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Abstract Search-based advertising allows the advertisers to run special campaigns targeted
to different groups of potential consumers at low costs. Google, Yahoo and Microsoft ad-
vertising programs allow the advertisers to bid for an ad position on the result page of a
user’s query when the user searches for a keyword that the advertiser relates to its products
or services. The expected revenue generated by the ad depends on the ad position, and the ad
positions of the advertisers are concurrently determined after an instantaneous auction based
on the bids of the advertisers. The advertisers are charged only when their ads are clicked by
the users. To avoid excessive ad expenditures due to sudden surges in the keyword-search
activities, each advertiser reserves a fixed finite daily budget, and the ads are not shown in
the remainder of the day when the budget is depleted. Arrival times of keyword-search in-
stances, ad positions, ad selections, and sales generated by the ads are random. Therefore,
an advertiser faces a dynamic stochastic total net revenue optimization problem subject to
a strict budget constraint. Here we formulate and solve this problem using dynamic pro-
gramming. We show that there is always an optimal dynamic bidding policy. We describe
an iterative numerical approximation algorithm that uniformly converges to the optimal so-
lution at an exponential rate of the number of iterations. We illustrate the algorithm on
numerical examples. Because dynamic programing calculations of the optimal bidding poli-
cies are computationally demanding, we also propose both static and dynamic alternative
bidding policies. We numerically compare the performances of optimal and alternative bid-
ding policies by systematically changing each input parameter. The relative percentage total
net revenue losses of the alternative bidding policies increases with the budget loading, but
were never more than 3.5 % of maximum expected total net revenue. The best alternative to
the optimal bidding policy turned out to be a static greedy bidding policy. Finally, statistical
estimation of the model parameters is visited.

S. Dayanik (B)
Departments of Industrial Engineering and Mathematics, Bilkent University, Bilkent 06800, Ankara,
Turkey
e-mail: sdayanik@bilkent.edu.tr

M. Parlar
DeGroote School of Business, McMaster University, Hamilton, Ontario L8S 4M4, Canada
e-mail: parlar@mcmaster.ca

mailto:sdayanik@bilkent.edu.tr
mailto:parlar@mcmaster.ca


104 Ann Oper Res (2013) 211:103–136

Keywords Searched-based advertising · Dynamic bidding · Dynamic programming ·
Optimal control

1 Introduction

Although a variety of internet advertisements exist; see, for example, Özlük (2011), the
most popular and profitable ones turn out be search engine advertisements, also known as
keyword ads. These ads appear next to unsponsored (organic) search results, and the adver-
tiser is charged only if a user clicks on the advertisement, taking the user to the advertiser’s
webpage. Emarketer.com (2011, 2013a, 2013b) estimates that search ads in the US have
generated revenues in the amounts of $12.4 billion in 2010, $15 billion in 2011, $20 billion
in 2012, and Google earns the largest net US search ad revenue with the percentage share
of 75 % in 2010, 74.0 % in 2011, and 72.8 % in 2012. Although other search engines such
as Yahoo! and Microsoft (with a total share in search ad revenue of 14.5 % in 2012, Emar-
keter.com 2013a, 2013b) operate similarly, in this paper we focus on the advertisers’ bids as
submitted to Google.

Suppose a web user is interested in traveling to Italy and visit the countryside on a bi-
cycle, so she searches the keyword “Bike Tours Italy.” As soon as the keyword is entered,
Google holds an instantaneous generalized second price auction among the advertisers bid-
ding on that keyword and lists, (i) sponsored results, and (ii) unsponsored (organic) search
results. If the user clicks on a sponsored link she is directed to the advertiser’s website, and
Google charges the advertiser for the click. While there is no guarantee of a sale if the user
clicks on a link, Google immediately charges the advertiser for each click, which could re-
sult in very large bills for the advertiser. To avoid this event, the advertisers are allowed to
impose a budget so that if the number of clicks during the day exceeds the budget, the ad
is no longer displayed for the rest of the day, even if new visitors search for that keyword
“Bike Tours Italy.”

Given the uncertainties involved (i.e., the random arrival of the search queries for a key-
word, the random revenue generated from each click, and the random position of the spon-
sored ad), the problem of how much to bid to maximize the expected profit subject to a
budget constraint appears to be a challenging one. In this paper, we consider a dynamic ver-
sion of the keyword bid problem and attempt to determine the optimal bid price(s) subject to
the budget constraint using dynamic programming. It is worth noting that a similar problem
has been examined by Cholette et al. (2011) who consider a static version of this problem,
i.e., they find the constant optimal bid for each day which maximizes the expected profit
under some soft budget constraint. They consider different versions of the problem, i.e., the
problem (i) with no constraint, (ii) with a budget constraint where the expected cost of clicks
must not exceed the available budget, (iii) with a budget constraint where the probability of
exceeding the budget does not exceed a fraction, say, 0.10, and (iv) where the “ideal” bid
amount is chosen after selecting a point on the efficient frontier of, (i) expected profit, and
(ii) probability of exceeding the budget. Our paper generalizes the Cholette et al. (2011)
models by allowing the possibility of dynamically selecting the bid prices after observing
the remaining budget and the remaining time until the end of the period (usually a day)
under hard budget constraint (namely, with probability one, the budget is never exceeded).

Fruchter and Dou (2005) solve a different problem with dynamic programming: they find
a dynamic strategy to optimally allocate a limited budget between a generic Web portal and
a specialized Web portal using keyword-activated banner ads. They concluded that, in the
long run, an advertiser must always spend more ad money at the specialized portal.
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Kitts and Leblanc (2004) formulate an integer program to find optimal bids for multiple
keywords on a time grid in an open bid system. They discuss in detail how two key functions
appearing in the integer program, namely, the unknown number of clicks as a function of
the ad position on the result page and the ad position as a function of the bid amount, can be
estimated from the historical data. They report that in a live Overture auction their optimal
solution generated four times more web traffic than keyword-specific and rule-based man-
agement methods did. Used by Yahoo’s Overture advertising system, the open bid system
allows an advertiser to see the competitors’ bids before bidding for the same keyword and
updates the bids at some specified frequency. In the Google’s Adwords bidding system that
we focus in this paper, however, the bids are sealed (namely, a bidder cannot see others’
bids) and are updated only at the times of the related keyword search. Moreover, the optimal
bid amounts are not truly dynamical, because they are concurrently calculated at time zero
for all future times and therefore do not utilize the information on the remaining budget
amounts, which only reveal immediately before the actual future bidding times. The for-
mulation of this interesting work guarantees only that the expected total cost is less than or
equal to the budget. This work is one of the examples with a soft budget constraint in the lit-
erature. Dynamic bidding strategies based on statistical learning techniques are discussed by,
for example, Borgs et al. (2007), Perlich et al. (2012), and Skiera and Abou Nabout (2013).

Rusmevichientong and Williamson (2006) develop an adaptive method of selecting the
most profitable keywords at the face of unknown keyword click-through-rates. Their method
sorts the keywords in descending profit-to-cost ratios and bids in each period for the max-
imum number of top keywords that the remaining budget can buy. The keyword click-
through-rates are updated at the end of each period. The authors assume that the bid amount,
ad position, and cost per click for each keyword remain constant over short periods of time.
Our numerical results suggest, however, that the optimal dynamic bid amounts, found by the
methods of our paper, remain constant if the initial budget is large, but change quickly over
time if the initial budget is small; compare how optimal bidding amounts change along 100
simulated budget processes in Fig. 4 for large (left figure) and medium to low (middle and
right figure) initial budget values.

Özlük and Cholette (2007) also assume that one bid price is used for each keyword
over the entire time period. By solving a constrained nonlinear optimization problem, they
find the optimal bidding amounts that maximize the expected total net revenue subject to a
soft budget constraint: the expected total cost should not exceed the budget. Later Cholette
et al. (2011) enhanced the same model by explicitly modeling the stochastic ad positions,
which we are adopting here as well, and by considering a probabilistic budget exceedance
constraint, which is also a soft budget constraint.

Under soft budget constraints, the expected total cost must be less than the available
budget or the probability that the total cost exceeds the available budget must be small,
but the actual spendings may occasionally exceed the budget with positive probability. In
reality, however, the ad is not displayed in the remainder of the period after the budget is
depleted. Therefore, optimal bidding under soft budget constraints will overestimate the true
maximum expected total net revenue. In our paper, we solve the optimal bidding problem
under a strict budget constraint and calculate the un-inflated maximum expected total net
revenue.

The strict budget constraint and stochastic ad positions also force the optimal strategy to
dynamically respond to stochastically fluctuating budget process: if the budget is underuti-
lized in excess amounts for a while due to slow click traffic, then optimal strategy should
raise the bid amounts in order to drive ad positions and click-through rates up. If the budget
is overutilized because of frequent clicks, then the optimal strategy should check if the same
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traffic can be generated with lower bid amounts and lower the bid amounts if necessary. The
optimal bidding strategy should therefore depend on the remaining budget and the remaining
time. It should balance the trade-off between the maximum traffic (and therefore revenue)
that can be generated in the remainder of time and the total cost of doing that. The highly
nonlinear relation between bid amount, ad position, and ad clickability make impossible
to further speculate on the behavior of optimal bidding strategies. Our dynamic program-
ming solution first of all proves the existence of an optimal bidding strategy and provides an
exponentially fast uniformly converging algorithm to find provably nearly-optimal bidding
strategies. Moreover, the numerical illustrations uncover the simple very intuitive spiral look
of optimal bidding amounts, consistent with our expectations above, on the space spanned
by the remaining budget and remaining time variables; see Fig. 3.

Despite the fact that the dynamic programming provides optimal solution and valuable
insights about the structure of the optimal bidding strategy, the computational time grows
with the size of the grid on budget-time space. We therefore propose and then examine two
intuitive dynamic bidding strategies that can be calculated fast. The first strategy is the dy-
namical version of “budget-constrained” (BC) bidding strategy of Cholette et al. (2011).
S. Cholette and her colleagues proposed a static BC bidding strategy which bids all the time
the same amount that initially maximizes the expected total net revenue subject to the con-
straint that the expected total cost should not exceed the budget. They show that the problem
can easily be solved with Lagrangian relaxation. Here we propose the dynamic BC (DBC)
bidding strategy, which recalculates the BC bid amount after the values of the remaining
budget and time in the budget constraint are updated after every keyword search. We alter-
natively define a static greedy (G) bidding strategy that bids all the time the same bid amount
that maximize the expected total net revenue subject to strict budget constraint. Finding this
amount boils down to solving an unconstrained nonlinear optimization problem on a com-
pact bounded interval. We finally introduce the dynamic greedy (DG) bidding strategy that
recalculates the greedy bid amount after the remaining budget and remaining time in the
budget constraint are updated following every keyword search. In an extensive numerical
study, we compared the performances of optimal dynamic bidding policy, optimal static and
dynamic BC bidding policies, and optimal static and dynamic greedy bidding strategies.

In Sect. 2, we formulate the dynamic bidding problem and solve it with dynamic pro-
gramming. We show that the dynamic bidding problem always admits an optimal bidding
policy. After we define a value function and heuristically derive a dynamic programming
equation, we show that the equation has unique solution and verify that the solution coin-
cides with the value function of the dynamic bidding problem. The verification is done with
appropriate martingales. In the meantime, we derive decreasing and increasing successive
approximations of the value function, and they lead to an iterative numerical solution al-
gorithm that converges uniformly and at an exponential rate. Section 3 introduces simple
and fast static/dynamic budget-constrained/greedy bidding policies as alternatives to opti-
mal bidding policy for those cases when the dynamic programming calculation of optimal
bidding policy becomes computationally demanding. In Sect. 4, the numerical solution al-
gorithm is described and illustrated on several examples. The maximum total expected net
revenues for optimal and BC/greedy policies are systematically compared as each of the
relevant parameters (daily budget constraint, average bid amount of the competitors, arrival
rate of user queries, elasticity of the click probability to the ad position, and average sales
revenue) is changed one at a time over a five-point grid. The relative percentage losses of
static/dynamic BC/greedy policies are compared as the fraction of the initial budget spent
on bidding changes. In Sect. 5, we discussed complete- and incomplete-data statistical esti-
mation of the unknown parameters of our model. Section 6 concludes the paper. Finally, the
lemmas we used in Sect. 2 are given in the Appendix.
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2 Problem formulation and solution

We formulate the optimal bidding problem as it is faced by an advertiser who works with a
web search company similar to Google. When a keyword is searched by a search-engine
user, a generalized second price auction immediately takes place among all advertisers
whose lists contain the keyword. Each bid is sealed and is not seen by the others. Every
bid is then multiplied by some quality score of the bidder, which is proportional to the bid-
der’s ability to consistently generate high internet traffic. Here we assume that all of the
advertisers take all necessary steps to get top quality scores (e.g., relevant keywords are
carefully chosen, ads are attractive, landing web pages are well designed) so that after mul-
tiplication by the quality scores the ordering of the bids does not change. Google (2011)
provides detailed information about how the quality score is calculated and how it can be
improved; see also Szetela and Kerschbaum (2009, Chap. 9).

The bids of all advertisers are then sorted in descending order, and their messages are
placed on the result page according to the same order. Therefore, the ad position of each
ad is a random variable and determines the probability that the user will click that ad. The
closer to the top of the result page the ad is, the more likely is the ad to be clicked by the
user. The advertiser is not charged unless the user clicks the ad.

According to the generalized second price auction, each bidder pays the largest bid re-
ceived for the same keyword less than or equal to her own bid. However, the difference
between those bids is often negligible, and therefore, we assume that each bidder pays her
bid amount if the user clicks her ad. Finally, we assume that the revenue realized after each
click is a random variable independent of the bid amount, ad position, number and times of
keyword search events.

Let X(t) be the number of keywords in our advertiser’s list typed in (0, t] for every t ≥ 0.
We assume that the users from all over the world search for the keywords independently of
each other. Because the Internet services are available throughout the day and one part of
the world is always awake even if the other parts are in rest, we also assume that the key-
word search activity resumes on average at the same pace on any typical day. Therefore, we
assume that X = {X(t); t ≥ 0} follows a homogeneous Poisson process with some constant
rate λ > 0 and with arrival times T1, T2, . . . . The advertiser starts with some initial budget B0

and bids bn for an ad position on the result page that will be generated by the nth keyword
search. Let Bn be the remaining budget before the nth keyword search.

Let Ln be the ad position on the result page and Zn be 1/0 if the ad is clicked/not clicked
after the nth keyword search. We denote the top and bottom of a result page by 0 and 1,
respectively, and identify the entire page with the interval [0,1]. Hence, Ln is a random
variable taking values in [0,1]. Then we have

Bn = Bn−1 − Zn−1bn−1, n ≥ 1,

and we assume that

P{Zn = 1 | Ln = �} = (p0 − p1)(1 − �)m + p1, � ∈ [0,1], n ≥ 0,

P{Ln ∈ d� | bn = b} = Γ (a + b)

Γ (a)Γ (b)
�a−1(1 − �)b−1d�, � ∈ [0,1], n ≥ 0

for some real numbers 0 ≤ p1 ≤ p0 ≤ 1, m ≥ 0, and a > 0. The probability that an ad is
clicked by the user decreases with the ad’s position on the result page. This probability takes
its maximum value p0 if the ad is placed at the top and its minimum value p1 if is placed
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Fig. 1 Click probability as a
function of ad position and the
probability density function of ad
position on the result page as the
advertiser’s bid amount changes

at the bottom of the page. The parameter a may be thought as the average bid amount of
all other competing advertisers bidding on the same keyword. Because in a sealed bidding
scheme an advertiser cannot see the other bids, this representation of the competitors’ av-
erage bidding behavior is reasonable. The ad position is a Beta distributed random variable
with parameters a and b (our advertiser’s bid amount). As b increases (respectively, de-
creases), the ad is more likely to be placed closer to the top (respectively, bottom) of the
result page. Figure 1 shows some examples of the click probability and ad position’s proba-
bility density function as, respectively, ad position and bid amount change.
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Suppose finally that the users potentially generate revenues W1,W2, . . . , which are i.i.d.
random variables with common finite mean μ independent of Z1,Z2, . . . . A potential rev-
enue Wi realizes if and only if the ith user clicks the ad; namely, if and only if Zi = 1, for
every i ≥ 0.

2.1 The dynamic programming formulation

Assume that the first keyword search takes place at time 0. We make this assumption in
order to be able to evoke the optimality principle and will later relax it. Let V (B,T ) be the
maximum expected total net revenue obtainable with budget B to be used in the remaining
T units of time. Then

V (B,T ) = sup
(bi )i≥0∈D(B,T )

E

[ ∞∑
i=0

(Wi − bi)Zi1{Ti≤T }

]
, (1)

where the supremum is taken over the collection of admissible bidding strategies,

D(B,T ) =
{

(bi)i≥0; bi ≥ 0 for every i ≥ 0, and
∞∑
i=0

biZi1{Ti≤T } ≤ B

}
.

Suppose that we are interested in bidding problem for every 0 ≤ B ≤ Bmax and 0 ≤ T ≤
Tmax for any arbitrary but fixed and finite Bmax > 0 and Tmax > 0. The problem is to find
V (B,T ) and an optimal bidding strategy, if there is one, for every (B,T ) ∈ [0,Bmax] ×
[0, Tmax]. The principle of optimality of the dynamic programming suggests that

V (B,T ) = sup
0≤b≤B

E
[
(W0 − b)Z0 + V (B − Z0b,T − T1)1{T1≤T }

]
, B,T ≥ 0 (2)

with the boundary conditions V (0, T ) = 0 for every T ≥ 0 and

V (B,0) = max
0≤b≤B

E
[
(W0 − b)Z0

]= max
0≤b≤B

(μ − b)G(b) for every B ≥ 0,

where the conditional click probability, given the bid amount, is denoted by

G(b) := P{Z0 = 1 | b0 = b} =
∫

P{Z0 = 1 | L0 = �}P{L0 ∈ d� | b0 = b}

=
∫ 1

0

[
(p0 − p1)(1 − �)m + p1

] Γ (a + b)

Γ (a)Γ (b)
�a−1(1 − �)b−1d�

= (p0 − p1)
Γ (a + b)Γ (b + m)

Γ (a + b + m)Γ (b)
+ p1

≈ (p0 − p1)

√
(a + b + m)b

(a + b)(b + m)

(
a + b

a + b + m

)a+b(
b + m

b

)b

×
(

b + m

a + b + m

)m

+ p1, (3)

which follows from the Stirling’s approximation Γ (z) ≈ √
2π/z (z/e)z, z > 0 of the Gamma

function, where f (x) ≈ g(x) in the sense that limx↑∞ f (x)/g(x) = 1. If a + b + m is large,
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then the numerator and denominator of the exact expression for G(b) can be extremely large.
The approximation limits the potential numerical problems because the quotients inside
power functions are either less than or close to one as long as b is small or m 	 b.

Because (bi)i≥0 with bi = 0, i ≥ 0 is in D(B,T ), and G(0) = 0 implies that under bid-
ding strategy (bi)i≥0 we have Z0 = Z1 = · · · = 0 and obtain zero net revenue with prob-
ability one, we have V (B,T ) ≥ 0 for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. On the other
hand,

E

[ ∞∑
i=0

(Wi − bi)Zi1{Ti≤T }

]
≤ E

[ ∞∑
i=0

Wi1{Ti≤T }

]
= EW0

[
1 +EX(T )

]= μ(1 + λT ).

Hence, the value function in (1) is finite, and

0 ≤ V (B,T ) ≤ μ(1 + λT ) for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. (4)

We shall show that (i) the problem (1) always admits an optimal bidding strategy, and (ii) the
value function V (·, ·) and an optimal bidding strategy attaining the supremum in (1) can be
calculated numerically with successive approximations.

2.2 A dynamic programming operator and successive approximations

Let C([0,Bmax] × [0, Tmax]) be the collection of all continuous functions from [0,Bmax] ×
[0, Tmax] to R, equipped with sup-norm ‖w‖ = sup(B,T )∈[0,Bmax]×[0,Tmax] |w(B,T )| for every
w ∈ C([0,Bmax] × [0, Tmax]). Let M be an operator acting on C defined by

(Mw)(B,T ) := sup
0≤b≤B

E
[
(W0 − b)Z0 + w(B − Z0b,T − T1)1{T1≤T }

]
(5)

for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. The joint continuity of (Mw)(B,T ) is not imme-
diately clear, but is proved by Proposition 1 below. Since the form of the righthand side is
suggested by the dynamic programming optimality principle, M is often called a dynamic
programming operator. Because E[(W0 − b)Z0 + w(B − Z0b,T − T1)1{T1≤T }] equals

(M1w)(b,B,T ) := E
[
(W0 − (b ∧ B)Z0 + w

(
B − Z0(b ∧ B),T − T1

)
1{T1≤T }

]
= [

μ − (b ∧ B)
]
G(b ∧ B) +

∫ T

0
λe−λt

[
w
(
(B − b)+, T − t

)
G(b ∧ B)

+ w(B,T − t)
(
1 − G(b ∧ B)

)]
dt

=
∫ T

0
λe−λtw(B,T − t)dt + G(b ∧ B)

{
μ − (b ∧ B)

+
∫ T

0
λe−λt

[
w
(
(B − b)+, T − t

)− w(B,T − t)
]
dt

}
, (6)

which is defined for all 0 ≤ b ≤ Bmax, we can write (5) more explicitly as

(Mw)(B,T ) = sup
0≤b≤Bmax

(M1w)(b,B,T ) = sup
0≤b≤B

(M1w)(b,B,T )

=
∫ T

0
λe−λtw(B,T − t)dt
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+ sup
0≤b≤B

G(b)

{
μ − b +

∫ T

0
λe−λt

[
w(B − b,T − t) − w(B,T − t)

]
dt

}
.

(7)

One expects that M is a contraction mapping, but unlike many typical dynamic program-
ming problems no explicit discounting is present, and the contraction property is unclear.
Proposition 1 shows that M is indeed a contraction mapping with a coefficient dependent
on the domain range. We shall later show that the value function V (·, ·) in (1) is the unique
fixed point of operator M , and that V (·, ·) can be calculated as the limit of the increasing
(V )n≥0 or decreasing (V )n≥0 successive approximations, respectively defined by

V0(B,T ) ≡ 0 and Vn(B,T ) := (MVn−1)(B,T ), (B,T ) ∈ [0,Bmax] × [0, Tmax],
V 0(B,T ) = μ(1 + λT ) and

V n(B,T ) := (MV n−1)(B,T ), (B,T ) ∈ [0,Bmax] × [0, Tmax].
(8)

Below Proposition 1 and Theorem 1 identify some key properties of operator M and succes-
sive approximations (V )n≥0, (V )n≥0 that will be needed to show the existence of an optimal
bidding policy and a uniformly and exponentially convergent numerical algorithm to calcu-
late both the value function and nearly-optimal bidding policies.

Proposition 1 Let w,w1,w2 be in C([0,Bmax] × [0, Tmax]).
(i) M1w ∈ C([0,Bmax]2 × [0, Tmax]) and Mw ∈ C([0,Bmax] × [0, Tmax]).

(ii) All three suprema in (7) are attained.
(iii) If w1 ≤ w2, then Mw1 ≤ Mw2. If w(B,T ) ≤ μ(1+λT ) for every (B,T ) ∈ [0,Bmax]×

[0, Tmax], then (Mw)(B,T ) ≤ μ(1 + λT ) for every (B,T ) ∈ [0,Bmax] × [0, Tmax].
(iv) M is a contraction on C([0,Bmax]×[0, Tmax]) and ‖Mw1 −Mw2‖ ≤ (1−e−λTmax)‖w1 −

w2‖. If M has a fixed point, then it must be unique.

Proof (i) The continuity of M1w and Mw is proved with Lemma 4 in the Appendix. (ii) Be-
cause b 
→ (M1w)(b,B,T ) is continuous on compact [0,Bmax], all three suprema in (7) are
attained. (iii) The monotonicity of operator M in w immediately follows from its definition
in (5). Suppose now that w(B,T ) ≤ μ(1 + λT ) for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. By
the memorilessness property of exponentially distributed interarrival times of X,

E
[
(T − T1)1{T1≤T }

]
= E

[
(T − T1)(1 − 1{T1>T })

]= E[T − T1] −E
[
(T − T1)1{T1>T }

]
= T −ET1 +E[T1 − T | T1 > T ]P{T1 > T } = T −ET1 +ET1 P{T1 > T }
= T − (

1 − e−λT
)
/λ,

and

(Mw)(B,T ) := sup
0≤b≤B

E
[
(W0 − b)Z0 + w(B − Z0b,T − T1)1{T1≤T }

]
≤ E

[
W0 + μ

(
1 + λ(T − T1)

)
1{T1≤T }

]
= μ + μP{T1 ≤ T } + μλE

[
(T − T1)1{T1≤T }

]
= μ + μ

(
1 − e−λT

)+ μλT − μ
(
1 − e−λT

)= μ(1 + λT )
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for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. (iv) To show that M is a contraction mapping, take
any w1,w2 ∈ C([0,Bmax]×[0, Tmax]) and any (B,T ) ∈ [0,Bmax]×[0, Tmax]. By the first part,
there are b1, b2 ∈ [0,B] at which the suprema in (7) are attained for w = w1 and w = w2,
respectively. Then

(Mw1)(B,T ) − (Mw2)(B,T )

≤ (M1w1)(b1,B,T ) − (M1w2)(b1,B,T )

= E
[
(W0 − b1)Z0 + w1(B − Z0b1, T − T1)1{T1≤T }

]
−E

[
(W0 − b1)Z0 + w2(B − Z0b1, T − T1)1{T1≤T }

]
≤ E

(∣∣w1(B − Z0b1, T − T1) − w2(B − Z0b1, T − T1)
∣∣1{T ≤T1}

)
≤ (

1 − e−λTmax
)‖w1 − w2‖.

If we interchange the roles of w1 and w2 and replace b1 with b2 above, then we ob-
tain (Mw2)(B,T ) − (Mw1)(B,T ) ≤ (1 − e−λTmax)‖w2 − w1‖. Hence, |(Mw1)(B,T ) −
(Mw2)(B,T )| ≤ (1 − e−λTmax)‖w1 − w2‖ for every (B,T ) ∈ [0,Bmax] × [0, Tmax], which
implies that ‖Mw1 − Mw2‖ ≤ (1 − e−λTmax)‖w1 − w2‖ and M is a contraction mapping on
C([0,Bmax] × [0, Tmax]). Finally, suppose that w1,w2 are two fixed points of M ; namely,
w1 = Mw1 and w2 = Mw2. Then ‖w1 − w2‖ = ‖Mw1 − Mw2‖ ≤ (1 − e−λTmax)‖w1 − w2‖
implies that ‖w1 − w2‖ = 0 and w1 = w2. �

The relation (2) suggested by the optimality principle implies that the best candidate for
the value function (1) is a fixed point of operator M . The plan is to find the fixed points of
operator M and then verify if any of them coincides with the value function.

Theorem 1(iv) below proves that M has unique continuous fixed point. We leave to
Sect. 2.3 the verification that the only fixed point of M is indeed the value function of (1). In
applications, however, it is also important to know how to calculate the fixed point of M and
hence the value function (1). The remainder parts of Theorem 1 state that the fixed point is
the common limit point of the decreasing and increasing successive approximations in (8).
Moreover, for any arbitrarily small choice of a positive tolerance number, both sequences
can be terminated finitely and two approximations obtained in this way are pointwise differ-
ent from the fixed point not more than the preset tolerance number.

Theorem 1 Let (Vn)n≥0 and (V n)n≥0 be the sequences of successive approximations defined
by (8).

(i) Vn,V n ∈ C([0,Bmax] × [0, Tmax]) for every n ≥ 0.
(ii) 0 = V0(B,T ) ≤ V1(B,T ) ≤ · · · ≤ V 1(B,T ) ≤ V 0(B,T ) = μ(1 + λT ), (B,T ) ∈

[0,Bmax] × [0, Tmax].
(iii) The limits V∞(B,T ) :=↑ limn→∞ Vn(B,T ) and V ∞(B,T ) :=↓ limn→∞ V n(B,T ) ex-

ist for every (B,T ) ∈ [0,Bmax] × [0, Tmax], and

‖V∞ − Vn‖ ≤ μ(1 + λTmax)e
λTmax

(
1 − e−λTmax

)n
for every n ≥ 0,

‖V ∞ − V n‖ ≤ μ(1 + λTmax)e
λTmax

(
1 − e−λTmax

)n
for every n ≥ 0.

(iv) V∞ = V ∞ ≡ V∞ ∈ C([0,Bmax] × [0, Tmax]) is the unique fixed point of M ; i.e., V∞ =
MV∞.
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(v) For every (B,T ) ∈ [0,Bmax] × [0, Tmax], the suprema

Vn(B,T ) = (MVn−1)(B,T ) = sup
0≤b≤B

(M1Vn−1)(b,B,T ), n ≥ 1,

V n(B,T ) = (MV n−1)(B,T ) = sup
0≤b≤B

(M1V n−1)(b,B,T ), n ≥ 1,

V∞(B,T ) = (MV∞)(B,T ) = sup
0≤b≤B

(M1V∞)(b,B,T )

are attained; namely, there are some bn(B,T ), bn(B,T )∈[0,B], n≥1 and b∞(B,T ) ∈
[0,B] such that

Vn(B,T ) = (M1Vn−1)
(
bn(B,T ),B,T

)
, n ≥ 1,

V n(B,T ) = (M1V n−1)
(
bn(B,T ),B,T

)
, n ≥ 1

and V∞(B,T ) = (M1V∞)(b∞(B,T ),B,T ).

Proof Because V0,V 0 ∈ C([0,Bmax] × [0, Tmax]) and V0(B,T ),V 0(B,T ) ≤ μ(1 + λT )

for every (B,T ) ∈ [0,Bmax] × [0, Tmax], Proposition 1(i & iii) and successive applica-
tions of M imply both (i) and (ii). Therefore, the pointwise limits V∞ =↑ limn→∞ Vn

and V ∞ =↓ limn→∞ V n obviously exist. We shall prove (iii)–(v) for (Vn)n≥0 and V∞; the
proofs are identical for (V n)n≥0 and V ∞. Because ‖Vk+1 − Vk‖ = ‖MVk − MVk−1‖ ≤
(1 − e−λTmax)‖Vk − Vk−1‖ ≤ · · · ≤ (1 − e−λTmax)k‖V1‖ by Proposition 1(iv), for every m > n

we have

‖Vm − Vn‖ ≤
m−1∑
k=n

‖Vk+1 − Vk‖ ≤
m−1∑
k=n

(
1 − e−λTmax

)k‖V1‖

Passing to limit as m → ∞, we get that ‖V∞ − Vn‖ ≤ ∑∞
k=n(1 − e−λTmax)k‖V1‖, which

together with part (ii) leads to (iii). Because the inequality in part (iii) implies ‖V∞ −
Vn‖ n→∞−−−→ 0, the continuous functions Vn, n ≥ 0 converge to V∞ uniformly. Therefore, V∞ ∈
C([0,Bmax]×[0, Tmax]) and V∞ = limn→∞ Vn+1 = limn→∞ Mvn = M(limn→∞ Vn) = MV∞.
Thus, V∞ is continuous and is a fixed point of M . (v) follows from the continuity of (Vn)n≥0,
V∞ and Proposition 1(ii). Finally, because V ∞ is also a fixed point of M , which is unique
by Proposition 1(iv), we must have V∞ = V ∞, which is denoted in the remainder by V∞. �

2.3 The verification of the dynamic programming solution and the existence of an optimal
bidding policy

We will now show that the function V∞, which is the unique fixed point of M in
C([0,Bmax] × [0, Tmax]) and the common pointwise uniform limit of the increasing suc-
cessive approximations (Vn)n≥0 and the decreasing successive approximations (V n)n≥0, co-
incides with the value function V in (1). Theorem 3 is the main result and is a verification
theorem based on martingales, which we now introduce:

Let b = (bn)n≥0 ∈ D(B,T ) be any admissible bidding strategy and (Fb
n )n≥0 be the cor-

responding observation filtration, where

Fb
n = σ {B0, T0, . . . ,Bn, Tn}, n = 0,1, . . . .
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Then Bn,bn ∈ Fb
n , Zn = 1(0,∞)(Bn+1 − Bn) ∈ Fb

n+1, and Wn is independent of (Fb
i )i≥0 for

every n ≥ 0. Let

Y b
0 := V∞(B0, T ) and Y b

n :=
n−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V∞(Bn,T − Tn)1{Tn≤T }, n ≥ 0.

The process (Y b
n )n≥0 is adapted to the filtration (Fb

n )n≥0; namely, Y b
n ∈ Fb

n for every n ≥ 0.
Each Y b

n is the conditional expectation of the total net revenue, if the advertiser follows
the bidding policy b before she switches at nth keyword-search instance to optimal bidding
policy, given all the historical observations on actual search instances and click events until
the nth keyword-search instance. Theorem 2 states that, unless the advertiser follows the
bidding policy b∗ ∈ D(B,T ), the total net revenue may only slide down over time from its
maximum possible value. This strongly hints that b∗ is an optimal bidding strategy.

Theorem 2 For any bidding strategy b = (bn)n≥0 ∈ D(B,T ), the process (Y b
n ,Fb

n )n≥0 is
a supermartingale. If b∗ = (b∗

n)n≥0 is the admissible bidding strategy defined by b∗
n :=

b∞(Bn,T − Tn)1{Tn≤T } for every n ≥ 0, where b∞(B,T ) := arg max0≤b≤B(M1V∞)(b,B,T )

as in Theorem 1, then (Y b∗
n ,Fb∗

n )n≥0 is a martingale.

Proof For every n ≥ 0, Y b
n ∈ Fb

n is integrable, and Y b
n+1 − Y b

n equals

(μ − bn)Zn1{Tn≤T } + V∞(Bn+1, T − Tn+1)1{Tn+1≤T } − V∞(Bn,T − Tn)1{Tn≤T }

= (μ − bn)Zn1{Tn≤T } + V∞
(
Bn − bnZn,T − Tn − (Tn+1 − Tn)

)
1{Tn≤T }1{Tn+1−Tn≤T −Tn}

− V∞(Bn,T − Tn)1{Tn≤T }.

Because the random variables Bn,bn, T −Tn are Fb
n -measurable, and E[Zn | Fb

n ] = P{Zn =
1 | bn} = G(bn), and Tn+1 −Tn has exponential distribution with rate λ independently of Fb

n ,
we have

E
[
Y b

n+1 − Y b
n | Fb

n

]
= 1{Tn≤T }

{
(μ − bn)G(bn) +

∫ T −Tn

0
λe−λt

[
V∞(Bn − bn, T − Tn − t)G(bn)

+ V∞(Bn,T − Tn − t)
(
1 − G(bn)

)]
dt − V∞(Bn,T − Tn)

}

= 1{Tn≤T }
{
(M1V∞)(bn,Bn,T − Tn) − V∞(Bn,T − Tn)

}
. (9)

Because V∞(Bn,T − Tn) = sup0≤b≤Bn
(M1V∞)(b,Bn,T − Tn) ≥ (M1V∞)(bn,Bn,T − Tn),

(9) implies that E[Y b
n+1 − Y b

n | Fb
n ] ≤ 0 for every n ≥ 0, which proves that (Y b

n ,Fb
n )n≥0 is a

supermartingale. Because

1{Tn≤T }(M1V∞)
(
b∗

n,Bn,T − Tn

)
= 1{Tn≤T }(M1V∞)

(
b∞(Bn,T − Tn),Bn,T − Tn

)
= 1{Tn≤T } sup

0≤b≤Bn

(M1V∞)(b,Bn,T − Tn) = 1{Tn≤T }V∞(Bn,T − Tn),

replacing b with b∗ in (9) gives E[Y b∗
n+1 −Y b∗

n | Fb∗
n ] = 0 for every n ≥ 0, which implies that

(Y b∗
n ,Fb∗

n )n≥0 is a martingale. �
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Theorem 3 below is the main result of the paper and shows that an optimal bidding policy
always exists. It establishes the connection of the optimal solution of the dynamic bidding
problem to successive approximations in (8) of the unique fixed point of the dynamic pro-
gramming operator M in (5). This connection later leads to the numerical method explained
in the first paragraph of Sect. 4.

Theorem 3 For every (B,T ) ∈ [0,Bmax] × [0, Tmax], we have V (B,T ) = V∞(B,T ) and
that b∗ = (b∗

n)n≥0 is an optimal bidding strategy for (1), where b∗
n = b∞(Bn,T − Tn) as in

Theorem 1 (v) for every n ≥ 0.

Proof For every b = (bn)n≥0 ∈ D(B,T ), (Y b
n ,Fb

n )n≥0 is a supermartingale by Theorem 2,
and

V∞(B,T ) = Y b
0 ≥ E

[
Y b

n

]= E

[
n−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V∞(Bn,T − Tn)1{Tn≤T }

]

≥ E

n−1∑
k=0

(μ − bk)Zk1{Tk≤T }

for every n ≥ 1, where the last inequality follows from that V∞(·, ·) ≥ 0. Note that
limn→∞

∑n−1
k=0(μ−bk)Zk1{Tk≤T } =∑∞

k=0(μ−bk)Zk1{Tk≤T } and |∑n−1
k=0(μ−bk)Zk1{Tk≤T }| ≤

μX(T ) for every n ≥ 1 and EX(T ) = λT < ∞. Therefore, we can take the limit in the
last display as n → ∞, and the dominated convergence theorem implies V∞(B,T ) ≥
E
∑∞

k=0(μ − bk)Zk1{Tk≤T } = E
∑∞

k=0(Wk − bk)Zk1{Tk≤T }. Taking the supremum of both
sides over b ∈ D(B0) leads to V∞(B,T ) ≥ V (B,T ) for every (B,T ) ∈ [0,Bmax]×[0, Tmax].
To show the equality and that b∗ = (b∗

n)n≥0 ∈ D(B,T ) is optimal, recall from Theorem 2
that (Y b∗

n ,Fb∗
n )n≥0 is a martingale, and

V∞(B,T ) = Y b∗
0 = E

[
Y b∗

n

]= E

[
n−1∑
k=0

(
μ − b∗

k

)
Zk1{Tk≤T } + V∞(Bn,T − Tn)1{Tn≤T }

]
,

n ≥ 0. (10)

By the dominated convergence, limn→∞ E
∑n−1

k=0(μ − b∗
k )Zk1{Tk≤T } =

E
∑∞

k=0(μ − b∗
k )Zk1{Tk≤T }. Moreover, because 0 ≤ V∞(Bn,T − Tn)1{Tn≤T } ≤ μ(1 + λ(T −

Tn))1{Tn≤T } ≤ μ(1 + λT )1{Tn≤T } by Proposition 1(iii),

0 ≤ E
[
V∞(Bn,T − Tn)1{Tn≤T }

]≤ μ(1 + λT )P{Tn ≤ T }
≤ μ(1 + λT )P

{
X(T ) ≥ n

} n→∞−−−→ 0.

Therefore, passing to limit in (10) as n → ∞ leads to V∞(B,T ) =
E
∑∞

k=0(μ − b∗
k )Zk1{Tk≤T } = E

∑∞
k=0(Wk − b∗

k )Zk1{Tk≤T } ≤ V (B,T ). Because V∞(B,T ) ≥
V (B,T ) was proved earlier, we conclude that V∞(B,T ) = V (B,T ) = E

∑X(T )

k=0 (Wk −
b∗

k )Zk , and that b∗ ∈ D(B,T ) is an optimal bidding strategy. �

2.4 The monetary characterization of successive approximations

The next proposition uncovers the economic meaning of Vn(B,T ); namely, that Vn(B,T ) is
the maximum expected net revenue obtained from at most n arrivals of keyword search. As a
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corollary of the proposition, we shall also establish that Vn(B,T ) and V n(B,T ) are nonde-
creasing functions of B,T for every n ≥ 0. For the formulation and proof of the proposition,
let us introduce the processes

Y b
m,0 = Vm(B0, T ), Y b

m,n :=
n−1∑
k=0

(μ − bk)Zk1{Tk≤T } + Vm−n(Bn,T − Tn)1{T ≤Tn},

Y
b
m,0 = V m(B0, T ), Y

b
m,n :=

n−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V m−n(Bn,T − Tn)1{T ≤Tn},

for every 1 ≤ n ≤ m, m ≥ 1, and b = (bn)n≥0 ∈ D(B0).

Proposition 2 For every b = (bn)n≥0 ∈ D(B0) and m ≥ 0, (Y b
m,n,Fb

n )m
n=0 and (Y

b
m,n,Fb

n )m
n=0

are supermartingales. If b∗
m = (b∗

m,n)n≥0 and b
∗
m = (b

∗
m,n)n≥0 are the admissible bidding

strategies defined by b∗
m,n = bm−n(Bn,T − Tn) and b

∗
m,n = bm−n(Bn,T − Tn) for every 0 ≤

n ≤ m, where

bn(B,T ) = arg max
0≤b≤B

(M1Vn−1)(b,B,T ) and bn(B,T ) = arg max
0≤b≤B

(M1V n−1)(b,B,T )

as in Theorem 1, then for every m ≥ 0, (Y
b∗
m

m,n,F
b∗
m

n )m
n=0 and (Y

b
∗
m

m,n,F
b
∗
m

n )m
n=0 are martingales.

Moreover,

Vm(B,T ) = sup
b∈D(B,T )

E

m−1∑
k=0

(Wk − bk)Zk1{Tk≤T } = E

m−1∑
k=0

(
Wk − b∗

m,k

)
Zk1{Tk≤T }

V m(B,T ) = sup
b∈D(B,T )

E

m−1∑
k=0

(Wk − bk)Zk1{Tk≤T } +E
[
μ
(
1 + λ(T − Tm)

)
1{Tm≤T }

]
(11)

= E

m−1∑
k=0

(
Wk − b

∗
m,k

)
Zk1{Tk≤T } +

∫ T

0
μ
(
1 + λ(T − t)

) (λt)m−1

(m − 1)!e
−λtλdt

and V m(B,T ) = Vm(B,T )+E[μ(1+λ(T −Tm))1{Tm≤T }] for (B,T ) ∈ [0,Bmax]×[0, Tmax],
m ≥ 0.

Two corollaries follow from Proposition 2. Corollary 1, states that at any time the optimal
bidding amount never exceeds the expected potential revenue of a click or the available
budget.

Corollary 1 For every m ≥ 0, each of Vm(B,T ) and V m(B,T ) is nondecreasing in
(B,T ) ∈ [0,Bmax] × [0, Tmax]. If the remaining budget equals some 0 ≤ B ≤ Bmax, then
the maximizations in the calculations of successive approximations over bidding amounts
can be restricted to from [0,B] to [0,μ ∧ B]; namely,

Vm(B,T ) = max
b∈[0,μ∧B]

(M1Vm−1)(B,T ) and V m(B,T ) = max
b∈[0,μ∧B]

(M1V m−1)(B,T ).

Proof (11) implies that Vm(B,T ) and V m(B,T ) are nondecreasing in (B,T ) ∈ [0,Bmax] ×
[0, Tmax] because (i) D(B,T ) grows with B , (ii) X(T ) is nondecreasing in T , and



Ann Oper Res (2013) 211:103–136 117

(iii) T 
→ E[μ(1 + λ(T − Tm))1{Tm≤T }] is increasing. For every μ ≤ b ≤ B , we have
E[(W0 − b)Z0] = (μ − b)G(b) ≤ 0 = (μ − μ)G(μ) = E[(W0 − μ)Z0] and E[Vm−1(B −
bZ0, T −T1)1{T1≤T }] ≤ E[Vm−1(B −μZ0, T −T1)1{T1≤T }] because Vm−1(B,T ) is increasing
in (B,T ) ∈ [0,Bmax] × [0, Tmax]. Thus, E[(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T }] ≤
E[(W0 − μ)Z0 + Vm−1(B − μZ0, T − T1)1{T1≤T }] for every μ ≤ b ≤ B , and

Vm(B,T ) = max
0≤b≤B

(M1Vm−1)(B,T )

= max
0≤b≤B

E
[
(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T }

]
= max

0≤b≤μ∧B
E
[
(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T }

]
= max

0≤b≤μ∧B
(M1Vm−1)(B,T )

for every (B,T ) ∈ [0,Bmax] × [0, Tmax], m ≥ 0. The proof of the second equation is the
same. �

The second corollary of Proposition 2 gives an explicit expression for the difference
between the lower and upper bounds on the value function. This upper bound helps us de-
termine the exact number of successive approximations needed for an accurate calculation
of the value function.

Corollary 2 Because Vm ↑ V and V m ↓ V as m → ∞, for every sufficiently large m ≥ 0,
both Vm and V m closely approximate V . In fact, Proposition 2 implies that

Vm(B,T ) ≤ V (B,T ) ≤ V m(B,T ) = Vm(B,T ) +E
[
μ
(
1 + λ(T − Tm)

)
1{Tm≤T }

]
for (B,T ) ∈ [0,Bmax] × [0, Tmax], m ≥ 0. Both ‖V − Vm‖ and ‖V m − V ‖ are less than or
equal to

‖V m − Vm‖ = max
0≤T ≤Tmax

E
[
μ
(
1 + λ(T − Tm)

)
1{Tm≤T }

]= E
[
μ
(
1 + λ(Tmax − Tm)

)
1{Tm≤Tmax}

]

=
∫ Tmax

0
μ
(
1 + λ(Tmax − t)

) (λt)m−1

(m − 1)!e
−λtλdt for every m ≥ 0.

Proof of Proposition 2 For every b ∈ D(B,T ) and m ≥ 0, we have Y b
m,n+1 − Y b

m,n equals

(μ − bn)Zn1{Tn≤T } + Vm−n−1(Bn+1, T − Tn+1)1{T ≤Tn+1} − Vm−n(Bn,T − Tn)1{T ≤Tn}

= 1{Tn≤T }
{
(μ − bn)Zn + Vm−n−1

(
Bn − bnZn,T − Tn − (Tn+1 − Tn)

)
1{T −Tn≤Tn+1−Tn}

− Vm−n(Bn,T − Tn)
}
.

Because the random variables bn,Bn,T −Tn are Fb
n -measurable, and E[Zn | Fb

n ] = P{Zn =
1 | bn} = G(bn), and Tn+1 −Tn has exponential distribution with rate λ independently of Fb

n ,
E[Y b

m,n+1 − Y b
m,n | Fb

n ] equals

{
(μ − bn)G(bn) +

∫ T −Tn

0
λe−λt

[
Vm−n−1(Bn − bn, T − Tn − t)G(bn)
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+ Vm−n−1(Bn,T − Tn − t)
(
1 − G(bn)

)
dt − Vm−n(Bn,T − Tn)

]}
1{Tn≤T }

= 1{Tn≤T }
{
(M1Vm−n−1)(bn,Bn,T − Tn) − Vm−n(Bn,T − Tn)

}
Because Vm−n(B,T ) = sup0≤b≤B(M1Vm−n−1)(b,B,T ) ≥ (M1Vm−n−1)(b,B,T ) for every
0 ≤ b ≤ B in general, the display is always nonpositive; namely, E[Y b

m,n+1 − Y b
m,n |

Fb
n ] ≤ 0 for every 0 ≤ n ≤ m − 1, and (Y b

m,n,Fb
n )m

n=0 is a supermartingale for every
b ∈ D(B0). If, however, b is replaced with b∗

m = (b∗
m,n)n≥0 defined by b∗

m,n := bm−n(Bn,T −
Tn) = arg max0≤b≤Bn(M1Vm−n−1)(b,Bn,T − Tn), then (M1Vm−n−1)(b

∗
m,n,Bn,T − Tn) =

max0≤b≤Bn(M1Vm−n−1)(b,Bn,T − Tn) = Vm−n(Bn,T − Tn), and the display equals iden-

tically zero. Thus, E[Y b∗
m

m,n+1 − Y
b∗
m

m,n | Fb
n ] = 0 for every 0 ≤ n ≤ m − 1, and (Y b∗

m,n,Fb∗
n )m

n=0

is a martingale. The supermartingale property implies

Vm(B0, T ) = Y b
m,0 ≥ E

[
Y b

m,m

]
= E

[
m−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V0(Bm,T − Tm)1{Tm≤T }

]

= E

[
m−1∑
k=0

(μ − bk)Zk1{Tk≤T }

]
for every b = (bn)n≥0 ∈ D(B0),

because V0 ≡ 0. Taking the sup over all b ∈ D(B0) gives Vm(B0, T ) ≥
supb∈D(B0) E[∑m−1

k=0 (μ− bk)Zk1{Tk≤T }]. However, if we replace b with b∗
m, then the inequal-

ity in the last display becomes an equality because (Y
b∗
m

m,n,Fb∗
n )m

n=0 is a martingale, and we ob-
tain Vm(B0, T ) = E[∑m−1

k=0 (μ − b∗
m,k)Zk1{Tk≤T }] ≤ supb∈D(B0) E[∑m−1

k=0 (μ − bk)Zk1{Tk≤T }].
The last two opposite inequalities imply the equalities on the first line of (11) because the
common mean μ can be replaced with unobservable i.i.d. random variables W0,W1, . . .,
which are independent of the filtration (Fb

n )n≥0 for every b ∈ D(B0).

One can similarly prove that (Y
b
m,n,Fb

n )m
n=0 is a supermartingale for every b ∈ D(B0) and

(Y
b
∗
m

m,n,F
b
∗
m

n )m
n=0 is a martingale. The supermartingale property implies

V m(B0, T ) = Y
b
m,0 ≥ E

[
Y

b
m,m

]= E

[
m−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V 0(Bm,T − Tm)1{Tm≤T }

]

= E

[
m−1∑
k=0

(μ − bk)Zk1{Tk≤T }

]
+E

[
μ
(
1 + λ(T − Tm)

)
1{Tm≤T }

]

for every b = (bn)n≥0 ∈ D(B0), because V 0(B,T ) = μ(1 + λT ) for every (B,T ) ∈
[0,Bmax]×[0, Tmax] as in (8). If b is replaced with b

∗
m, then the inequality in the display holds

with equality. Therefore, V m(B0, T ) = supb∈D(B0) E[∑m−1
k=0 (μ − bk)Zk1{Tk≤T }] + E[μ(1 +

λ(T −Tm))1{Tm≤T }] = E[∑m−1
k=0 (μ−b

∗
m,k)Zk1{Tk≤T }]+

∫ T

0 μ(1+λ(T − t))(λt)m−1λdt/(m−
1)!, because the mth-arrival time Tm of Poisson process X has Erlang distribution with pa-
rameters λ and m. This proves the remainder of (11) because W0,W1, . . . are i.i.d. with mean
μ independent of X, B0,B1, . . . , Z0,Z1, . . . . �
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2.5 The maximum expected total net revenue under optimal bidding policy

Recall that, as we defined the value function V (·, ·) we assumed that the first keyword search
arrives at time 0 and the others according to Poisson process X afterwards; this assumption
was necessary for evoking the dynamic programming optimality principle in (2). In reality,
however, the arrival time of the first keyword search is strictly positive with probability one
and has exponential distribution with mean 1/λ because we assumed that keyword search
instances arrive according to a Poisson process with arrival rate λ. Let us denote the maxi-
mum expected total net revenue obtainable with budget B over time horizon T by U(B,T ).
Then

U(B,T ) = E
[
V (B,T − T1)1{T1≤T }

]=
∫ T

0
λe−λtV (B,T − t)dt,

(B,T ) ∈ [0,Bmax] × [0, Tmax]. (12)

Since V (B,T ) ≥ 0 is jointly increasing in B and T , U(B,T ) ≤ E[V (B,T )1{T1≤T }] ≤
V (B,T ); however, the difference V (B,T ) − U(B,T ) > 0 decreases with increasing key-
word arrival rate λ.

2.6 Finding the value function of any admissible Markovian bidding policy

Beside the optimal bidding strategy found by solving the associated dynamic programming
problem, we shall numerically study the performances of some other reasonable bidding
strategies, introduced in Sect. 3. Those include the dynamical versions of the optimal bid-
ding strategy “BC” of Cholette et al. (2011) under the “expected total cost not to exceed the
budget” constraint and the optimal strategy that greedily bids the same amount until either
time expires or the budget is depleted, whichever occurs first, so as to maximize the expected
total net revenue. Because the latter two strategies have significantly less running-time and
space requirements than those of the dynamic-programming approach, they can be consid-
ered as some viable alternatives as the numerical examples in the next section suggest. Here
we shall explain how one can calculate the value function of an admissible bidding strategy
whose bidding amount at any time depends only on the remaining budget and remaining
time at that moment.

Suppose V p(B,T ) denotes the value function of an admissible policy p which bids some
known amount 0 ≤ b(B,T ) ≤ μ∧B when budget B is left for the remaining T units of time;
namely,

V p(B,T ) = E

∞∑
i=0

[
Wi −b(Bi, T −Ti)

]
Zi1{Ti≤T } for every (B,T ) ∈ [0,Bmax] × [0, Tmax],

where T0 = 0, T1, T2, . . . are the arrival times of Poisson keyword search process, Bi =
Bi−1 −b(Bi−1, Ti−1)Zi−1 is the budget left after (i −1)st keyword search, Zi is the indicator
of a click which happens with probability G(b(Bi, Ti)) for every i ≥ 0. Below we state some
useful facts about V p(B,T ). Their proofs are omitted because they are very similar to those
for the facts stated earlier for the value function V (B,T ). First of all,

V p(B,T ) = E
[(

W0 −b(B,T )
)
Z0 +V p

(
B−b(B,T )Z0, T −T1

)
1{T1≤T }

]≡ (
MpV p

)
(B,T ),

where (
Mpw

)
(B,T ) := (M1w)

(
b(B,T ),B,T

)= (
μ − b(B,T )

)
G
(
b(B,T )

)
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+
∫ T

0
λe−λt

[
w
(
B − b(B,T ), T − t

)
G
(
b(B,T )

)
+ w(B,T − t)

(
1 − G

(
b(B,T )

))]
dt

is a contraction operator on the collection of bounded functions B([0,Bmax] × [0, Tmax])
on [0,Bmax] × [0, Tmax] with ‖Mpw1 − Mpw2‖ ≤ (1 − e−λTmax)‖w1 − w2‖. We have 0 ≤
V p(B,T ) ≤ μ(1 + λT ) for every (B,T ) ∈ [0,Bmax] × [0, Tmax]. The value function V p

is the unique bounded fixed point of Mp; therefore, V p = MpV p . The lower and upper
successive approximations

V
p

0 (B,T ) ≡ 0 and

V p
n (B,T ) := (

MpV
p

n−1

)
(B,T ), (B,T ) ∈ [0,Bmax] × [0, Tmax],

V
p

0 (B,T ) = μ(1 + λT ) and

V
p

n(B,T ) := (
MpV

p

n−1

)
(B,T ), (B,T ) ∈ [0,Bmax] × [0, Tmax]

are increasing and decreasing, respectively, and converge pointwise to V p(B,T ) as n → ∞,
uniformly in (B,T ) ∈ [0,Bmax] × [0, Tmax] and

∥∥V p − V p
n

∥∥≤ μ(1 + λTmax)e
λTmax

(
1 − e−λTmax

)n
for every n ≥ 0,∥∥V p − V

p

n

∥∥≤ μ(1 + λTmax)e
λTmax

(
1 − e−λTmax

)n
for every n ≥ 0.

The process

Y
p

0 := V p(B0, T ) and Y p
n :=

n−1∑
k=0

(μ − bk)Zk1{Tk≤T } + V p(Bn,T − Tn)1{Tn≤T }, n ≥ 0

is a martingale adapted to the filtration (Fp
n )n≥0 defined by Fp

n = σ {B0, T0, . . . ,Bn, Tn} for
every n ≥ 0. If we denote the expected total net revenue under policy p by Up , then we have

Up(B,T ) = E
[
V p(B,T − T1)1{T1≤T }

]=
∫ T

0
λe−λtV p(B,T − t)dt,

(B,T ) ∈ [0,Bmax] × [0, Tmax].

3 Alternative static and dynamic bidding strategies

Optimal bidding strategy can be found by solving the dynamic programming problem in
(1)–(2), which may require excessive computational time and space for large values of pa-
rameters μ,λ,Bmax, Tmax. Here, we will propose one static and two dynamic bidding strate-
gies, whose computations are less demanding, and compare their performances with that
of the optimal bidding strategy on a large number of numerical examples in Sect. 4. Our
solution of the optimal bidding problem in Sect. 2 thus not only provides an optimal bid-
ding policy but also enables us to search for simple and good-performing alternative bidding
policies for the cases when optimal bidding policies are hard to calculate.
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3.1 Static and dynamic budget-constrained bidding strategy

Cholette et al. (2011) formulate the so-called budget-constrained (BC) bidding problem

U
BC

(B,T ) = max
b≥0

E

[ ∞∑
i=1

(Wi − b)Zi1{Ti≤T }

]
subject to E

[ ∞∑
i=1

bZi1{Ti≤T }

]
≤ B

= max
b≥0

(μ − b)λT G(b) subject to bλT G(b) ≤ B.

Let us denote by bBC(B,T ) the bid amount b that attains the maximum and call it BC-
optimal bid amount when budget B is left for the remaining T units of time. The budget-
constrained bidding problem can be solved with the Lagrange-relaxation method in general.
The problem admits closed-form solution

bBC(B,T ) =

⎧⎪⎨
⎪⎩
√

a2 + aμ − a,
λT (

√
a2+aμ−a)2√
a2+aμ

≤ B

B+
√

B2+4λT Ba

λT
, otherwise

⎫⎪⎬
⎪⎭ , if m = 1, p0 = 1, and p1 = 0.

The original formulation of Cholette et al. (2011) assumes that the same bidding amount
b = bBC(B,T ) is used until either the budget is depleted or time is up, whichever occurs
first. However, one expects to do better than UBC(B,T ) by recalculating the BC-optimal
bid amount at each keyword search instance in the future.

Here we propose the dynamic budget-constrained (DBC) bidding strategy in the follow-
ing way: at the arrival times T1, T2, T3, . . . of keyword search instances, let us bid in the
amount bBC(B0 ≡ B,T ), bBC(B1, T − T1), b

BC(B2, T − T2), . . . , respectively, as long as
we have both budget and time left. We shall denote the expected total net revenue under
DBC policy by UDBC , which can be calculated with successive approximations described
in Sect. 2.6.

For a fair comparison of (static) BC policy with other dynamic bidding strategies, we
shall also calculate its expected total net revenue

UBC(B,T ) = (
μ − bBC(B,T )

) �B/bBC(B,T )�∑
i=1

(
1 −

i−1∑
j=0

(λG(bBC(B,T ))T )j

j ! e−λG(bBC(B,T ))T

)

under strict budget-constraint. The derivation follows from thinning the Poisson arrivals of
keyword search instances, as discussed in detail for the calculation of the expected total net
revenue of the static greedy bidding policy of the next section.

3.2 Static and dynamic greedy bidding strategy

If one bids the same amount b all the time, then the budget constraint can be forced not just
in expectation but with probability one.

Note in this case that (Zi, Ti)
∞
i=1 form a marked Poisson process, where the marks

Z1,Z2, . . . are i.i.d. Bernoulli random variables with common success probability G(b).
If the (Si)

∞
i=1 are those arrival times Ti corresponding to Zi = 1, then the (Si)

∞
i=0 turn out

to be the arrival times of a Poisson process with arrival rate λG(b). At each arrival time Si ,
the budget is decreased by the amount b, in return of Wi − b net revenue. Thus, starting
with budget B for the remaining T units of time, one can generate �B/b� or as many as the
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number of arrivals (Si)
∞
i=1 in (0, T ], whichever is the smaller. Let us call an amount b that

attains the maximum in

UG(B,T ) = max
b

E

[�B/b�∑
i=1

(Wi − b)1{Si≤T }

]

the (static) greedy bidding strategy and denote it by bG(B,T ), where �x� is the largest
integer smaller than or equal to x. Because Y (t) :=∑∞

i=1 1{Si≤t}, t ≥ 0 is a Poisson process
with rate λG(b), and

E

[�B/b�∑
i=1

(Wi − b)1{Si≤T }

]
= (μ − b)

�B/b�∑
i=1

P{Si ≤ T } = (μ − b)

�B/b�∑
i=1

P
{
Y (T ) ≥ i

}
,

the greedy bidding problem reduces to

UG(B,T ) = max
b

(μ − b)

�B/b�∑
i=1

(
1 −

i−1∑
j=0

(λG(b)T )j

j ! e−λG(b)T

)
.

We again expect that recalculating the greedy bidding amount before every keyword
search will improve the performance. Therefore, we also propose the following dynamic
greedy (DG) bidding strategy: at the arrival times T1, T2, T3, . . . of keyword search instances,
let us bid in the amount bG(B0 ≡ B,T ), bG(B1, T − T1), b

G(B2, T − T2), . . ., respectively,
as long as we have both budget and time left. We shall denote the expected total net rev-
enue under DG policy by UDG, which can be calculated with successive approximations
described in Sect. 2.6.

In the meantime, note that we always have UG(B,T ) ≥ UBC(B,T ). Hence, static greedy
bidding policy should perform at least as good as the static budget-constraint bidding policy
if the budget-constraint is strictly enforced. However, the numerical examples in Sect. 4
suggest that the difference UG(B,T ) − UBC(B,T ) ≥ 0 is often surprisingly small.

4 Numerical examples

As Corollary 2 suggests, one can calculate iteratively the sequences of decreasing and in-
creasing successive approximations, respectively (V n)n≥0 and (Vn)n≥0 in (8), until the first
nε ≥ 1 such that ‖V nε − Vnε‖ ≤ ε for some sufficiently small ε > 0. We can then take,
for example, V ≈ V nε , because Vn ≤ V ≤ V n for every n ≥ 1 by Theorem 1(ii & iv)
and Theorem 3, and ‖V nε − V ‖ ≤ ‖V nε − Vnε‖ ≤ ε. Because no closed form expressions
of V n or Vn for n ≥ 1 exist, we calculate them on a fine grid of their common domain
[0,Bmax]×[0, Tmax] of the Cartesian product of remaining budget and remaining time. Since
the remaining budget is discretized, the bidding amounts are also discretized and equal to
some integer multiple of grid size used for the discretization of remaining budget. Let us
also remember from Corollary 1 that optimal bidding amounts are always less than or equal
to expected sales revenue μ = EW0.

We use the same parameters; namely, a = 20, λ = 500 keyword-search per day, Tmax = 1
day, m = 1, p0 = 1, p1 = 0, Bmax = $3000 per day, μ = $50 per click, as in the single
keyword example of Cholette et al. (2011, Sect. 5.5). The intervals [0,Bmax] and [0, Tmax]
are divided into 3000 and 300 subintervals of equal length $1 and 1/300 day, respectively.
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Fig. 2 The convergence rate of
the dynamic programming
algorithm

The optimal bidding amounts are searched over those values in {$0,$1,$2, . . . ,$49,$50}
which are smaller than or equal to the remaining budget.

The explicit theoretical upperbound ‖V m − Vm‖, given by Corollary 2, on the difference
between successive approximations V m,Vm and value function V is evaluated and plotted
in Fig. 2. The approximation error sharply decreases after 450 iterations and becomes less
than a penny by the 600th iteration.

We do not depend on the theoretical error bound of Corollary 2 and run the succes-
sive approximations until the maximum difference between upper and lower bounds on
value function reduces below one cent. This takes about 620 iterations, which is consistent
with the reading from Fig. 2. The value function V (B,T ) for (B,T ) ∈ [0,Bmax] × [0, Tmax]
and its contour lines are plotted on top in Fig. 3. Even though the value function equals
V (Tmax,Bmax) = V (1,3000) = $7420.98, the maximum expected total net revenue is
slightly less than this. Remember from (12) that the maximum expected total net revenue
is U(B,T ) = E[V (B,T − T1)1{T1≤T }] ≤ V (B,T ). However, because λ = 500 is large, the
first keyword search arrives rather soon with high probability, and U and V are not expected
to be very different. Indeed, the plots of V and U in Fig. 3 look indifferent, but it turns out
U(1,3000) = 7407.85 < 7420.98 = V (1,3000).

In the middle right picture of Fig. 3, the optimal bidding amounts increase along any
horizontal line drawn on the contour plot as the line is traced from right to left. Namely, if
for a long time no clicks are received and budget does not decrease, then the optimal bid
amounts increase. The optimal bidding amounts decrease along any vertical line drawn on
the contour plot as the line is traced from top to down. Namely, if excessive number of
clicks are received over a very short time period, then the optimal bid amounts decrease.
Both observations are consistent with our expectations stated in the introduction.

4.1 Comparison of optimal static and dynamic bidding strategies

In Table 1, we compare the performance measures of the optimal dynamic bidding strategy
(DS) with those of the optimal static strategies (NC, BC, PC, TO) proposed by Cholette et al.
(2011). For all of those static bidding strategies the budget constraint is soft. NC assumes
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Fig. 3 First two rows: the value function V (B,T ) and optimal policy function b(B,T ) of the dynamic
programming problem. As the grid size used for the discretization of the remaining budget decreases, the
ladder-like optimal bidding policy function converges to a smooth surface cut from top by a horizontal plane.
Last row: the maximum expected total net revenue U(B,T ) calculated by (12)

no budget constraints at all, BC requires that the expected total cost be exactly 3000, PC
wants the probability that the total costs exceeds 3000 is less than or equal to 0.10, and TO
picks an arbitrary point on the expected profit/probability efficient frontier and calculates the
corresponding bid amount. According to the “maximum total net revenue” measure in the
second line of Table 1, DS performs slightly under NC and BC, while NC incurs on average
(4053.5 − 3000)/3000 = 35 % more cost than available budget and both BC and NC are
likely to go over budget nearly 50 % of the time. Even though PC and TO violate the budget
constraint much less frequently (10 % and 25 %, respectively) and use only a small fraction
(on average, 494.6/3000 = 14 % and 907.4/3000 = 30 %) of the available budget, they are
outperformed by DS by a large margin. For a more fair comparison, the last two rows of Ta-
ble 1 report the same quantities (the expected total net revenue and total cost) under the strict
budget constraint. The performances of overly cautious PC and TO do not change, but both
the expected total net revenues and total costs of NC and BC are marked down. Under the
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Fig. 3 (Continued)

Table 1 Comparison of optimal static and dynamic bidding strategies. NC, BC, PC, TO are optimal static
strategies proposed by Cholette et al. (2011). Their performance measures (exceptc,d) are copied from Table 2
in Cholette et al. (2011). The last column shows the performance of the dynamic bidding strategy proposed
here

Methods No
constraints
(NC)

Budget
constraint
(BC)

Probabilistic
constraint
(PC)

Trade-off
solution
(TO)

Dynamic
strategy
(DS)

Bid amount 17.4 14.3 4.97 7.0 dynamica

Expected total net revenue 7583.4 7447.3 4482.1 5574.1 7407.85

Expected total cost 4053.5 3000 494.6 907.4 2986b

Overbudget probability 0.53 0.49 0.10 0.25 0

Expected total net revenue
under strict budget constraintc

5607.20 7245.79 4481.36 5574.07 7407.85

Expected total cost under
strict budget constraintd

2992.80 2902.37 494.61 907.41 2986b

aOptimal bidding policy is plotted in the second row of Fig. 3

bEstimated by simulation: 1000 replications give mean 2986 with 0 (zero) standard error

c,dRespectively, (μ − b)E(Y ∧ �B
b

�) and bE(Y ∧ �B
b

�), where Y ∼ Pois(λG(b)T ); T = 1 and B = 3000 are

the initial remaining time and budget, respectively; b is the bid amount in the first row

strict budget constraint, DS has an expected total net revenue (7407.85 − 5607.2)/5607.2 =
32 % and (7407.85 − 7245.79)/7407.85 = 2 % more than those of NC and BC, respec-
tively, while incurring an expected total cost (2992.80 − 2986)/2992.80 = 0.2 % less and
(2986 − 2902.37)/2902.37 = 2.9 % more than those of NC and BC, respectively. When the
budget constraint is strictly enforced, the expected total net revenue is the sole performance
measure, according to which DS outperforms all of the static strategies as expected.

The optimal bidding policy is a function of only the remaining time and remaining bud-
get. It is displayed in the second row of Fig. 3. The ladder-like piecewise constant look is
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Fig. 4 Simulation of remaining budget processes under optimal bidding policy for different initial remaining
time and remaining budget values

an artifact due to the discretization of remaining-budget variable and disappears as the grid
size decreases to zero. In the limit, the optimal bidding policy is a smooth surface cut from
top by a flat plane. For a fixed T , optimal bid amount increases as B increases. Also, for a
fixed B , optimal bid amount decreases as T increases.

Figure 4 shows, from left to right, 100 realizations of the remaining-budget process un-
der optimal bidding policy if the initial remaining time and budget are (0.5, 3000), (1.0,
3000), and (1.0, 1500), respectively. If no keyword-search instances arrive for relatively
long time periods, then the remaining budget process remains flat over time and enters into
the higher-bidding-regions and optimal bidding amounts increase. If the keyword-search in-
stances arrive relatively quickly, then the remaining budget process may drift downward into
lower-bidding-regions and optimal bidding amount decrease. It is interesting that the slope
of the “average behavior” of remaining-budget process is the same for all starting points at
time zero. The optimal bidding strategy has to balance the increasing (respectively, decreas-
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ing) likelihood of inducing an actual click with the increasing (respectively, decreasing) cost
of frequent high bids (respectively, low bids). This trade-off seems to be optimally balanced
by keeping the direction of the process around an ideal constant, which is independent of
the remaining time and budget at any time.

4.2 Sensitivity analysis

The performances of static budget-constraint and greedy bidding policies (BC and G, re-
spectively) and the dynamic budget-constraint and greedy bidding policies (DBC and DG,
respectively) are compared with that of optimal dynamic bidding policy (DS) for five levels
of each parameter value B,a,λ,m,μ while the others are kept fixed. Table 2 summarizes

the results. Recall from Sect. 3.1 that U
BC

is the maximum expected total net revenue under
budget constraint on the expected total cost. Therefore, we did not compare it directly to
other static and dynamic bidding strategies, which are defined under strict (with probability
one) budget constraint.

The relative losses with respect to optimal dynamic bidding policy are the largest (respec-
tively, 2.35–3.26 % and 1.28–1.74 %) when the budget is the tightest (750–1500) and the
arrival rate is the highest (1000–2000). The dynamic budget-constraint (DBC) bidding pol-
icy is superior to the static budget-constraint (BC) bidding policy in general by an average
margin of 1.5 %. Similarly, the dynamic greedy (DG) bidding policy performs better than the
static greedy (G) bidding policy in general by an average margin of 0.3 %. Hence, the static
greedy bidding policy may serve as a good replacement for its dynamic counterpart. The dy-
namic greedy bidding policy outperforms the dynamic budget-constraint bidding policy by
a small margin in general. In almost all cases, the relative losses of the dynamic greedy and
budget-constraint bidding policies are less than 1 % and provide near-optimal expected to-
tal net revenue at significantly lower computational requirements than those of the dynamic
programming approach.

Table 2 suggests that the larger is the initial budget relative to the expected total spend-
ing on bidding, the better are the performances of the static/dynamic BC/greedy bidding
policies. To quantify this relation and understand it better, we introduce a surrogate for the
fraction of the initial budget spent on bidding; namely,

estimated budget loading (EBL) = bG(B,T )λG(bG(B,T ))T

B
,

where bG(B,T ) is the optimal (static) greedy bidding amount of Sect. 3.2 and the numera-
tor is an estimate of the optimal expected total spending for bidding under optimal dynamic
bidding policy. The latter quantity should ideally be calculated by solving the dynamic pro-
gramming problem. This would however defeat our purpose of finding a fast and accurate
alternative bidding policy in place of the optimal dynamic bidding policy when the latter is
difficult to calculate.

For each row of Table 2, we calculate EBL (using bG column) and plot the relative
percentage revenue loss of each bidding policy (static/dynamic BC/greedy) in total expected
net revenues (columns UBC,UG,UDBC,UDG) against EBL in Fig. 5. To better visualize the
relation between the relative loss and EBL, we also add to the plots the curves obtained by
applying loess (locally weighted scatterplot smoothing) to the data points.

The negative percentage revenue loss values at EBL = 0.2 in Fig. 5 are the artifacts of
that the bidding amounts are restricted to the one-dollar increments as we numerically solve
the dynamic optimization problem. When the bidding amounts are searched over the one-
cent increments, those artifacts disappear; however, the grid size increases 100 folds and
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Table 2 Sensitivity analysis. The relative loss of UBC with respective to UDS is defined by 100(UDS −
UBC)/UDS , and the others are defined likewise

Parameters Static bidding
values

EBL U
BC

Relative loss (percentage)
with respect to UDS in

UDS †

B a λ m μ bBC bG UBC UG UDBC UDG

750

20 500 1 50

6.27 6.15 0.96 5222.92 2.81 2.35 3.26 2.89 5167.64

1500 9.38 9.04 0.94 6487.30 2.61 1.88 1.72 1.53 6435.35

3000 14.35 13.70 0.93 7447.27 2.47 0.89 0.69 0.53 7407.85

6000 17.41 17.42 0.68 7583.42 −0.03 −0.03 −0.03 0.09 7581.09

12000 17.41 17.42 0.34 7583.42 −0.03 −0.03 −0.03 0.09 7581.09

3000

5

500 1 50

9.24 8.80 0.94 13224.98 1.95 0.62 0.83 0.54 13178.40

10 11.30 10.75 0.93 10266.55 2.07 0.85 0.83 0.59 10220.10

20 14.35 13.70 0.93 7447.27 2.47 0.89 0.69 0.53 7407.85

40 18.77 17.54 0.89 4987.33 2.94 0.59 0.49 0.34 4964.06

80 21.98 21.90 0.78 3019.60 0.01 0.01 0.00 0.12 3019.52

3000 20

125

1 50

17.41 17.41 0.34 1895.85 −0.03 −0.03 −0.03 0.12 1895.27

250 17.41 17.41 0.68 3791.71 −0.03 −0.03 −0.03 0.11 3790.55

500 14.35 13.70 0.93 7447.27 2.47 0.89 0.69 0.53 7407.85

1000 9.38 9.23 0.97 12974.66 1.74 1.28 1.64 1.52 12899.30

2000 6.27 6.20 0.98 20891.68 1.29 1.08 3.13 3.01 20759.90

3000 20 500

0.25

50

7.97 7.50 0.90 15223.74 0.70 0.04 0.09 0.17 15218.10

0.5 10.35 9.68 0.91 11485.91 2.19 0.49 0.60 0.41 11452.80

1 14.35 13.70 0.93 7447.27 2.47 0.89 0.69 0.53 7407.85

2 21.69 20.69 0.91 3914.34 2.79 0.85 0.64 0.40 3886.07

4 29.88 29.88 0.69 1397.46 −0.00 −0.00 0.09 0.12 1397.42

3000 20 500 1

12.5 5.49 5.49 0.20 754.90 −0.65 −0.65 −0.65 −0.53 750.00

25 10.00 10.00 0.56 2500.00 0.00 0.00 0.00 0.12 2500.00

50 14.35 13.70 0.93 7447.27 2.47 0.89 0.69 0.53 7407.85

100 14.35 13.95 0.96 17894.54 2.39 1.66 1.10 0.93 17785.20

200 14.35 14.08 0.97 38789.08 2.40 1.87 1.27 0.99 38554.60

†Because the maximum bid amount is searched over integers, the maximum expected total net revenue cal-
culations involve a small negative discretization bias, which explains those negative relative losses in the
table

Table 2 turns out to be impossible to calculate in a reasonable amount of time. For this
reason, we proposed and studied alternative static/dynamic BC/greedy bidding policies.

All four (static/dynamic BC/greedy) bidding policies perform nearly as good as the opti-
mal dynamic bidding policy for low to moderately-high budget loading values: the percent-
age revenue losses are nearly zero for BC bidding policies when EBL ≤ 0.7 and for static
greedy and dynamic BC/greedy policies when EBL ≤ 0.8 ∼ 0.9. As the estimated budget
loading (EBL) increases to one, the percentage revenue losses sharply increase. Interest-
ingly, the relative percentage losses for the static BC/greedy policies seem to be bounded,
while the relative percentage losses of the dynamic BC/greedy policies seem to grow un-
boundedly as the budget loading increases to one. Out of four bidding policies proposed as
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Fig. 5 The comparison of the static and dynamic bidding policies

an alternative to the optimal dynamic bidding policy, the static greedy bidding policy seems
to be the best.

5 Statistical estimation

To implement any of the solutions presented so far, one has to estimate the parameters
p0, p1, m, a, and λ. The parameters p0, p1, and m appear in the conditional distribution
of the ad’s click indicator Zn given the same ad’s page position Ln, a is the one of two
parameters of the conditional Beta distribution of the ad position Ln given the bid size bn,
which is the other parameter of the same Beta distribution, and λ is the arrival rate of search
queries. Those parameters can be estimated, for example, with maximum likelihood method
by means of the Poisson point process observations (Tn, bn,Ln,Zn)n≥0, where bn, n ≥ 1 can
be any reasonable pilot run of bids.

Google certainly observes (Tn, bn,Ln,Zn)n≥0 and can record them and share with its
clients: Google contacts the advertiser’s account at every query time Tn to find out the bid
amount bn. It determines the ad position Ln after an instantaneous online auction, and the
budget is charged if and only if the ad is clicked (if and only if Zi = 1). If Google informs the
client that (Tn, bn,Ln,Zn)1≤n≤N is observed over some [0, t] time interval, then the client
can form the likelihood function

λNe−λt

N∏
n=1

Γ (a + bn)

Γ (a)Γ (bn)
La−1

n (1 − Ln)
bn−1

× [
(p0 − p1)(1 − Ln)

m + p1
]Zn
[
1 − (p0 − p1)(1 − Ln)

m − p1
]1−Zn

of the parameters. The maximum likelihood estimators (p̂0, p̂1, m̂, â, λ̂) are the maximizers
of the complete-data log likelihood function

N logλ − λt − N logΓ (a) +
N∑

n=1

logΓ (a + bn) + (a − 1)

N∑
n=1

logLn

+
N∑

n=1

(bn − 1) log(1 − Ln) −
N∑

n=1

logΓ (bn) +
N∑

n=1

Zn log
[
(p0 − p1)(1 − Ln)

m + p1

]
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Table 3 Averages and standard errors (in parentheses) of the maximum likelihood estimates based on 10
replications of 1- and 10-day long complete observations; true parameters are p0 = 0.75, p1 = 0.01, m = 1,
a = 20, λ = 5000

Sampled days Bid amount p̂0 p̂1 m̂ â λ̂

1 5 0.81 (0.13) 0.01 (0.02) 1.05 (0.15) 20.05 (0.09) 4998 (26)

20 0.77 (0.13) 0.06 (0.11) 1.25 (0.70) 19.97 (0.05) 5017 (57)

50 0.82 (0.11) 0.17 (0.20) 2.54 (2.48) 19.97 (0.04) 4990 (63)

10 5 0.78 (0.06) 0.02 (0.01) 1.04 (0.08) 20.04 (0.03) 4998 (29)

20 0.76 (0.02) 0.02 (0.03) 1.05 (0.11) 19.99 (0.02) 5000 (16)

50 0.77 (0.05) 0.11 (0.13) 1.44 (0.78) 19.99 (0.02) 5004 (14)

+
N∑

n=1

(1 − Zn) log
[
1 − (p0 − p1)(1 − Ln)

m − p1

]
,

subject to a ≥ 0, 0 ≤ p1 ≤ p0 ≤ 1, and m ≥ 0. Note that

λ̂ = N

t
, â = arg max

a≥0

[
−N logΓ (a) +

N∑
n=1

logΓ (a + bn) + (a − 1)

N∑
n=1

logLn

]
,

(p̂0, p̂1, m̂) = arg max
0≤p1≤p0≤1

m≥0

[
N∑

n=1

Zn log
(p0 − p1)(1 − Ln)

m + p1

1 − (p0 − p1)(1 − Ln)m − p1

+
N∑

n=1

log
(
1 − (p0 − p1)(1 − Ln)

m − p1

)]
.

Example We simulate ten realizations of the query arrival process, ad page positions, and
ad click indicators after choosing parameter values as in λ = 5000, a = 20,p0 = 0.75,p1 =
0.01,m = 1, a = 20. We assume that the same bid amounts (low b = 5 < a, medium b =
a = 20, or high b = 50 > a) are used at each query instance. The maximum likelihood
estimates are calculated for 10 replications of 1- and 10-day long simulated realizations,
and the means and standard errors of 10 independent estimators of the unknown parameters
are reported in Table 3. The standard errors are lower in general with multiple day long
observations. The estimates and their standard errors do not seem to depend on the bid
amount.

Incomplete data Google may choose not to provide some of the data. If (Tn)
N
n=1 are

not provided, one cannot really do much. If (Tn)
N
n=1 are provided, then the client can in

principle figure out the bid amounts (bn)
N
n=1 and the click indicators (Zn)

N
n=1 from the

observable remaining budget (Bn)
N
n=1 and time processes (T − Tn)

N
n=1. Indeed, bn is re-

turned by the client-defined control policy based on Bn and T − Tn values at time Tn,
and Zn = 1(0,∞)(Bn − Bn−1). It seems that the page positions (Ln)

N
n=1 of the ads cannot

be retrieved by the client, unless Google directly provides them. Suppose now that Google
decided not to provide (Ln)

N
n=1 to the client. One can still estimate the parameters by the
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maximizing the incomplete-data likelihood

λNe−λt

N∏
n=1

∫ 1

0

Γ (a + bn)

Γ (a)Γ (bn)
�a−1

n (1 − �n)
bn−1

× [
(p0 − p1)(1 − �n)

m + p1
]Zn
[
1 − (p0 − p1)(1 − �n)

m − p1
]1−Znd�n,

or the log incomplete-data likelihood

LP (p0,p1,m,a,λ)

:= N logλ − λt +
N∑

n=1

log
∫ 1

0

Γ (a + bn)

Γ (a)Γ (bn)
�a−1(1 − �)bn−1

× [
(p0 − p1)(1 − �)m + p1

]Zn
[
1 − (p0 − p1)(1 − �)m − p1

]1−Znd�

= N logλ − λt+
N∑

n=1

Zn log
∫ 1

0

Γ (a + bn)

Γ (a)Γ (bn)
�a−1(1−�)bn−1

[
(p0 −p1)(1− �)m +p1

]
d�

+
N∑

n=1

(1 − Zn) log
∫ 1

0

Γ (a + bn)

Γ (a)Γ (bn)
�a−1(1 − �)bn−1

[
1 − (p0 − p1)(1 − �)m − p1

]
d�

= N logλ − λt +
N∑

n=1

[
Zn logfn(p0,p1,m,a) + (1 − Zn) log

(
1 − fn(p0,p1,m,a)

)]
(13)

where

fn(p0,p1,m,a) ≡ f (p0,p1,m,a, bn)

:=
∫ 1

0

Γ (a + bn)

Γ (a)Γ (bn)
�a−1(1 − �)bn−1

[
(p0 − p1)(1 − �)m + p1

]
d�

= p1 + (p0 − p1)
Γ (bn + m)Γ (a + bn)

Γ (bn)Γ (a + bn + m)
(14)

by a similar calculation as in (3). Clearly, λ̂ = N/t maximizes the incomplete-data log like-
lihood. To find the maximum likelihood estimators of p0,p1,m,a, one can calculate, with
respect to each x = p0,p1,m,a, the partial derivative of incomplete-data log likelihood

∂LP

∂x
=

N∑
n=1

∂fn

∂x

(
Zn

fn

− 1 − Zn

1 − fn

)
=

N∑
n=1

∂fn

∂x

Zn − fn

fn(1 − fn)
,

and solve 0 = ∂LP

∂x
, x = p0,p1,m,a or

N∑
n=1

∂fn

∂x

Zn

fn(1 − fn)
=

N∑
n=1

∂fn

∂x

fn

fn(1 − fn)
, x = p0,p1,m,a (15)
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simultaneously, where

∂fn

∂p0
= 1 − ∂fn

∂p1
= Γ (bn + m)Γ (a + bn)

Γ (bn)Γ (a + bn + m)
,

∂fn

∂a
= (p0 − p1)

Γ (bn + m)[Γ ′(a + bn)Γ (a + bn + m) − Γ (a + bn)Γ
′(a + bn + m)]

Γ (bn)Γ 2(a + bn + m)
,

∂fn

∂m
= (p0 − p1)

Γ (a + bn)[Γ ′(bn + m)Γ (a + bn + m) − Γ (bn + m)Γ ′(a + bn + m)]
Γ (bn)Γ 2(a + bn + m)

.

Interestingly, ∂fn

∂m
(p0,p1,m,a) = ∂fn

∂a
(p0,p1, a,m). This is because fn(p0,p1,m,a) =

fn(p0,p1, a,m) in (14). Hence, if m and a are interchanged, the values of the incomplete
data log likelihood do not change, and the maximum likelihood estimators of m and a are
ambiguous. One way to eliminate the ambiguity is to use some prior information. If one
expects the average bidding amount, a of the competitors in the order of 10 s and m to be in
order of 1 s, then on can restrict the search for the maximum likelihood estimators of a and
m to the a > m region.

One caution is also in order here. To simplify the estimation process, one may choose
to collect data by using one single bid amount, bn = b, n = 1, . . . ,N for some fixed finite
b > 0. This, however, leads to fn(p0,p1,m,a) ≡ f (p0,p1,m,a, bn) = f (p0,p1,m,a, b)

independent of n and simple incomplete-data log likelihood

N logλ−λt +
(

N∑
n=1

Zn

)
logf (p0,p1,m,a, b)+

(
N −

N∑
n=1

Zn

)
log
(
1−f (p0,p1,m,a, b)

)

and single stationarity equation

N∑
n=1

∂f

∂x

Zn

f (1 − f )
=

N∑
n=1

∂f

∂x

f

f (1 − f )
,

x = p0,p1,m,a, which simplifies to
1

N

N∑
n=1

Zn = f,

which unfortunately has multiple solutions in general. To reduce the ambiguity about the
model parameters, it is necessary to try different bid amounts during data collection.

The numerical experiments suggested that even if different bid amounts are tried dur-
ing data collection for parameter estimation, the maximum likelihood estimators are not
unique. In the absence of ad page position observations, the proposed model cannot be un-
ambiguously fit to data using maximum likelihood. In this case, a good strategy is perhaps
to directly model the conditional click probability P{Zn = 1 | bn = b} given the bid amount,
for example, by an increasing estimable parametric function, bounded between 0 and 1, of
the bid amount.

For a brief illustration, one may, for instance, assume that

P{Zn = 1 | bn = b} = p1 + (p0 − p1)
(
1 − e−αb

)
, b ≥ 0

for some α > 0, 0 ≤ p1 < p0 ≤ 1. The remainder of the original analysis is unaffected after

G(b) := p1 + (p0 − p1)
(
1 − e−αb

)
, b ≥ 0
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replaces (3); both the formulation and solution of the dynamic programming will be
otherwise unaffected. The parameters p0,p1, α,λ have to be now estimated based on
(Tn, bn,Zn)

N
n=1 over a given fixed time period (0, t]. The log likelihood function of p0,p1, α,

and λ becomes

N logλ−λt +
N∑

n=1

Zn log
[
(p0 −p1)e

−αbn +p1

]+ N∑
n=1

(1−Zn) log
[
1− (p0 −p1)e

−αbn −p1

]
,

which is maximized by the maximum likelihood estimators λ̂ = N/t , and

(p̂0, p̂1, α̂) = arg max
0≤p1≤p0≤1

α>0

[
N∑

n=1

Zn log
(p0 − p1)e

−αbn + p1

1 − (p0 − p1)e−αbn − p1

+
N∑

n=1

log
(
1 − (p0 − p1)e

−αbn − p1

)]
.

Various expressions for the click probabilities will result in different models, each of which
may have different merits, but a comprehensive study of the alternative models is outside
the scope of the current paper.

6 Conclusion

We formulated and solved a new dynamic programming problem to find an optimal dynamic
bidding policy for placing online search ads with Google. The maximum-likelihood estima-
tion of the model parameters based on different levels of data availability is described. If the
ad page positions are not available, then one gets several maximum likelihood estimators.
To remove this ambiguity, one may alternatively choose, for example, to directly model the
conditional click probability given the bid amount.

As we expected, the optimal bidding policy responds dynamically to both remaining
budget and remaining time to maximize the expected total net revenue by decreasing the
bid amount if the excessive internet traffic quickly depletes the budget and by increasing the
bid amount if the budget is underutilized. If the initial budget is large, then the optimal bid
amount is very likely to remain constant. If, however, the initial budget is small, then the
optimal bid amount changes frequently.

Heuristic but fast alternative bidding policies are also proposed and compared in an ex-
tensive numerical study. The dynamic greedy bidding strategy performs slightly better than
the dynamic BC bidding strategy in general. Both strategies however perform quite well and
achieve expected total net revenues not falling short more than 3.5 % of that of the optimal
bidding strategy in the numerical experiments. We noticed that the largest revenue losses
occur at high budget loadings, which is defined as the fraction of the initial budget spent on
bidding. All policies perform close to optimal if the budget loading is less than 0.7 ∼ 0.8.
As the budget loading increases to one, the percentage revenue losses sharply increase. The
simple static greedy bidding policy performs as good as the dynamic BC and greedy bidding
policies and outperforms the static BC bidding policy. Moreover, unlike for the dynamic BC
and greedy policies, the percentage revenue losses for static greedy policy seems to be a
bounded function of budget loading. When the optimal dynamic bidding policy is difficult
to calculate or has to be frequently recalculated because of changing/reestimated parame-
ters, the static greedy bidding policy looks the best alternative among all other static and
dynamic bidding policies studied in this paper.
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Appendix: Auxiliary results

Lemma 1 For every f,g ∈ C([0,Bmax] × [0, Tmax]) and 0 ≤ T ,S ≤ Tmax, we have∣∣∣ max
0≤b≤B

f (b,T ) − max
0≤b≤B

g(b,S)

∣∣∣≤ max
0≤b≤B

∣∣f (b,T ) − g(b,S)
∣∣ for every B ∈ [0,Bmax].

Proof Because f,g are continuous on the compact set [0,Bmax] × [0, Tmax], both maxima
on the left are finite and attained at some bf , bg ∈ [0,B], respectively. Therefore,

max
0≤b≤B

f (b,T ) − max
0≤b≤B

g(b,S) ≤ f (bf , T ) − g(bf , S) ≤ max
0≤b≤B

∣∣f (b,T ) − g(b,S)
∣∣,

max
0≤b≤B

g(b,S) − max
0≤b≤B

f (b,T ) ≤ g(bg, T ) − f (bg, S) ≤ max
0≤b≤B

∣∣g(b,T ) − f (b,S)
∣∣,

which together complete the proof. �

Lemma 2 For every f ∈C([0,Bmax]× [0, Tmax]), the function F(B,T ) := max0≤b≤B f (b,T )

is also in C([0,Bmax] × [0, Tmax]).

Proof Because f (·, ·) is continuous on [0,Bmax] × [0, Tmax], it is uniformly continuous.
For every ε > 0 there exists some δ > 0 such that, whenever (B,T ), (C,S) ∈ [0,Bmax] ×
[0, Tmax] satisfies |B − C| + |T − S| ≤ δ, we have |f (B,T ) − f (C,S)| ≤ ε. Note that

∣∣F(B,T ) − F(C,S)
∣∣≤ ∣∣F(B,T ) − F(B,S)

∣∣+ ∣∣F(B,S) − F(C,S)
∣∣.

By Lemma 1 with g ≡ f , we have |F(B,T ) − F(B,S)| ≤ max0≤b≤B |f (b,T ) −
f (b,S)| ≤ ε. We shall next show that |F(B,S) − F(C,S)| ≤ ε as well. Let us assume
without loss of generality that B ≤ C. Because b 
→ f (b,S) is continuous on the com-
pact interval [0,C], the value F(C,S) = max0≤b≤C f (b) is attained at some bC ∈ [0,C].
If bC ∈ [0,B], then |F(B,S) − F(C,S)| = 0 ≤ ε. If bC /∈ [0,B], then we must have
bC ∈ (B,C] and

0 ≤ ∣∣F(B,S) − F(C,S)
∣∣= F(C,S) − F(B,S) ≤ f (bC,S) − f (B,S) ≤ ε,

because |bC − B| = bC − B ≤ C − B ≤ δ. �

Lemma 3 Let f ∈ C([0,Bmax]2 × [0, Tmax]). Define

F(B,T ) = max
0≤b≤Bmax

f (b,B,T ) and I (b,B,T ) =
∫ T

0
λe−λtf (b,B,T − t)dt.

Then F ∈ C([0,Bmax] × [0, Tmax]) and I ∈ C([0,Bmax]2 × [0, Tmax]).
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Proof The maxima F(B,T ) and F(C,S) are attained at some bBT and bCS in [0,Bmax].
Then

F(B,T ) − F(C,S) ≤ f (bBT ,B,T ) − f (bBT ,C,S) ≤ max
0≤b≤Bmax

∣∣f (b,B,T ) − f (b,C,S)
∣∣,

F (C,S) − F(B,T ) ≤ f (bCS,B,T ) − f (bCS,C,S) ≤ max
0≤b≤Bmax

∣∣f (b,C,S) − f (b,B,T )
∣∣.

Hence, |F(B,T ) − F(C,S)| ≤ max0≤b≤Bmax |f (b,B,T ) − f (b,C,S)|, and the joint conti-
nuity of F(·, ·) follows from the uniform continuity of f (·, ·, ·). The uniform continuity of
g(t, b,B,T ) := λe−λtf (b,B,T − t) and

∣∣I (b,B,T ) − I (c,C,S)
∣∣≤ ∫ T

0

∣∣g(t, b,B,T ) − g(t, c,C,S)
∣∣dt + |T − S|‖g‖

imply the joint continuity of I (·, ·, ·). �

Lemma 4 If w ∈ C([0,Bmax] × [0, Tmax]), then M1w ∈ C([0,Bmax]2 × [0, Tmax]) and Mw ∈
C([0,Bmax] × [0, Tmax]).

Proof If w ∈ C([0,Bmax] × [0, Tmax]), then both (b,B,T ) 
→ w(B,T ) and (b,B,T ) 
→
w((B − b)+, T ) − w(B,T ) are in C([0,Bmax]2 × [0, Tmax]). The second part of Lemma 3
implies that both integrals in (6) are in C([0,Bmax]2 × [0, Tmax]). Because the product and
sum of continuous functions are continuous, the continuity of M1w immediately follows. Fi-
nally, (Mw)(B,T ) = max0≤b≤Bmax(M1w)(b,B,T ) in (7) is continuous because of the first
part of Lemma 3. �
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