
European Journal of Operational Research 157 (2004) 784–790

www.elsevier.com/locate/dsw
Short Communication

Scheduling with tool changes to minimize total
completion time: Basic results and SPT performance

M. Selim Akturk a,*, Jay B. Ghosh b, Evrim D. Gunes c

a Department of Industrial Engineering, Bilkent University, Ankara 06800, Turkey
b Department of Information and Operations Management, University of Southern California, Los Angeles, CA, USA

c Production and Operations Management, INSEAD, Fontainebleau, France

Received 18 April 2002; accepted 12 March 2003

Available online 1 August 2003

Abstract

We consider a single machine sequencing problem subject to tool wear, where the objective is to minimize the total

completion time. We briefly describe the problem and discuss its properties, complexity and solution. Mainly, however,

we focus on the performance of the SPT list-scheduling heuristic. We provide theoretical worst-case bounds on SPT

performance and also demonstrate its empirical behavior.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Tool change; SPT list-scheduling; Performance analysis
1. Introduction

The traditional literature on machine scheduling

generally assumes that a machine is able to process
jobs continuously at all times. In practice, however,

that is rarely the case; machine operation is

often disrupted by random breakdown, preventive

maintenance or tool change necessitated by job mix

or tool wear. Only recently has this issue begun to

get the attention that it deserves. For example, see

Adiri et al. [1] and Albers and Schmidt [5] for re-

search on scheduling subject to random machine
breakdown, Lee [12] for scheduling research in
* Corresponding author. Tel.: +90-312-290-1360; fax: +90-

312-266-4054.

E-mail address: akturk@bilkent.edu.tr (M.S. Akturk).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0377-2217(03)00232-7
presence of preventive maintenance, and Schmidt

[15] for a review on machine availability. Schedul-

ing subject to tool change, while it is more common

and frequent, has not been addressed thus far.
There is a growing body of literature on tool

management that considers tool change explicitly;

Crama [7] provides an overview. This is perhaps

due to the late recognition that lack of tooling

considerations has led to the considerable under

performance of automated manufacturing sys-

tems; see Gray et al. [9]. However, its origins being

in the work on flexible machines, this literature has
focused mainly on tool change induced by job mix

rather than that due to tool wear; Akturk and Avci

[2] is a notable exception. This is in sharp contrast

to the finding in Gray et al. [9] that in real life tool

change due to tool wear is approximately 10 times
ed.

mail to: akturk@bilkent.edu.tr

M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790 785
more frequent than that induced by job mix.

Furthermore, tool management research does not

address the scheduling-related performance mea-

sures such as total completion time; the emphasis

typically is on minimizing the number of tool

changes. The models are mostly motivated by past
industrial experience that the time needed for

changing tools overwhelmingly dominates the job

processing times; see Tang and Denardo [16].

In this note, we attempt to redress the above

situation by considering, as a first step, a proto-

typical single-machine scheduling problem that

accounts for tool change due to tool wear. The

chosen objective is to assign a given set of jobs
successively to identical tools from an available

pool and sequence them on the tools such that the

total job completion time is minimized. Extending

the standard scheduling notation, the problem at

hand can be called 1jtool-changej
P

j Cj. We admit

that our adoption of a single tool type makes the

problem a bit restrictive; it nonetheless retains a

practical basis (as we will discuss later).
We wish to point out at this stage that our work

is similar in spirit to that on preventive mainte-

nance [12,13]. The most significant differences with

the early work are that we allow multiple tool

changes (machine unavailability periods) as op-

posed to just a single one and that we do not allow

partial processing of a job (resume policy) or any

machine idle time other than that forced by tool
change (restart policy). Recently, Qi et al. [14] has

addressed a maintenance problem that is in fact

mathematically equivalent to our tool change

problem and presented results that are similar to

what we have obtained independently [3]. We

should point out that, in their context the main-

tenance interval is variable and thus that their

model may not apply to scheduled maintenance
(which is performed by specialist crews at fixed

intervals); it may be more appropriate for routine

maintenance performed by the machine operator

(such as adjustment, lubrication and cleaning)

within a specified period. More recently, Graves

and Lee [8] has addressed a generalization of the

Qi et al. model and, in that sense, has a bearing on

our work as well.
In the sequel, we first introduce the problem

and its two versions. We then briefly state several
structural properties for an optimal schedule,

precisely establish the complexity of the problem

and propose a dynamic program for its exact so-

lution. As our main contribution, we study the

performance of the shortest processing time first

(SPT) list-scheduling heuristic next. We show that
SPT is optimal if the tool-change time is negligible

or if the number of tools it needs is two or less. We

further show that SPT has a worst-case perfor-

mance bound of 1.5 (which is tight) if it uses three

tools and 2.0 if it uses more. Finally, we report a

limited computational study that shows that SPT

performs quite well in practice.
2. Problem definition and solution properties

We are given a single machine that will remain

continuously operational from time zero except

when there is a tool change in progress. There are

also n independent jobs that are ready for process-

ing at that time. The job processing time (pj for job j,
j ¼ 1; . . . ; n) is known and constant. Also, m iden-

tical units of a single tool type with known, constant

life (TL, TL P pj for j ¼ 1; . . . ; n) are available.When

an active tool is due to wear out, no new job is as-

signed to it and it is replaced with a new tool; the

time needed for this tool change ðTCÞ is also known

and constant. The processing of a job is never in-

terrupted because of tool change or otherwise. Fi-
nally, all numbers are assumed to be integers.

A few comments are in order here. First, the use

of a single tool type is not entirely uncommon.

Computer numerically controlled (CNC) drilling

machines can use identical drill bits to process a

number of jobs in succession. Second, non-pre-

emption of jobs is also reasonable in many ma-

chining situations because preemption affects
surface finish and results in non-machining activ-

ities such as job removal, placement and orienta-

tion. Last, tools used by CNC machines are quite

expensive; see Kouvelis [10] and Tomek [17]. It is

not uncommon at all to see that tool cribs main-

tain only a small number of such tools on hand.

The challenge often is thus to determine how to

schedule a given set of jobs with only a limited
number of tools (a situation that we will encounter

shortly).

786 M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790
Going back to the problem, we note that we

wish to find a feasible schedule s� that will mini-

mize the total completion time of the jobs. It is

easily seen that there is no advantage to have any

machine idle time other than what is forced by a

tool change. Nor is there any advantage to change
a tool when it can process the job that is next in

sequence. We assume that these policies are being

enforced. A job sequence r then translates un-

iquely to a job-to-tool assignment using mðrÞ
tools. If mPmðrÞ, r is feasible and yields the as-

sociated schedule s; the sequence is infeasible

otherwise. In the remainder of the paper, we use

the terms schedule and sequence interchangeably.
We now introduce two versions of 1jtool-

changej
P

j Cj. Ignore m and assume that r� is an

optimal sequence that uses the least number of

tools mðr�Þ among all optimal sequences. If

mPmðr�Þ, tool availability does not limit the

scheduling process from realizing the minimum

total completion time. So, whenever we have an

assuredly large m, we say that we have the un-
limited tools version of our problem; the objective

here is to find r� regardless of m. Of course, we do

not know a priori if a problem instance is such,

short of finding r�, unless m is very large (as

when mP n). Anyhow, it is worthwhile to note

that there is no need to specify m when address-

ing the unlimited tools version, that r� always

exists in this case and that for computational
purposes an upper bound on mðr�Þ can be used in

lieu of m. One may also note that it is this very

version that coincides with the work of Qi et al.

[14].

If m is not assuredly large, tool availability may

impact the scheduling process and we say that we

have the limited tools version of our problem. We

note that the specification of m is integral to this
version and further that a feasible sequence may

not exist in this case. Disregarding feasibility for

the moment, let BIN be a sequence that uses the

least number of tools among all sequences; we can

generate BIN from the exact solution of a bin-

packing problem. If m < mðBINÞ, no feasible se-

quence can be found. If mðBINÞ6m < mðr�Þ, only
a constrained optimal sequence r^ can be found
such that Zðr^Þ > Zðr�Þ. Again, we do not know a

priori what kind of a situation we are dealing with,
short of solving the bin-packing problem, unless m
is very small (as when m <

P
j pj=TL).

The upshot is that we will have one of two

versions of 1jtool-changej
P

j Cj to deal with: the

unlimited tools version where m is not explicitly

considered, and the limited tools version where m is
considered as such. We proceed to describe certain

developments that apply to both versions of the

problem.

For a given sequence r using mðrÞ tools, let Cj

be the completion time of job j, p½k� be the pro-

cessing time of the job in position k of the se-

quence, ti be the total processing time of all jobs

assigned to tool i, gi be the number of jobs as-
signed to tool i, Z (equal to

P
16 j6 n Cj) be the total

completion time. It can then be shown that

Z ¼ ZS þ ZT , where ZS ¼
P

16 k6 n ðn� k þ 1Þp½k�
and ZT ¼ ½

P
16 i6mðrÞ ði� 1Þgi�TC. We recognize

that ZS is the total completion time of the jobs in r
when there is no idle time due to tool change (that

is when TC ¼ 0). Similarly, ZT is the adverse effect

of a non-zero TC. Clearly, as TC ! 0 and TC ! 1,
ZS and ZT , respectively, dominate in the minimi-

zation of Z. Beyond these insights, the above

characterization is also helpful in analyzing the

problem and its solution (as we will see later).
3. Properties, complexity and solution

We start by stating a number of structural

properties that hold for an optimal sequence; they

have been arrived at independently by Qi et al. [14]

and us [3]. From this point on, we will assume

(without loss of generality) that the jobs are in-

dexed in the SPT order and the tools are numbered

in order of their use.
Property 1 (SPT within tool). The jobs assigned to
the same tool are sequenced in the SPT order.
Property 2 (Tool utilization). TL � ti < pj, for any
tool i and any job j assigned to tools iþ 1; . . . ;mðrÞ.
Property 3 (Average job time). ðti1 þ TCÞ=gi1 6
ðti2 þ TCÞ=gi2 for any tools i1 and i2 such that i1 < i2.

M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790 787
Property 4 (Job loading). gi1 P gi2 for any tools i1
and i2 such that i1 < i2.

We now establish the complexities for the lim-
ited tools and the unlimited tools versions of
1jtool-changej

P
j Cj and give a dynamic program

for their solution. Note that Result 1 is straight-

forward and that Result 2 has been obtained in-

dependently by Qi et al. [14] and us [3].
Result 1 (Limited tools). The limited tools version
of 1jtool-changej

P
j Cj is NP-hard in the ordinary

sense if m is fixed and in the strong sense if m is
arbitrary, even when TC ¼ 0.

Result 2 (Unlimited tools). The unlimited tools
version of 1jtool-changej

P
j Cj is NP-hard in the

strong sense.

Lastly, we describe a Lawler–Moore [11] type

dynamic program (DP) for the 1jtool-changej
P

j Cj

problem. It helps us establish the precise complex-

ity of the limited tools version when m is fixed; it is

also practically viable as long as the problem pa-

rameters remain agreeably small. The DP algo-

rithm becomes impractical at n ¼ 16 and m ¼ 4

because of its huge storage requirement; at

this size, it also takes more than an hour of CPU

time.
For the limited tools version, we use m as it is.

For the unlimited tools version, we use an upper

bound on mðr�Þ; we may alternatively use mðSPTÞ
as a practical surrogate (in view of the high tool

costs). We assume that the jobs are scheduled one

at a time starting with job 1; at any stage r, job r is
thus scheduled on a tool with an index between 1

and m (if it is possible to do so). Let ti be the total
processing time and gi be the number of jobs as-

signed to tool i, and frðt1; . . . ; tm; g1; . . . ; gmÞ be the
minimum total completion time realizable at stage

r for a given state ðt1; . . . ; tm; g1; . . . ; gmÞ. Clearly,
06 ti 6 TL,

P
16 i6m ti ¼

P
16 j6 r pj, 06 gi 6 r andP

16 i6m gi ¼ r. The dynamic programming recur-

sion is given by
f0ðt1; . . . ; tm; g1; . . . ; gmÞ ¼ 0 for all ti and gi ¼ 0;

¼ 1 otherwise:
frðt1;...;tm;g1;...;gmÞ

¼ min
16i6m

fr�1ðt1;...;ti

"
�pr;...;tm;g1;...;gi�1;...;gmÞ

þ
X
16q6i

tqþði�1ÞTCþ
X

iþ16q6m

gqpr

#

for all feasible states;

¼1otherwise:

The optimal solution value is given by the

minimum of fnðt1; . . . ; tm; g1; . . . ; gmÞ over all fea-

sible states at stage n (with a value of 1 indicating

that there is no feasible sequence) and an optimal

sequence (if it exists) is constructed through
backtracking. The overall complexity of DP is

Oðmnmþ1Tm
L Þ, which is pseudo-polynomial for a

fixed m.
DP enumerates over a minimal representative

set of all non-dominated partial schedules that

upon completion will potentially lead to an opti-

mal sequence; it is thus correct. Its state space at

any stage is bounded by ½P16 i6mðtiÞðgiÞ�6 Tm
L n

m,
and m computations occur at each state. Over n
stages, this translates to time and space require-

ments loosely bounded by mnmþ1Tm
L .
4. SPT performance

We now look at the SPT list-scheduling heu-
ristic as an approximate solution for

1jtool-changej
P

j Cj. Certainly, this exercise is

meaningful only when we are considering the un-
limited tools version of the problem or when

mPmðSPTÞ. We start with the following result.

Result 3 (SPT optimality). The SPT sequence is
optimal if TC ¼ 0 or mðSPTÞ6 2:

The first part is obvious from past observations.

The second part is also easy to see as SPT mini-

mizes both ZS and ZT .

If mðSPTÞ > 2, the SPT sequence provides only

a heuristic solution to our problem. Let OPT

represent the corresponding optimal sequence.

Now define the performance ratio q of the SPT
sequence as follows:

788 M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790
q ¼ min
I

fZðSPTðIÞÞ=ZðOPTðIÞÞg;
where I represents a problem instance. (Hence-

forth, we drop I from the description, whenever

there is no scope for confusion.) Since ZSðSPTÞ6
ZSðOPTÞ and ZT ðSPTÞP ZT ðOPTÞ, it follows that
q6 ZT ðSPTÞ=ZT ðOPTÞ. This in turn implies that

q6
X

16i6mðSPTÞ
ði�1ÞgiðSPTÞ

" #, X
16i6mðOPTÞ

ði�1Þgi

"

�ðOPTÞ
�
:

The following result provides an upper bound on q
when mðSPTÞ ¼ 3.

Result 4 (SPT performance ratio––special). If
mðSPTÞ ¼ 3, then q6 1:5; and this bound becomes
tight as TC ! 1.

Clearly, mðOPTÞPmðBINÞP 2. We get an

upper bound on ½
P

16 i6mðSPTÞ ði� 1ÞgiðSPTÞ� if we
use giðSPTÞ ¼ ½n� g1ðSPTÞ�=2 for i ¼ 2; 3, and a

lower bound on ½
P

16 i6mðOPTÞ ði� 1ÞgiðOPTÞ� if we
use g1ðOPTÞ ¼ g1ðSPTÞ, g2ðOPTÞ ¼ n� g1ðSPTÞ
and giðOPTÞ ¼ 0 for all other i. Substituting these

in the right hand side of the inequality on q im-

mediately yields the first part of the result.
To see that the bound on q becomes tight as

TC ! 1, consider the following instance: n ¼ 5,

m ¼ 3, TL ¼ 6, fpj : j ¼ 1; . . . ; 5g ¼ f1; 2; 2; 3; 4g.
The SPT sequence uses all three tools and has jobs

1–3 on tool 1, job 4 on tool 2 and job 5 on tool 3.

The OPT sequence uses two tools and has jobs 1,

2, 4 on tool 1 and jobs 3, 5 on tool 2. On evalua-

tion, it is seen that

ZðSPTÞ=ZðOPTÞ ¼ ð29þ 3TCÞ=ð30þ 2TCÞ:
As TC ! 1, ZðSPTÞ=ZðOPTÞ ! 1:5.

We now state a more general result on q. This is
also the main new result of this note.

Result 5 (SPT performance ratio––general). If
mðSPTÞP 3, then q6 2.

The proof is by induction. In what follows,
SPTj, OPTj and SEQj represent, respectively, the

SPT sequence, an optimal sequence and any arbi-

trary sequence of jobs 1 through j. Now, let q be

the maximum number of jobs that a SPT sequence
can assign on two tools. For jobs 1 through j,
1 < j6 q, the optimal sequence is known to be

SPTj (Result 3). Let r be the maximum number of

jobs that the SPT sequence can assign on three

tools. For jobs 1 through j, q < j6 r, SPTj may

not be optimal. However, it follows from the proof
of Result 4 that ZT ðSPTjÞ=ZT ðOPTjÞ6 1:5 < 2.

We now hypothesize that ZT ðSPTjÞ=
ZT ðOPTjÞ6 2 for some j, j > q. It is clear that we
are dealing with mðSPTjÞP 3 and that any se-

quence will need two or more tools for jobs 1

through j. We will prove that ZT ðSPTjþ1Þ=
ZT ðOPTjþ1Þ6 2.

If mðBINjþ1Þ is the number of tools used for
jobs 1 through j in an optimal bin-packing solu-

tion, it is known from Anily et al. [6] that

mðSPTÞ=mðBINÞ6 1:75. Since mðOPTjþ1ÞP
mðBINjþ1Þ and mðSPTjþ1Þ is integral, mðSPTjþ1Þ
6 b1:75mðOPTjþ1Þc. It is easy to see

ZT ðSPTjþ1Þ ¼ ZT ðSPTjÞ þ ½mðSPTjþ1Þ � 1�TC
(since job jþ 1 is the longest and assigned on the
last tool as the last job)

6 2ZT ðOPTjÞ þ ½b1:75mðOPTjþ1Þc � 1�TC
(as hypothesized and as shown above)

6 2ZT ðOPTjÞ þ 2½mðOPTjþ1Þ � 1�TC
(for mðSPTjþ1ÞP 3 or mðOPTjþ1ÞP 2, the ratio

½b1:75mðOPTjþ1Þc � 1�=½mðOPTjþ1Þ � 1� can be

shown to be bounded above by 2)

6 2½ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC�:
We will now show that ZT ðOPTjþ1ÞP

ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC. There are two

cases to consider. First, suppose that, in OPTjþ1,

the longest job, job jþ 1, is assigned to the last

position on the last tool, mðOPTjþ1Þ and that re-

moving job jþ 1 yields the j-job sequence SEQj.

We have

ZT ðOPTjþ1Þ ¼ ZT ðSEQjÞ þ ½mðOPTjþ1Þ � 1�TC
P ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC:

Next, suppose that job jþ 1 is not assigned as

above in OPTjþ1, but to the last position on a

preceding tool. Remove job jþ 1 and replace it

with the job that is in the last position on the last

tool. Say, this yields the j-job sequence SEQ0
j.

Clearly,

Table 1

Computational results on SPT performance ratio (q)

n m TL TC=TL

0.1 1.0 10.0

Best Average Worst Best Average Worst Best Average Worst

20 4 31 1.00 1.00 1.01 1.00 1.02 1.06 1.00 1.06 1.15

5 24 1.00 1.00 1.01 1.00 1.03 1.08 1.00 1.07 1.18

25 4 39 1.00 1.00 1.01 1.00 1.02 1.06 1.00 1.04 1.13

5 30 1.00 1.00 1.00 1.00 1.01 1.04 1.00 1.03 1.09

30 4 47 1.00 1.00 1.00 1.00 1.01 1.04 1.00 1.03 1.09

5 36 1.00 1.00 1.01 1.00 1.02 1.04 1.00 1.05 1.10

M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790 789
ZT ðOPTjþ1ÞP ZT ðSEQ0
jÞ þ ½mðOPTjþ1Þ � 1�TC

P ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC:

We have now effectively shown that ZT ðOPTjþ1ÞP
ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC.

Combining the two inequalities on ZT ðSPTjþ1Þ
and ZT ðOPTjþ1Þ from above, we get

ZT ðSPTjþ1Þ=ZT ðOPTjþ1Þ
6 2½ZT ðOPTjÞ þ ½mðOPTjþ1Þ � 1�TC�=½ZT ðOPTjÞ

þ ½mðOPTjþ1Þ � 1�TC�6 2:

This completes the proof. We have shown that

SPT has q6 2. We are, however, not able to show

at this time that this bound is tight.

Finally, to test the performance of the SPT

heuristic empirically, we solve an mixed integer

linear programming (MILP) formulation [3] using

CPLEX. The SPT heuristic is coded in the C lan-

guage and compiled with the Gnu C compiler. All
runs are made on a SPARCstation 10 machine

operating under SunOS 5.4. We try three levels of

n (20, 25 and 30), two levels of m (4 and 5) and

three levels of TC=TL (0.1, 1.0 and 10.0); for each

combination of n and m, an appropriate value of

TL (as shown in Table 1) is used and the integer TC
value for each such combination is derived based

on the TC=TL ratio and through rounding. There is
thus a total of 18 combinations of n, m and TC=TL;
for each, 10 problem instances are randomly gen-

erated by drawing the pj�s from a discrete uniform

distribution over [1,10].

While we do not collect information on CPU

times, it appears that the SPT heuristic executes
within a few milliseconds and that the MILP al-
gorithm takes significantly longer (occasionally

more than an hour of CPU time beyond n ¼ 30

and m ¼ 5). Table 1 shows the best, average and

worst values of the SPT performance ratio. In no

case does this ratio exceed 1.18; for small TC=TL
values (which are likely to be encountered in

practice), the average actually stays at or below

1.03. Our study is too limited in its scope for us to
be able to make any sweeping claims about the

performance of SPT in general. However, we can

at least say that it is quite effective. This is further

borne out by comparisons carried out against

more sophisticated heuristics [4].
References

[1] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan, Single

machine flow-time scheduling with a single breakdown,

Acta Informatica 26 (1989) 679–696.

[2] M.S. Akturk, S. Avci, Tool allocation and machining

conditions optimization for CNC machines, European

Journal of Operational Research 94 (1996) 335–348.

[3] M.S. Akturk, J.B. Ghosh, E.D. Gunes, Scheduling with

tool changes to minimize total completion time, Technical

Report, Dept. of Industrial Engr., Bilkent University,

Ankara, Turkey, 1999.

[4] M.S. Akturk, J.B. Ghosh, E.D. Gunes, Scheduling with

tool changes to minimize total completion time: A study of

heuristics and their performance, Naval Research Logistics

50 (2003) 15–30.

[5] S. Albers, G. Schmidt, Scheduling with unexpected ma-

chine breakdowns, Discrete Applied Mathematics 110

(1999) 269–280.

[6] S. Anily, J. Bramel, D. Simchi-Levi, Worst-case analysis of

heuristics for the bin-packing problem with general cost

structures, Operations Research 42 (1994) 287–298.

790 M.S. Akturk et al. / European Journal of Operational Research 157 (2004) 784–790
[7] Y. Crama, Combinatorial optimization models for produc-

tion scheduling in automated manufacturing systems,

European Journal of Operational Research 99 (1997)

136–153.

[8] G.H. Graves, C.Y. Lee, Scheduling maintenance and

semiresumable jobs on a single machine, Naval Research

Logistics 46 (1999) 845–863.

[9] E. Gray, A. Seidmann, K.E. Stecke, A synthesis of decision

models for tool management in automated manufacturing,

Management Science 39 (1993) 549–567.

[10] P. Kouvelis, An optimal tool selection procedure for the

initial design phase of a flexible manufacturing system,

European Journal of Operational Research 55 (1991) 201–

210.

[11] E.L. Lawler, J.M. Moore, A functional equation and its

application to resource allocation and sequencing prob-

lems, Management Science 16 (1969) 77–84.
[12] C.Y. Lee, Machine scheduling with an availability con-

straint, Journal of Global Optimization 9 (1996) 395–416.

[13] C.Y. Lee, S.D. Liman, Single machine flow-time scheduling

with scheduled maintenance, Acta Informatica 29 (1992)

375–382.

[14] X. Qi, T. Chen, F. Tu, Scheduling the maintenance on a

single machine, Journal of the Operational Research

Society 50 (1999) 1071–1078.

[15] G. Schmidt, Scheduling with limited machine availability,

European Journal of Operational Research 121 (2000) 1–

15.

[16] C.S. Tang, E.V. Denardo, Models arising from a flexible

manufacturing machine, Part I: Minimization of the

number of tool switches, Operations Research 36 (1988)

767–777.

[17] P. Tomek, Tooling strategies related to FMS management,

The FMS Magazine 5 (1986) 102–107.

	Scheduling with tool changes to minimize total completion time: Basic results and SPT performance
	Introduction
	Problem definition and solution properties
	Properties, complexity and solution
	SPT performance
	References

