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Abstract

Several noteworthy classes of Boolean functions can be characterized by algebraic identities
(e.g. the class of positive functions consists of all functions f satisfying the identity f(x) ∨
f(y) ∨ f(x ∨ y) = f(x ∨ y)). We give algebraic identities for several of the most frequently
analyzed classes of Boolean functions (including Horn, quadratic, supermodular, and submodular
functions) and proceed then to the general question of which classes of Boolean functions can be
characterized by algebraic identities. We answer this question for function classes closed under
addition of inessential (irrelevant) variables. Nearly all classes of interest have this property. We
show that a class with this property has a characterization by algebraic identities if and only if the
class is closed under the operation of variable identi�cation. Moreover, a single identity su�ces
to characterize a class if and only if the number of minimal forbidden identi�cation minors
is �nite. Finally, we consider characterizations by general �rst-order sentences, rather than just
identities. We show that a class of Boolean functions can be described by an appropriate set
of such �rst-order sentences if and only if it is closed under permutation of variables. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Classes of Boolean functions may be speci�ed in di�erent ways. For example, con-
sider the class of positive (i.e., monotone non-decreasing) functions. The following are
among the many ways to describe positive functions:
(a) functions that can be expressed by a disjunctive normal form containing no

negated variables
(b) functions f such that

∀x; y x6y ⇒ f(x)6f(y)

(c) functions f such that

∀x; y f(x) ∨ f(y) ∨ f(x ∨ y) = f(x ∨ y)
Here our interest is principally in equational characterizations, such as (c). Characteri-
zation (c) has a particularly simple form; it is a universally quanti�ed sentence without
connectives in a certain �rst-order language with no relation symbol other than identity
(=).
In this paper we

• provide equational characterizations for a number of Boolean function classes
(Section 3),

• provide a necessary and su�cient condition for a class to have an equational
characterization that uses universal quanti�ers but no existential quanti�ers, if the
class is closed under addition of inessential (irrelevant) variables (Section 4),

• show that for every class closed under permutation of variables, there is a char-
acterization of the class that consists of an appropriate set of �rst-order sentences
(with identity as the only relation symbol, but not necessarily universally quanti-
�ed) (Section 5).

We also give conditions for a class to have a �nite equational characterization
(Section 4.3), and consider characterizations of renamable analogues of common classes
(Section 5).
A universal algebraic proof of the results of Section 4 (Propositions 4.1–4.3), es-

tablishing a connection with the Birkho�-Tarski HSP Theorem, was given by one of
the co-authors of this paper, Foldes [5].
This paper deals only with classes of Boolean functions. Recently, Pippenger extended

results from Section 4 to apply to classes of functions of the form f : {0; : : : ; k−1}n →
{0; : : : ; l− 1}, for �xed k; l¿2 (Boolean functions are the special case k = l=2) [13].
He also presented an alternative proof of Propositions 4.1–4.3 of this paper.

2. Preliminaries

This section reviews some standard terminology and introduces several terms par-
ticular to this paper. The standard terminology is taken from the theory of Boolean
functions, and also from �rst-order logic, universal algebra, and the theory of lattices.
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Additional background information can be found in Sections 30 and 10 of [16], the
�rst three chapters of [1], the �rst three chapters of [10], and Chapters VIII and XI of
[4]. The theory and application of Boolean and pseudo-Boolean functions is discussed
in [8,11,12,15].

2.1. Boolean functions

For every positive integer n, the set {0; 1}n=Bn is a Boolean lattice where a binary
n-vector x=(x1; : : : ; xn) is less than or equal to y=(y1; : : : ; yn) if and only if ∀i xi6yi.
For x; y ∈ {0; 1}n; x ∧ y denotes the binary meet (bitwise and) of x and y, and x ∨ y
denotes the binary join (bitwise or) of x and y. Complementation of x ∈ {0; 1}n is
denoted @x or �x. Clearly,

x6y ⇔ x ∨ y= y
Under the standard de�nition, a Boolean function is a map f from a �nite Boolean

lattice Bn; n¿1, to the set {0; 1}. To simplify the exposition of our results, we de�ne
a Boolean function to be a map from Bn to Bn as follows: A Boolean function is a
map f from a �nite Boolean lattice {0; 1}n=Bn; n¿1, into itself such that the possible
values of f are con�ned to the minimum [0; : : : ; 0] and the maximum [1; : : : ; 1] of Bn.
We write 0 and 1 for these extrema.
For any non-negative integer n and any set A, a map from An to A is called an

n-ary operation on A (operation of arity n). A universal algebra on a set A is a couple
(A; (fi: i ∈ I)) where I is an arbitrary set and for each i ∈ I; fi is an n-ary operation
on A for some non-negative integer n.
To every Boolean function f on Bn there corresponds a universal algebra on the set

Bn. This Boolean function algebra has two binary operations, x ∧ y (abbreviated xy)
and x ∨ y, two constant operations 0 and 1, and two unary operations, namely @x
(complementation, also denoted �x), and f.
Two Boolean functions are called isomorphic if the corresponding function alge-

bras are isomorphic as universal algebras. Equivalently, two Boolean functions are
isomorphic if they are equal under some permutation of variables (de�ned below).
For example, f(x1; x2) = x1 ∨ �x2 and g(x1; x2) = x2 ∨ �x1 are isomorphic.

2.2. The equational language

We �x a �rst-order predicate language with identity, to be called the equational
language (for Boolean functions). The operation symbols of this language are the
unary function symbol f and the operation symbols of Boolean lattices: binary join
and meet (∨ and ∧), nullary 0 and 1, and unary complementation denoted @ (or by
an overbar). The symbol = is the only relation symbol. There is a countable set V of
vector variables that is disjoint from the set of operation and relation symbols.
A term of the equational language is de�ned as follows: Any variable x ∈ V is a

term. The nullary symbols 0 and 1 are terms. If t is a term, then f(t) is a term, and
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so is @ t (or �t). If t1 and t2 are terms, then so are t1 ∨ t2 and t1 ∧ t2. Note that t1 ∧ t2
is also written as t1t2, and is described as the product of t1 and t2.
An atomic formula of the equational language is an expression of the form t1 = t2,

where t1 and t2 are terms. For example,

f(x) ∨ f(y) ∨ f(x ∨ y) = f(x ∨ y)
is an atomic formula of the equational language.
A (�rst-order) formula in the equational language is de�ned as follows: Every

atomic formula is a �rst-order formula. If � and  are �rst-order formulas, then so
are not(�); (� or  ) and (� and  ). If � is a �rst-order formula, and x ∈ V is any
variable, then ∀x� is also a �rst-order formula. A �rst-order sentence, or sentence for
short, is a �rst-order formula in which every variable occurrence is within the scope
of some universal quanti�er.
A Boolean term is a term without the symbol f. If x is a variable, then the terms

x and �x are called positive and negative literals respectively. A variable occurrence is
negated if it occurs within a negative literal. An elementary conjunction is a Boolean
term that is a product of a set of literals not containing both a variable and its negation;
if the set is empty, the elementary conjunction is reduced to the symbol 1.
A disjunctive normal form (DNF) is a Boolean term that is a join of a set of

elementary conjunctions; if the set is empty, the DNF is reduced to the symbol 0. 1

A Boolean term may be interpreted in any Boolean lattice. If the variables occur-
ring in the term are interpreted as speci�c elements of the lattice, then the term will
unequivocally represent an element of the lattice called the semantic value of the term
under the given interpretation of variables. For example, the semantic value of x ∧ y
under the interpretation of x and y as [0; 1] and [1; 0] respectively is [0,0].
Any term in the equational language may be interpreted in any Boolean function

algebra. If the variables occurring in the term are interpreted as speci�c elements of
the underlying lattice Bn, then the term will unequivocally represent an element of the
function algebra called the semantic value of the term under the given interpretation
of variables. For example, let f de�ned on B2 be given by f(x1; x2)=1 if at least one
of x1 and x2 is equal to 1, and f(x1; x2) = 0 otherwise. Then under the interpretation
of the variables x and y as [0; 1] and [1; 0] respectively, the semantic value of f(x)
is [1,1] (also written as 1) and the sematic value of f(x) ∧ y is [1; 0].

2.3. DNF representations of Boolean functions

For a �xed n, the set Fn of Boolean functions on Bn is a Boolean lattice. The lattice
order is given by

f6g ⇔ ∀x ∈ Bn(f(x)6g(x)):

1 It is common in the literature on DNF to refer to the ‘terms’ of a DNF. Since we use the word ‘term’
more generally, as it is used in logic, we refer instead to the ‘elementary conjunctions’ of the DNF.
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It is well known that every f in Fn can be represented by a Boolean formula. More
formally, every f in Fn is the semantic value of some DNF whose variables are among
x1; : : : ; xn and where xi is interpreted as the function fi given by

fi(a1; : : : ; an) = [ai; : : : ; ai]

for all [a1; : : : ; an] ∈ Bn. Such a DNF is called a DNF (representation) of f.
An implicant of f ∈ Fn is a function g ∈ Fn having a DNF consisting of one

elementary conjunction and such that g6f in Fn. Moreover, g is a prime implicant
if there are no other distinct implicants g′ of f with g6g′. In the lattice Fn, every
Boolean function f is the join of its prime implicants.
Two elementary conjunctions are said to ‘con
ict’ in the variable xi if xi is a literal

in one of them, and �xi is a literal in the other. If the two elementary conjunctions
con
ict in exactly one variable, i.e., they have the form xiP and �xiQ and P and Q
have no con
ict, their consensus is de�ned to be the elementary conjunction PQ. The
consensus method starts from an arbitrary DNF representation of a Boolean function
f, and performs the following operations in any order, until neither applies:

• Adjunction of consensus: if T and T ′ are two elementary conjunctions in the DNF
that con
ict in exactly one variable, T ′′ is the consensus of T and T ′, and there is
no elementary conjunction S in the DNF whose literals are a subset of the literals
of T ′′, then adjoin T ′′ to the DNF.

• Absorption: if T and T ′ are distinct elementary conjunctions in the DNF such
that the literals in T are a subset of the literals T ′, then delete T ′ from the DNF.

The consensus method is guaranteed to terminate with a DNF that is the join of all
the elementary conjunctions representing the prime implicants of f (see [14]).
For example, the consensus method will transform the DNF

x1 �x2 ∨ x2x3 ∨ x1x3x4 ∨ x4

into the DNF

x1 �x2 ∨ x1x3 ∨ x2x3 ∨ x4 (1)

2.4. Operations on Boolean functions

Let f ∈ Fn and let r be any onto map from {1; : : : ; n} to {1; : : : ; m}, for some
m6n. Let D be a DNF of f. For each I ∈ {1; : : : ; n}, replace each occurrence of xi
in D, whether or not preceded by @, by xr(i). (A literal @ xi = �xi will thus become
@ xr(i) = �xr(i).) The result is a join of products of literals. If any literal occurs more
than once in a product, eliminate all but once occurrence of that literal in the product.
If any product contains both a variable and its negation, then discard that product. If
any product occurs more than once, then discard all but one occurrence of that product.
In this manner a new DNF D′ is obtained by identi�cation of variables, and r is called
the identi�cation map. For example, if f ∈ F4 is represented by DNF (1), and if r
is a map from {1; : : : ; 4} to {1; 2}, such that r(1) = r(2) = 1 and r(3) = r(4) = 2, then
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the DNF obtained from DNF (1) by this identi�cation map is x1x2 ∨ x2, which by the
consensus method would become the DNF x2.
Identi�cation of variables is a restricted case of the variable contraction operation

considered by Wang and Williams [17] and Wang [18]. If f′ is the Boolean function
on Bm represented by D′, then f′ is a minor of f in the terminology of these authors,
and accordingly we shall call f′ an identi�cation minor of f. To obtain f′ from f,
the choice of the DNF D is irrelevant. If r is a bijection, then we say that f′ is
obtained from f by permutation of variables.
Associated with an identi�cation map r is a vector mapping s de�ned as follows.

Let J = {[a1; : : : ; an] ∈ Bn | ∀i; j; r(i) = r(j) ⇒ ai = aj}. Then s is de�ned to be the
bijection from J to Bm such that s(a1; : : : ; an) = [b1; : : : ; bm] implies that ai = br(i) for
all i ∈ {1; : : : ; n}.
A rather trivial operation on Boolean functions will be needed. Let f ∈ Fn; n¿1,

and let m¿n. De�ne f′ ∈ Fm by

f′(a1; : : : ; an; : : : ; am) = 1 if and only f(a1; : : : ; an) = 1

Then we say that f′ is obtained from f by adding inessential variables. As usual, for
any Boolean function f ∈ Fn, we say that a variable xi; 16i6n, is inessential in f
whenever for all a = [a1; : : : ; ai−1; ai; ai+1; : : : ; an] in Bn we have

f(a) = f(a1; : : : ; ai−1; bi; ai+1; : : : ; an)

for both bi = 0 and bi = 1. This is the case precisely when f has a DNF in which xi
does not occur. We say that the variable xi is essential if it is not inessential. In the
literature, inessential variables are sometimes called irrelevant or dummy variables.

3. Identities and inequalities for special classes

3.1. A motivating example

Consider the class of positive functions, consisting of those Boolean functions that
have at least one DNF without negative literals. Obviously these are the functions f
for which it is true that

∀x; y x6y ⇒ f(x)6f(y)

or, more compactly,

∀x; y f(x)6f(x ∨ y): (2)

This is not a sentence in our equational language, but can be readily converted to
the equivalent statement

∀x; y f(x)f(x ∨ y) = f(x): (3)

This is now a universally quanti�ed sentence, characterizing the class of positive func-
tions. In accordance with the usual practice of displaying algebraic identities, we shall
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eliminate the universal quanti�er and say that the identity

f(x)f(x ∨ y) = f(x) (4)

characterizes the class of positive functions. An identity can thus be de�ned as an
atomic formula in the equational language. Formally, an identity is said to be satis�ed
by a Boolean function f if its universal closure is satis�ed in the function algebra of f.
Equivalently, this means that the equality holds for all interpretations of the variables
as elements in the domain of f.
Our principal concern is to �nd identities such as (4) that characterize speci�ed

classes (i.e., sets) of Boolean functions. We say that a class K of Boolean functions
has a characterization by a set I of identities if K consists precisely of those Boolean
functions f that satisfy every identity in I. (The set I may be �nite or in�nite.)
Observe that if we have an inequality

T6Q

where T and Q are terms of our equational language, such as in (2), then this inequality
can be converted to either of the identities

T ∧ Q = T;

T ∨ Q = Q:

3.2. Further characterizations

Negative functions, which are analogous to positive functions, are de�ned as those
with a DNF in which all variable occurrences are within negative literals. It is easy to
show that this class is characterized by

f(x)f(x ∨ y) = f(x ∨ y) (5)

or, equivalently, by

f(x)f(xy) = f(x): (6)

This illustrates the obvious fact that equational characterizations are not unique.
A Boolean function that is constant 0 or has a DNF

C1 ∨ · · · ∨ Cm

in which every elementary conjunction Ci has at most one negated variable occurrence
is called a Horn function. Replace ‘at most’ in this de�nition by ‘exactly one’ and
we have de�nite Horn functions. Replace ‘negated’ by ‘non-negated’ and we have the
co-Horn and de�nite co-Horn classes. The reader can verify that every prime implicant
of a function in any one of these classes also belongs to that class (see [7]).
The following result is implicit in work of Horn [9]. We present a proof for the

sake of completeness.
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Proposition 3.1. The class of Horn functions is characterized by

f(x)f(xy) ∨ f(y)f(xy) = f(xy) (7)

or; equivalently; by the inequality

f(xy)6f(x) ∨ f(y) (8)

Proof. The equivalence of (7) and (8) is easily veri�ed, therefore we need only to
show that (8) characterizes Horn functions.
If x = a and y = b violated (8) for a Horn function, we would have, for some

implicant g of f with at most one negative literal occurrence �xi in its elementary
conjunction DNF

g(ab) = 1 and g(a) = g(b) = 0:

Clearly g cannot be positive, and the ith component of the vector ab must be 0. Without
loss of generality, this implies that the ith component of a is 0. But then g(a) = 0
implies that for some j such that xj occurs non-negated in the elementary conjunction
DNF of g, the jth component of a is 0. This forces g(ab) = 0, a contradiction.
Conversely, if f is not a Horn function, then some prime implicant g of f is not

one either. Let �xi and �xj be two distinct negative literals in an elementary conjunction
DNF of g, which is then without loss of generality of the form

�xi �xjP:

Since g is a prime implicant, neither the function gi represented by xi �xjP nor the
function gj represented by �xixjP can be an implicant of f. Choose vectors a; b such
that

gi(a) = gj(b) = 1 and f(a) = f(b) = 0:

Then both the ith and jth components of the vector ab must be 0 and g(ab)=1. Hence
f(ab) = 1 and (8) fails for x= a; y= b.

It is now easy to see that de�nite Horn functions are characterized by the following
two identities:

f(x)f(xy) ∨ f(y)f(xy) = f(xy) and f(1) = 0:

These, however, could be expressed as a single identity. In general, any �nite set of
identities

T1 = Q1 : : : Tn = Qn (9)

can be expressed as a single identity. First, Ti = Qi is equivalent to

@ ( �T iQi ∨ Ti �Qi) = 1:

Denoting the term on the left side by Li, the set (9) is equivalent to

L1 ∧ L2 ∧ · · · ∧ Ln = 1:
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As for co-Horn functions, a dual argument shows they are characterized by the
identity

f(x)f(x ∨ y) ∨ f(y)f(x ∨ y) = f(x ∨ y)
or, equivalently, by the inequality

f(x ∨ y)6f(x) ∨ f(y): (10)

De�nite co-Horn functions are characterized by the identity for co-Horn functions plus
f(0) = 0.
The dual of a Boolean function f, denoted by fd, is de�ned on the same domain

lattice Bn by

fd(x) = f( �x):

A function f is called dual-minor if for every x in the domain lattice

f(x)6fd(x):

It is called dual-major if

f(x)¿fd(x)

and it is called self-dual if

f(x) = fd(x):

Clearly, these last three properties can be expressed as

f(x)f( �x) = 0; (11)

f(x) ∨ f( �x) = 1; (12)

f(x) = f( �x); (13)

characterizing respectively dual-minor, dual-major and self-dual functions through iden-
tities satis�ed by f.
For any elementary conjunction, if we replace each non-negated variable occurrence

x by the negative literal @ x, and, simultaneously, each negative literal @ x by the
positive literal x, we obtain another elementary conjunction, called the re
ection of the
�rst one. A Boolean function is called re
exive if the set of elementary conjunctions
representing its prime implicants is closed under re
ection.

Proposition 3.2. A Boolean function is re
exive if and only if it satis�es

f(x) = f( �x): (14)

Proof. Necessity is obvious. For su�ciency, assume (14) is satis�ed and let

{p1; : : : ; pm}
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be the elementary conjunctions representing the prime implicants of f. Then f is
represented by the DNF

p1 ∨ · · · ∨ pm:

The function f′ de�ned by f′(x) = f( �x) is represented by the DNF

r1 ∨ · · · ∨ rm

where each ri is the re
ection of pi. Since neither consensus nor absorption can be
performed on the DNF

p1 ∨ · · · ∨ pm;

the same is true for

r1 ∨ · · · ∨ rm:

It follows that

{r1; : : : ; rm}
represent the prime implicants of f′.

A Boolean function is called polar if it has a DNF in which no elementary conjunc-
tion contains both negated and non-negated variable occurrences (see [2]). A Boolean
function is called supermodular if it satis�es the inequality

f(x) ∨ f(y)6f(xy) ∨ f(x ∨ y): (15)

The expression in (15) contains the symbol 6, and thus is not an identity. However,
the expression could clearly be converted into an equivalent identity, if desired. The
equivalent identity is less compact, and we omit it.

Proposition 3.3. A function is polar if and only if it is supermodular.

Proof. We �rst show that a Boolean function f de�ned on Bn is polar if and only if
the following property holds:

∀x; y; z ∈ Bn; if x6y6z and f(y) = 1; then f(x) = 1 or f(z) = 1 (or both):

(16)

Necessity of this property is immediate. To show su�ciency, we de�ne the following
sets:

• S = {x ∈ Bn |f(x) = 1 and for all y ∈ Bn; x6y⇒ f(y) = 1},
• T = {x ∈ Bn |f(x) = 1 and for all y ∈ Bn; y6x⇒ f(y) = 1}.

Clearly, there is a positive function g1 de�ned on Bn such that g1(x)=1 precisely when
x ∈ S. Similarly, there is a negative function g2 de�ned on Bn such that g2(x) = 1
precisely when x ∈ T . For all y ∈ Bn, if y 6∈ S ∪ T , then f(y) 6= 1, lest there exist
x; z ∈ Bn, such that x6y6z and f(x) = f(z) = 0. Thus f = g1 ∨ g2. Since g1 has a
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DNF with no negated variables, and g2 has a DNF with no non-negated variables, f
has a DNF in which no elementary conjunction contains both negated and non-negated
variables.
Property (16) immediately implies (15). For the converse, assume (15) holds and

let x6y6z. De�ne q = x ∨ (z ∧ �y). By (15), f(q) ∨ f(y)6f(qy) ∨ f(q ∨ y). Since
qy= x and q ∨ y= z, (16) follows.

A Boolean function is called bilinear if it is both Horn and co-Horn (see [3] for
more). Bilinear functions are obviously characterized by the two identities that char-
acterize, respectively, Horn functions and co-Horn functions. Remarkably, as shown in
[3], they are also charaterized by the following inequality opposite to (15):

f(x) ∨ f(y)¿f(xy) ∨ f(x ∨ y): (17)

This follows directly from (10) and (8). Functions satisfying this inequality are called
submodular.
The degree of an elementary conjunction is the number of distinct variables occurring

in it. The degree of a Boolean function is the maximum degree of the elementary
conjunction representation of its prime implicants. Degree 0 functions coincide with
constant functions, and they are obviously characterized by the identity

f(x) = f(y):

A function of degree at most 1 (respectively 2) is called linear (respectively quadratic).

Proposition 3.4. A Boolean function is linear if and only if it satis�es the identity

f(x) ∨ f(y) = f(xy) ∨ f(x ∨ y): (18)

Proof. First, suppose f is linear. This means f=f+∨f− where f+ is positive linear
and f− is negative linear. Assume the left side of (18) is 1. Without loss of generality,
this means that f(x) = 1. If f+(x) = 1, then f+(x ∨ y) = 1, and if f−(x) = 1 then
f−(xy) = 1. In both cases the right side of (18) is 1. Similarly one shows that if the
left side is 0, so is the right side, proving the identity.
Conversely, suppose that the identity holds. This implies the inequalities (17) and

(15), i.e., f is a polar bilinear function, which means it is linear.

Proposition 3.5. Quadratic Boolean functions are characterized by the inequality

f(xy ∨ xz ∨ yz)6f(x) ∨ f(y) ∨ f(z): (19)

Proof. Suppose f is quadratic. Let a; b; c be vectors such that

f(a) ∨ f(b) ∨ f(c) = 0

which means f(a) = f(b) = f(c) = 0. We shall show that

f(ab ∨ ac ∨ bc) = 0: (20)
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Let p be any prime implicant of f. At most two variables xi and xj occur in an
elementary conjunction representation of p. Let qi = 1 if xi occurs negated, qi = 0
otherwise, and de�ne qj similarly. Then the ith component of the vector a is qi, or the
jth component is qj (or both). Let t ∈ {i; j} such that the tth component of a is qt .
As t was de�ned as a function of a, write t(a) for t. De�ne t(b) and t(c) similarly.
Since

{t(a); t(b); t(c)}⊆{i; j}
we may assume without loss of generality that t(a)= t(b)= i. Then the ith component
of the vector

ab ∨ ac ∨ bc
is qi, and therefore the value of p on that vector is 0. This implies (20), and completes
the proof of inequality (19) for quadratic functions.
Conversely, suppose that f is not quadratic, i.e., that some prime implicant p of f

has degree at least three. Then p is represented by an elementary conjunction of the
form

P1P2P3

where each factor Pi is an elementary conjunction with at least one variable, but no two
of the three factors P1; P2; P3 have a common variable. De�ne elementary conjunctions

R1 = P1P3; R2 = P2P3; R3 = P1P2:

If Ri represents the function ri, then none of these ri is an implicant of f, i.e., there
are vectors x; y; z such that

r1(x) = r2(y) = r3(z) = 1;

f(x) = f(y) = f(z) = 0:

These vectors violate (19).

In the next section we shall see (as an application of Proposition 4.1) that the
characterization of quadratic functions by inequality (19) cannot be generalized to
higher degree functions. However, the method used for quadratic functions can be
extended to yield the following result for positive functions:

Proposition 3.6. Let f be a positive Boolean function; and let k¿2. Then; f has
degree at most k if and only if f satis�es the inequality

f




k+1∨
i=1

∏
j 6=i

vj


6f(v1) ∨ · · · ∨ f(vk+1): (21)

Proof. First we show that if f is of degree at most k, then (21) always holds. Suppose

f(a1) = · · ·= f(ak+1) = 0
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for some vectors ai ; 16i6k + 1, in the domain lattice. Let p be a prime implicant of
f. Then p must be positive and at most k variables occur in an elementary conjunction
representation of p, without loss of generality x1; : : : ; xk . Then for each aj, there is a
t ∈ {1; : : : ; k} such that the tth component of aj is 0. Write t(aj) for t. Since

{t(a1); : : : ; t(ak+1)}⊆{1; : : : ; k}
we may assume, without loss of generality, that t(a1) = t(a2) = 1. Then the �rst com-
ponent of the vector

k+1∨
i=1

∏
j 6=i

aj

is 0 and therefore the value of p on this vector is 0. It follows that the left-hand side
of (21) is 0.
Conversely, suppose that some prime implicant p of f has degree at least k + 1.

Then p is represented by an elementary conjunction of the form

P1 · · ·PkPk+1

where each factor Pi is an elementary conjunction with at least one variable, but no
two factors have a common variable. For each i let

Ri =
∏
j 6=i

Pi:

If ri is the function represented by Ri, then none of the ri’s is an implicant of f,
i.e., there are vectors, v1; : : : ; vk+1 such that

r1(v1) = · · ·= rk+1(vk+1) = 1;

f(v1) = · · ·= f(vk+1) = 0:

These vectors violate (21).

Using the fact that a Boolean function f is negative if and only if f′ (satisfying
f′(x) = f( �x)) is positive, one can obviously obtain, for each k¿2, an inequality
and therefore an identity that characterizes, among negative functions, those that are
of degree at most k. Further, since each of the positive and negative classes can be
characterized by an appropriate identity, we can conclude that, for each k, each of the
classes ‘positive and of degree at most k’ and ‘negative and of degree at most k’ is
characterized by an appropriate identity. To see this, the key fact to recall is that a
class de�ned by an identity C = D can always be characterized by an identity of the
form E=1, and if another class is characterized by F =1, then the intersection of the
two classes is characterized by E ∧ F = 1.

4. General criterion for classes de�nable by identities

In the preceding section we showed that a number of speci�c classes of Boolean
functions can be characterized by identities. The problem we address in this section is
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to determine, in general, which classes can be described by identities. We solve this
problem for classes closed under addition of inessential variables.
Some local notation will be convenient. For a ∈ Bm; b ∈ Bn, we shall write a ≈ b

if either both a and b have all their components equal to 0, or both have all their
components equal to 1.

4.1. A key lemma

Lemma 1. Suppose that a certain identity is satis�ed by a Boolean function g. Then
the identity is also satis�ed by every identi�cation minor g′ of g.

Proof. Let g and g′ be Boolean functions de�ned on Bn and Bm respectively, such that
g′ is an identi�cation minor of g obtained from the identi�cation map r.
Let J ={[a1; : : : ; an] ∈ Bn | if r(i)= r(j), then ai=aj}. The set J contains the vectors

[0; : : : ; 0] and [1; : : : ; 1]. It is closed under meet, join, and complementation. Let s be
the vector mapping (from J to Bm) associated with r.
Suppose a given identity C = D is satis�ed by g. Interpret the f-symbol in C and

D by g. Then for all interpretations of the vector variables in C and D by vectors
[a1; : : : ; an] ∈ Bn, the semantic values of C and D are the same. In particular, the
semantic values of C and D are the same for all interpretations of the vector variables
by vectors in J .
The following properties hold for s.

• for all a ∈ J; g(a) ≈ g′(s(a)).
• s(1; 1; : : : ; 1) = [1; 1; : : : ; 1] and s(0; 0; : : : ; 0) = [0; 0; : : : ; 0]
• If a; b ∈ J then

s(a ∧ b) = s(a) ∧ s(b);

s(a ∨ b) = s(a) ∨ s(b);

s(a) = s( �a):

We now show that C=D is satis�ed by g′. Consider an interpretation of C and D in
which the f-symbol in C and D is interpreted by g′, and each variable x is interpreted
by an arbitrary vector b(x) ∈ Bm. We show that the semantic values of C and D are
equal under this interpretation, and hence C = D is satis�ed by g′.
Since s is a bijection from J to Bm, for each b(x) there exists a vector a(x) ∈ J such

that s(a(x))=b(x). Consider the interpretation of C and D that interprets the f-symbol in
C and D by g and each vector variable x by the vector a(x). Under this interpretation,
the semantic values of C and D are some [c1; : : : ; cn] and [d1; : : : ; dn]. Clearly [c1; : : : ; cn]
and [d1; : : : ; dn] are in J . Since C = D is satis�ed by g; [c1; : : : ; cn] = [d1; : : : ; dn].
Now, consider again the interpretation in which the f-symbol is interpreted by g′,

and each variable x in C and D is interpreted by b(x). It follows from the above proper-
ties of s that the semantic values of C and D under these interpretations are s(c1; : : : ; cn)
and s(d1; : : : ; dn). Since [c1; : : : ; cn] = [d1; : : : ; dn], it is also true that s(c1; : : : ; cn) =
s(d1; : : : ; dn).
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4.2. Necessary and su�cient conditions for characterization by identities

The following proposition follows immediately from Lemma 1.

Proposition 4.1. Let K be a class of Boolean functions. If K has a characterization
by a set I of identities; then K is closed under identi�cation minors.

Application: As an application of Proposition 4.1, consider, for any k¿3, the class
of Boolean functions of degree 6k. This class is not closed under identi�cation of
variables: in x1x2x3 : : : xk ∨ �xk+1 : : : �x2k , let x1 = xk+1 and apply the consensus method.
Thus the class cannot be characterized by a set of identities.
The converse of Proposition 4.1 does not hold for all classes K. For example, the

class consisting of the function f(x1; x2) = x1 and all identi�cation minors of f is
clearly closed under identi�cation minors. However, it can be shown that this class
cannot be characterized by identities. (The proof is based on two observations: f has
one inessential variable, and the function f∗ obtained by adding a second inessential
variable to f is not in the class. It can be shown that any identity satis�ed by f would
also be satis�ed by f∗. We leave the details of this proof to the reader.)
Below, in Proposition 4.2, we show that the converse of Proposition 4.1 does hold

for classes K closed under addition of inessential variables. That is, we show the
following: Let K be a class of Boolean functions closed under addition of inessential
variables. If K is closed under identi�cation minors, then it has a characterization by
a (possibly in�nite) set of identities.
The proof of Proposition 4.2 is based on the following intuition. Consider the set G

of functions not in K. The idea is to construct, for each function g ∈ G, an identity
that is satis�ed by all functions in K, but not satis�ed by g. The set of all such
identities clearly characterizes K.
How do we construct the identity for a given g ∈ G? Suppose g is de�ned on Bm.

Let t=2m, and let a1; : : : ; at be the t elements of Bm. Then the value of g on a1; : : : ; at
uniquely describes g. Without loss of generality, assume that g(a1) = · · · = g(aj) = 0
and g(aj+1) = · · ·= g(at) = 1.
Consider �rst the following identity in the equational language:

(f(x1) ∨ · · · ∨ f(xj)) ∨ (@f(xj+1) ∨ · · · ∨@f(xt)) = 1:

Clearly this identity is not satis�ed by g; interpret x1; : : : ;xt as a1; : : : ; at respectively.
Unfortunately, because x1; : : : ;xt may be interpreted in other ways, this identity may
also not be satis�ed by functions f ∈ K. In essence, the identity is comparing the
value of f on x1; : : : ;xt (however they are interpreted) to the value of g on a1; : : : ; at .
Since x1; : : : ;xt may have no relation to a1; : : : ; at , these comparisons are insu�cient
to distinguish g from many of the functions f ∈ K.
To overcome this, it is possible to incorporate additional comparisons into the iden-

tity. For example, in addition to comparing the values of f and g on x1; : : : ;xt and
a1; : : : ; at , respectively, one could also compare the value of f and g on the DNFs
x1 ∨ x2 �x7 and a1 ∨ a2 �a7, respectively. The resulting identity is still not satis�ed by g,
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but some of the functions in K that did not satisfy the previous identity may satisfy
this identity.
More generally, it is possible to add a comparison between f and g on any two

corresponding DNFs over the variables x1; : : : ;xt and a1; : : : ; at , respectively. There
are 22

t
distinct Boolean functions de�ned on Bt . For our construction, we �x a DNF

representation for each of these functions. We then construct an identity for g that
consists of 22

t
comparisons, one for each of these 22

t
DNF representations. We show

that this set of comparisons is su�cient for our purposes; the constructed identity is
not satis�ed by g, but is satis�ed by all functions f ∈ K.
We now present the notation that will be used in our proof. The proof relies on

Boolean matrices, i.e., matrices whose entries are 0 or 1. Since no matrices of any
other kind will be used, we shall omit the adjective ‘Boolean’. For every m, we de-
�ne the domain matrix of order m; Am, to be the 2m × m matrix with all 2m rows
distinct, such that the rows (viewed as binary strings) are in increasing lexicographic
order. The rows of Am correspond to the elements of the domain of any function g
on Bm.
Consider a Boolean function g on Bm. Again, let t = 2m. Let a1; : : : ; at be the row

vectors of Am, the domain matrix of order m. Let h be any Boolean function on
Bt . Let us �x a DNF representation D(h) of h. For any n, and vectors b1; : : : ; bt in
Bn, let

hn(b1; : : : ; bt)

denote the semantic value of the Boolean term D(h) under the interpretation of the
variables x1; : : : ;xt of D(h) as b1; : : : ; bt in Bn. Note that this value is independent of
the choice of the particular DNF representation D(h) of h.
De�ne two complementary sets of functions on Bt (i.e. a partition of the 22

t
functions

in Ft) as follows:

H0 = {h ∈ Ft : g(hm(a1; : : : ; at)) = 0};
H1 = {h ∈ Ft : g(hm(a1; : : : ; at)) = 1}:

Then de�ne the following terms of the equational language, where f is the function
symbol of the equational language:

M0 is the join of all f(D(h)) for h ∈ H0;

M1 is the join of all @f(D(h)) for h ∈ H1;

M (g) is the join M0 ∨M1:

We shall call M (g) the negative descriptor of g.

Example. Let the Boolean function g on B2 be represented by the DNF

x1 ∨ x2:
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Then m= 2 and t = 4. The domain matrix A2 is



0 0

0 1

1 0

1 1



:

Thus, a1 = [0; 0]; a2 = [0; 1]; a3 = [1; 0], and a4 = [1; 1]. Let h be represented by the
DNF

D(h) = x1x2 ∨ x3x4:
Let n= 2, and b1; : : : ; b4 equal a1; : : : ; a4 respectively. Then

h2(b1; : : : ; b4) = h2([0; 0]; [0; 1]; [1; 0]; [1; 1])

= [0; 0][0; 1] ∨ [1; 0][1; 1]
= [0; 0] ∨ [1; 0] = [1; 0]:

The function h is in H1 because g(h2(a1; : : : ; a4)) = g(1; 0) = 1 ∨ 0 = 1. The term M1

is the join of a number of terms, one of which is @f(x1x2 ∨ x3x4). M (g) is also the
join of a number of terms, one of which is @f(x1x2 ∨ x3x4).

We now present Proposition 4.2 and its proof.

Proposition 4.2. Let K be a class of Boolean functions that is closed under addition
of inessential variables. If K is closed under identi�cation minors; then K has a
characterization by a (possibly in�nite) set I of identities.

Proof. Let K be a class of Boolean functions closed under addition of inessential
variables. SupposeK is closed under identi�cation minors. Let G be the set of Boolean
functions not in K. Let I consist of all identities of the form M (g) = 1 where M (g)
is the negative descriptor of some g in G. We will prove that I characterizes K.
Let g ∈ Fm; t=2m. To say that M (g)=1 is not satis�ed by a given f ∈ Fn means

that there are vectors b1; : : : ; bt in Bn such that for all h ∈ Ft

f(hn(b1; : : : ; bt)) ≈ g(hm(a1; : : : ; at)) (22)

Obviously then M (g) = 1 is not satis�ed by g: take b1 = a1; : : : ; bt = at . Thus for all
g ∈ G; g does not satisfy every identity in I .
Let f ∈ Fn be such that f does not satisfy M (g) = 1, where M (g) is the negative

descriptor of some g ∈ G. We shall show that f 6∈ K. Let b1; : : : ; bt ∈ Bn be vectors
such that for all h ∈ Ft (where t = 2m; g ∈ Fm) we have relation (22). Let A be the
domain matrix of order m (a t × m matrix), and consider the t × n matrix W whose
rows are the vectors b1; : : : ; bt , in this order. The columns of A are all distinct, but W
may contain repeated columns.
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Let n′ be the number of distinct columns in W . Let r : {1; : : : ; n} → {1; : : : ; n′}
be an identi�cation map such that for all i; j ∈ {1; : : : ; n}, columns i and j of W
are equal if and only if r(i) = r(j). Let s be the vector mapping associated with r,
and let f′ be the identi�cation minor of f associated with r. Clearly, for all j ∈
{1; : : : ; t}; f(bj) = f′(s(bj)).
Let W ′ be the n′ × t matrix whose rows are s(b1); : : : ; s(bt). All columns of W ′ are

distinct. Let Z = {i| the ith column of W ′ is not equal to a column of A}.
We �rst prove the following claim: For all i ∈ Z , variable xi is inessential in f′. To

prove the claim, it su�ces to show that if c′=[c′1; : : : ; c
′
n′ ] ∈ Bn′ and d ′=[d′

1; : : : ; d
′
n′ ] ∈

Bn′ are such that c′i=d′
i for all i 6∈ Z , then f′(c′)=f′(d ′). Let c=[c1; : : : ; cn]=s−1(c′)

and let d=[d1; : : : ; dn]=s−1(d ′). Then f(c)=f′(c′) and f(d)=f′(d ′). Let h ∈ Ft be
such that for each j ∈ {1; : : : ; n}, for the jth column vector W (j) of W , h(W (j)) = cj
and whose value is 0 on all other vectors in Bt . Similarly, let k ∈ Ft be such that,
for each j ∈ {1; : : : ; n}, k(W (j))=dj, and whose value is 0 on all other vectors in Bt .
Then hn(b1; : : : ; bt) = c and kn(b1; : : : ; bt) = d , and therefore, from (22),

f(c) ≈ g(hm(a1; : : : ; at));

f(d) ≈ g(km(a1; : : : ; at)):

But the values of h and k coincide on all column vectors of A, and therefore
g(hm(a1; : : : ; at)) = g(km(a1; : : : ; at)) implying f(c) = f(d) and hence f′(c′) = f′(d ′).
This proves the claim.
We now prove a second claim: For j ∈ {1; : : : ; m}, if the jth column of A is not a

column of W , then xj is an inessential variable of g. The proof, which is similar to
the proof of the previous claim, is as follows. Let X = {j | the jth column of A is not
equal to a column of W}. Let c = [c1; : : : ; cm] ∈ Bm and d = [d1; : : : ; dm] ∈ Bm such
that ci = di for all i 6∈ X . Let h ∈ Ft be such that for each j ∈ {1; : : : ; m}, for the jth
column vector A(j) of A, h(A(j))=cj, and whose value is 0 on all other vectors in Bt .
Similarly, let k ∈ Ft be such that, for each j ∈ {1; : : : ; m}, k(A(j)) = dj, and whose
value is 0 on all other vectors in Bt . Then hm(a1; : : : ; at) = c and km(a1; : : : ; at) = d ,
and therefore, from (22),

f(hn(b1; : : : ; bt)) ≈ g(c);

f(kn(b1; : : : ; bt)) ≈ g(d):

But the values of h and k coincide on all column vectors of W , and therefore
f(hn(b1; : : : ; bt))=f(kn(b1; : : : ; bt)) implying g(c)=g(d). This proves the second claim.
Thus W ′ (respectively, A) is a matrix corresponding to f′ (respectively, g), such

that any column appearing in W ′ (respectively, A) but not in A (respectively, W ′),
corresponds to an inessential variable of f′ (respectively, g).
Consider the submatrix A′ of A produced by deleting all columns of A that do not

appear as columns in W ′. Let P = {i1; : : : ; im′} be the set of indices of the columns
of A that are not deleted in producing A′, such that i1¡i2¡ · · ·¡im′ . For simplicity,
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assume m′ 6= 0 (m′ = 0 is an easy special case). Corresponding to A′ is a function g′

produced from g by ‘deleting’ from g variables xj where j 6∈ P, which are inessential.
Formally, let g′ be the minor of g produced by the identi�cation map r : {1; : : : ; m} →
{1; : : : ; m′}, such that r(ij) = j for j ∈ {1; : : : ; m′}, and r(k) = 1 for k 6∈ P. Similarly,
let W ′′ be the submatrix of W ′ produced by deleting columns of W ′ not appearing
in A. Then there is an identi�cation minor of f′′ of f′ produced by ‘deleting’ from
f′ those variables xj whose corresponding columns were deleted from W ′ (all such
variables are inessential to f′).
Since A is a domain matrix of degree m, the rows of A′ include all binary vectors

of length m′. Thus the value of g′ on the row vectors of A′ uniquely determines the
function g′. The matrix W ′′ is equal to A′ under some permutation of columns. For any
matrix M , let M [i] denote the ith row of M . Let j ∈ {1; : : : ; t}. By (22), taking h ∈ Ft

to be the function represented by the one-variable DNF xj, we get g(A[j]) ≈ f(W [j]).
It follows that g′(A′[j]) = f′′(W ′′[j]). Since the value of f′′ and g′ are equal on
corresponding rows of W ′′ and A′, it follows that f′′ and g′ are isomorphic.
It follows from the above that g can be produced from f by addition of inessential

variables and identi�cation of variables. Since K is closed under identi�cation of
variables and addition of inessential variables, if f ∈ K then g ∈ K. But g 6∈ K.
Therefore, f 6∈ K:

Observe that if K is a recursive (decidable) set of Boolean functions, then I is a
recursive set of identities.
Consider any of the following classes of Boolean functions: positive, negative, Horn,

de�nite Horn, co-Horn, de�nite co-Horn, supermodular, submodular, constant, linear,
quadratic, positive of degree 6k, negative of degree 6k. It is not di�cult to verify
that each of these classes is closed under taking identi�cation minors. Thus Proposition
4.2 corroborates the fact, established in the previous section, that these classes can be
characterized by identities.
Combining the above two propositions, we get the following:

Proposition 4.3. Let K be a class of Boolean functions closed under addition of
inessential variables. Then the following conditions are equivalent:
(i) there is a set I of identities such that K consists precisely of those Boolean

functions that satisfy every identity in I;
(ii) K is closed under taking identi�cation minors.

Note that the above proposition applies only to classes closed under addition of
inessential variables.
De�ne a DNF identity to be an identity of the form T1 ∨ · · · ∨ Tm = 1, where each

Ti is either 0, 1, or a conjunction of terms of the form f(D) or @f(D), where D is
a Boolean term. The semantic value of each f(D) in a DNF identity (under any valid
interpretation of the variables) is either 0 or 1. Thus a DNF identity is equivalent to an
expression of the form P(f(D1); : : : ; f(Dp)), where P is an arbitrary p-place Boolean
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predicate, and D1; : : : ; Dp are Boolean terms. We note here that Pippenger, in his recent
paper, in fact considered only DNF identities, rather than general identities [13].
Classes characterizable by a set of DNF identities are clearly closed under addi-

tion of inessential variables, and the identities constructed in the proof of Proposition
4.2 are DNF identities. Therefore, as observed by Pippenger, the following variant of
Proposition 4.3 holds [13]:

Proposition 4.4. A class of Boolean functions is characterizable by a set of DNF
identities if and only if it is closed under identi�cation of variables and addition of
inessential variables.

There are classes that can be characterized by identities but not by DNF identities.
Consider for example the class characterized by the identity f(x)= xf(x). It contains
the function g(x1)=x1, but not the function produced by adding an inessential variable
to g. Thus it is not closed under addition of inessential variables, and hence cannot be
characterized by DNF identities.

4.3. Finite characterizations

The question still arises as to which classes of functions can be characterized by
a �nite set of identities. To address this question, consider on the set of all Boolean
functions the relation g 4 f given by g 4 f ⇔ g is an identi�cation minor of f.
This relation 4 is re
exive and transitive. As usual, we write g ≺ f if g 4 f but not
f 4 g. Functions f and g are isomorphic if and only if g 4 f and f 4 g.
Proposition 4.3 asserts that a classK of functions closed under addition of inessential

variables can be characterized by a set I of identities if and only if for all functions f
and g, the relations g 4 f;f ∈ K together imply g ∈ K. If this is the case, consider
the set F0 of Boolean functions g such that (i) g 6∈ K, and (ii) for each h ≺ g, h ∈ K.
For every g ∈ F0, the set F0 also contains all functions isomorphic to g. Choose

a subset F of F0 such that for each g ∈ F0, F contains one and only one function
isomorphic to g. Distinct members of F are incomparable by the relation 4. The set
F is called a set of minimal forbidden minors, and it characterizes the class K in the
sense that a function f belongs to K if and only if g 4 f for no member g of F .
The set of minimal forbidden minors is unique up to isomorphism. A characterization
by minimal forbidden minors may not provide the simplest description of a class, even
for rather trivial classes. For example, if K is the class of constant functions with
value 1, i.e., those that satisfy the identity f(x)=1, then the set of minimal forbidden
minors contains �ve functions, with DNFs 0; x1; �x1; x1x2 ∨ �x1 �x2; x1 ∨ �x2.

Proposition 4.5. Let K be a class of Boolean functions closed under addition of
inessential variables. IfK is characterized by some set of identities; then the following
conditions are equivalent.

(i) K is characterized by a �nite set of identities;
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(ii) K is characterized by a single identity;
(iii) K is characterized by a �nite set of minimal forbidden minors.

Proof. The equivalence of (i) and (ii) was already seen earlier.
Assume (iii). Let g1; : : : ; gn be the minimal forbidden minors. Referring to the proof

of Proposition 4.2, consider the identities M (g1) = 1; : : : ; M (gn) = 1. By Lemma 1, if
f satis�es these identities, f ∈ K. Conversely, by the proof of Proposition 4.2, if f
belongs to K then f satis�es every M (gi). Therefore, the identities characterize K.
Now assume (ii). Let E = F be an identity characterizing K. Let n be the number

of variables occurring in this identity, i.e., in the terms E and F . Let f be a Boolean
function on Bm with m¿ 2n that does not satisfy E = F . Consider an interpretation of
the n variables occurring in E = F by vectors v1; : : : ; vn in Bm that results in di�erent
values for E and F . Consider the n×m matrix W with rows v1; : : : ; vn, in that order. Let
n′ be the number of distinct columns of W . Clearly n′62n. Consider an identi�cation
map r : {1; : : : ; m} → {1; : : : ; n′} such that r(i) = r(j) if and only if columns i and j
of W are equal. This map produces an identi�cation minor f′ de�ned on Bn′ . Let s
be the vector mapping corresponding to r. Interpreting the variables in E and F by
s(v1); : : : ; s(vn) (with respect to f′) also results in di�erent values for the terms E and
F . Hence f′ does not satisfy E=F . Thus for every f de�ned on Bm, with m¿2n and
f 6∈ K, there exists f′ de�ned on Bn′ with n′62n, such that f′ 4 f and f′ 6∈ K.
This implies (iii).

There are classes that do indeed require an in�nite set of identities. For n¿2, let gn

be the Boolean function on Bn represented by the DNF that is the join of all elementary
conjunctions xixj; 16i¡ j6n. Let K be the class of Boolean functions f such that
gn 4 f for no gn. Then K is closed under addition of inessential variables and under
identi�cation minors, and

F = {gn: n¿2}
is an in�nite set of non-isomorphic minimal forbidden minors.
We note that in a recent paper, Hellerstein showed that the class of linear threshold

functions cannot be characterized by a �nite set of identities. Since it is closed under
addition of inessential variables and under identi�cation minors, it can be characterized
by an in�nite set of identities [6].

5. First-order characterizations with existential quanti�cation

Let K be a class of Boolean functions characterized by an identity

T = Q:

De�ne the renamable analogue class r(K) of K as follows: a Boolean function f
on Bn shall belong to r(K) if and only if for some s ∈ Bn the function fs de�ned by

fs(x) = f(x+ s)
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belongs to K, where x+ s is the Boolean sum

x+ s = xs ∨ xs:
Let s be a variable that does not occur in T or Q. For each term P in the equational

language we de�ne, by induction on the length of P, the term P(+s) as follows:
(i) if P is reduced to a single symbol, then P(+s) = P
(ii) if P is of the form f(X ) where X is a term, then P(+s) = f(X (+s) �s ∨

X (+s)s);
if P is of the form X ∨ Y , then P(+s) = X (+s) ∨ Y (+s);
if P is of the form X ∧ Y , then P(+s) = X (+s) ∧ Y (+s);
if P is of the form @X , then P(+s) =@X (+s).
The above de�nition of P(+s) ensures the following: Let f be a Boolean function

on Bn. Given an interpretation of the variables in P as elements of Bn, the semantic
value of P in the function algebra associated with fs (under that interpretation of the
variables) is equal to the semantic value of P(+s) in the function algebra associated
with f (under the same interpretation of the variables).
We can form the �rst-order sentence

∃s ∀v1; : : : ; vn T (+s) = Q(+s) (23)

where v1; : : : ; vn are the variables occurring in T or Q. A Boolean function f belongs to
the renamable analogue class r(K) if and only if sentence (23) is satis�ed in the func-
tion algebra associated with f. In general, we say that a set S of �rst-order sentences
in the equational language characterizes a set F of Boolean functions if F consists
precisely of those Boolean functions in whose associated algebras every sentence be-
longing to S is satis�ed. Note that this generalizes the notion of characterization by
identities, in the sense that a class of functions is characterized by a set of identities if
and only if the universal closures of these identities (which are sentences) characterize
the class. All universal closures of identities are sentences of the form

∀v1; : : : ; vn T = Q (24)

where T and Q are terms (and ∀v1; : : : ; vn is empty if no variables occur in T = Q).
A sentence of the more complex form

∃v ∀v1; : : : ; vn T = Q

is called a simple existential sentence. We have shown the following:

Proposition 5.1. If K is a class of Boolean functions that is characterized by an
identity then the renamable analogue class r(K) is characterized by a simple exis-
tential sentence.

For every sentence A of the form (24) there is a simple existential sentence so
that the two sentences are satis�ed in precisely the same Boolean function algebras:
just pre�x A with ∃v, where v is any variable distinct from the v1; : : : ; vn appearing in
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(24). Therefore, if a class is characterized by identities, it can also be characterized by
simple existential sentences.
The renamable analogues of Horn, supermodular, and submodular functions are called

renamable Horn, renamable supermodular, and renamable submodular, respectively.
The renamable analogues of positive functions are called unate.

Proposition 5.2. Each of the following classes of Boolean functions can be charac-
terized by an appropriate simple existential sentence. None of these classes can be
characterized by any set of identities.
(i) unate;
(ii) renamable Horn;
(iii) renamable supermodular;
(iv) renamable submodular.

Proof. The �rst statement is a corollary of Proposition 5.1. To prove the second state-
ment, we invoke Proposition 4.2 and consider the following identi�cation maps r:

(i) In x1 �x2 ∨ x3 �x4, representing a unate function, let r be such that r(1) = 1,
r(2) = r(3) = 2 and r(4) = 3.
(ii) In x1x2x3 ∨ �x4 �x5 �x6, let r be such that r(i) = r(i + 3) = i for i = 1; 2; 3.
(iii) In x1x2 �x3 ∨ �x4x5x6 use the same map as in (ii).
(iv) In �x1 �x2∨ �x3 �x4∨ �x5 �x6 let r(1)= r(3)=1, r(2)= r(5)=2, and r(4)= r(6)=3:

We have noted above that classes characterized by sets of simple existential sentences
include all classes characterized by identities. By relaxing syntactic constraints, we
obtain more and more classes of Boolean functions that may be described by a theory
consisting of sentences of a prescribed form. Ultimately, essentially all classes admit
of a theory:

Proposition 5.3. Let K be a class of Boolean functions. Then there is a set S of
sentences in the equational language that characterizes K if and only if K is closed
under permutation of variables.

Proof. The condition is obviously necessary, as permuting the variables of a Boolean
function f de�nes a function f′ such that the corresponding function algebras are
isomorphic, and any given sentence is satis�ed in the algebra of f if and only if it is
true in the algebra of f′.
To prove su�ciency, it is enough to show that for any given Boolean function g

on Bn, there is a characteristic sentence satis�ed only in the algebra of g and in iso-
morphic function algebras. If K is �nite, we can let S consist of a single sentence,
namely the join of the characteristic sentences of the functions in K. If K is in�-
nite, we let S consist of the negations of all characteristic sentences of functions not
in K.
The sentence we shall construct shall have n+ 1 variables: v1; : : : ; vn and w.
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For each vector a= [a1; : : : ; an] in Bn, let V (a) be the Boolean term that is the join
of those variables vi for which ai = 1. If ai = 0 for all i, then V (a) is the term 0. To
illustrate, for n= 4 and a = [0; 1; 0; 1], the term V (a) is v2 ∨ v4.
De�ne now �ve formulas in the equational language, to be denoted by
D (for ‘distinct’)
Z (‘non-zero’)
A (‘atoms’)
L (‘generating a Boolean lattice’)
G (‘on which f is computed like g’)
D is de�ned as the conjunction, for all 16i¡ j6n, of the formulas not(vi = vj).
Z is the conjunction, for all i, of not(vi = 0).
A is the conjunction, for all i, of ∀w ((wvi = 0)or(wvi = vi)).
L is the formula v1 ∨ · · · ∨ vn = 1.
G is the conjunction, for all a ∈ Bn, of the formulas

f(V (a)) = g(a)

where g(a) stands for the symbol 0 or 1, according to the value of the function g on
the vector a.
The characteristic sentence for g is then

∃v1; : : : ; vn(D and Z and A and L and G):

This sentence is clearly satis�ed by g; for 16i6n, take vi to be the vector in Bn

that is 1 in the ith component, and 0 elsewhere.
Suppose some function f satis�es the sentence. Consider the v1; : : : ; vn satisfying D,

Z , A, L, and G. Conditions D, Z , A, and L, together ensure that v1; : : : ; vn are the n
distinct Boolean vectors in Bn containing a 1 in exactly one component. Condition G
then ensures that f is isomorphic to g.

The proof above is constructive in a number of senses. If the set K is �nite, or
recursive, then so is the set S of characteristic sentences. Indeed, the converse also
holds. The proof essentially provides an algorithm to match sets of Boolean functions
with theories in the �rst-order equational language.
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