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Abstract

In order to reduce the risk of complete failure, research managers often adopt a parallel strategy by simultaneously funding
several R&D activities and several research teams within each activity. The parallel strategy requires the allocation of an
available budget to a number of R&D activities, the determination of the number of research teams within each activity and
the amount of funding they receive. We consider a formulation of this problem as a nonlinear resource allocation problem by
Gerchak and Kilgour, IEE Trans. 31 (2) (1999) 145, and present a su�cient condition as a function of problem parameters,
under which closed-form solutions to the problem are obtained. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to investigate
closed-form solutions to a nonlinear resource alloca-
tion problem arising in the selection process among
competing research and development (R&D) activi-
ties. (R&D) project managers face the challenge of
exploring several choices to attain a particular objec-
tive. However, the outcome of these choices is usually
uncertain, making the selection process a di�cult one.
Abernathy and Rosenbloom [1] suggested the use of a
parallel strategy as a tool to deal with this uncertainty
in a successful way. They de�ne a parallel strategy
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as “the simultaneous pursuit of two or more distinct
approaches to a single task, when successful comple-
tion of any one would satisfy the task requirements.”
However, the adoption of the parallel strategy in a
R&D project is associated with the crucial strategic
question of determining how many parallel teams or
approaches to a particular objective to fund. Gerchak
and Kilgour [2] modeled di�erent objectives to deter-
mine how many parallel independent research teams
of equal potential to fund within only one research
and development activity. Gerchak [3] extended these
ideas to the case where more than a single activity
is involved, and these activities have di�erent priori-
ties re
ected in di�erent weights. In another study by
Gerchak [5], a model with a single activity is con-
sidered where the achievements of competing teams
are allowed to be interdependent. Gerchak and Parlar
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[4] tackle a similar problem using game theoretic ap-
proaches. In the present paper, we identify conditions
under which the nonlinear and nonconvex optimiza-
tion problem introduced by Gerchak and Kilgour [2]
admits closed-form solutions. For a general and de-
tailed exposition of resource allocation problems the
interested reader is directed to the book [6].

2. The optimization problem and main results

Gerchak and Kilgour [2] modeled the resource al-
location problem as follows. They assume that (1) the
future achievement of a research team is a continuous
nonnegative random variable, (2) the research teams
are independent, (3) the achievements of the research
teams have identical probability distributions, given
that their funding is done on an equal basis, and (4) the
achievements of the funded teams are exponentially
distributed. Suppose that the total available budget is
B, and there are M potential research activities. For
j=1; 2; : : : ; M , let Bj be the budget allocated to activ-
ity j and nj be the number of parallel research teams
to work on activity j, each of which receives equal
funding which amounts to Bj=nj. The achievement of
each teamwithin activity j has an identical distribution
function given by Fj(x;Bj=nj), where Bj=nj is related
to the parameter of the distribution. The optimization
problem consists in maximizing a weighted sum of
the probabilities that the most successful team within
each activity exceeds a speci�c threshold value. Since
the probability that the best team in activity j exceeds
the threshold Tj can be written as 1−[Fj(Tj;Bj=nj)]nj ,
the optimization problem is formulated as follows (see
[2]):

max
B1 ;:::; BM ;n1 ;:::; nM

M∑
j=1

pj{1− [Fj(Tj;Bj=nj)]nj};

subject to

M∑
j=1

Bj = B;

where pj denotes the positive weight attached to ac-
tivity j.
Gerchak and Kilgour [2] set the parameter � of the

exponential distribution to � = L(n=B)�, where � ∈
(0; 1] re
ects the sensitivity of a research team to the

budget allocation, and L is an appropriate constant.
The case �=1 indicates a high sensitivity where larger
budget allocations would induce higher achievements.
With multiple activities this problem translates into

max
B1 :::; BM ;n1 ;:::; nM

M∑
j=1

pj{1− [1− e−Lj(nj=Bj)
�j Tj ]nj};

subject to
M∑
j=1

Bj = B:

Since the threshold values Tj’s and the parameters
Lj’s are �xed, we can absorb Lj into Tj in the analysis
without loss of generality. Therefore, we assume Lj
to be equal to one. We also suppose that the research
teams’ achievement is very sensitive to resource allo-
cation. In other words, we set �j = 1; j= 1; 2; : : : ; M .
Therefore, the goal of maximizing the weighted sum

of probabilities that the most successful team exceeds
an activity-speci�c threshold value Tj translates into

min
B;n

f(B; n; p) ≡
M∑
j=1

pj[1− e−(nj=Bj)Tj ]nj ;

subject to
M∑
j=1

Bj = B;

where B=(B1; : : : ; BM ); n and p are de�ned similarly.
Before proceeding to the results, we present below

an example with two activities. Let B=10; T1=T2=8.
We plot in Fig. 1 the objective function for several
choices of (n1; n2) as a function of B1, when L1 =
L2 = 1. We observe that the curve corresponding to
n1 = n2 = 1 lies below all the others. This observation
is formally proved in Theorem 1. Furthermore, the
function for n1 =n2 =1 is neither convex nor concave
but has three local minima, two of which are both
global minima, namely B1 = 0, and B1 = 10.
In the rest of the paper, we use 1 to indicate a vector

with all elements equal to one. For ease of notation, we
de�ne rj = Tj=B which can be interpreted as a scaled
measure of the success threshold for activity j per unit
budget. The higher this ratio gets, the smaller is the
probability that an activity is considered successful.
Hence, larger values of rj indicate higher levels of
ambition for that activity.
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Fig. 1. The plot of the function f on a two activity problem for di�erent values of n1; n2.

Theorem 1. If rj¿ln 2 for j = 1; : : : ; M; f(B; n; p) is
minimized at n = 1, for all B.

Proof. We �rst show that when rj¿ln 2 for
j = 1; 2; : : : ; M; f(B; 1; p) is smaller than or equal to
f(B; n; p) for n¿1 (that is, each component is greater
than or equal to one), for all values of B. Since

f(B; 1; p) =
M∑
i

pi(1− e−Ti=Bi);

then, for any n¿1, the di�erence f(B; n; p) −
f(B; 1; p) is given by
M∑
i=1

pi[(1− e−niTi=Bi)ni − (1− e−Ti=Bi)]:

Note that if ni = 1 for some i, the di�erences corre-
sponding to those i values will be zero and they will
not contribute to the above sum.
Letting

Ti
Bi
= xi;

and omitting pi which is a positive multiplicative con-
stant, the ith term in the previous expression is written
as

(1− e−nixi)ni − (1− e−xi):

This expression is zero when ni=1, and otherwise its
derivative with respect to ni is

(1− e−nixi)ni
{
nixe−nixi

1− e−nixi + ln(1− e
−nixi)

}
:

This derivative vanishes when nixi=ln 2, it is negative
if nixi ¡ ln 2, and positive if nixi ¿ ln 2. Then,

(1− e−nixi)ni − (1− e−xi)
is always nonnegative for all values of ni¿1 if
xi¿ln 2. Thus, for all B; f(B; 1; p)6f(B; n; p) for
n¿1 if
Ti
Bi
¿ln 2:

Since 0¡Bi ¡B, a su�cient condition is given as

ri¿ln 2:

Now suppose for some i1; i2; : : : ; ik ; nij = 0 and the
rest of the nj’s are 1. For simplicity, let i1 =M − k +
1; i2 =M − k + 2; : : : ; ik =M , so that the �rst M − k
elements of n are 1 and the rest are zero and denote
the corresponding n vector by nk. Then

f(B; nk; p)− f(B; 1; p)

=
M∑
i=1

pi
(
(1− e−niTi=Bi)ni − (1− e−Ti=Bi))
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=
M−k∑
i=1

pi(1−e−Ti=Bi) +
M∑

i=M−k+1
pi−

M∑
i=1

pi(1−e−Ti=Bi)

=
M∑

i=M−k+1
pie−Ti=Bi¿0:

Hence, a su�cient condition for the theorem to hold
is that

rj¿ln 2 ≡ min
j
rj¿ln 2

We conclude from the above theorem that when
rj¿ln 2 for j=1; : : : ; M , at most one research team in
each activity can be funded. This result which may not
seem intuitive at �rst sight can be attributed to the form
of the objective function since the success of a team
is measured by the tail probability of an exponential
distribution. If the desired achievement rate per unit
budget Tj=B is high the policy avoids parallel funding
in order to maintain the success level expressed by this
small probability. Hence, other objective functions can
result in di�erent policies which may encourage more
parallel funding.
The following theorem complements the above re-

sult by providing the optimal budget allocation. De-
�ne cj = pj=2aj for j = 1; : : : ; M where aj = rj=ln 2.

Theorem 2. Let c∗=maxj{cj} andJ={j|16j6M
and cj = c∗}. Then for rj¿ln 2 for j = 1; : : : ; M; the
following holds:

1. IfJ is a singleton; then f(B; 1; p) is minimized at
Bi=B; and Bj =0; for all j 6= i; for which ci= c∗.

2. IfJ={i1; i2; : : : ; ir} and ifpi1=pi2=· · ·=pir ≡ p;
then f(B; 1; p) is minimized at Bik =B; and Bj=0;
for all j 6= ik ; for k =1; 2; : : : ; r. Furthermore; if it
also holds that c∗=p = (1=r)1=r−1; then f(B; 1; p)
is also minimized at Bik = B=r, for k = 1; 2; : : : ; r
and Bj = 0; for all j 6= ik .

Proof. The original problem of minimizing f(B; 1; p)
can be transformed into

max
B1 ;:::; BM

M∑
j=1

pje−Tj=Bj (1)

subject to

M∑
j=1

Bj = B:

Since rj¿ln 2, we can write rj = aj ln 2 for some
aj¿1 which implies Tj = Baj ln 2 and (1) can be
written as

max
X
f(p;X) ≡ max

X

M∑
j=1

pj

(
1
2aj

)1=xj
; (2)

whereX=(x1; x2; : : : ; xM ) and 06xi61. First, observe
that

lim
xi→1 xj→0 j 6=i

f(p;X) =
pi
2ai
= ci:

Then it is su�cient to show that the maximum in
(2)6maxi{ci}= c∗. To see this we write

f(p;X) =
M∑
j=1

pj

(
1
2aj

)1=xj

=
M∑
j=1

pj
2aj

(
1
2aj

)(1−xj)=xj

6 c∗
M∑
j=1

(
1
2aj

)(1−xj)=xj
(3)

6c∗
M∑
j=1

(
1
2

)(1−xj)=xj
: (4)

Now using the method of Lagrange multipliers we
can easily see that the RHS of (4) is maximized at
xj=1=M for j=1; 2; : : : ; M and at this point its value is
c∗M (0:5)M−16c∗ for all values ofM¿1. This proves
part 1.
For part 2, suppose c∗ = ci1 = ci2 = · · · = cir and

pi1 = pi2 = · · · = pir ≡ p. These imply also that
ai1 = ai2 = · · · = air ≡ a. For ease of notation let
i1 = 1; i2 = 2; : : : ; i2 = r, for r6M . It is su�cient to
check whether f(p1;X1) = f(p1;X2), with

p1 = (p;p; : : : ; p; pr+1; : : : ; pM );

X1 = (1=r; 1=r; : : : ; 1=r; 0; : : : ; 0);

X2 = (0; : : : ; 1; : : : ; 0; : : : ; 0);
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where in X2, the single entry 1 occurs anywhere in the
�rst r entries. Then

f(p1;X1) =
r∑
j=1

p
(
1
2aj

)r

=pr
(
1
2a

)r
; (5)

f(p1;X2) = p
(
1
2a

)
: (6)

Then we see that (5) and (6) are equal if 1=2a=c∗=p=
(1=r)1=(r−1).

Having established in Theorem 1 that only a sin-
gle team within each activity should be funded when
Tj=B¿ln 2; ∀j = 1; : : : ; M , Theorem 2 states the fol-
lowing:

1. If there is a single activity that “dominates” in terms
of its weight (cj) then that activity receives all the
available budget.

2. If several activities simultaneously “dominate” in
terms of their weights, there are multiple optima
where one of the dominating activities gets all the
funding. Furthermore, if a certain condition on the
maximum weight c∗ holds, there is yet another op-
timum funding scheme where all activities equally
share the available budget.

Note that part 2 of Theorem 2 always holds without
the condition on c∗=p for M =2. Also, it is enough to
compute the ci values and select the maximum to �nd
the activity that receives all the funding. As a simple
illustration of the above theorem, consider the example
in Fig. 1. Here p1 =p2 =1, and we compute c1 =c2 =
0:449329. Hence, clause 2 of the theorem applies and
we have two global minima, (B1 = 10; B2 = 0) and
(B1 = 0; B2 = 10).

2.1. Maximizing the expected number of teams
achieving a threshold

In the foregoing discussion, we considered the prob-
ability that the most successful team within each ac-
tivity exceeds a threshold and a weighted sum of these
probabilities is aimed to be maximized. As an alter-
native objective, Gerchak [3] considers the problem

of maximizing the expected number of teams attain-
ing a pre-speci�ed threshold (Problem 3 in the above
reference). Since, it is assumed that the teams within
each activity work independently with an identical
achievement distribution, the number of teams achiev-
ing a certain threshold will have a binomial distribu-
tion with parameters ni and p∗

i = [1− Fj(Tj;Bj=nj)],
where Fj(·) corresponds to the achievement distribu-
tion of a team in activity j; j = 1; : : : ; M . If activities
have di�erent priorities re
ected by pj’s as before, the
objective function forM =2; �i=1; i=1; 2 becomes

max
B1 ; n1 ; n2

[pn1e−T1(n1=B1) + (1− p)n2e−T2(n2=(1−B1))]
≡ max

B1 ; n1 ; n2
f(B1; n1; n2);

where B is taken is to be one without loss of generality.
We brie
y indicate below that the results obtained

above also extend to this problem. In particular, we
observe that f(B1; n1; n2)¿f(B1; n1; 0) for all n1¿1
and f(B1; n1; n2)¿f(B1; 0; n2) for all n2¿1. Further,

f(B1; 1; 1)− f(B1; 1; n2)
=(1− p)[e−T2=(1−B1) − n2e−T2n2=(1−B1)]:

For n2¿2, the above expression is always positive if
ln 26T2, which follows from the arguments presented
in the previous section. Similarly, we can show that
f(B1; 1; 1) − f(B1; n1; 1) is always nonnegative if ln
26T1 holds. Therefore, the su�cient condition for
(n1; n2) = (1; 1) to be the optimal number of teams
turns out to be that ln 26Ti; i = 1; 2, similar to the
previous problem. The problem of �nding the optimal
value of B1 that maximizes f(B1; 1; 1) also reduces to
the previous problem since

max
B1

{pe−T1=B1 + (1− p)e−T1=(1−B1)}

≡ min
B1

{p[1−e−T1(1=B1)]

+(1−p)[1−e−T1(1=(1−B1))]}:
This seemingly counterintuitive result can again be

explained by the tail probability expression involved in
the objective function. On the other hand, the su�cient
conditions of the above results may be stronger than
necessary. That is, if this condition is not satis�ed
the optimal policy may still advocate funding a single
team as exempli�ed in [3, Table 8].
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3. Conclusion

In this paper, we obtained a su�cient condition
under which a nonlinear resource allocation prob-
lem introduced by Gerchak and Kilgour [2] admits
closed-form solutions. The cases where the su�cient
condition fails to hold are deemed less interesting in
applications by Gerchak and Kilgour [2]. Closed-form
solutions in such cases are not possible as observed
by Gerchak and Kilgour [2] through numerical ex-
perimentation since the optimal decision di�ers from
one case to another.
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