(t0, x0, u0)
t − t0

≤ cf∗∗(t0, x0, u0) + γ(t0),

for each t such that 0 < t − t0 < δ. Since f is assumed to be differentiable with respect to t,

passing to limit as t tends to t0, we obtain

−cf∗∗(t0, x0, u0) − γ(t0) ≤ f∗∗
t (t0, x0, u0) ≤ cf∗∗(t0, x0, u0) + γ(t0),

or
|f∗∗

t (t0, x0, u0)| ≤ c|f∗∗(t0, x0, u0)| + γ(t0). �
In the following theorems problems (P) and (PR1) will be considered in the one-dimensional

case and with the set of absolutely continuous functions on [a, b] satisfying the boundary con-
dition in problem (P).
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Theorem 4.3 Let f : [a, b] × R × R → R be independent from t, locally Lipschitz and satisfy
the growth condition f(t, x, u) ≥ −α|x|+ϕ(|u|) for all (x, u) ∈ R×R, where ϕ : [0,∞) → R is a
function satisfying the condition ϕ(r)

r → ∞ as r → ∞. Then there exists a minimizing sequence
of problem (P), where Γ = {a, b} converging Lipschitz to some function (a solution of problem
(PR1)).

Proof By Lemma 4.1, the function f∗∗ is locally Lipschitz. Then it is clear that f∗∗ satisfies
all conditions of Theorem 4.3 and therefore, those of Theorem 2.1 from Clarke and Vinter [29].
Hence, problem (PR1) has an absolutely continuous solution x0(·). By Corollary 3.1 from Clarke
and Vinter [29] x0(·) ∈ W 1

∞[a, b], i.e., x(·) is Lipschitz. By Theorem 3.3, whose conditions are
obviously satisfied, there exists a sequence xk(·) (k ∈ N) converging Lipschitz to x0(·) and such
that

lim
k

Jf (xk(·)) = Jf (x0(·)).

Since Jf∗∗(x0(·)) = inf(PR1) and inf(P ) ≥ inf(PR1), it follows from here that xk(·) (k ∈ N) is
a minimizing sequence of (P). �

Theorem 4.4 Let f(t, x, u) : [a, b] × R × R → R be a locally Lipschitz function differentiable
with respect to t, and such that f(t, x, u) ≥ γ1(t) for all (t, x, u) ∈ [a, b] × R × R, where γ1(·) ∈
L1[a, b], and let f satisfy the growth condition f(t, x, u) ≥ −α|x|+ϕ(|u|) for all (t, x, u) in [a, b]×
R × R, where ϕ(r)

r → ∞ as r → ∞, and let for an arbitrary bounded set S ⊂ R there exist a
constant c and a summable function γ(·) such that

|ft(t, x, u)| ≤ c|f(t, x, u)| + γ(t)

for all points (t, x, u) in [a, b]× S ×R at which the mapping (σ, y) �→ f(σ, y, u) is differentiable.
Then there exists a minimizing sequence of problem (P) (with Γ = {a, b}) Lipschitz converging
to some function (a solution of problem (PR1)).

Proof Proof is similar to the proof of Theorem 4.3: Corollary 3.2 from [24] and Lemma 4.2 play
roles parallel to those of Corollary 3.1 from [24] and Lemma 4.1 in the proof of Theorem 4.3. �

Corollary 4.5 Under the assumptions of Theorem 4.3 or Theorem 4.4 in one-dimensional
variational problem (P), the Lavrentiev phenomenon does not occur.
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