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1. INTRODUCTION 

Inference with bivariate data gained considerable interest recently, See eg.[1],[10],[12]. All of these studies 
howrver consider estimation of the bivariate distribution function under various bivariate censoring models. 
Recently (:iirler[7,8] considered estimation of the bivariate distribution and the hazard functions under trun- 
c.atlon/censoring models. The purpose of this study is to investigate procedures for testing the independence 
of I hc components of the bivariate vector for truncated data. To this end, further properties of the bivariate 
functrouals introduced in GiirleQ] are elaborated. Two alternative methods for hypothesis testing are sug- 
gested aud some large sample properties are derived. The procedures suggested in this paper are applicable 
to left/right. truncated and left truncated right censored data. However to keep the presentation simple we 
~~oufinr t.hr discussion to the right truncated case. Also, to avoid technicalities, it is assumed that all the 
univariat.e and the bivariate distribution functions are absolutely continuous admitting densities. 

2. PRELIMINARIES 

In hivaria.te t,runcation model, the triplets (Yi, Xi, ri), i = 1,. , R are observed for which (Yi 5 T;). The 
interest is in the pair of random variables (I’, X) with distribution function F(y, 2). Here, T is a random 
V;ll~labl(~. which is assumed to be independent of (Y, X), with d.f. G. The marginal d.f.‘s of Y and S are 
drnr,trd hy 1;‘,, and Fx respectively. For the identifiability of F, it is assumed that a~, 5 (1~ and b.ur < bG 
( he? [IA]). Let F(y, .r) = P(Y > y, X > z) be the bivariate survival function and for a univariate function y, 
+rtch t,hat 6 < g(e) 5 1, let g(e) = 1 - g(x). The distribution of the observed variables (Y, X, T) are given by: 

HY,X,T(Y> x> t) = P(Y<y,X<x,T<tIY<T) 

J 

* 
= Q 

-1 
F(Y A u, 2) dG(u) 

0 

\~her,, 0 = ~(1. 2 T), and y A u = min(y, u). This joint distribution function can be further elaborated to 

rebult in: 

hY,X(Y, xl = ~-lc(Y)f(Y, 2) (1) 

C(Y) = a-lc(y)FY (Y) = HY (Y) - MY) (2) 

sVhrrr /I,,,~ and f denote the hivariate densities of H anf F. Considering the foregoing relations, Giirler[S] 

snggests the following estimator 

F,(y, x) = i F g$I(y. > Y, xi > 2) 

Fy,,(y) = n [1 - s(yi)/ncn(yi)l 
i.Y.>y 

s(u) = #{i : y, = u} 

ncqzr) = #{i : y, < u 5 2-i-i) 
3201 
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‘1‘1~~ Pst.mlator Fy,,(y) is suggested by Lynden-Bell[lO] and th e ar 1 g e sample properties of it for left truncation 
1nod~1 art= studied in in [17],[2],[6],[14]. Giirler[B] establishes the following results: 

FY,n(Y) - FY(Y) = &p(Y) + Cl,,(Y) (3) 
h&a(Y) - %X(Y, x) = E2,n(Y, z) + fZ,n(Y, z) (4) 

\Vll,V 
w$>a>aFkl,n(Y)I = SWy>a>ar IQ,n(Y, z)I = O(log3 n/n) 

;rutl ~l,,~(!//), c?,,?(y, x) as defined in Giirler[B] are mean zero i.i.d. variables. 

Bivariate reverse-hazard in right truncation model: 
Following the representation of Dabrowska[4], of th e b’ Ivariate d.f. in terms of the three component bivariate 
hazard vrct,or. Giirler[B] suggested a bivariate reverse-hazard vector X(y, Z) for right truncated data as described 
l)t~low. For any hivariate function #(u, zi)> differentiable in both components, let r$(&, V) denote the partial 
<IPrivat.ive w.r.t. to first argument with similar notation applying to the other component. Then 

Lv~. H(y, 1) = - log F(y, z), then 

F(Y, z) = Fx(~)~y(y)e~p{-Ny, ~1) 

b,-, bpx 
A(Y,Z) = J J R(du, dv) 

Y  = 

Cz(Y, z) = G,,(Y, z) - HT,X(Y--, cl 

= a -‘[I - G(Y)lF(Y, 2) 

with empirical counterpart given by: 

(5) 

(6) 

(7) 

Cz,n(f4 v) = n-‘#{i : Yj 5 u 5 Tj ( xj 5 v} 

= +%,Y,X(u, V) - %,T,X(+-, v)]. 

where H, y,x and Hn,~,X are the empirical bivariate d.f.‘s. For these step functions, let A refer to the difference 
operator. Then an estimator for the reverse- hazard is obtained as follows: 

L(u,v) = { 
H n,y,x(A% Au) Hn,v,x(Au, v) G,n(u, Au)) 

CZ,n(U, v) > 
G,n(% v) ’ G,n(U, v) 

q {%a(~, v), h,n(U,v),XZ,n(u, u)} (8) 
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Observe that 

H n,y,x(AX, Xj) = Tl-‘CI(Yk =I$, Xk <Xj) 
k=l 

and assuming no ties in the data, 

C2,n(yi, AX,) = n-‘I(Yj < x < q) 

H n,Y,X(AYij Xj) = n-‘I(Xi I Xi) 

Hence 
H n,y,x(AYi,Xj)C2,n(YirAXj) =nw21(yj I yi 5 q,Xi I Xj) 

Then t,he following estimator for h(y, z) is obtained 

n I(I;I>Y,Xj>~)I(Yj~Yi~Tj,XjIXj) 

- $5 n2C~(Y;, Xj) 

E I-II-III 

3. TESTING INDEPENDENCE OF Y AND X 

‘The foregoing discussions in Section 2 lead to the following approaches for testing the independence of Y and 
.\-. Let 

CZ(Y, 2) 
T(Y) xl = c(y) = 

F(Y> x) 

FY(Y) 

Sl(Y, x) = F(Y, x) - FY(Y)fqY, x) 

which can bc estimated by 
Sl,,(Y, x) = &(Y, x) - FY,n(YFn(Y, xl 

1-There 
r (y x) = I_ C2P(YPX) _ #{i : Y, I Y 5 ri , xi > x} 

n , 
cno- #{i : y, < y 5 Ti} 
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I :~ldrr I 11~ hypothesis of independence, ~(y, Z) = Fx (x) and Sl(y, Z) = 0. Therefore test statistics can be based 

()I, tl~r fuuctionals of Sl,,(y,r), such as C,“=, Sl,,(y- taxi or ~upl,~i~kS~,~(yi~si) , where (yi,zi),i = l,..,k ) 
woul(l lx’ prt:-selected points on R2. Similarly, from the foregoing discussions on the reverse-hazard, we observe 
I Ilat if !- a~~cl I are independent, A(y, Z) = 0. H ence an alternative approach could be to use x7=, hl,,(y,, xi) 
01 ~IIII,~,,,~ ~l~,,,(yi, x,) as a test statistics. A related approach for the censored data can be found in [13] and 
I II? ~~c+&iices therein. Comparison of these tests and their behavior relating to power, unbiasedness, relative 
t+ficictlc,v rt,c. are subject to further investigation. However. we present below the following large sample 
rtwlth. which would lead to establish such properties. Using the results of [l6],[17], following Lemmas are 
,)I,1 ;liJld PK)o& of these results and the theorems below, which are not presented here for space considera.tions 
cali tiuntl in Giirlrr[9]. 

LEMMA 1: 

a-) El & 
7l 

(& si) IX = Y> xi = zl = l/da/, x)(1 - [l - C(y, Z)]“} 

b-) E[ n2c2(;, \r,) II: = Y, xi = zl = LZKTY, ~)llWY? x1 
874 I 

c-) a 
l(Yjj”< Yi 5 rj , xi 5 x. 

fJ2Cr,Z(Yi, Xj) 
3 (I$ = y,Xj = Z)] 

= { 1 - I,[C(y, Z,] - [l - C(Y, Z)]“/[4n - lP(Y, Z)l 

LEMMA 2: 

[XldU, w) - AI(U, ~)Az(u, v)ldudv+ B*(Y, z) 

- &---&Y,x(~u, v)Hy,x(u, Bv)ldudu + &(Y> x) 

Z%(U) = Z(Yj 5 u < 2-j) 

Ia(u,v) = I(Yi 5 U < Ti,Xi < W) 

LEMMA 3: Let rE(y, 2) be the Hajek projection of r,(y, 2). Then, 

sup l%(Y> x)I = wd n/n) 
ap<y,o<z<m 
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and 

r;(Y,z) = w + q C[C(Y)&(Y, z) - C,(Y, Z)b(Y)l 

= - s + <3,“(Y, 2) 

The above Lemmas, together with the results of Giirler(l996) lead to the following theorems 

THEOREM 1: Let a~ < y < y and suppose sce2(u)F(du) < co. Then, 

+ JJ u>y u>r 
“+@‘& vy’“’ vhy,X(uu, v)dudv + R,(y, x) 

where 

q h,“(Y/, x) + &,“(Y, x) 

(,,~;Pob IMY>~)l = wog3 n/n) 

Note t,hat E[<h,,,(y, z)] = 0 and .&(y, z) is a sum of identical but not independent random variables. In fact 
it is a sum of t.wo U-Statistics and this enables us to study the large sample properties, which is still subject 
to further investigation. The representations in (3) and (4) now leads to a corresponding representation for 
the statistic Sl,,(y, z), from which the results for the functionals of it can be derived. 

THEOREM 2: Under the conditions of Theorem 1, 

SW(Y, ~1 - SI(Y, z) = 52,n(~, x) - F(YI~~,~(Y, x1-t %(Y, z) 

= Y,(Y, z) + Rz,n(y, 2) 

where 
sup IRz,n(y, z)I = O(log3 n/n) 

(YF)ET.b 

The y,,(y, .c) above is again in the form of sum of mean zero i.i.d. random variables, for which standard large 
sample results apply. 
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