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Abstract Disruptions in airline operations can result in infeasibilities in aircraft and pas-
senger schedules. Airlines typically recover aircraft schedules and disruptions in passenger
itineraries sequentially. However, passengers are severely affected by disruptions and re-
covery decisions. In this paper, we present a mathematical formulation for the integrated
aircraft and passenger recovery problem that considers aircraft and passenger related costs
simultaneously. Using the superimposition of aircraft and passenger itinerary networks, pas-
sengers are explicitly modeled in order to use realistic passenger related costs. In addition
to the common routing recovery actions, we integrate several passenger recovery actions
and cruise speed control in our solution approach. Cruise speed control is a very beneficial
action for mitigating delays. On the other hand, it adds complexity to the problem due to
the nonlinearity in fuel cost function. The problem is formulated as a mixed integer nonlin-
ear programming (MINLP) model. We show that the problem can be reformulated as conic
quadratic mixed integer programming (CQMIP) problem which can be solved with com-
mercial optimization software such as IBM ILOG CPLEX. Our computational experiments
have shown that we could handle several simultaneous disruptions optimally on a four-hub
network of a major U.S. airline within less than a minute on the average. We conclude that
proposed approach is able to find optimal tradeoff between operating and passenger-related
costs in real time.
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1 Introduction

Air transportation has been an important industry for about one hundred years due to its
economical and operational aspects. In this growing and highly competitive industry, air-
lines need to analyze a very complex and large-scale system in order to manage their re-
sources efficiently while providing high-quality service to passengers. In the planning stage,
the decisions of an airline are to select the flight legs to operate, determine the fleet type
of each flight, assign aircraft and crew members to the flights. Gopalan and Talluri (1998)
and Barnhart and Cohn (2004) describe optimization approaches for airline schedule plan-
ning in detail. However, schedules are rarely operated as planned. Original schedule often
becomes infeasible due to disruptions such as bad weather conditions, unscheduled main-
tenance requirements and congestions at airports. When we analyze the data provided by
Bureau of Transportation Statistics (BTS) (http://www.bts.gov), we observe that 12,899 of
46,571 flights (about 28 %) of a major U.S. airline experienced late arrivals in the first
month of 2011. The average delay per flight was 33 minutes, which propagates and leads to
infeasibilities in aircraft routings, crew schedules and passenger itineraries. Airline Opera-
tions Control Center (AOCC) is responsible for retrieving the initial schedule until the end
of the day of operations. The options of AOCC controllers are to replan departure times of
flights, cancel flights, swap aircraft, ferry aircraft and deadhead crew members, use reserve
or standby crews, use standby aircraft and control the cruise speeds of aircraft within the lim-
itations of aircraft capabilities. Disturbations in the original schedule and recovery actions
result in huge costs; and hence, airlines require efficient and effective recovery methods.

Considering aircraft as the scarce resource, airlines typically create recovery plans for
aircraft and passengers, sequentially. Most of the studies in the literature have focused on
aircraft recovery; and integration with passenger recovery has not been explicitly considered
in most of the recovery models. Jarrah et al. (1993) propose two minimum cost network flow
models to recover from aircraft shortages. First model retimes departure times to minimize
delay costs; and the second one determines cancelled flights in order to minimize cancel-
lation costs. Thengvall et al. (2000) propose a flexible model allowing user preferences in
the objective. The aim is to minimize total operating costs; however, passenger-related costs
are not considered. Stojkovic et al. (2002) contribute by modeling and solving Day of Op-
erations Scheduling problem optimally by modifications in arrival and departure times in
real-time provided that the disruptions are minor. Rosenberger et al. (2003) present a model
that reschedules flights and reroutes aircraft with the objective that minimizes rerouting and
cancellation costs. The authors revise their model that attempts to maintain passenger con-
nections by introducing a cost for disrupted itineraries.

Lan et al. (2006) propose two new approaches to minimize passenger disruptions and
achieve robust airline schedule plans. The first approach involves aircraft routing and the
second one involves retiming departure times. Aircraft routing problem is considered as a
feasibility problem with the aim of achieving robustness with minimal cost implications. In
the proposed robust aircraft maintenance routing (RAMR) model, the authors try to min-
imize the expected total propagated delay. In the second part of their study, the authors
consider passengers who miss their flights due to insufficient connection time. Aim of this
approach is to minimize the number of passenger misconnections by retiming the depar-
ture times of flights within a small time window. For retiming departure times, the authors
propose the connection-based flight schedule retiming (CFSR) model. The objective of the
model is to minimize the expected total number of disrupted passengers.

Bratu and Barnhart (2006) aim to find the optimal trade-off between airline operating
costs and passenger delay costs, and propose two optimization models. The first one is

http://www.bts.gov
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named as Disrupted Passenger Metric (DPM) and aims to minimize passenger disruption
costs without increasing operating costs. The second model is called Passenger Delay Metric
(PDM) which minimizes passenger delay costs without increasing operating costs. Their
experiments have shown that DPM is fast enough for making quick decisions, while PDM
cannot be solved in real time.

Kohl et al. (2007) present a detailed overview of airline disruption management processes
in practice. The authors also discuss the opportunity of avoiding high passenger delay costs
by increasing cruise speeds of flights. In our study, we integrate cruise speed control in our
alternative courses of actions and the results of our experimentation are in line with the
authors’ suggestions.

AhmadBeygi et al. (2008) analyze the potential for delays to propagate. In order to under-
stand the relationship between aircraft schedules and delay propagation, authors investigate
the flight data of two major U.S. airlines. They show that propagation due to a delayed
flight has greater impact than the delay itself. It is observed that propagated delay more
than doubles the initial root delay for flights that propagate delays even without considering
connecting passengers. Jafari and Zegordi (2010) present an assignment model for recover-
ing both aircraft and passengers simultaneously with the objective of minimizing the sum
of aircraft assignment cost, total delay cost, cancellation cost and disrupted passenger cost.
Proposed approach utilizes a wide range of recovery actions except for cruise speed control.

Similar to Bratu and Barnhart (2006), Marla et al. (2011) propose a formulation that
utilizes time-space networks to solve integrated recovery problem. The authors contribute
by incorporating cruise speed control, or flight planning, with time-space network success-
fully. Using flight planning together with other available recovery actions provides great
reductions in passenger disruptions and overall disruption costs. However, integrating flight
planning with time-space network representation requires a second dimension of discretiza-
tion (flight options are discretized with respect to different departure times and different
cruise speeds). Considering the size of airline networks, this representation allows several
cruise speed options for each flight copy to be evaluated in the model. In our study, we aim
to contribute by expressing cruise speed as a continuous variable and try to find the optimal
tradeoff between increased fuel cost and other disruption costs by solving the resulting the
nonlinear mixed integer formulation using an exact approach.

Petersen et al. (2012) study an integrated airline recovery problem using a single-day
horizon, and propose a separate mixed-integer mathematical model for the schedule, air-
craft, crew and passenger recovery problems. They utilize a Benders decomposition scheme
together with the column generation approach to achieve the coordination among these four
mathematical models. Since they place a 30-minute threshold of computation time for the
overall problem, they also propose a sequential recovery algorithm to handle larger prob-
lems. For a recent review on airline disruption management, we refer to Clausen et al.
(2010).

In disruption management literature, there is an increasing number of studies that tries
to integrate passenger recovery with disruption management. On the other hand, there is
also an increasing interest on modeling the passenger behavior. Recent studies try to inte-
grate discrete choice models of passenger behavior with traditional revenue management,
scheduling and other applications in aviation industry such as Garrow et al. (2010), Graham
et al. (2010), and Garrow (2010).

In practice, recovery decisions are generally made considering the infeasibilities in air-
craft routings and crew schedules; however, passengers are also severely affected. In re-
sulting recovery plans, arrivals of passengers may be delayed or passenger itineraries may
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be disrupted; and hence, delay and spill costs are incurred. Delay costs are typically mea-
sured in dollars per minute delay of aircraft and per minute lost by each passenger. Barn-
hart et al. (2012) reported that in 2007, economic costs of time that passengers lost due
to delays are estimated to be $12 billion according to Joint Economic Committee report.
Therefore, considering the disruptions in passenger itineraries in recovery process is cru-
cial to reduce operating and inconvenience costs. In this paper, we propose a mathematical
model for aircraft-passenger recovery problem which handles departure and arrival delays
of any severity. Superimposition of aircraft and passenger networks is considered to create
an integrated recovery plan. The objective is to minimize the total recovery cost which in-
cludes routing-related costs together with passenger-related costs. Passengers are discretized
both by their itineraries and classes. We aim to contribute to the literature by proposing an
integrated solution approach that reschedules departure and arrival times, swaps aircraft,
determines passenger itineraries that will be disrupted and finds optimal cruise speeds of
flights.

In addition to more commonly used recovery actions, we aim to contribute by including
cruise speed control in the alternative courses of recovery actions. Aircraft can speed up
to some extent and reduce cruise times as discussed in Cook et al. (2009). Our experiments
have shown that cruise time reduction provides a great opportunity to mitigate delays. On the
other hand, fuel consumption increases with cruise speed. In order to find the optimal trade-
off between fuel consumption and delay propagation, fuel cost is expressed as a nonlinear
function of cruise time and included in the objective function. The problem is formulated
as a mixed integer nonlinear programming (MINLP) model. Afterwards we show that the
model can be represented as a conic quadratic mixed integer programming (CQMIP) prob-
lem. Finally, we generate conic quadratic constraints to solve the problem with commercial
CQMIP solvers, such as CPLEX. We test our approach using publicly available schedules of
a major U.S. airline. During our analysis of the executed airline schedules provided by BTS,
we have found out that usually one or two disruptions are observed at a given time frame.
Our computational experiments have shown that we could solve the integrated aircraft and
passenger recovery problem to optimality on a four-hub network of a major U.S. airline in
less than one minute on the average.

This paper is organized as follows. In Sect. 2, a numerical example is given for illus-
tration. Details of the mathematical formulation are presented in Sect. 3. In Sect. 4, conic
quadratic reformulation of MINLP model is discussed. Experimental setup, computational
results and analysis of factors are presented in Sect. 5, and we conclude in Sect. 6.

2 Numerical example

Before presenting the mathematical formulation, we illustrate the main idea on a small-
sized numerical example. The input of aircraft and passenger recovery problem consists of
the flight schedule, characteristics of the assigned aircraft (such as seat capacities and fuel
efficiencies), planned passenger itineraries, numbers of passengers of each class assigned to
these itineraries, and lastly a set of disrupted flights with the severities of these disruptions.
Flight schedule of the example is illustrated on a time-space network in Fig. 1. Vertical
axis corresponds to space (airports) while the horizontal axis is the time line. Each line
style (color) represents a different aircraft routing. The horizontal line segments of a routing
represents the time that the aircraft spends at the airport. Length of these line segments need
to be at least as long as the turn time of the aircraft. Turn time is the minimum time required
after the arrival of an aircraft to be ready for its next departure. In the example problem,
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Fig. 1 Time-space network displaying the flight schedule of three aircraft routings

Table 1 Planned flight schedule

Tail # Flight # From To Departure
time

Arrival
time

Cruise
time
(min.)

Time to
next
flight
(min.)

Dist.
(miles)

Allowable
compr.

N322AA 1 DCA ORD 7:50 9:30 80 30 610 6 %

2 ORD DFW 10:00 12:20 120 40 800 6 %

3 DFW ORD 13:00 15:20 120 70 800 6 %

4 ORD DCA 16:30 18:10 80 − 610 6 %

N345AA 5 LAX ORD 6:00 9:40 200 140 1745 10 %

6 ORD MSP 12:00 13:10 50 50 335 10 %

7 MSP ORD 14:00 15:10 50 50 335 10 %

8 ORD LAX 16:00 19:40 200 − 1745 10 %

N5FCAA 9 HNL DFW 5:30 12:50 420 70 3780 9 %

10 DFW HNL 14:00 21:20 420 − 3780 9 %

turn times for all flights are set to 30 minutes. Inclined line segments, on the other hand,
correspond to planned flights. For instance, N5FCAA performs two flights: a 440-minute
flight from HNL to DFW, and a 440-minute flight from DFW back to HNL. The aircraft
spends 70 minutes at DFW between these flights.

Flight schedule is tabulated in Table 1. The rightmost column corresponds to the allow-
able compression percentage which is the aircraft-and-flight-dependent parameter indicating
the allowable compression of flight time expressed in terms of the percentage of cruise time.
For instance, cruise time, and hence the flight time, of flight 1 can be decreased by 4.8
minutes at most, if the aircraft of the flight is not swapped.

Passenger itineraries expressed in terms of sequential flight numbers are listed in Table 2
(the second and third columns represent the numbers of passengers in economy and business
classes, respectively); and space network of flights and passenger itineraries are represented
in Fig. 2. It is important to note that we deal with the integrated network, which is the super-
imposition of aircraft routing and passenger itinerary networks. For instance, passengers in
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Table 2 Planned passenger
itineraries Itinerary # of pass.

economy
# of pass.
business

Itinerary # of pass.
economy

# of pass.
business

1 183 19 4 113 15

1–2 33 4 5 65 13

1–2–10 12 2 5–6 90 8

1–6 42 5 6 57 6

2 153 18 7 130 16

2–10 72 6 7–8 113 11

3 67 7 8 51 5

3–4 137 13 9 234 26

3–8 3 0 10 103 10

Fig. 2 Space networks

itinerary 1–2–10 are three-flight passengers who travel from DCA to ORD, ORD to DFW,
and finally DFW to HNL. At DFW, passengers in this itinerary switch from N322AA to
N5FCAA. Aircraft schedules must provide sufficient time for connected flights, which is
called minimum connection time. In this example, minimum connection times are all set to
30 minutes. When the minimum connection time is not satisfied, the itinerary is said to be
disrupted. Spill costs of all itineraries in this example are $50 and $200 for economy and
business class passengers, respectively. Delay costs are separated into two terms: delay cost
for aircraft and delay cost for passengers. Aircraft delay cost contains several components
such as maintenance cost, flight crew and cabin crew cost, and marginal depreciation or
lease cost per flight minute. On the other hand, passenger delay cost is the estimated cost
of time lost by passengers. Aircraft delay costs are all set to $20 per minute; and passenger
delay costs per passenger minute are set to $0.05 and $2 for economy and business class
passengers, respectively.

In the given scenario, N322AA is facing maintenance problems before its first flight, and
hence, it cannot depart before 09:50. In other words, departure time of flight 1 is delayed
by two hours. A common recovery strategy for such disruptions is to postpone all flights
until their assigned aircraft are ready. This strategy is known as push-back recovery plan
(PB1). A variation of PB1 is push-back recovery plan maintaining passenger connections
(PB2) which may be a good idea when spill costs overweigh delay costs. In PB2, none of
the itineraries are disrupted since the departures of all flights are postponed until aircraft
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and passengers are ready. On the other hand, more flights are delayed and greater delay
propagation is experienced.

In this study, we propose a new approach with the objective of finding minimum cost
recovery plans by deciding on which flights to postpone and how much to postpone, which
itineraries to disrupt, cruise times of which flights to compress and how much to compress,
and the aircraft of which flights to swap. This integrated approach will be named as aircraft-
passenger recovery (APR). Swapping aircraft may provide opportunities to mitigate delays;
however, the characteristics of the aircraft should be considered while swapping aircraft. In
particular, different types of aircraft may have different fuel efficiencies; and hence, flying
the same flight leg with different aircraft may result in different fuel costs. For simplicity,
all aircraft in the example have similar fuel efficiencies, and fuel cost of a flight is com-
puted by 0.25×Distance2.5/crt1.5, where crt is the cruise time of the flight. Compression
limitations may also vary as displayed in Table 1. Finally, aircraft may have different seat
capacities. Therefore, a swap decision may result in spilled passengers due to insufficiency
in seat capacity. In the example, capacities of aircraft N322AA, N345AA and N5FCAA are
270-30, 243-27 and 234-26 for economy and business class passengers, respectively. When
the aircraft of two flights are swapped, a swap cost is incurred for returning to the original
schedule at the end of the day.

Three recovery schemes are displayed in Fig. 3. Lines in grey color represent the flights
in the original schedule. In Fig. 3a, it can be seen that only flights in the routing of N322AA
are delayed with PB1 recovery policy. Total delay is 420 minutes, resulting in a delay cost
of $36,374. On the other hand, the connection between flights 2 and 10, and the connection
between 3 and 8 are disrupted. Therefore, the passengers in itineraries 1–2–10, 2–10 and
3–8 are spilled. A total of 87 economy and 8 business class passengers are spilled, and the
resulting total spill cost is $5,950. As given in Fig. 3b, in PB2 recovery policy, all connec-
tions are maintained; however, in addition to flights in the disrupted routing, flights 8 and 10
are also delayed. Total delay is 570 minutes and the corresponding delay cost is $45,676.

Figure 3c presents the solution obtained by APR approach. APR utilizes the swap op-
portunity between flights 2 and 6. In the recovery scheme, N322AA operates flights 1, 6, 7
and 8, while N345AA operates flights 5, 2, 3 and 4. Resulting swap cost is $ 5,000. In order
not to delay flight 2, cruise time of flight 5 is compressed by 10 minutes so that it arrives
30 minutes (turn time) before the scheduled departure of flight 2. It is important to note that
flight 5 is not originally affected from this disruption, but its cruise time is compressed (in
albeit of additional fuel cost) due to the swapping decision. Such an interaction will not be
foreseen without a global optimization model such as the one proposed in this study. The
current industry solution of cost index ratio is useful but the flight crew may not be able
to see the consequences of their local decisions. In this solution, passengers in itineraries
1–2 and 1–2–10 are disrupted; and hence, 45 economy and 6 business class passengers are
spilled. APR captures the change in aircraft capacities due to the swap; 7 economy and 1
business class passengers are spilled from flight 4. Resulting spill cost is $4,000. Delay is
not propagated and only flight 1 is delayed. Moreover, cruise time of flight 1 is compressed
by 4.8 minutes leading a total delay of only 115.2 minutes. Corresponding total delay cost
is $10,771. Speeding up two flights costs $5,757 for increased fuel consumption. Some per-
formance measures and cost terms of all recovery schemes are summarized in Table 3. It
can be observed from the cost values that APR finds the optimal tradeoff between the cost
terms by optimizing a unified objective function. In this example, a 40 % reduction in total
recovery costs with respect to those of PB1 and PB2 schemes is provided.
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Fig. 3 Recovery schemes

3 Mathematical formulation

The objective of aircraft and passenger recovery problem is to find the minimum cost recov-
ery plan given aircraft routings and aircraft characteristics, passenger itineraries and number
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Table 3 Performance measures
of solutions Performance measure PB1 PB2 APR

# of delayed flights 4 6 1

Total delay (min.) 420 570 115.2

# of disrupted itineraries 3 0 2

# of spilled passengers 95 0 59

Total compression (min.) 0 0 14.8

Aircraft delay cost 8,400 11,400 2,304

Passenger delay cost 27,974 34,276 8,467

Total spill cost 5,950 0 4,000

Additional fuel cost 0 0 5,757

Swap cost 0 0 5,000

Total recovery cost 42,324 45,676 25,528

of assigned passengers of each passenger class, and a set of departure or arrival delays of
any severity. The decisions include which flights to postpone and how much to postpone,
which passenger itineraries to maintain and which to cancel, aircraft of which routings to
swap and which flights to speed up. Objective function consists of five cost terms: delay
cost for aircraft and passengers, spill cost, swap cost and additional fuel cost. Derivation of
the general expression for the nonlinear fuel cost will be given in this section, and conic
quadratic reformulation will be explained in Sect. 4.

3.1 Fuel cost function

Since we aim to use cruise speed control of flights in recovery, a realistic fuel cost function is
required. In the technical documentations of Airbus (1998) and Boeing (2007), it is reported
that direct operating costs of a flight consists of a fixed cost, and variable fuel and time re-
lated costs depending on cruise speed and time. However, in aircraft and passenger recovery
problem, time related costs of flights should be evaluated considering the superimposition
of aircraft and passenger networks instead of considering flights separately. Therefore, we
calculate these costs in the mathematical model as aircraft and passenger delay costs. On
the other hand, we develop the fuel cost function of a flight with respect to the technical re-
port of Airbus (2004). It is reported that airlines generally operate their aircraft at maximum
range cruise (MRC) speeds that result in minimum fuel consumption. The relation of fuel
cost with deviation from MRC speed is increasing and convex as displayed in Fig. 4. In (1),
we express actual fuel cost of flight k (f ckt ) when operated with the aircraft of routing t as
the deviation from the planned (minimum) fuel cost (FCkt ), where Vkt is the MRC speed,
�vk is the increase in the cruise speed and Kkt is flight and aircraft related parameter.

f ckt (�vk) = FCkt ×
(

Vkt + �vk

Vkt

)Kkt

(1)

where Kkt ≥ 1.
In (2) we express the relation between the cruise speed (vk) and cruise time (crtk) of flight

k, where DISTk is the cruise stage distance. A similar approximation was also employed in
Lovegren and Hansman (2011) to analyze the potential of cruise fuel burn savings.

DISTk = vk × crtk (2)
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Fig. 4 Cruise speed–fuel cost
relation

Using relations in (1) and (2), Proposition 1 expresses fuel cost as a function of cruise
time.

Proposition 1 Cruise stage fuel cost of flight k, when operated with the aircraft of routing
t (f ckt ) and when the cruise time is compressed by �tk , can be expressed as a function of
the amount of compression as follows:

fkt (�tk) = FCkt × T
Kkt

kt ×
(

1

Tkt − �tk

)Kkt

(3)

where Tkt is the cruise time of the flight at planned cruise speed.

Proof Using the relation in (2), we have both DISTk = Vkt ×Tkt and DISTk = (Vkt +�vk)×
(Tkt − �tk). Therefore, increase in cruise speed can be expressed in terms of the amount of
compression.

�vk = Vkt × �tk

Tkt − �tk
(4)

Substituting (4) in (1), actual cruise stage fuel cost of a flight can be expressed in terms of
the amount of compression in the cruise time. �

3.2 Notation

Before going through the formulation, notation used throughout this paper is described be-
low.

Sets:

F Set of all scheduled flights
R Set of all scheduled aircraft routings
Ft Set of flights in t th aircraft routing t ∈ R

I Set of passenger itineraries
I (k) Set of passenger itineraries including flight k k ∈ F

F(i) Set of flights in passenger itinerary i i ∈ I

S Set of pairs of flights that can be swapped
D Set of flights that have departure or arrival time disruption
Prek Set of flights including flight k and all flights that precede

flight k in its routing, k ∈ F

C Set of passenger classes
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In general, aircraft of all flights departing from the same airport can be swapped:

S = {
(k,m) : k,m ∈ F,m > k,Rk �= Rm,ORIk = ORIm

}
.

Rk is the tail number of the kth flight and the parameter ORIk denotes the origin airport
of flight k. Flight pairs in set S can be determined by considering various factors. If two
aircraft have a long time gap between their arrivals to the airport where swap occurs, then
such a swap may be excluded from S. If a swap has a very high cost, it causes infeasibilities
in crew schedules or in aircraft maintenance restrictions, then it should be excluded from S

as well.

Parameters:
Rk : Routing (tail) number of flight k k ∈ F

DTk : Scheduled departure time of flight k k ∈ F

ATk : Scheduled arrival time of flight k k ∈ F

FTkt : Flight time of flight k if it is flown at planned speed with aircraft of routing t k ∈ F, t ∈ R

Tkt : Cruise time of flight k if it is flown at planned speed with aircraft of routing t k ∈ F, t ∈ R

Γk : Aircraft turn time for flight k k ∈ F

Θik : Minimum connection time for passengers in itinerary i before flight k i ∈ I, k ∈ F(i)

CAPc
t : Seat capacity for passengers of class c in the aircraft assigned to the routing t t ∈ R,c ∈ C

APrek : Flight that immediately precedes flight k in its routing k ∈ F

Firsti : First flight in passenger itinerary i i ∈ I

PPreik : Flight that immediately precedes flight k in passenger itinerary i i ∈ I, k ∈ F(i)

εi : Difference between the ready time of passengers in itinerary i and scheduled
departure time of their first flight

i ∈ I

NPassc
k
: Total number of class c passengers in flight k k ∈ F,c ∈ C

NPc
i
: Number of class c passengers in itinerary i i ∈ I, c ∈ C

Kkt : Fuel cost exponent of aircraft of routing t for operating flight k t ∈ R

Allkt : Percentage of cruise time of flight k that can be compressed with aircraft of
routing t

k ∈ F, t ∈ R

FCkt : Minimum (planned) fuel cost of flight k if operated with aircraft of routing t k ∈ F, t ∈ R

Yt1t2 : Swap cost incurred if the aircraft of routings t1 and are swapped t2 t1, t2 ∈ R

ADCk : Aircraft delay cost per flight minute of aircraft k ∈ F

PDCc
k
: Passenger delay cost per minute per passenger of class c for flight k k ∈ F,c ∈ C

SCc
i

: Spill cost per passenger of class c in itinerary i i ∈ I, c ∈ C

DDk : Amount of departure delay of disrupted flight k k ∈ D

ADk : Amount of arrival delay of disrupted flight k k ∈ D

M: A sufficiently large amount of time

Decision Variables:
dtk : Departure time of flight k in the recovered schedule k ∈ F

atk : Arrival time of flight k in the recovered schedule k ∈ F

�tk : Amount of compression in cruise time of flight k in the recovered schedule k ∈ F

delayk : Amount of arrival delay of flight k in minutes in the recovered schedule k ∈ F

spc
i

Number of class c passengers in itinerary i that are spilled due to itinerary
disruption or capacity insufficiency

i ∈ I, c ∈ C

passc
k

: Number of class c passengers that are not disrupted and available for flight k k ∈ F,c ∈ C

zi = 1, if passenger itinerary i is disrupted; 0 otherwise i ∈ I

xkm = 1, if aircraft of flights k and m are swapped; 0 otherwise (k,m) ∈ S

ykt = 1, if flight k is performed with aircraft of routing t ; 0 otherwise k ∈ F, t ∈ R

3.3 Constraints

Constraints of the aircraft and passenger recovery problem are discussed in six groups.
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3.3.1 Swap constraints

We limit the number of swaps for the flights in a routing to one in (5) and introduce the
auxiliary variable ykt in (6) and (7) in order to indicate that a flight is swapped or not.

∑
k∈Ft

( ∑
m:(k,m)∈S

xkm +
∑

m:(m,k)∈S

xmk

)
≤ 1 t ∈ R (5)

∑
i∈Prek

( ∑
j :(i,j)∈S,

j∈Ft

xij +
∑

j :(i,j)∈S,
j∈Ft

xji

)
= ykt k ∈ F, t ∈ R \ {Rk} (6)

1 −
∑

i∈Prek

( ∑
j :(i,j)∈S

xij +
∑

j :(i,j)∈S

xji

)
= ykRk

k ∈ F (7)

The auxiliary variable ykt takes value one if flight k is operated with the aircraft of rout-
ing t . Value of ykRk

will be equal to one if the flight is not swapped; i.e., if the flight is
operated with the originally scheduled aircraft.

3.3.2 Departure time constraints

Departure time constraints are developed using the idea that an operation cannot start until
all necessary resources are available. Constraints allow early and late departures in order to
create a greater feasible region; however, operational restrictions on departure and arrival
times can easily be inserted into the model.

dtk ≥ (DTk − εi) × (1 − zi) i ∈ I, k = Firsti (8)

dtk ≥ (atj + Θij ) − M × zi i ∈ I, k ∈ F(i) \ Firsti , j = PPreik (9)

dtk ≥ (atj + Γj ) − M ×
( ∑

m:(k,m)∈S

xkm +
∑

m:(m,k)∈S

xmk

)
k ∈ F, j = APrek (10)

dtk ≥ (atj + Γj ) − M × (1 − xkm) k ∈ F, j = APrem where (k,m) ∈ S (11)

dtk ≥ (atj + Γj ) − M × (1 − xmk) k ∈ F, j = APrem where (m, k) ∈ S (12)

We allow flights to depart before the ready time of its passengers. Although it seems an
undesirable situation, it might be necessary due to a swapping decision. In such a case, con-
straint (8) ensures that the passengers having that flight as the first flight in their itineraries
are spilled. Passenger connections are modeled with constraint (9). If a flight departs before
passengers who have a preceding flight in their itineraries are ready (atj +Θij ), the variable
zi takes value one denoting that the connection is disrupted. Constraint (10) satisfies the air-
craft flow balance of two successive flights in a routing considering turn times if the aircraft
of these flights are not swapped. In case of swaps, balance is satisfied with constraints (11)
and (12). For instance, consider constraint (11) and suppose that the aircraft of flights k and
m are swapped. Then, the constraint states that flight k cannot depart before the ready time
of the aircraft after flight j which is the predecessor of flight m in its routing in the original
schedule.
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3.3.3 Arrival time and delay constraints

If the cruise speed is not controlled, arrival time of a flight would be expressed as the sum of
the departure time and the planned flight time. Taking compression and swap decisions into
consideration, arrival time constraint is given in (13). Since customer convenience is related
with on-time arrival performance of flights, we express delay as the difference between
actual and planned arrival time in (14). In order not to promote early arrivals, we force delay
to be nonnegative in (15).

atk ≥ dtk +
(∑

t∈R

FTkt × ykt

)
− �tk k ∈ F (13)

delayk ≥ atk − ATk k ∈ F (14)

delayk ≥ 0 k ∈ F (15)

3.3.4 Allowable compression constraints

Maximum compression in the cruise time of a flight is limited and we express this limitation
as percentage of the cruise time. Limitation on the compression depends both on the aircraft
type and the flight. Constraint (16) defines the upper bound for compression in cruise time.
We assume that an airline plans its flight times at maximum range cruise speed which gives
minimum fuel cost. Therefore, a longer cruise time would be worse both in terms of time
and cost. Constraint (17) enforces compression variable to take nonnegative values.

�tk ≤
∑
t∈R

Tkt × Allkt × ykt k ∈ F (16)

�t ≥ 0 k ∈ F (17)

3.3.5 Passenger itinerary disruption and capacity shortage constraints

Constraints (8) and (9) ensure that binary variable zi takes value one if itinerary i is dis-
rupted. Constraint (18) states that passengers in disrupted itineraries are spilled.

spc
i ≥ NPc

i × zi i ∈ I, c ∈ C (18)

Since we allow swapping aircraft, seat capacities of flights may change and passengers may
also be spilled due to insufficient capacity. In capacity shortage cases, airline should decide
on which passengers to spill considering different spill costs of different itineraries. For
a given flight k, number of class c passengers to be spilled due to capacity shortage is
given by max{0,NPassc

k −∑
t∈R CAPc

t × ykt }. These passengers should be selected from the
itineraries that include flight k, and some of them may already been spilled due to itinerary
disruptions. Constraint (19) ensures that number of passengers assigned to each flight do not
exceed the seat capacities of its aircraft.

∑
i∈I (k)

spc
i ≥ NPassc

k −
∑
t∈R

CAPc
t × ykt k ∈ F (19)
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3.3.6 Disruption constraints

In aircraft and passenger recovery problem, we are dealing with delays of any severity. One
can represent a disruption by entering departure delay (DDk) or arrival delay (ADk) for a
flight. Constraint (20) states that a disrupted flight cannot depart before its ready time. Note
that the ready time of these flights after disruption is equal to the sum of scheduled departure
time and departure delay. Similarly, constraint (21) expresses arrival time disruptions.

dtk ≥ DT k + DDk k ∈ D (20)

atk ≥ AT k + ADk k ∈ D (21)

3.3.7 Objective function

The objective of the problem is to recover from the disruptions with minimum operating
and inconvenience costs. Cost of recovery includes five terms: delay cost for aircraft and
passengers, spill cost, swap cost, and increase in the fuel cost. Delay costs include flight and
passenger related costs. Passenger related delay costs are based on the number of passengers
in the original schedule. For each disrupted passenger, a spill cost is incurred. Both disrupted
passenger and passenger delay costs depend on passenger classes. For pairs of flights that
are swapped, a swap cost is incurred in order to return to the original schedule before the
next day of operations. Cruise stage fuel cost of a flight considering both compression and
swap decisions is expressed in (3). Using auxiliary variable ykt , additional fuel cost of a
particular flight, say k, is obtained by

∑
t∈R fkt (�tk) × ykt − FCkRk

. The objective function
corresponding to the recovery cost is defined in (22) and the complete model is given below:

min
∑
k∈F

delayk ×
(

FDCk +
∑
c∈C

NPassc
k × PDCc

k

)
+

∑
c∈C

∑
i∈I

SCc
i × spc

i

+
∑

(k,m)∈S

YRkRm × xkm +
(∑

k∈F

∑
t∈R

fkt (�tk) × ykt − FCkRk

)
(22)

subject to

Swap constraints (5)–(7)

Departure time constraints (8)–(9)

Arrival time and delay constraints (13)–(15)

Allowable compression constraints (16)–(17)

Passenger itinerary disruption and capacity shortage constraints (18)–(19)

Disruption constraints (20)–(21)

zi ∈ {0,1} i ∈ I

xkm ∈ {0,1} (k,m) ∈ S

Binary decisions included in the proposed model are whether to maintain a passenger
connection or not, and whether to swap aircraft of pairs of flights or not, as stated above.
Note that APR is a MINLP model having a nonlinear objective function. Fuel cost term
of the objective function includes products of convex functions with binary variables. In
Sect. 4, we linearize the objective function and then show that the resulting model is SOCP-
representable. Finally, we explain generation of conic quadratic constraints so that the model
can be solved with commercial CQMIP solvers.
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4 Conic quadratic mixed integer programming model

In the objective function given in Sect. 3.3.7 for each flight-aircraft pair there exists a non-
linear fuel cost term

fkt (�tk) × ykt (23)

which is the product of fuel cost function (fkt ) and flight-aircraft assignment variable (ykt ).
This term is nonlinear and nonconvex. In the following, we will first move this function to
the constraint set, and then show that the resulting constraint can be reformulated in a way
to represent a convex set. We next observe that the resulting convex set can be represented
using conic quadratic inequalities.

Substituting the function (3) in (23) we get

Ωkt ×
(

1

Tkt − �tk

)Kkt

× ykt (24)

where Ωkt = FCkt × T
Kkt

kt .
We next introduce an auxiliary variable crtk that represents the actual cruise time of flight

k as below:

crtk = Tkt − �tk k ∈ F and t ∈ R (25)

The next step in representing (23) via conic quadratic inequalities is to replace each
term (23) in the objective function with the expression Ωkt × qkt where qkt is an auxiliary
variable and add the following inequality into the constraint set

ykt

crtKkt

k

≤ qkt (26)

This reformulation is obviously equivalent to the original one since it is a minimization
problem. In its new form the objective is linear but now we have nonlinear constraints in the
constraint set.

Next, we first reformulate (26) so that the reformulation will represent the hypograph of
the geometric mean of 2l nonnegative variables, which is a convex set. In the following, we
drop k, t indices of variables and consider K = k1/k2 where k1, k2 are integers.

Proposition 2 Inequality (26),

y

crtK
≤ q

can be equivalently written as

y2l ≤ qk2 × crtk1 (27)

where l = �log2(k1 + k2)�.

Proof Inequality

y

crtK
≤ q

can be first written as

y ≤ crtk1/k2 × q



Ann Oper Res

taking kth
2 power of both sides we get

yk2 ≤ crtk1 × qk2

Exploiting the fact that y is a 0–1 decision variable in the model, the exponent of y can be
increased and set to 2l and we get:

y2l ≤ crtk1 × qk2 × 1(2l−k1−k2) (28)

An inequality of the form r ≤ (s1s2 · · · s2l )1/2l

with si ≥ 0 restrictions defines the hypograph
of the geometric mean of variables s1, . . . , s2 which is a convex set. Inequality (28) is of the
same form with some restrictions on the variables. k1 of them are identical and equal to crtk ,
k2 of them equal to q and (2l − k1 − k2) of them equal to 1. �

Proposition 2 shows that inequality (26) can be reformulated as an inequality which
defines a convex set, namely a hypograph of geometric mean of 2l variables. This leads to
the following result.

Proposition 3 Inequality (26),

y

crtKk
≤ q

with restrictions y ∈ {0,1}, crtk ≥ 0, q ≥ 0, can be represented using conic quadratic in-
equalities.

Proof As given in Ben-Tal and Nemirovski (2001), for a positive integer l, an inequality of
the form

r2l ≤ s1s2 · · · s2l , (29)

for r, s1, . . . , s2l ≥ 0, i.e. a hypograph of geometric mean of 2l variables, can be expressed
equivalently using O(2l ) variables and O(2l ) hyperbolic inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (30)

Furthermore, each constraint u2 ≤ v1v2 can be written as a conic quadratic constraint

∥∥(2u,v1 − v2)
∥∥ ≤ v1 + v2. (31)

�

This reformulation enables us to model the MINLP problem initiated in Sect. 3 as
a CQMIP problem. The modified model with linear objective function, linear and conic
quadratic constraints can be handled by fast algorithms of commercial CQMIP solvers. We
finally illustrate the generation of conic quadratic constraints with an example.

Example 1 Suppose that K = 2.5; and hence, k1 = 5 and k2 = 2 for a particular flight-
aircraft pairing. By Proposition 2, inequality

y

crt2.5
≤ q



Ann Oper Res

Fig. 5 Illustration of generation
of conic quadratic constraints

is first expressed as

y2 ≤ crt5q2

Then, reformulated as

y8 ≤ crt5q211

Obtained inequality can be expressed with the following three inequalities introducing
two nonnegative variables:

w2
1 ≤ c × 1

w2
2 ≤ w1 × q

y2 ≤ w2 × crt

Generation of the inequalities is illustrated in Fig. 5.
These constraints can be represented by the following conic quadratic inequalities:

4w2
1 + (crt − 1)2 ≤ (crt + 1)2

4w2
2 + (w1 − q)2 ≤ (w1 + q)2

4y2 + (w2 − crt)2 ≤ (w2 + crt)2

In the next section, we discuss the computational performance of proposed reformulation.

5 Computational results

In order to validate the practicality of the proposed approach for airline and passenger re-
covery operations, and investigate the effects of several factors on solution quality and per-
formance of the approach with respect to solution time, we have set up an experimental de-
sign. Bureau of Transportation Statistics (BTS) provides airline on-time performance data
(http://www.transtats.bts.gov/DataIndex.asp). We have extracted the aircraft schedules of a
major U.S. airline for three days of operations in April, 2011. Extracted data includes tail
numbers, departure and arrival times, flight and cruise times, origins and destinations, and
distances of flights. For each aircraft, we randomly selected the number of seats and val-
ues of fuel cost parameters. Each flight is included as a single-flight itinerary. Moreover,
pair of flights that arrives to a common airport and satisfies minimum passenger connection
time are considered as possible passenger connections. The second rule on these pairs to
be connecting flights is that the origin of the prior flight should be a different airport than
the destination of the latter one. These possible connecting flights are used to generate two-
flight passenger itineraries. In a similar manner, again considering the minimum connection
times, and origins and destinations of the flights, three-flight itineraries are constructed.

http://www.transtats.bts.gov/DataIndex.asp
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Number of passengers in each flight is assigned randomly, considering the seat capacities
and generated itineraries using these flights. Six different aircraft seat capacities are used:
150, 160, 180, 200, 260 and 300, where about 10 % of the seats are assigned to business
class passengers. Finally, the number of passengers in a flight is allocated randomly to the
passenger itineraries that include the flight in consideration. BTS also provides departure
delays. Actually disrupted flights are rated with respect to the severity of disturbation on
the operations (length of delay, number of succeeding flights in the routing of the disrupted
flight, and number of connected flights) and the most severe disruptions are selected for
recovery instances.

We have analyzed five factors: number of hubs, number of disruptions, passenger delay
cost, fuel cost and swap cost. Number of hubs is directly related to the size of the network
in consideration and may affect the performance of the approach. Number of disruptions
is another factor affecting the complexity of the problem; and hence, should be analyzed.
Instances are created having one, two and five disruptions at a given time frame. Two levels
of each of the three cost parameters (passenger delay cost, fuel cost and swap cost parame-
ters) are used in the experimentation. With the increased number of carrier alternatives and
increased use of Internet as ticket sale channel, airlines require enhanced methodologies
to understand passenger behavior. Modelling passenger behavior is a very important prob-
lem in revenue management, and for disruption management as well. In our formulation,
passenger behavior in cases of delays is modelled by passenger delay cost parameter. This
cost can be regarded as the loss of goodwill cost for the carrier. On the other hand, with
the passengers’ point of view, it may be regarded as the amount of money a passenger is
willing to pay for an arrival with one minute less delay. The value of this parameter may
be different for each passenger and it may even vary for an individual in different days, in
different times of the day and in different origin-destination pairs. Garrow (2010) presents
a novel study that describes the use of choice theory in air transportation for modelling pas-
senger behavior. Garrow et al. (2010) state that from a passenger’s perspective, representing
the passenger behavior using ‘door-to-door’ time instead of ‘airport-to-airport’ time would
be more accurate and proposes a formulation to calculate the values of times. On the other
hand, Marla et al. (2011) use a passenger delay cost estimated by an airline. In our computa-
tional experiments, we have used these estimates proposed by Marla et al. (2011), such that
passenger delay cost is set to $1.09 and $1.5 per minute per passenger for the low and high
values, respectively. There are studies in literature that model the behavior of business class
passengers, such as Graham et al. (2010). The authors study ticketing, refund and exchange
behavior of business class passengers depending on factors such as frequency of travel, car-
rier, time from ticket purchase and time before flight departure. In terms of delay costs for
business class passengers, we can intentionally state that value of time is greater than that
for economy class passengers. As the cost estimates proposed by Bratu and Barnhart (2006)
suggest, we have doubled the delay costs for business class passengers. We have included
a small flight delay cost of $10 to prevent unnecessary delays. For low and high values of
swap cost, we have used $500 (proposed by Marla et al. 2011) and $1000, respectively. Low
and high fuel cost constants are generated from U(0.5, 1) and U(1.5, 3), respectively, where
U(a, b) is a uniform distribution in interval (a, b). Fuel cost exponents vary from 1.5 to 3.5.
Spill costs are set to $457.8 that is evaluated by the method proposed by Marla et al. (2011).
For high and low levels of the factors, + and − signs will be used. 15 instances are cre-
ated for each of the 72 experimental settings. Therefore, a total of 1080 instances are solved
using version 12.1 of IBM ILOG CPLEX. In order to test the practicality of our approach,
solution times are limited to 300 seconds.

Generated instances include one, two or four hubs. Sizes of the corresponding networks
are displayed in Table 4. Number of routings is obtained from the data by counting the



Ann Oper Res

Table 4 Effect of number of
hubs on the size of the network # of hubs Average # of

flights
Average # of
routings

Average # of
airports

1 352 99 41

2 619 211 49

4 1429 419 76

Table 5 Effect of # of hubs and
# of disruptions on solution
performance of APR

# of
hubs

# of
disruptions

Average
CPU time
(sec.)

Average
gap (%)

Percentage
of optimal
solutions

1 1 4 − 100

2 7 − 100

5 23 − 100

2 1 6 − 100

2 10 − 100

5 55 1.7 97

4 1 44 − 100

2 72 − 100

5 142 3.8 82

number of routings that visit the selected hubs. All flights in these routings and all airports
visited are relevant to our disruption problem; and hence, are included in the model.

Solution times and gaps are summarized in Table 5. Gaps are calculated by dividing
the difference between the best integer solution and best lower bound to the best integer
solution. When we increase the number of hubs or disruptions, the corresponding solution
times and gaps increase as well. We deal with realistic size problem instances, and still
solve 1059 of 1080 test instances to optimality using the proposed APR approach. Solution
times are greater than one minute only in four-hub instances; however, average solution
time is still less than one minute in general. When we analyze the existing schedules, we
observed that the number of disruptions was usually less than two in a given time frame.
For this particular case, we could solve all of the problem instances optimally in less than
one minute of computation time. This is a very important contribution since we can now use
optimization techniques instead of relying on ad hoc approaches for such a critical problem.

Table 6 summarizes characteristics of the recovery plans generated by APR with respect
to the levels of cost factors (+ and − signs indicate high and low values, respectively).
Magnitude of delay cost has the greatest effect on the recovery plan. It can be seen from the
table that in the first four settings, number of delayed flights and total delay are less than
those for the last four settings permitting disruptions in more passenger itineraries. APR
tries to minimize delay propagation as much as possible swapping more flights and using
more cruise time compression when delay cost is set to its high level. Therefore, we do
not observe a statistically significant effect of the other cost parameters in these settings.
When we consider the last four settings separately, we can observe a small effect of fuel
cost on the amount of total compression. We do not observe a similar effect for swap cost;
however, we can state that swap opportunities help delay mitigation as the number of swaps
is proportional to total delay.
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Table 6 Effects of cost factors on recovery actions with APR

Delay
cost

Fuel
cost

Swap
cost

# of flights
with delay

Total delay
(min.)

# of spills # of swaps Total compr.
(min)

+ + + 4.07 726 57.2 1.88 165

+ + − 4.02 731 38.0 1.98 228

+ − + 4.00 718 41.1 1.92 179

+ − − 3.89 710 39.2 1.84 187

− + + 4.22 764 43.8 1.42 148

− + − 4.10 747 38.4 1.46 153

− − + 4.24 748 39.6 1.54 168

− − − 4.11 734 30.6 1.78 171

Table 7 Comparison of APR
with other approaches # of hubs # of disruptions PB1 (%) PB2 (%) APR2 (%)

1 1 28.1 28.1 6.3

2 30.0 203.2 7.9

5 18.5 135.1 5.2

2 1 29.2 29.5 6.5

2 42.4 129.2 15.7

5 18.2 180.5 4.3

4 1 31.0 31.2 9.4

2 42.0 130.6 6.8

5 29.8 170.9 19.4

Average 28.3 130.6 8.4

Trying to find the optimal balance between five cost terms, APR is expected to outper-
form methods PB1 and PB2; however, test instances are also solved with these push-back
recovery policies in order to observe the improvement in total recovery costs. Moreover, in
our experiments, we have observed that complexity of the problem is greatly depending on
the number of swap opportunities. Without swap decision, all test instances are solved to op-
timality in less than a minute (about 15 seconds on the average). Therefore, we have named
this alternative solution procedure as APR2 and included in our analysis. On the other hand,
PB1 and PB2 plans are created within a second. Table 7 summarizes the percentage cost de-
viations of alternative approaches with respect to APR solutions. Deviations are calculated
by dividing the cost difference to the recovery cost obtained by APR. Greatly propagating
delays, PB2 results in most costly recovery plans. PB1 performs better than PB2, but the
cost deviation from APR solution is 28.3 %. We also observe that APR2 provides great cost
improvements compared to push-back recovery policies. On the other hand, 8.4 % deviation
indicates the importance of swap opportunities. It is important to note that even in instances
where APR stopped with positive gaps, it provided better solutions than APR2. This find-
ing suggests that swap opportunities should be evaluated even they make the problem more
complex. Moreover, including the cruise speed control into the integrated recovery process
greatly enhances the solution quality as seen in APR2 compared to PB1 or PB2.
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Table 8 Comparison of APR
with APR2 within shorter
solution time limits

# of hubs # of disruptions 60 seconds 120 seconds

1 1 6.3 6.3

2 7.9 7.9

5 5.2 5.2

2 1 6.5 6.5

2 15.7 15.7

5 −1.4 4.2

4 1 5.3 9.4

2 −4.9 6.8

5 −6.2 4.8

Average 2.1 6.9

Since APR2 finds the optimal solution in very short solution times compared to APR, it
may be preferred to APR in scenarios with less available solution times. In order to compare
solution qualities of these two approaches within shorter solution times, we have experi-
mented same instances with time limits of one and two minutes. Table 8 summarizes the
percentage cost deviations of APR2 with respect to APR within 60 and 120 seconds. Con-
sidering overall deviations, we can state that APR still outperforms APR2. However, in five
disruptions scenario of two-hub case and more than one disruption scenarios of four-hub
cases, the deviations are negative when we need to take recovery actions within one minute.
The results suggest to use APR2 with these settings. On the other hand, we observe that
120 seconds is sufficient to evaluate and utilize swap opportunities, since APR outperforms
APR2 in all settings within two minutes.

6 Conclusions

We develop a mathematical model for passenger and aircraft recovery problem. We aim to
contribute to the literature by integrating cruise speed control with other recovery actions
such as retiming departure and arrival times, and swapping aircraft. Airlines generally oper-
ate their flights at cruise speeds that result in minimum fuel consumptions, which is lower
than the maximum speed that the aircraft can reach. Our experiments have shown that cruise
time compression with cruise speed control can greatly mitigate delays. On the other hand,
fuel consumption increases as the aircraft speed up. In accordance with the airline manufac-
turers’ technical specifications, we present a convex and increasing function to express the
change in fuel cost as the speed increases. Proposed formulation of the problem is originally
a mixed integer nonlinear programming (MINLP) model. We first linearize the nonlinear
cost term in the objective function and then show that the resulting problem is second-order
cone programming (SOCP) representable. Finally, we create conic quadratic constraints for
the nonlinear constraints to be able to solve the problem with commercial MIP solvers such
as IBM ILOG CPLEX. We place special emphasis on passenger-related costs. In addition
to itineraries, we also discretize passengers with respect to their classes. Proposed model
decides passengers in which itineraries will be delayed and how much; and which passen-
ger itineraries will be disrupted, if necessary. Objective of our model is to minimize total
recovery cost in case of disruptions. Recovery cost consist of five terms: flight delay cost,
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passenger delay cost, disrupted itinerary cost, swap cost, and increased fuel cost. Proposed
model is able to create minimum cost recovery plans by finding the optimal tradeoff between
these cost terms. We have performed an extensive computational study for five factors, i.e.,
number of hubs, number of disruptions, delay cost, fuel cost, and swap cost. Number of hubs
determines the size of the network under consideration; and hence, is significant on solution
times and gaps. Number of disruptions that will be handled is also one of the most important
factors affecting the complexity of the problem. Due to the nature of the problem we expect
to handle one or two disruptions at a given time frame. Our computational experiments have
shown that proposed approach is able to handle two disruptions on a four-hub network of
a major U.S. airline within less than one minute on the average. Moreover, 97 % of the in-
stances including problems dealing with five disruptions at a given time frame are solved
to optimality in real time. In this study, we only allow swapping aircraft that satisfy crew
and maintenance related constraints, although this assumption can be relaxed to enlarge the
solution space.
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