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Abstract We consider the collective modes of a bilayer dipolar Fermi system in
which the particles interact via long range (∼ 1/r3) interaction. Assuming that each
layer has a background flow which varies little and that the dynamics of the superfluid
near T = 0 is the same as that of a normal fluid, we obtain the dispersion relations
for the collective modes in the presence of background flow. Decomposing the back-
ground flow into two parts, the center-of-mass flow and counterflow, we focus on the
properties of the counterflow. We first find an estimate of the change in the zero-point
energy ΔEZP due to counterflow for a unit area of bilayer. Combining this with the
free energy F of the system and taking the partial derivatives with respect to back-
ground velocities in the layers, we determine the current densities which reveal the
fact that current in one layer does not only depend on the velocity in the same layer
but also on the velocity of the other layer. This is the drag effect and we calculate the
drag coefficient.
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1 Introduction

Ultracold gases of polar atoms or molecules with their anisotropic long-range inter-
action are attracting a lot of interest in recent years [1, 2]. In this context, single and
multi-layer configurations of two-dimensional bosons or fermions are being studied
from the point of view of their quantum phases, Fermi liquid properties, collective
excitations, and formation of density waves [3–11].

In electronic bilayer systems a transport phenomenon known as the drag effect has
been studied for a long time. In the drag effect when a current is applied to one of
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the layers the electrons in the second will be dragged resulting in an interlayer resis-
tivity which is related to the momentum transfer between the layers [12, 13]. On the
other hand, Duan in a series of papers [14–16] introduced the idea of dissipationless
drag at T = 0 between two superconducting layers. This has been later extended to
bilayer charged and neutral boson systems [17–19]. The superflow/supercurrent drag
effect has in fact been discussed earlier for a superfluid 3He–4He mixture [20] and
proton-neutron mixtures in neutron stars [21]. On the experimental side, supercurrent
drag effect between a normal metal or a semiconductor and a superconducting film
separated by an insulating layer has been observed [22–24].

In this paper we study the supercurrent/superflow drag effect in bilayer dipolar
Fermi systems. We consider two identical, superfluid layers of dipolar fermions sep-
arated by a distance a at T = 0. Calculating the zero-point energy with the help of
the collective modes with and without the counterflow velocity to leading order, we
find that the current in one layer not only depends on the velocity in the same layer
but also on the velocity in the other layer. This is the hallmark of the drag effect.
It is interesting to note that there has been recent considerations of counterflow ef-
fects in superfluid Bose systems [25] and of frictional drag effect in trapped dipolar
gases [26].

The rest of this paper is organized as follows. We describe the model in Sect. 2 and
present our collective mode and drag analyses for bilayer dipolar fermions in Sect. 3.
We end with brief concluding remarks in Sect. 4.

2 Model

We consider a bilayer system of dipoles with uniform density n in each layer. The
interaction for dipoles in the same layer is given by

V11(r) = Cdd

4π

1

r3
(1)

where Cdd is the dipole-dipole coupling whose origin depends either on the electric
dipole moment or the magnetic dipole moment of the particles. For simplicity we
assumed that dipole moments are all oriented in the z-direction, thus the interaction
is isotropic. We have also neglected the finite thickness of the layers in which case
the intra-layer interaction in Fourier space reads [9, 10]

V11(q) = V0 − Cdd

2
q (2)

where V0 is a short-range interaction originating from the short distance cut-off in the
Fourier transform. As the physical properties should not depend on this cut-off we
regard V11(q) as an effective interaction. We, thus, introduce correlations described

by the Hubbard approximation1 which has the form GH (q) = V11(

√
q2 + k2

F )/V (q)

1This approximation is often used in the context of correlations in electron liquids, see for instance [27].
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and our effective interaction becomes V11(q) → V11(q)[1 −GH (q)], or more explic-
itly

V11(q) = Cdd

2

[√
q2 + k2

F − q
]

(3)

which is now regular.
The inter-layer interaction, on the other hand, is given by

V12(r) = d2 r2 − 2a2

(r2 + a2)5/2
(4)

where a is the separation distance between the layers, whose Fourier transform is

V12(q) = −Cdd

2
qe−aq (5)

There is no need to introduce an effective interaction for V12(q) as it is already reg-
ular at this level of approximation. Note that the inter-layer interaction is attractive,
making the situation similar to bilayer electron-hole system. We introduce a length
scale r0 = Cddm/(4π�

2) and use the relation between Fermi wave vector and den-
sity, kF = √

4πn. We also define γ = kF r0 to indicate the dimensionless coupling
strength of dipolar particles.

3 Collective Modes, Zero-Point Energy, and Drag Effect

We now consider a spin-polarized system of fermionic dipoles in a bilayer configu-
ration. We assume that the layer densities are equal and the local hydrodynamics of
the superfluid at T = 0 to be the same as that of the normal fluid. Thus, the density
response function for a single layer is approximated by [14]

χ0(q,ω) ≈ m

2π

v2
F q2/2

ω2 − v2
F q2/2

(6)

where vF is the Fermi velocity. We have the Fermi velocity vF = kF /m where
kF = √

4πn is the Fermi wave vector. The collective modes of the bilayer system
in the presence of background velocities v1 and v2 (in the first and second layers,
respectively) are obtained from the solution of [14, 15, 17]

det

∣∣∣∣∣∣∣

(ω − v1q)2 − v2
F q2

2 − V11(q)( m
2π

)
v2
F q2

2 −V12(q)( m
2π

)
v2
F q2

2

−V12(q)( m
2π

)
v2
F q2

2 (ω − v2q)2 − v2
F q2

2 − V11(q)( m
2π

)
v2
F q2

2

∣∣∣∣∣∣∣
= 0 (7)

From the solution of the determinant equation above we find the collective modes
in the absence of any background flow (v1 = v2 = 0). One of them corresponds to
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the in-phase motion of dipoles in one layer with respect to the other, with the long
wavelength dispersion relation

ω+/EF ≈ √
2
√

1 + γ (q/kF ) + 1 − 2ãγ

2
√

2
√

1 + γ
(q/kF )3 + · · · (8)

Here ã = akF is the separation distance between the layers. The other mode corre-
sponds to the out-of-phase motion of dipoles in one layer with respect to the other
and has the dispersion relation

ω−/EF ≈ √
2
√

1 + γ (q/kF ) −
√

2γ√
1 + γ

(q/kF )2 + · · · (9)

This second mode is expected to be more important because of its lower excitation
energy. We find here that the collective modes ω+ and ω− have the same leading
order q-dependence (i.e. ∼q) and they are distinguished only at the higher order
corrections. This is in contrast with other bilayer systems [14, 15, 17, 18].

For the case, v1 = v2 = v which means there is no counterflow, a term vq should
be added to the right hand side of the above dispersion relations.

In the more general case of v1 �= v2, we may decompose the background flow into
the center-of-mass flow with velocity V = (v1 + v2)/2 and counterflow with velocity
v = (v1 − v2)/2. Since the center-of-mass motion plays the role of Galilean transfor-
mation we ignore it for simplicity (i.e. V = 0) and concentrate on the counterflow.

The determinant equation in the presence of backflow, now yields

ω+/EF ≈ √
2
√

1 + γ (q/kF ) + 1 − 2ãγ

2
√

2
√

1 + γ
(q/kF )3 + · · ·

+
[√

1 + γ√
2γ

+ 2d(1 + 1/γ ) − 1

2
√

2
√

1 + γ
(q/kF ) + · · ·

]
ṽ2 + · · · (10)

and

ω−/EF ≈ √
2
√

1 + γ (q/kF ) −
√

2γ√
1 + γ

(q/kF )2 + · · ·

−
[√

1 + γ√
2γ

+ 2d(1 + 11/γ ) − 1

2
√

2
√

1 + γ
(q/kF ) + · · ·

]
ṽ2 + · · · (11)

in which ṽ = (2m/�
2EF )1/2v. Comparing, we find that the in-phase mode (ω+) is

hardened while the out-of-phase mode (ω−) is softened by the counterflow.
The zero-point energy change due to counterflow per unit area of the bilayer may

be obtained from

ΔEZP = �

2

∑
q

[Δω+ + Δω−] (12)

where Δω± = ω±(q, v) − ω±(q,0) is the difference between the collective mode
energies with and without counterflow. An estimate involving the leading order con-
tributions is obtained by considering the more energetic branch ω− and integrating
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up to qmax ∼ 1/a to yield

ΔEZP ≈ − 1

8π

√
1 + γ√

2γ

ṽ2

ã2
(13)

That ΔEZP is negative means that the total energy of the system is lowered by
the counterflow. Previous calculations [17] on charged systems interacting via the
Coulomb potential have shown that the bilayer separation dependence of the zero-
point energy is different for electrons and charged bosons. We, thus, surmise that
a similar calculation for bilayer bosons would result in a differing layer separation
dependence.

To further explore the velocity dependence of the zero-point energy, we construct
the free energy by adding the kinetic energies of the fermions in each layer

F = 1

2
nm

(
v2

1 + v2
2

) − 1

32π

√
1 + γ√

2γ

(v1 − v2)
2

ã2
(14)

from which we find the current densities calculated from ji = ∂F/∂vi , to be

j1 =
(

nm −
√

1 + γ

16π
√

2γ ã2

)
v1 +

√
1 + γ

16π
√

2γ ã2
v2

(15)

j2 =
√

1 + γ

16π
√

2γ ã2
v1 +

(
nm −

√
1 + γ

16π
√

2γ ã2

)
v2

The above expressions demonstrate that the supercurrent/superflow in the first (sec-
ond) layer depends on the superfluid velocity on the same layer as well as that of the
second (first) layer. This is the supercurrent/superfluid drag effect well known in two-
component superfluid systems [17, 18, 20, 21] and has been discussed for a variety
of related systems.

4 Concluding Remarks

In this paper we have studied the collective modes of bilayer dipolar Fermi gases
with and without the counterflow velocities. This allowed us to obtain the change in
the zero-point energy ΔEZP due to counterflow. We found that ΔEZP goes as 1/a2

for dipolar fermions, presumably reflecting the particle statistics. For charged sys-
tems interacting via the Coulomb potential it was determined that ΔEZP ∼ 1/a7/2

for charged bosons and ∼ 1/a3 for electrons. Thus, the drag coefficient (i.e. the co-
efficient in front of v2 in the expression for j1) depends on particle statistics. It may
then be possible to distinguish the quantum statistical nature of the bilayer system by
measuring the drag coefficient. Therefore, it would be most interesting to extend these
calculations to bilayer dipolar boson systems and boson-fermion mixtures. Qualita-
tive and quantitive results for unequal densities, and finite layer thickness effects
would also be useful to explore.
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