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Abstract In recent times, large high-dimensional datasets have become ubiquitous.
Video and image repositories, financial, and sensor data are just a few examples of
such datasets in practice. Many applications that use such datasets require the retrieval
of data items similar to a given query item, or the nearest neighbors (NN or k-NN) of
a given item. Another common query is the retrieval of multiple sets of nearest neigh-
bors, i.e., multi k-NN, for different query items on the same data. With commodity
multi-core CPUs becoming more and more widespread at lower costs, developing par-
allel algorithms for these search problems has become increasingly important. While
the core nearest neighbor search problem is relatively easy to parallelize, it is challeng-
ing to tune it for optimality. This is due to the fact that the various performance-specific
algorithmic parameters, or “tuning knobs”, are inter-related and also depend on the data
and query workloads. In this paper, we present (1) a detailed study of the various tun-
ing knobs and their contributions on increasing the query throughput for parallelized
versions of the two most common classes of high-dimensional multi-NN search algo-
rithms: linear scan and tree traversal, and (2) an offline auto-tuner for setting these
knobs by iteratively measuring actual query execution times for a given workload and
dataset. We show experimentally that our auto-tuner reaches near-optimal performance
and significantly outperforms un-tuned versions of parallel multi-NN algorithms for
real video repository data on a variety of multi-core platforms.
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1 Introduction

For the last decade, we have witnessed the proliferation of multi-core processors, fueled
by diminishing gains in processor performance from increasing operating frequencies.
CPUs with eight or more cores have become common in the commodity and server-
class general-purpose processor markets, and vendors promise to increase the number
of cores per chip [11]. At the same time, the gap between the power of these modern
computer systems and their programmability is widening. Even for parallel algorithms
that are easy to express and understand, getting most performance out of a multi-core
system is highly challenging. Due to the architectural variety of modern multi-core
processors, algorithms would need to be individually tuned at the level of algorithmic
parameters, for each processor. Performing this tuning in a manual manner is obviously
not a scalable solution and more automated ways to tune algorithms for different
systems are needed.

For instance, the number and sizes of caches and their configurations often differ sig-
nificantly across different processors. For instance, in IBM’s POWER6 processor [17],
both cores share a common L2 cache, whereas in an AMD Athlon X2 processor [1],
both cores have their own private L2 caches but a shared L3 cache. Yet another configu-
ration is found in the Intel Itanium 2 processor [13] where each core has its own private
L2 and L3 caches. Furthermore, differences in memory latencies, processor frequen-
cies, pipeline lengths, branch prediction hardware, SIMD support, hyper-threading,
etc., all add to the architectural variety. Each processor design has different perfor-
mance characteristics and requires subtle modifications to a given parallel algorithm
to fully use the processing power. For example, synchronizing two threads to work on
the same data from main memory may show more benefits on systems with shared
caches than on systems with core-local caches.

The complexity of modern CPUs can also be gauged from their programming
manuals. The Intel 64 and IA-32 Architectures Optimization Reference Manual [14]
is nearly 600 pages long, with 75 pages covering caching and multi-core optimizations.
Similarly substantial manuals exist for other architectures, underlining the challenge
of tuning algorithms for different multi-core systems.

In the context of multi k-NN search, we explore a different way to tackle this expo-
nential tuning problem. We propose and validate experimentally a two-step approach
consisting of:

(1) the extraction of promising tuning parameters from a parallel search algorithm,
and

(2) the automatic tuning of the algorithm by systematically exploring the parameter
space for a given architecture and workload.

In this paper, we investigate the parallel version of the multi k-NN search algorithm.
This algorithm operates on a large set of multi-dimensional vectors. The input to the
algorithm is a set of query vectors and the output is the set of the k closest vectors
(in Euclidean distance) to each query vector. This algorithm has many applications.
Here, we provide two examples.
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Use case 1: Multimedia search. Multimedia search engines that provide capabilities to
find the k most similar images to a given query image are based on this algorithm. They
would typically extract so-called “feature-vectors” from each image that describe the
image’s properties, such as the color distribution, in the form of an (oftentimes high-
dimensional) vector. Similarly, the query image is transformed into a feature-vector
and the distance measure is chosen based on the desired image similarity criteria.
Since such search engines typically serve hundreds or thousands of user requests per
second, we can assume that not one but many queries are pending at any one time,
leading to a multi k-NN search problem.

Use case 2: Copyright violation detection. Many video hosting sites are legally
required to remove copyrighted material as quickly as possible in the context of
the Digital Millennium Copyright Act [20]. Since the detection is only possible by
inspecting the content of each video, this used to be a labor and cost-intensive task.
By exploiting modern parallel architectures, one can employ the multi k-NN search
algorithm to perform this task in a more cost-effective way as follows: Assume each
copyrighted video is divided into shots and for each shot, a feature vector based on
shot characteristics has been extracted. Once a new video gets uploaded to the hosting
site, this video is also divided into shots and the same feature vectors are extracted
per shot. To find similar videos in the copyright collection, one can now perform a
multi k-NN search with all shot vectors of the new video as the query vectors. In a
post-processing step, the returned k-NNs for each shot are compared to see if there
is a majority that originates from the same copyrighted video. If that is the case, a
potential copyright violation has occurred. In this example, the multiple queries occur
due to the multiple shots, in the previous example it was due to the multiple users.

Besides its wide applicability, an interesting feature of the multi k-NN algorithm is
that it can be optimized based on a large number of tuning decisions, whose interplay
is far from obvious as we will illustrate. Such tuning decisions include SIMDization,
multi-threading, load balancing, cache sharing, query partitioning, and data striping.

An important challenge in this context is to identify the right set of tuning knobs
and to understand the interactions between them. Unlike the tuning of tight compu-
tational kernels like BLAS and FFT libraries, the multi k-NN tuning requires finding
the right setting for various algorithmic knobs (such as short-cutting, partial result
sharing, query batching) whose impact on performance is highly dependent on the
characteristics of the dataset.

In summary, the contributions of this paper are:

1. A detailed study of the various tuning knobs, their interactions with each other, and
their contributions on increasing the query throughput for parallelized versions of
the two most common classes of high-dimensional multi k-NN search algorithms:
linear scan and tree traversal.

2. An offline auto-tuner for setting these knobs by iteratively measuring actual query
execution times for a given workload and dataset.

We show experimentally that our auto-tuner provides near optimal solutions and signif-
icantly outperforms un-tuned versions of parallel multi-NN algorithms for real video
repository data on a variety of multi-core platforms.
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The remainder of this paper is organized as follows. In Sect. 2, we discuss
approaches to multi k-NN searching and other related work on tuning for multi-core
architectures. Section 3 introduces the problem of multi k-NN search in more detail
and gives an overview of the parallelization dimensions. In Sect. 4, we present the
various tuning knobs for this algorithm in detail and explain how each of them affects
the algorithm performance. Our heuristic to automatically tune the algorithm for a
specific architecture using these tuning parameters is discussed in Sect. 5. Section 6
concludes the paper.

2 Related Work

Past work has investigated various ways to accelerate high-dimensional data access
and more specifically k-NN searching. One solution is to improve the cache reuse
when multiple k-NN queries are running concurrently in a batched fashion. Another
solution is to use multi-dimensional index structures to reduce the amount of data that
needs to be accessed. Finally, data compression has been proposed as a way to reduce
accesses. We discuss past work from each area below.

Qiao et al. [21] present algorithms for improved cache reuse during concurrent table
scan operations on multi-core architectures. Their goal is to improve the throughput of
business intelligence queries that typically perform large amounts of table scans with
aggregation operations. They are mainly concerned with ensuring that the aggregation
data structures fit into the cache of each core in order to avoid thrashing. For that
purpose, they run multiple queries in batches with the batch size based on cache
size and expected data structure sizes. In contrast, our work focuses mainly on NN
search queries and how the various optimization dimensions can be optimized in an
architecture-agnostic manner. Some of these optimization dimensions are not present
or are fixed in [21].

A large number of multi-dimensional index structures for k-NN searching have been
proposed in the past. They can be categorized into roughly two groups: scan-based
approaches and index-based approaches. An example for a scan-based approach is the
VA-file [25] that keeps a quantized version of the data vectors in memory and first
performs a fast scan on those before retrieving the remaining full candidate vectors
from disk where the full dataset is kept. This technique tries to reduce disk accesses
for a single query and does not deal with concurrent scans or CPU caching effects.

An example for an index-based approach to k-NN searching is the R-tree index
family introduced by Guttman [10] and the SS-tree introduced by White and Jain [27].
Due to the spherical nature of NN regions, the latter uses nested bounding spheres to
describe the data, rather than bounding boxes used by R-trees. Both index structures
are intended for large disk-based datasets and would perform sub-optimally if used as
pure in-memory structures. In our experiments, we therefore focus on the k-d-tree [8]
index which is an in-memory data structure that provides good performance for k-NN
searching.

To reduce the amount of data to be kept in either scan-based or index-based data
structures, many compression schemes have been proposed. One especially tailored to
high-dimensional data is the FastMap algorithm presented by Faloutsos and Lin [7].
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Compression is very useful for typical high-dimensional data due to the fact that
few dimensions contain most of the useful information. In this paper, we do not
consider compression since it introduces additional post-processing. However, we do
discuss how striping and principle component analysis [15] can improve the query
performance due to these data characteristics.

Automatic tuning for multi-core systems is a fairly new research area. Williams [28],
Datta et al. [6], Vuduc et al. [24], and Whaley et al. [26] present various approaches
for autotuning scientific applications. Their focus is on automatic generation of opti-
mal code for a specific architecture for regular scientific applications such as FFT,
PDE solvers, and sparse matrix kernels. Whaley et al.’s ATLAS project [26] proposes
using timing measurements to generate optimal code for any linear algebra kernel on
any target architecture. Unlike for the computation kernels discussed in these works,
the performance strongly depends on the data characteristics for our multi k-NN search
problem. Furthermore, parallel multi k-NN search involves several algorithmic opti-
mizations.

The work on the general area of auto-tuning can be divided into three categories.
The first is the compiler-based auto-tuners. These automatically or semi-automatically
generate a set of alternative implementations and search this space of implementa-
tions using a model, in order to locate a good solution [4,9,30]. The second is the
application-level auto-tuners. These systems perform an empirical search across the
set of parameter values to locate the best setting in terms of performance [12,18].
Usually these parameters are generated by the application programmer and their ideal
values are located by the auto-tuner. Our work is an example of this. The parameter-
izations we provide for the multi kNN search algorithm do not require recompiling
code and are taken as submission time parameters to the algorithm. The third is the
run-time auto-tuners. These provide on-the-fly adaptation of application-level and/or
code-transformation level parameters [3,23]. The goal is to react to the changing con-
ditions of the system at run-time.

3 Problem Definition

This section discusses the problem addressed in this work in detail. We also describe
the various optimization dimensions that will be used to tune our algorithm in the next
section.

3.1 Multi Nearest Neighbor Query

Since this paper focuses on accelerating nearest neighbor queries, we first give the
traditional definition of the problem:

Definition 1 (k-nearest neighbor query) Given a dataset V of N d-dimensional vec-
tors and a query vector q, the k-nearest neighbor query (NN-query) returns the set
N Nq(k) ⊆ V that contains exactly k vectors and for which the following condition
holds:
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∀v ∈ N Nq(k),∀v′ ∈ V − N Nq(k) : d(v, q) ≤ d(v′, q).

Here, d is a distance function, typically measuring the Euclidian distance between two
vectors. We note that N Nq(k) is non-deterministic if there are multiple vectors with
equal distance from q among the k-th nearest neighbors. For real datasets from image
repositories for example, it would be extremely rare to find identical distances. On the
other hand, this property allows us to upper-bound the memory footprint required to
keep the search state within each thread.

In many applications, it is possible to batch multiple NN-queries together. For
example, when searching for movie clips similar to a given clip, one may obtain
feature vectors for each frame or shot of the query clip, and run NN-queries for each
in order to find similar frames or shots and ultimately similar clips. Another example
are image search engines with thousands of users issuing queries concurrently. From
an algorithmic point of view, batching of queries can be advantageous because the
concurrently running queries may be able to share cache content, thereby increasing
the query throughput, as we will show later.

A formal definition of the multi k-NN search problem is given next:

Definition 2 (Multi k-nearest neighbor query) Given a dataset V of N d-dimensional
vectors and Q query vectors q1, . . . , qQ , the Multi k-nearest neighbor query (MNN-
query) returns the set {N Nq1(k), . . . , N NqQ (k)} of k-nearest neighbors for each qi .

3.2 Scan and Tree Algorithms

The most straightforward way to compute the k-NNs for a given query vector q is
by scanning all vectors, computing the distances, and storing the closest k. Besides
simplicity, this has the additional benefit of improving cache locality since CPUs read
a whole cache line of vectors into L2 cache with the access of the first vector of that
line. Subsequent vector reads can therefore be served directly from cache. We will
refer to this algorithm as scan in the remainder of the paper.

Another common approach is the use of tree-based index structures to reduce the
amount of vectors that have to be inspected. The k-d-tree [8] is oftentimes the structure
of choice for in-memory high-dimensional NN-search since it provides O(logN )

search time for N randomly distributed vectors. A k-d-tree partitions the data space
recursively into two half-spaces at each tree node such that both halves contain the
same number of vectors. The tree node itself represents the vector that defines the axis-
parallel partitioning plane. There are different strategies for picking the dimension
along which the partitioning happens. In this paper, we assume the dimension with the
largest value range is picked for partitioning. This resulted in the best performance in
our experiments.

The algorithm to search for the k-NNs of a query vector q works as shown in Fig. 1.
It repeatedly prunes half-spaces that are further away than the current kth NN, since
these cannot contain any closer vectors. More details can be found in [8]. We will refer
to this algorithm as tree in the remainder of the paper.

It should be noted that this paper does not intend to compare a scan and a
tree algorithm. We rather pick the two algorithm as examples for “scan-like” and
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Fig. 1 The k-NN search algorithm on k-d-tree

“tree-like” algorithms and how our autotuned optimizations help in their respective
query throughput. The proposed optimizations would apply to many other search
algorithms that share a similar nature to these scan-like and tree-like algorithms.

3.3 Parallel Multiquery Algorithm

In this paper, we explore various ways to parallelize both the scan and tree algorithm
to benefit the MNN problem.

Figure 2 illustrates a scenario that mimics the usage of multi-NN algorithms in
practice. The scenario envisions a shared address-space parallel machine processing
multiple simultaneous NN queries using multiple threads on a shared-memory resident
dataset. We use Fig. 2 to explain various optimization parameters that we consider
during parallelization of the scan and tree NN algorithms. These parameters affect the
way the input queries and the base data are partitioned.

In Fig. 2, the input shown on top consists of a set of k-NN queries. The ideal size, Q,
of this set depends on the cache sizes per core, since we need to keep status information
per query and if Q is too large, thrashing may occur. If Q is too small, there will be
less benefit from sharing read vector data.

The query vectors are further partitioned into P sets. Each of the P sets is indi-
vidually processed by a group of T threads. Again, the optimal values for P and T
will depend on various architectural details such as the number of cores, cache sizes,
and so on. All threads in the group working on the same query subset, P , (e.g., T1a
and T1b) will then read distinct blocks of the dataset in a block-cyclic fashion. This
approach leads to balancing the workload across the threads in a group. The base data
first gets partitioned into blocks of size B each. Whenever a thread finishes, it will
pick the next block of data not yet processed by the other threads in the group. No two
threads process the same data block. For the tree algorithm, we build one tree index
per data block.
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Fig. 2 Optimization parameters for scan and tree nearest neighbor algorithms

Finally, we allow the data to be stored in stripes of a certain size S. With data
striping, we first store the first S dimensions of each vector, followed by the next S
dimensions, and so on. This is useful in further improving the cache locality. By setting
Q = 1, T = 1, P = 1, B = 1, S = d, the parallel multi k-NN algorithm reduces to
the sequential multi k-NN query algorithm.

3.3.1 Discussion of Parameter Trade-offs

More details on each parameter and how they impact the query throughput is given
in the next section. However, here we briefly describe the fundamental aspects of the
parameters we have chosen for optimization.

(1) The number of partitions, i.e., the parameter P , enables us to perform query
partitioning. Making a loose analogy with parallel processing, queries can be seen
as instructions, whereas vectors could be seen as data. Via query partitioning, we
are executing different sets of queries on the same data in parallel, in a multiple-
instructions, single data approach.

(2) The number of threads per partition, i.e. parameter T , enables us to perform data
partitioning. This means we execute the same queries in a partition over different
segments of the data in parallel, akin to single instruction, multiple-data, i.e.
SIMD,1 processing. When we have T > 1 and P > 1, we get the most general
case of multiple instructions, multiple data, i.e. MIMD, processing.

(3) The block size, i.e. parameter B, enables us to implement a fundamental algorith-
mic optimization: sharing of partial results between the parallel computations.
This parameter creates a tradeoff between data filtering efficiency and synchro-
nization overhead. Too many blocks will result in frequent synchronization across

1 This is just an analogy, not to be confused with the SIMD instructions, like SSE, which we discuss later.

123



Int J Parallel Prog (2013) 41:595–620 603

Table 1 Parameters used in the paper

Input Parameter description

N Number of vectors in the dataset

d Number of dimensions per vector

k Number of nearest neighbors

Tuning Parameter description Goal

C Shortcutting (if set to 1) Reduce the amount of data touched

B Block size (# of vectors per block) Improve shortcutting via result sharing

P Number of query partitions Enable distribution of queries over cores

T Number of threads per partition Enable distribution of data over cores

Q Query batch size Improve temporal locality of data access

S Data striping size in dimensions Improve spatial locality of data access

threads. Too few blocks will prevent different threads from learning each other’s
progress, reducing the effectiveness of filtering.

(4) The stripe size, i.e. the parameter S, enables us to exploit spatial data locality, a
crucial performance factor in today’s multi-core processors with complex memory
hierarchies.

(5) The query batch size, i.e. the parameter Q, provides temporal data locality during
query processing, somewhat dually to stripe size. As we discuss later in the paper,
the parameters Q, P , and S have interesting interactions, as the diversity in the
batched queries impacts their data access patterns and thus the best stripe size S
to use.

3.3.2 Summary of Parameters

We close this section with a summary of all parameters used in this paper in Table 1
and a description of the data sets used for experiments presented in the rest of the
paper.

It is important to note that the benefit that can be achieved from tuning these
parameters is highly dependent on the workload characteristics, such as the query and
data distributions. As such, our auto-tuning approach provides performance benefits
that go beyond code optimization techniques that rely on modeling the hardware [29].

3.4 Basic Performance with Shortcutting

We now discuss an algorithmic optimization called shortcutting that is applied to both
scan and tree algorithms in order to reduce the cost of distance computations even
for sequential execution. The resulting optimized algorithms serve as baseline for the
following optimization steps.

The shortcutting optimization discussed here is important since the evaluation
time of quadratic form distance functions grows quadratically with the number of
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dimensions [22]. Reducing this component of the overall cost can improve high-
dimensional k-NN-search performance. Once k-NN candidates are determined, their
largest distance from the query vector can be used to shortcut all following distance cal-
culations. If, for example, the Euclidean distance is used, the summing of the squares
can be terminated once the partial sum exceeds the largest possible NN-distance found
so far. When introducing parallelism further down, this shortcutting will be even more
useful since multiple largest k-NN distances from different parts of the dataset are
determined concurrently thus leading to a higher likelihood of early termination of the
distance calculation.

For validation of all optimizations, we use two real-world datasets in this paper.
They consist of high-dimensional feature vectors extracted from various video sources
of the TREC 2007 Text Retrieval Conference [19]. Specifically, we use the following
feature vector sets:

– Color Histogram (CH): global color of 700, 353 video shots represented as
166-dimensional histograms in HSV color space

– Histogram of Oriented Gradient [5] (HOG): features related to edge orientation
histograms of 21, 532 video shots with 3, 780 dimensions each.

Both datasets have very different data distributions, with the HOG dataset being much
more high-dimensional than the CH dataset. In the remainder of the paper up to Sect. 5,
we will use the CH dataset for our experiments exclusively.

We implemented the shortcutting optimization for both the scan and tree algorithms.
The resulting performance will be considered as our baseline performance (see Fig. 3).
The figure plots the search time for 1,000 queries as a function of the data size. Like
the rest of the experiments in Sect. 4, we use the CH dataset for this experiment and
a dual quad-core Intel machine with a total of 8 cores.

As expected, the tree algorithm is significantly faster than the scan algorithm. While
the scan time grows linearly with the data size, the tree search time is slightly sub-linear
since it can prune larger amounts of data that do not require any distance calculations
subsequently.

Even though we leave k (the number of NNs requested) constant in this experiment
(k = 10), we want to point out a subtle dependency between k and the search time. Both
the scan and the tree algorithm’s search times increase with increasing k. In the case of
trees, this is due to the reduced pruning power with more NNs requested. In the case of
scans, this is due to the fact that we store the current best k NNs in a heap data structure.
The height of this heap grows logarithmically with k. Since the overall search time
consists of a constant part (i.e., the reading of the vectors and distance calculations)
and a logarithmic part (i.e., the heap operations), we see a logarithmic behavior even
for scans. This shows that cost components that were negligible for disk-based search
algorithms, can have a significant impact on memory-based algorithms.

4 Discussion of Optimizations

We now discuss the six optimization dimensions that showed most impact on the
overall algorithm performance: SIMDization, multi-threading, load balancing, cache
sharing, query partitioning, and data striping. We discuss each parameter in detail to
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Fig. 3 Basic un-optimized
performance with shortcutting.
Unlike the scan-version, the
tree-version performs
sub-linearly. SSE leads to
marginal performance gains

demonstrate its impact on performance and to explain the subtle differences they have
on scan and tree algorithms.

4.1 Use of SIMD Instructions

At the inner-most core of the k-NN search algorithm lies the vector distance computa-
tion, which is amenable to acceleration via SIMD instructions, such as the Intel SSE
extensions. By performing the equivalent of 4 scalar floating point operations using
one instruction, we could accelerate the vector distance computation by a factor close
to 4.2 However, there are practical obstacles to achieving this ideal speedup. First, the
algorithmic shortcutting optimization mentioned in the previous section introduces
branches into the inner most loop, as we need to compare the partial distance with
the current kth shortest distance. This reduces the pipeline utilization and results in
increased number of cycles per instruction (CPI). However, the cost savings obtained
from applying algorithmic shortcutting far out-weights the potential loss of perfor-
mance during the SIMDization stage. Second, again due to shortcutting, we start
chasing memory as we are not performing a true linear scan anymore (we do not touch
all the data). In the rest of the paper, we will discuss striping in detail, which tries
to solve the resulting spatial access locality bottleneck. However, striping introduces
additional branching into the code. Striping and shortcutting together make it difficult
to use unrolling to get the true benefit out of SIMDization. Finally, the number of
hardware threads available on a processor may not necessarily match the number of
SIMD units available, making it a potential bottleneck on some architectures.

Figure 3 shows a slight improvement (around 6–7 %) in performance with explicit
SIMD instructions embedded in the code using g++ provided intrinsics. Note that the
compiler is free to emit SSE code even in the absence of intrinsics in the user code, using
auto-vectorization. As a result, the improvement in the performance should be inter-

2 Horizontal addition of a vector of 4 floats, which is an operation needed for distance computation via
SIMD instructions, requires 2 SIMD instructions with SSE3, which is only 2 (< 4) times better than the
scalar version of the same computation.
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preted as the benefit of manual SIMDization over the auto-vectorization performed
by the compiler.

In the experiments reported in this paper, we have used the SSE instructions to
accelerate the vector distance computations on the Intel processors. We relied on
SSE3 instructions that are 128-bit. Experiments on more modern Intel hardware that
supports 256-bit AVX instructions showed mixed results. The performance for the
HOG dataset showed 3 % reduction in performance, whereas for the CH dataset it
showed a marginal 2 % improvement. We do not use SIMD as a tuning knob.

4.2 Multi-threading

The most obvious tuning step is the introduction of multiple concurrent threads. There
are two ways to extend the algorithms to multi-threading: by concurrently performing
the data exploration for a single query and by allowing multiple pending queries to
run concurrently. In this section we focus on the former, the latter will be discussed in
a later section on multi-query optimization.

In order to execute a single query with T concurrent threads, we split the data into T
equally sized blocks, i.e. B = N/T . For the scan algorithm, we then run T concurrent
scans, one on each data block. For the tree algorithm, we first build T index structures
and then run the tree traversal algorithm from Fig. 1 concurrently on each index. Since
the tree construction is done offline, we will not count this step into the query time.
The resulting query response time for different dataset sizes is shown in Fig. 4a (note
that the x-axis is in logarithmic scale).

The execution time for scan algorithm with both one thread (cross symbol) and
eight threads (box symbol) is linear in the number of data vectors, with the multi-
threaded version with T = 8 being nearly twice as fast. The reason why we do not
see perfect scale-up with T is two-fold: First, the memory subsystem is becoming
saturated since each thread has to fetch data from main memory. Second, the scans in
different data blocks finish at different times due to different amounts of shortcutting

(a) (b)

Fig. 4 Multi-threading with Data Partitioning. a Data size (n) versus execution time. Multi- threading
benefits the Scan algorithm but hurts the tree algorithm. b Number of threads (T) versus execution time.
Only the scan algorithms scales with the number of threads
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(a) (b)

Fig. 5 Effect of sharing across data partitions. a Data size (n) versus execution time. Larger number of
blocks improve the scan performance. b Number of blocks (B) versus execution time. Too many or too few
blocks degrade the scan performance

(see previous section). The thread that encounters many shortcuts will finish sooner
than a thread with few shortcuts. As a result, the former thread will sit idle until all
threads have finished. In summary, the scale-up is sub-optimal because of memory
bandwidth limitations and uneven load across the T threads. The next sections will
address these problems by introducing multi-query cache sharing and finer-grained
data partitioning.

As expected, the tree algorithm is sub-linear in the data size. However, surprisingly,
the multi-threaded version performs slightly worse than the sequential version. This is
due to the decreased cache locality. Each of the multiple threads running concurrently
performs random memory accesses during the tree traversal. There are O(T log( N

T ))

such random accesses compared to O(log(N )) random accesses for the sequential
tree algorithm. With more read requests, the memory subsystem bottleneck increases,
eventually slowing down all threads. In contrast, the scan algorithm has slightly better
cache locality since each thread reads vectors sequentially, leading to a memory access
only for the first vector of a cache line. The memory bottleneck is, therefore, less
pronounced.

Figure 4b shows the query performance for different degrees of parallelism. The
scan algorithm performance improves until about 8 threads, after that it degrades. This
indicates that with more than 8 threads, the conflicting memory read requests from the
threads start to saturate the memory subsystem. For this architecture, using 8 threads
is therefore the best choice. The tree graph shows that the tree algorithm saturates
the memory already after 1 or 2 threads. The performance degrades continuously with
more parallelism. For this architecture, the sequential tree algorithm is apparently best.
We point out that for different cache sizes and memory bandwidths, these numbers
could be very different. The right tuning of T is therefore very architecture-dependent
and not obvious.
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4.3 Block-Cyclic Load Balancing and Shortcut Sharing

In order to better balance the load for the different threads, we now introduce another
tuning knob, the block size B. Previously, the number of blocks were always equal to T .
By turning it into a separate parameter, we can perform block-cyclic load balancing as
follows: whenever a thread finishes its assigned data block, it picks the next unassigned
block and processes it. This way, threads that finish their block early due to shortcutting,
will not sit idle as long as there are more blocks to process.

A second improvement is the sharing of shortcutting information between threads.
Once a thread finishes its current data block, it inspects a global variable storing
the smallest kth NN-distance found so far. If its local kth NN-distance is smaller, it
updates the global variable. If the global variable is smaller, it updates its local kth
NN-distance and uses that for shortcutting during processing of the next data block.
This way, shortcutting information is shared among all threads while requiring global
memory access only during data block switching. Since this improvement can never
impact runtime negatively, we use shortcut sharing as the default when block-cyclic
load balancing is used.

Figure 5a shows the improved scale-up for 8 threads. For all dataset sizes, the
scan algorithm with B = 1, 024 (denoted by “scan-B1024”) is about 10 % faster than
the version with B = N/T (denoted by “scan-B0”). This indicates that there is some
amount of uneven load between the threads for B = N/T , due to the data distribution.
The tree graph in Fig. 5a is shown mainly for reference since multi-threading of single
queries is not helpful on this architecture.

Figure 5b shows that the choice of B is not obvious: If B is too large (i.e., few large
blocks), load balancing will be limited as seen in the 10 % overhead for B = N/T . If B
is too small (i.e., many small blocks), read sequentiality within a thread is diminished,
leading to increased cache misses due to data thrashing. This leads to the u-shaped
graph in the figure with a minimum at around B = 1, 024. Again, this value depends
on various architectural parameters (e.g., cache line size and memory bandwidth). The
tree graph in this figure is again shown for reference, as no multi-threading is used
and therefore B = 1 for the tree algorithm.

4.4 Multi-query Cache Sharing

Up to this point, we have considered only single-query optimizations. In reality, it
is not uncommon to have a list of multiple pending k-NN queries. Examples are
multi-user systems with thousands of query requests per second and problems that
generate a list of NN queries (such as video or music searching). In such scenarios we
can further improve the query throughput by performing one data scan for multiple
pending queries rather than one scan for each query. The advantage of this “query
batching” is that each data vector has to be retrieved only once from main memory for
each batch, thereby reducing main memory contention.

For the tree algorithm, sharing of read memory vectors among multiple queries
is difficult since each query may explore a different subspace of the data vectors.
Therefore, during the tree traversal as shown in Fig. 1, each query may descend down
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Fig. 6 Effect of query batching.
Reusing data across queries
improves performance
significantly

Table 2 Effect of query
batching on low-level metrics.
Cache misses (both L2 and L1D)
as well as cycles per instruction
(CPI) are reduced

Metrics Q1 Q10

CPI 2.43 1.04

L2 misses 142M 32.6M

L1D misses 152.8M 41.8M

Mispred. rate 1 % 2 %

to a different child at any given node. It is possible to collect pending query requests
at the different tree nodes and only traverse further down once enough requests have
been collected, similar in spirit to the buffer tree approach [2]. However, if the buffers
at each node are small, not much data sharing is possible. If the buffers are large, the
query response time will suffer since it takes longer to collect enough pending requests
in a node. Another possibility would be to pick a B that is small enough such that
up to T trees fit into L2 cache, thereby reducing cache misses. This however leads
to a degradation of the logarithmic tree search complexity because now every thread
will have to traverse a large number of trees, turning the search essentially into a scan
again. For these reasons, we do not consider multi-query cache sharing for the tree
algorithm. We will see in the next section that running concurrent queries on the trees
of different data partitions is more beneficial for the tree algorithm.

Figure 6 shows the effect of query batching on the scan algorithm for varying dataset
sizes. In this experiment, we compare two query batch sizes: Q = 1 and Q = 10.
Across all dataset sizes, the throughput is increased by a factor of approximately 5.
As can be seen from the figure, with Q = 10, the scan algorithm is 3–5 times faster
than the tree algorithm. We will see in the next section that a larger Q is not always
better, however.

Table 2 shows low-level metrics for the same experiment presented in Fig. 6. We
observe that query batching with Q = 10 reduces L2 cache misses by a factor of 4.6×
and L1 data cache misses by a factor of 3.66×, compared to no query batching. It also
reduces the number of cycles spent per instruction (CPI) by a factor of 2.3×. On the
downside, query batching increases branch misprediction rate from 1 % to 2 % due to
the inner query loop introduced in query batching. However, the misprediction rate is
quite low in general.
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(a) (b)

Fig. 7 Effect of query partitioning. a Data size (n) versus execution time. More partitions benefit the tree
but hurt the scan performance. b Query batch size (Q) versus execution time. Effect of partitioning is more
pronounced for small query batch sizes for scans and larger batch size for trees

4.5 Query Partitioning

As discussed in the previous section, some search algorithms, such as the tree algo-
rithm, benefit less or not at all from multi-query cache sharing due to variations in
the data access pattern between queries. In this section, we introduce a way to paral-
lelize multiple queries by partitioning the set of pending queries into P partitions and
processing each subset independently of the other subsets. While query batching is
somewhat data-driven, as each thread traverses its portion of the data and calculates
distances for all queries in the batch, query partitioning is somewhat query-driven, as
each query partition triggers a traversal of the data.

Another way to look at the two approaches is by consulting the example in Fig. 2.
For P = 1, all threads are working on the same 16 queries. Each data block read by
a thread is used to compute 16 distances per data vector in it. On the other hand, for
P = Q, each query has its own threads. Each data block read by a thread is used to
compute only the distances to that thread’s query vector. If we use the tree algorithm,
the trees of the data blocks are now traversed by each query’s thread independently to
obtain the k NNs per block.

In order to keep the model general, we also allow for a mix of these two extremes.
In the example in Fig. 2, the query batch is partitioned into P = 4 partitions with each
partition being assigned T = 2 threads. In this case, all four partitions are processed
in parallel but within each partition, the two threads follow the multi-query cache
sharing approach (and the block-cyclic load balancing) for their assigned 4 queries.
This way, our query framework can adapt to various modes of data/result sharing and
data/query-driven execution.

Some effects of the P and T parameters are shown in Fig 7a. For the scan algorithm,
using one partition with 8 threads is noticeably better than using two partitions with
4 threads each, for all dataset sizes. This is due to the fact that with more partitions, each
thread processes smaller number of queries and thus more data scans are performed
overall. On the other hand, the tree algorithm performs better with two partitions than
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one because it cannot share data reads for multiple queries in a partition and has to
therefore process all queries in a partition sequentially for each data block.3

Figure 7b plots the execution time for various query batch sizes. For the scan algo-
rithm, the difference in execution time due to partitioning diminishes with increasing
Q, because the number of queries per partition gets too large, making it impossible to
fit a data vector and the entire set of queries into cache. The tree algorithm performs
best with 8 partitions for all batch sizes.

4.6 Data Striping

Multi-media related feature vectors oftentimes have a high number of dimensions. Due
to our shortcutting optimization, typically only a subset of these dimensions needs to
be read in order to rule out a vector. As an example, assume we store N vectors
v1, v2, . . . vN with 100 dimensions as

v1
1, . . . , v1

100, v
2
1, . . . , vN

100, . . .

Further assume the cache line can hold 50 dimensions and reading of all vectors after
the first one can be shortcut after 8 dimensions. Then after accessing v1

1 , all components
v1

1 through v1
50 are brought into the cache. Once v2

1 is accessed, a new memory access
is required and v2

1, . . . , v2
50 is brought into the cache. When shortcutting at v2

8 and
switching to v3

1, yet another memory access is needed, leading to N accesses overall.
On the other hand, assume we were to store the vectors in a striped layout with a

stripe size of 10 dimensions:

v1
1, . . . , v1

10, v
2
1, . . . , v2

10, . . . , v1
11, . . . , v

1
20, v

2
11, . . . , v

2
20, . . .

For this layout, reading the first vector requires 10 memory accesses since it is striped
across 10 locations. However, reading the next (shortcut) vectors is much cheaper
since after reading v2

1, the first 10 dimensions of the next 4 vectors have been brought
into the cache as well. Therefore, reading the remaining N − 1 vectors requires only
� N−1

5 � accesses.
The exact stripe size depends on the cache line size, the cache size, and the data

characteristics. If the data was transformed via PCA [15] for example, most of the
information needed for NN searching may be concentrated in the first few dimen-
sions and a shorter stripe size would be better. If the dimensions are not sorted by
“information content”, a larger stripe size would be better.

Figure 8a shows how striping affects the scan algorithm’s performance (we do
not perform striping for the tree algorithm since the traversed tree nodes are rarely
clustered on the same cache lines anyway). For all dataset sizes and query batch
sizes Q, choosing a stripe size S = 16 cuts the query response time by nearly half
compared to no striping (indicated by “S0”). Figure 8b shows how different stripe

3 If the blocks are sufficiently small, this may still be advantageous if the index trees fit inside L2 or
L3 cache.
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(a) (b)

Fig. 8 Effect of data striping with query batching. a Data size (n) versus execution time. Data striping
benefits the scan algorithm for all data and query batch sizes. b Stripe size (S) versus execution time. Data
striping is sensitive to query batch size

sizes affect the query performance for two different query batch sizes. Both graphs
are u-shaped because too small stripe sizes lead to extra memory accesses because the
vector components are too scattered across memory, while too large stripe sizes lead
to extra memory accesses because cache line space is wasted with unnecessary vector
components. For Q = 1, the optimal stripe size is at around 8, while for Q = 10, the
best stripe size is 32. The stripe size is bigger for larger query batch sizes because when
many query vectors are considered together, the maximum shortcutting for all query
vectors determines the optimal stripe size. This is a good example for the complicated
interplay between the various optimization parameters.

4.7 Discussion

In the previous sections, we have discussed the various tuning parameters that we have
externalized for both scan and tree algorithm. While there may be other parameters
that could be introduced, we believe that the discussed ones are the most beneficial.
In this section, we compare the contribution of each tuning parameter on the overall
query performance.

Figure 9a presents the query response times for both scan and tree algorithm for
varying samples of the color-histogram dataset. For the scan algorithm, we first add
multi-threading with T = 4 and P = 2 which reduces the response time by about 44 %.
When adding multi-query cache sharing with B = 1, 024, the response time drops by
another 8 %. Adding striped data layout with S = 16 reduces the response time by
approximately 60 %. Finally, executing multiple queries in a batch of size Q = 10
lowers the query time by additional 75 %. We can see that for the scan algorithm and
this dataset, query batching and data striping are the two most beneficial optimization
parameters.

The performance of the tree algorithm on the same dataset is shown as graphs with
triangle symbols. In order to reduce clutter in the figure, we only show the base line
performance (for a single tree index over the data) and the improvement obtained by
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HOG Dataset

(a) (b)

Fig. 9 Contributions of individual optimizations (Data size (n) versus execution time). Effect of individual
optimizations varies as per the data set properties. a Color Histogram Dataset, b HOG Dataset

using Q = 128 queries per batch, B = 1, 024 data block size, P = 8 partitions and
T = 1 thread per partition. For these settings, we see a more than 50 % drop in query
execution time across all dataset sizes.

While the basic tree algorithm initially largely outperforms the scan algorithm,
with all optimizations applied, the scan algorithm is nearly twice as fast (with 3.33 s)
as the tree algorithm (with 6.2 s) for executing 1, 000 NN-queries. Overall, the scan
algorithm was improved more than 16 times due to the successive optimizations.

Figure 9b illustrates that applying the same optimization parameter settings for
a different dataset does not necessarily lead to the same gains. The figure shows the
same plots as the previous figure but for the extremely high-dimensional HOG-dataset.
The most obvious difference is that the tree algorithm performs much worse than the
scan algorithm, even with all optimizations applied. This is expected because tree-
based index structures that recursively partition the data space tend to traverse most
of the tree nodes because less pruning is possible (due to the similarity of distances in
high-dimensional spaces).

But also within each algorithm class, we observe different gains for the differ-
ent optimizations. For the scan algorithm, multi-threading with T = 4 and P = 2
improves query response time only about 25 %. Multi-query cache sharing with
B = 1024 reduces the time by 33 %. Adding striped data layout with S = 16 degrades
(!) the performance about 2×. Finally, query batching with Q = 10 reduces the time
by more than 65 %. For the HOG-dataset, multi-query cache sharing seems to be more
beneficial than for the color-histogram dataset. On the other hand, data striping with
S = 16 and multi-threading with T = 4 and P = 2 are less beneficial than for the
color-histogram data. Similarly, using Q = 128, B = 1024, P = 8, T = 1 for the
tree algorithm improves the performance by only 17 %.

These two examples show both the potential of the proposed tuning parameters as
well as the high dependency of these parameters on the algorithm used, the data distrib-
ution, and, as we will see later, the machine configuration. All parameter combinations
shown here are merely a small slice in the overall parameter space. Other parameter
settings may yield much better (or much worse) performance results. By now, we hope

123



614 Int J Parallel Prog (2013) 41:595–620

to have convinced the reader that (1) having a small set of tuning parameters is useful
for making the tuning task tractable, and (2) it is still very hard for humans to pick the
right parameter settings because of the many intricate dependencies of parameters on
the problem configuration and on other parameter values.

5 Auto-tuner

In this section we discuss automatic configuration of the optimization parameters
used in our scan and tree-based search algorithms. This is achieved via developing a
simulated annealing [16] based offline auto-tuner.

5.1 Simulated Annealing

The complexity and diversity of modern processor and memory hardware, involving
large number of cores, deep cache hierarchies, instruction pipelines, branch predic-
tion units, vector instructions, etc., coupled with the algorithmic and systems related
complexity inherent in multi-threaded software running on these hardware, make opti-
mization approaches based on precise modeling not only extremely difficult but also
unportable from one hardware to another.

Most importantly, such a model would need to incorporate the impact of the data
set on the performance of the algorithm. As an example, the variance in the num-
ber of dimensions used before shortcutting kicks in, across different queries in the
same batch, impacts the effectiveness of data stripping. This depends highly on the
query distribution. This example also illustrates another difficulty: modeling the subtle
interactions between different parameters.

In this work, we use an offline auto-tuner that explores the parameter space by
running the search algorithm on a sample data set and measuring the time it takes to
execute sample queries on this data. On the up side, this approach does not attempt
to model the hardware, the software, the workload, or the interactions between them,
thus it is quite portable under changes to any combination of these components. On
the down side, it requires that the auto-tuner is run offline, as it takes more time than
modeling based approaches. This is however not a major concern for the real word
application (video copyright violation detection) that motivated this work.

Specifically, we employ a simulated annealing-based algorithm that is run offline to
come up with a set of parameters that result in “good” performance. Even though there
is no optimality guarantee, in practice we found that the configurations derived from
the simulated annealing runs are markedly superior to what we were able to achieve
via manual optimization based on the insight we have gained form the experiments
reported in the earlier sections.

One of the most important aspects of the simulated annealing algorithm is the
technique used for moving from one solution to the next. This requires us to formulate
a set of parameter constraints that define the space of possible moves given the current
settings of the parameters.
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5.2 Parameter Constraints

At each simulated annealing step, we randomly pick one of the parameters to change
and assign a random value to it from the valid range of values it could take, respecting
the constraints imposed on it based on the current values of the remaining parameters.
Denoting the maximum query batch size by Qm and the maximum number of total
threads available by Tm , we summarize the parameter constraints as follows:

1) The query batch size should be at least equal to the number of partitions, so that each
partition has at least one query. On the other hand, there should be an application
specific value for the maximum number of queries that can be batched (Qm). In the
worst case, a delay sensitive application with low query rate could define Qm = 1,
disabling the query batching, whereas a throughput sensitive application with high
query rate could provide a relatively large value for Qm , benefiting fully from the
query batching optimization. In summary, we have:

P ≤ Q ≤ Qm .

2) The number of partitions times the number of threads per partition should be
less than the total number of threads available in the system (Tm). Since the in-
memory nearest neighbor search is CPU-bound, one may set Tm equal to the
maximum number of hardware threads available. In summary, considering the P
and Q relationship from item 1, we have:

1 ≤ P ≤ min(Q, 	Tm/T 
).

3) The number of threads per partition should be less than or equal to the number
of blocks used to partition the data (N/B), since each thread needs to process at
least one block. In summary, considering the P and T relationship from item 2,
we have:

1 ≤ T ≤ min(	Tm/P
, 	N/B
).

4) The block size constraint directly follows from item 3:

1 ≤ B ≤ 	N/T 
.

5) Finally, the stripe size is subject to the constraint 1 ≤ S ≤ dt , where dt is the
number of dimensions that cover (1 − ε) ∗ 100 % of the energy, in case the vector
space is transformed via PCA (otherwise dt = d could be used).

5.3 Experimental Results

In this section, we present our results from running the auto-tuner algorithm on scan-
based nearest neighbor search using a Power SMP machine (p595) with 64-processors
and 128-cores (2 cores per processor), as well as the dual quad-core Intel machined
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described earlier. We use two data sets for these experiments, CH and HOG. However,
before we move on with these results, we first look at some of the interesting inter-
actions between key parameters using the same setup from the earlier sectionsx. The
understanding gained from this analysis would help us interpret the results from the
simulated annealing more effectively.

5.3.1 Interplay Between Key Parameters

As Figure 10 shows, there is a subtle interplay between the number of partitions P ,
the number of threads per partition T , the query batch size Q, and to some degree the
stripe size S. This figure shows four graphs for four different P–T combinations. For
each combination, we measure the query execution time for varying Q.

All four graphs exhibit a u-shape: smaller query batches provide less data sharing
among queries and larger query batches not only hurt query access locality, but also
have a negative impact on striping. The latter effect is more pronounced when the
number of partitions is small. Too many queries in a given batch (which happens
when P is small and Q is large) increases the variance in the number of dimensions
explored before the shortcutting takes effect. This reduces the effectiveness of striping.
For this very reason, when the query batch size is small, P1-T 8 seems to be the best
setting, but as the query batch size increases, more partitions start to provide better
results.

5.3.2 Results from Auto-tuner

Figure 11 shows a sampling of the simulated annealing steps, sorted by the amount
of time it takes to execute 1, 000 10NN queries (randomly sampled following the data
distribution) over the CH data set for the Power machine. The figure also shows indi-
vidual settings for the 5 key parameters we have. Table 3 shows summary information
about the annealing runs, including the maximum and median execution times, as
well as the best setting found, for both HOG and CH data sets. While it would be
interesting to compare the best result found via annealing with that of an exhaustive
search over the configuration space, the latter is prohibitive due to immense size of
the configuration space.

Fig. 10 Interplay between
Q, P, S, and T . No individual
parameter determines the
optimal performance
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Table 3 Summary of annealing
results for the Power machine
(CH dataset)

Metrics CH HOG

exec. time, max 48.724 s 132.285 s

exec. time, med 0.855 s 3.184 s

exec. time, anneal 0.133 s 0.416 s

Anneal setting P32 T4 B128 Q64 S32 P16 T8 B32 Q32 S256

There are a number of interesting observations from the results. First and fore-
most, the best setting provides around 300× improvement over the worst setting
(P1 T 1 B1 Q1 S1) and 7.7× improvement over the median setting for the HOG data
set. Similarly, the best setting provides around 360× improvement over the worst set-
ting and 6.4× improvement over the median setting for the CH data set. Second, the

Fig. 11 Explored Configurations for the Power Machine
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Table 4 Summary of annealing
results for the Intel machine

Metrics CH HOG

exec. time, max 53.205 s 278.123 s

exec. time, med 2.541 s 6.783 s

exec. time, anneal 0.421 s 1.112 s

exec. time, best 0.421 s 1.097 s

Anneal setting P2 T4 B512 Q64 S32 P8 T1 B256 Q32 S128

Best setting P2 T4 B512 Q64 S32 P4 T2 B256 Q32 S256

best setting for both the HOG and the CH data sets use exactly 128 threads (Tm was set
to 4×128). This is justified as there is no reason to use more than the available number
of hardware threads when the CPU is fully utilized. Third, the number of queries per
partition happen to be the same (2) for both data sets, whereas the stripe size is 8 times
larger for the HOG data set. The latter could be explained by the fact that the HOG
data set has ≈ 20 times more dimensions compared to CH.

Results for the dual quad-core Intel machine are similar, where improvements
compared to the worst and median settings are reaching up to 250 times and 6 times,
respectively for the HOG data set. The most striking difference in the dual quad-
core results, compared to the Power results, is the best parameter settings. Again this
stresses the importance of architecture specific tuning, which we are able to perform
in a portable way using our auto-tuner.

Since the Intel machine parameter search space is smaller (less number of cores),
we have also run an exhaustive search for this case. The exhaustive search took 3.5
days for the CH dataset and around 6 days for the HOG dataset. Table 4 shows the
results. We see that for the CH dataset the simulated annealing approach has found
the exact optimal solution. However, for the HOG dataset the solution found by the
annealing is different than the optimal one (based on exhaustive search). The good
news is that, the performance of the best configuration is only 1.3 % lower than that
of the configuration found by the annealing solution.

In summary, the tuning knobs we have chosen impact fundamental aspects of the
nearest neighbor search, either through interacting with the algorithmic aspects, archi-
tecture specific aspects, or the data dependent aspects of the processing involved. These
parameters show complex relationships that are both hardware and workload specific,
and as a result quite difficult to model in a parametric way. Our experience with the
auto-tuner, as presented in this paper, shows that these optimization parameters could
be configured automatically, providing two orders of magnitude improvement over
a non-optimized scenario and close to an order of magnitude improvement over an
average case configuration.

6 Conclusion

In this paper, we presented a novel way to deal with the complexity of tuning algo-
rithms, specifically search algorithms, for the large variety of today’s multi-core
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architectures. We focused on the parallelized multi k-NN search problem for high-
dimensional datasets as found in image and video repositories. For this application, we
identified a set of tuning parameters that capture different dimensions of performance
optimization and validated them on a real-world dataset. Examples of these parameters
are query batch size, data stripe size, number of threads, number of query partitions,
and the data block size. This validation conclusively demonstrated the complex inter-
play among these parameters and the need for an automated tuning mechanism. We
proposed a simulated annealing based autotuner that explores the tuning parameter
space to identify the optimal set of parameters. Our experimental evaluation of the
autotuner on different architectures and datasets showed that the resulting parameter
settings provide up to two orders of magnitude improvement over the worst settings.
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