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the part must visit to complete its processing. When 
a part’s operation is completed on a machine, it is 
moved to its next machine on the unicyclic material 
handling network. If the workstation is occupied, 
the part is stored in a local buffer, waiting for the 
workstation to become free. 

ULN layouts are preferred to other configurations 
due to their relatively lower initial investment costs 
because they contain a minimal number of required 
material links to connect all workstations while pro- 
viding a high degree of material handling flexibility 
(Afentakis, 1989). Such configurations are able to 
satisfy all material handling requirements for the part 
types scheduled for manufacturing in the system as 
there is at least one directed path connecting any pair 
of workstations. With these layouts, future introduc- 
tion of new part types and process changes are easily 
accommodated. Of the 53 FMSs in Japan, surveyed 
by Jaikumar and Van Wassenhove ( 1989), ULN lay- 
outs are the most common architecture. These systems 
also have lower operational complexity. Gaskins and 
Tanchoco (1987) point out that bidirectional mate- 
rial handling paths require more sophisticated control 
and higher installation costs than unidirectional paths. 
This makes bidirectional paths a less favored altema- 
tive than unidirectional loop networks. 

The Unidirectional Loop Network Layout Problem 
(ULNLP) is generally formulated as a Quadratic As- 
signment Problem (QAP). The objective is to assign 
each machine to exactly one of the candidate locations 
such that an appropriate objective function is mini- 
mized. Two types of objective criteria have been used 
in the literature: 

( I ) minimization of the sum of flows times distances 
per unit time (Bozer and Rim, 1989, Kiran and 
Karabati, 1988, and Kiran, Unal and Karabati, 
1992). 

(2) minimization of the total number of parts that 
cross the LUL station per unit time (Afentakis, 
1989, and Kouvelis and Kim, 1992). 

It can be shown that the two objective criteria 
are equivalent (Kouvelis and Kim, 1992; Tansel and 
Bilen, 1994). 

Various versions of the problem have received atten- 
tion in the literature. Bozer and Rim ( 1989) present a 
linear programming (LP) relaxation for ULNLP with 
equal spaced locations and claim that the LP solves 

the equal spaced ULNLP optimally. However, we have 
not been able to validate their proof. If their result is 
true, then this identifies the equal spaced ULNLP as 
a polynomial time solvable case of the QAP If true, 
this would be an important polyhedral result because 
the non-equal spaced ULNLP is known to be NP-hard 
(Kouvelis and Kim, 1992). We remark that the non- 
equal spaced ULNLP with Q conserved (balanced) 
Jlow matrix (i.e. for each station, the total material 
flow into a station is the same as the total outflow 
from that station) is equivalent to the equal spaced 
ULNLP (Bozer and Rim, 1989; Kiran, Unal and Kara- 
bati, 1992). Hence, the conserved flow version of the 
non-equal spaced ULNLP is also polynomially solv- 
able if Bozer and Rim’s result is true. Kiran, Unal and 
Karabati ( 1992) report that integer solutions are ob- 
tained from the LP relaxation of their formulation of 
the conserved flow problem. However, their test runs 
are restricted to problems with up to six stations. For 
larger problems we discovered in our test runs that 
noninteger solutions are possible. This of course raises 
questions on the validity of Bozer and Rim’s ( 1989) 
result in the optimality of the LP relaxation for the 
equal spaced problem. 

For the non-conserved flow, non-equal spaced 
ULNLP, the problem is formulated as a QAP with a 
special cost matrix (due to the circularity of the loop 
which induces a special distance matrix). Kouvelis 
and Kim ( 1992) proved that the problem is NP-hard 
by transforming it to the feedback arc set problem 
which was suggested earlier by Afentakis ( 1989). 

Bozer and Rim (1989) developed a lower bound 
by modifying the well known Gilmore-Lawler bound. 
They took advantage of the circularity of the dis- 
tance matrix. Kiran and Karabati ( 1988) introduced 
an exact solution algorithm with a branch and bound 
(B&B) structure similar to that of Gilmore ( 1963) 
and Lawler ( 1963). Computations of the lower and 
upper bounds are presented. If there is a large num- 
ber of buffer spaces interacting independently with 
the loop network, then these buffer spaces should be 
treated as separate stations. In such cases, the number 
of stations increases and the B&B algorithm will not 
be efficient. Kiran and Karabati ( 1988) developed a 
polynomial approximation algorithm based on filtered 
beam search technique. Kouvelis and Kim (1992) 
gave three heuristic procedures, KK- 1, KK-2, and KK- 
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3, that are supported by some dominance rules. The 
dominance rules suggest locating a machine to the last 
position if it has only incoming flows from other ma- 
chines. Similarly, a machine that has only outgoing 
part flows should be assigned to the first position. Also 
they developed an optimal B&B algorithm. 

Some special cases have also been noted in the lit- 
erature, Bozer and Rim ( 1989) proved that if the flow 
matrix is symmetric, that is to say Wij = Wji for all i, j, 
interchanging machines i and j does not change the 
objective function value. Hence, any layout is optimal 
when the flow matrix is symmetric. Kiran and Karabati 
( 1988) give a polynomially solvable (O( n* log(n) ) 
special case of the problem when parts are transported 
to a LUL station after every operation. 

Leung ( 1992) considers the ULNLP problem 
with the objective of minimizing the maximum num- 
ber of times a part family traverses the loop before 
its processing is completed. They call this prob- 
lem the min-max reload loop-layout problem. Based 
on graph-theoretic arguments, a heuristic is devel- 
oped which constructs a layout from a solution to 
the linear-programming relaxation of the problem. 
Millen, Solomon and Afentakis ( 1992) consider the 
impact of the number of LUL stations in automated 
manufacturing systems with unidirectional closed 
loop material handling equipment. Comparison of 
material handling costs for two cases (single LUL 
station and a LUL station for each machine) indicated 
that providing flexibility in part entry/exit functions 
reduces material handling movement. 

The rest of our paper is organized as follows: in 
Section 2, we give our formulation of the problem, 
which is a special case of the well known quadratic 
assignment problem. In Section 3, we introduce and 
discuss the idea of positional moves. In Section 4, 
we present two improvement type heuristic methods 
based on positional moves. In Section 5, we discuss the 
computational effectiveness of the proposed heuristics. 
Section 6 ends the paper with concluding remarks. 

2. Unidirectional loop network layout problem 
formulation 

The unidirectional loop network layout problem 
(ULNL) can be stated as follows: 

Given machines 0, 1, . . . , n, with machine 0 being 
the Load/Unload (LUL) station, candidate positions 
labeled 0, 1, . . . , n and pairwise non-symmetric part 
flows between machines, what is the assignment of 
the machines to candidate positions that yields the 
minimum cost defined by the sum of partflows times 
distances between the machines? 

We assume the LUL station is preassigned to lo- 
cation (position) 0. The remaining machines are to 
be assigned to candidate locations 1, . . . , n around the 
loop. The material movement is unicyclic, and it is 
assumed to be in the clockwise direction. 

First we discuss how the part flows are determined 
from process plans. In an FMS environment, machines 
are capable of processing different part types simulta- 
neously.LetP={l,... , p} be the set of different part 
types to be processed in the system per period. Each 
part type may require different routes for their pro- 
cessing. By a route, we mean the sequence in which a 
part visits the machines in the system. This sequence 
is given by a process plan, Zp, for a particular part type 
p E P. For example, if part type 2 needs to be pro- 
cessed by three machines in the order, machine 3, ma- 
chinel,andmachine2,thenZz=(3,1,2).Letn~be 
the number of times machines i and j appear consec- 
utively (in that order) in the process plan Z,. Equiv- 
alently, nc specifies the number of moves to be made 
from machine i to machine j by part type p. Let up be 
the number of units of part type p to be produced per 
time period. 

With these definitions, the part$ow from machine 
i to machine j per time period is the quantity 

Wij = 
c 

v& for all i, j, with i # j. 
PEP 

Observe that Wij # Wjj in general. 
Let N = {l,..., n} be the station (machine) in- 

dices and put fl= NU{O}. We take Wjj = 0, Vi E i@, 
while wij is the quantity defined above for i, j E fl, 
with i # j. 

For a given machine i, the total inflow and outflow 
associated with machine i are the quantities 

R(i) = Cwji and C(i) = CWij. 
j=O j=O 
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Fig. I. Loop network locations. Fig. 2. Determination of the distance from location 1 to k 

We say the system is balanced if R(i) = C(i) for all 
i E I@‘. We call the flow matrix W = [ wij] a conserved 
flow matrix if the system is balanced. 

Generally, an automated manufacturing system is 
balanced when no manual interruption is permitted so 
that any part entering the system will surely exit the 
system. The balancedness assumption need not hold 
in systems with multiple LUL stations (note that the 
manual removal of a broken part may be viewed as an 
unload operation at that machine). 

(4) & + dk, 2 &,, QL km. 
Due to the assumption of unit spacing between ad- 

jacent locations, the distance from location 1 to k is 
determined by (see Fig. 2) 

k-l if k > 1, 
dlk = 

{ 

n+l-l+k ifk<l, 
0 if k = 1. 

Define a machine assignment vector to be a permu- 
tation of the integers 1,2,. . . , n, and denote it by 

Assumptions underlying the formulation are as fol- 
lows: 

a= (a(l),...,a(n)), 

Al. 

A2. 
A3. 

A4. 

A.5. 

The location of the LUL station is fixed at posi- 
tion 0. 
The system is balanced. 
Adjacent locations are unit distance apart (since 
the system is balanced, the distance between ma- 
chines is of no importance, as proved in Bozer 
and Rim, 1989, and Kiran, Unal and Karabati, 
1992). 
Process plans and the number of units to be pro- 
duced for each part type are given, so that pair- 
wise part flows between machine pairs can be 
calculated. 
Parts enter and exit the system at the LUL sta- 
tion. 

Let the locations around the loop network be num- 
bered O,l,..., n in increasing order of indices in 
clockwise direction (see Fig. 1). Assumption A3 im- 
plies the distance between any two adjacent locations 
is one and the total length of the loop is n + 1. Let dlk 
be the transport distance from location 1 to location 
k. This distance has the following properties: 

(l) d’k L 0 for 1 # k { 

-0 iffl=k, 

(2) d,k # dk, in general. ’ 
(3) dlk-l-dk[=n+l,Vl,kE{O ,..., n},l # k. 

where cu( i) specifies the location of machine i. Let II 
be the set of all permutations of 1,2, . . . , n. 

The total material handling distance per period for 
a given assignment (Y is 

+il 
n 

woidoaci) -I- c Wida(i)O~ 
i=l i=l 

The first summation in the definition of Z ( (Y) accounts 
for the material flow between machines, the second 
(third) summation accounts for the material flow from 
(to) LUL station to (from) all machines. 

Observe that doa is simply a(i), and da(i)0 is 
n + 1 - a(i) . 

Hence, an equivalent definition of Z ( CX) is 

Z(a) = C C wijdrr(i)a(j) + C(woi - wio)a(i) 
i=l j=l i=l 

+cn + l)R(O). 

Note that the last term is a constant and does not affect 
the minimization. 
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Then the ULNL problem can be stated as that of 
finding an assignment vector LY that minimizes the 
expression 2 (a) : 

(ULNLP) 

ran; Z(cu). 

This formulation is a special case of the QAP The 
special structure results from the stated properties of 
the distance matrix and the balancedness assumption. 
It is well known that QAP is NP-hard with reported 
computational success limited to less than 18 ma- 
chines (Burkard, 1990; Burkard and Stratman, 1978). 
Whether or not the special distance matrix may lead 
to efficient exact methods is an open question. 

3. Local optimality, interchanges, positional moves 

A commonly used criterion to solve QAP is the 
steepest descent criterion of pairwise interchanges. For 
example, the well known CRAFT algorithm (Francis, 
McGinnis and White, 1992) relies on pairwise inter- 
changes between departments to reduce the score of a 
layout which is computed by the sum of flows times 
distances. The idea is to begin with a seed layout and 
perform pairwise interchanges as long as the objec- 
tive value is reduced by a positive amount. Termina- 
tion occurs when no pair interchange gives any im- 
provement. Such a solution is a locally optimal one. 
It may be possible to improve it if one takes k-way 
interchanges into account where k 2 3. 

Given two assignment vectors (Y and 6, we define 
(Y and ti to be k-way neighbors if there exist k distinct 
position indices 41, . . . , qk such that 

a(qi) #&(qi) for i = 1,. . . , k, 

while 

a(j)=c(j) for j $!{q19...,qk}. 

The definition implies (Y and 6 are identical in n - k 
position while they are non-identical in each of the 
remaining k positions. Let Nk( cu) be the set of all k- 
way neighbors of cy and define 

CNk(&‘) =U{Nj(o) : 1 < j 6 k}. 

We say an assignment vector (Y is a k-way local opti- 
mum if 

z(a) 6 z(6’) Qc E CNI,(cu). 

Observe that k = n implies global optimality. 
Let us call a heuristic method a k-way heuristic (or 

a k-way interchange method) if it seeks a k-way lo- 
cal optimum by performing k or fewer interchanges. 
Even though one may be tempted to think that a k-way 
heuristic should always find a locally optimal assign- 
ment that is at least as good as one found by a h-way 
heuristic where 2 < k, this is not true in general. For 
example, a 2-way heuristic may find a better solution 
than a 3-way or a 4-way heuristic for a given problem 
instance. Despite that, it is generally expected that, 
for k < &, a i&way heuristic may perform better on 
the average than a k-way heuristic, since k-way inter- 
changes take into account k-way interchanges. 

There is also the computational burden one must 
take into account. For example, a 2-way heuristic re- 
quires U( n*) comparisons per iteration while a k-way 
interchange method searches over O( x:Z2 j! (II> ) 
neighbors. The additional computational burden is 
usually not justified on the basis of possible additional 
improvements over 2-way interchanges. 

We now focus on a new ‘neighbor’ concept which 
has not been utilized in the literature. It is based on 
‘positional moves’ and leads to an 0(n*) local im- 
provement method whose average performance is bet- 
ter than the pairwise interchange method which is also 
O(n*). 

Given an assignment vector, a positional move is 
made by moving a machine from its current position 
to one of the other candidate positions, and shifting 
all affected machines by one position down in counter 
clockwise direction. The affected machines are those 
that occupy the positions in the clockwise direction 
between the old and new positions of the moved ma- 
chine. If the new ordering of the machines results in 
an improvement in the value of the objective function, 
the ordering of the machines is changed to that of the 
new generated ordering. For example, if machines are 
assigned to locations 1,. . . ,5 in the order (2,4,1,5,3), 
a positional move of machine 4 to position 4 results in 
the new arrangement (2,1,5,4,3). Formally, given an 
assignmentcu(O),a(l),...,Lu(n),apositionalmove 
of machine i to location j results in the following as- 
signment vector 6: if a(i) < j < n, then (Y(i) = j; 
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5(k) =cu(k)-lforallmachineskforwhichcu(i) < 
a(k) < j, while 6(k) = a(k) for all remaining ma- 
chines k. If 0 < j < a(i), then d(i) = j; 5(k) = 
cu( k) - 1 for machines k for which cu( i) < cw( k) < n 
or 1 < cu( k) 6 j; (Y(k) = n for the unique machine k 
for which cu( k) = 1; and c(k) = n(k) for all remain- 
ing machines k. 

We remark that while the above definition of a po- 
sitional move is the most natural one, an alternate 
definition is also possible by declaring the ‘affected 
set’ of machines as those that occupy the positions 
in the counter clockwise direction between the old 
and new positions of the moved machine. With this, 
if machine i is moved from its current position a(i) 
to a new position j, then each machine k in posi- 
tions j,j + l,..., a(i) - 1 is moved one position 
up. After the move, these machines occupy positions 
j+l,j+2,..., a(i) . If position n is included in the 
affected set, then the machine that occupies position 
n before the move occupies position 1 after the move. 
Let us call this type of move a backward move and call 
the the formerly defined one aforward move. While it 
is possible to design heuristics based on both types of 
moves, our computational tests indicate that forward 
and backward moves yield essentially the same per- 
formance rates. For this reason, we base our analysis 
of the computational results on forward moves alone. 
In what follows, every positional move that we refer 
to is a forward positional move. 

Let us define assignments LY and 6 to be positional 
(or positionwise) neighbors if one is obtained from 
the other by a positional move. Define PN(a) to be 
the set of all positional neighbors of LY. We define LY 
to be positionwise locally optimal if 

Z(a) < Z(5) VJCU E PN((Y). 

Positionwise local optimality does not imply k-way 
local optimality and k-way local optimality does not 
imply positionwise local optimality. However, if we 
impose both criteria, we have a local optimality crite- 
rion that is stronger than either one alone. 

A pairwise interchange of two machines at posi- 
tions, say, A and B (A < B) can be regarded as a 
positional move of the machine at A to its new posi- 
tion B followed by a positional move of the machine 
at B - 1 (this machine’s former position was at B) 
to its new position at A. In this sense, a positional 
move is a more elementary step than a pairwise in- 

terchange. It is certainly possible for a pairwise inter- 
change to worsen the objective value while a single 
step execution of only one of its corresponding con- 
secutive moves to improve the objective value. With 
this, pairwise interchanges may miss many possible 
local improvements that are caught by single moves. 
In addition, we observe that a single positional move 
perturbs the positions of two or more machines (those 
between the origin and destination positions) while a 
pairwise interchange perturbs the positions of only two 
machines (those that are interchanged). In this sense, 
a positional move from position i to position j can 
be regarded as a special case of a k-way interchange 
where k is the number of affected machines. It is a 
special case because the new positions of the affected 
machines are defined in a rather special way while a k- 
way interchange allows many other rearrangements of 
affected machines. With this, a heuristic design based 
on positional moves may partly account for improve- 
ments that might have been also obtained from k-way 
interchanges, where k ranges anywhere from 2 to n, 
whereas traditionally used pairwise interchanges are 
restricted to 2-way interchanges only. 

With the above observations, the analysis of posi- 
tional moves seems to deserve special attention. 

4. Proposed heuristics 

We propose two heuristics which we call MOVE, 
and MOVE/INTERCHANGE. The first one is based 
on positional moves alone and the second one is based 
on both positional moves and pairwise interchanges. 

We now give the details of the first heuristic, MOVE, 
which is based on positional moves. Given the current 
assignment (Y, the method computes the change in the 
objective value that would result from moving any 
machine i to any of the positions j $ a(i). This is 
done for each machine i which gives a total of n( n - 1) 
possibilities. 

In the generation of the best possible assignment 
vector we make use of an nxn matrix, which we call 
PM. Rows of the PM matrix correspond to machines, 
and the columns correspond to positions. The (i, j) 
entry of the PM matrix gives the change in the objec- 
tive value that results from moving the i-th machine 
from its current location to the j-th location. Largest 
positive entry in the PM matrix gives the maximum 
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improvement assignment. This procedure will be re- 
peated until no more improvement is accomplished. 
That is to say, until all the entries in the PM matrix 
are non-positive. 

Let a be the current assignment vector and 6 be 
an assignment vector obtained from CY via a posi- 
tional move. We first derive a simplified expression 
for Z(a) - Z(5). 

Consider moving machine p to location q by a po- 
sitional move. There are two cases: a(p) < q or q < 
cx ( p ) . Let I be the set of indices of machines whose 
positions are changed by 1 unit down due to the move- 
ment of machine p and f be the set of indices of ma- 
chines whose positions remain unchanged (note that 
0 E r) . In addition, for the case q < (Y(P) , let x be 
the unique machine index whose position is moved by 
2 units; i.e. this is the machine that is initially at po- 
sition 1 and moved to position n. For any subsets K 
and i? of Na, let 

w(K,R) =~~~~ij. 
iEK jEt 

In the expressions that follow, whenever a set K is the 
singleton {k}, we write k where {k} is meant. 

It is direct to show the following: 
0 Case 1: a(p) < q (No = I U JUp): 

Z(a) - Z(S) 

=-w(Z,I) +w(I,z) +n[w(Z,p) -w(p,Z)l. 

??Cuse2:q<a(p) (iP=ZUJUxUp): 

Z(n) - Z(C) 

=-w(zuxuo,I\o) +w(~\o,zuxuo) 

+n[w(zUxUO,p) -w(p,zUnUO)] 

- w(x, N) + w(N,x) + (n - l>(wxo - ~0x1 

+w(O,N\x) -w(N\x,O). 

Input to the algorithm MOVE consists of a partflow 
matrix, W = (wij), and an initial machine assignment 
vector, (Y. 

MOVE (M) 
Step 1. Initialize an n x n matrix 6’ by setting @ = 

W, where W = (Wij) is the part flow matrix. 
Step 2. Initialize an n x 1 vector d by setting iE = a, 

where cx is an arbitrary machine assignment vector. 

Fig. 3. Machine 4 moved to position 4. 

Move machine i to location j for all i, j, by positional 
move. Calculate Z (cu) - Z (6). 

Step 3. Generate the PM matrix. Change & accord- 
ing to maximum improvement satisfying assignment 
vector. 

Step 4. Repeat Step 3 until all the entries in the PM 
matrix are non-positive. 

The following example demonstrates how the 
heuristic works. 

Example. Consider a ULNLP with n = 4 machines, 
the following workflow matrix: 

6 1 4 0 3 
7 3 4 2 0 

and an initial assignment vector (Y = (3,4,1,2). 
Initially machine 1 is at position 3, machine 2 at 

position 4, machine 3 at position 1 and machine 4 at 
position 2. That is, a(l) = 3, n(2) = 4, cu(3) = 1, 
and a(4) = 2. 

Suppose we move machine 4 to position 4. This 
movement results in the assignment vector d = 
(2,3,1,4) (seeFig.3).Thatis,&(l) =2,6(2) =3, 
G(3) = 1, and d(4) = 4. 

With Z = {1,2}, f = {0,3}, and p = 4, it is direct 
to compute that 

Z(a) - Z(5) = - w(Z,1) f w(J,Z) 

+ nlw(Z,p) - W(P* 01 

= -9+11+4(9-7)=10. 

The positive value indicates that the new assignment 
of machines gives a better objective function value. 
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Our second algorithm, the Positional Move/Pair- 
wise Interchange Heuristic, is a combination of the 
heuristics Positional Move and the well known Pair- 
wise Interchange Heuristic. First, we state the Pair- 
wise Interchange method. In the Pairwise Interchange 
method, given an initial assignment of the machines, 
positions of the machines are swapped one pair at a 
time. Initial assignment is changed with an assignment 
of machines providing the maximum improvement 
in the objective function value. This improvement is 
determined from the PS matrix as in the case of the 
Positional Move heuristic’s PM matrix. 

PAIRWISE INTERCHANGE (I) 
Step 1. Initialize an n x n matrix % by setting %’ = 

W, where W = (wij) is the part flow matrix. 
Step 2. Initialize an n x 1 vector h by setting 6 = a, 

where cy is an arbitrary machine assignment vector. 
Step 3. Change positions of machine i and j. Cal- 

culate Z(a) -Z(s). 
Step 4. Generate the PS matrix. Change 6 accord- 

ing to maximum improvement satisfying assignment 
vector. 

Step 5. Repeat Step 3 until all the entries in the PS 
matrix are nonpositive. 

In the Positional Move/Pairwise Interchange heu- 
ristic we use the two heuristics in the following way. 
Initially a solution will be improved with the posi- 
tional move heuristic alone. As mentioned before we 
continue our search until all the entries in the PM 
matrix are non-positive. When no more improvement 
can be attained from the Positional Move heuristic we 
pass to the Pairwise Interchange heuristic. Input to the 
Pairwise Interchange heuristic is the last assignment 
vector obtained from the Positional Move heuristic. 
When no more improvement can be obtained from the 
Pairwise Interchange heuristic, the Positional Move 
heuristic will carry on with the last assignment (the 
best solution obtained up to that time). This proce- 
dure will continue until neither heuristic gives any 
further improvement. We call the combined method 
MOVE/INTERCHANGE (M/I). 

MOVE/INTERCHANGE (M/I) 
Step 1. Initialize an n x n matrix l%’ by setting G = 

W, where W = (Wij) is the part flow matrix. 
Step 2. Initialize an n x 1 vector 51 by setting hl = 

LY, where LY is an arbitrary machine assignment vector. 
Step 3. Move machine i to location j for all i, j. 

Calculate Z(cu1) - Z(h1). 
Step 4. Generate the PM matrix. Change 2 1 accord- 

ing to maximum improvement satisfying assignment 
vector. 

Step 5. Repeat Step 3 until all the entries in the PM 
matrix are non-positive. 

Step 6. Set 62 = d 1, where 5 1 is the best assignment 
obtained by positional moves. 

Step 7. Change positions of machines i and j. Cal- 
culate Z(n2) - Z(&2). 

Step 8. Generate the PS matrix. Change 62 accord- 
ing to maximum improvement satisfying assignment 
vector. 

Step 9. Repeat Step 8 until all the entries in the PS 
matrix are non-positive. 

Step 10. Set d = 52 and go to Step 2. 

5. Computational results 

In this section we discuss the effectiveness of the 
heuristic procedures proposed in Section 2. Also a 
discussion on the factors influencing the results of the 
heuristics will be provided. 

We compared our two heuristics MOVE and 
MOVE/INTERCHANGE with the heuristic proce- 
dures KK-1, KK-2, and KK-3 developed by Kou- 
velis and Kim ( 1992), and the Pairwise Interchange 
heuristic. Note that heuristic procedures KK- 1, KK-2, 
and KK-3 are construction heuristics. Pairwise Inter- 
change and our heuristics are improvement heuristics. 
We input two types of initial assignment vectors for 
the improvement heuristics. In the first type, we gen- 
erate a random assignment of machines to initiate the 
method. In the second type, we begin with an initial 
assignment which assigns the i-th machine to the i-th 
position for all i. 

We generated random balanced part flow matrices. 
The row sums and the column sums of the generated 
part flow matrices are equal to satisfy the balanced 
characteristic of the problem. In generating the ran- 
dom part flow matrices we imposed a constraint on 
the range of numbers in the matrix. We defined three 
ranges: O-IO, O-50 and O-100, corresponding, respec- 
tively, to small, medium, and high variations in the 
part flow matrix. 
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In our computational analysis, we considered eleven 
problem sizes, corresponding to n = 5, 6, 7, 8,9, 10, 
15, 20, 30, 40 and 50. For each combination of (size, 
part flow matrix, initial assignment) we generated 10 
instances. With three different types of part flow ma- 
trix and two different types of initial assignment, the 
number of instances tested for each problem size is 
10 x 3 x 2 = 60. This makes a total of 660 runs which is 
a reasonably high number to support our conclusions. 

The basis of our comparisons is the percent devi- 
ation of heuristics from the exact optimal value (or 
from a lower bound on the optimal value when prob- 
lem size is large). 

Define 

DH= (ZH-zE)/zE, 

where: 
DH = Percent deviation of the heuristic. 
Zn = Objective value obtained from a given heuristic. 
Zn = Exact solution value for sizes up to n = 10, 

and LP relaxation optimal value for sizes greater 
than 10. 

For problems of size up to 10, we computed the exact 
value of the problem by enumeration. For larger sized 
problems, we used the LP relaxation of the IP model of 
Kiran, Unal and Karabati ( 1992). The LP relaxation 
yields a lower bound on the optimal value. 

In Tables l-3 we give the average and the maximum 
observed deviations from the exact solutions for all 
the heuristics used in our test runs. 

The following acronyms are used: 
M: Heuristic MOVE. 
I: Heuristic Pairwise Interchange. 
M/I: Heuristic MOVE/INTERCHANGE. 
KK- 1, KK-2, KK-3: Kouvelis-Kim heuristics. 
r: Random initial assignment. 
i: i to i type initial assignment. 
12 : Problem size (number of machines). 
i?: Range (of values of flows). 

The following conclusions can be deduced from av- 
erage deviations in Table 1: 

( 1) Among the three construction heuristics, the 
performance of KK-3 is uniformly better than 
that of KK-2 and KK- 1. 

(2) Of the two pair interchange methods I(r) and 
I(i) , neither seems to display a superiority over 
the other. 

(3) A similar conclusion holds for move based 
heuristics M(r) and M(i). 

(4) A similar conclusion holds for move/inter- 
change based heuristics M/I(r) and M/I(i). 

(5) A comparison of construction KK-3 with the 
PAIRWISE INTERCHANGE method reveals 
KK-3 is quite competitive, with a slight bent 
in favor of the PAIRWISE INTERCHANGE 
method. 

(6) ??For the random initial assignment, compar- 
ing the PAIRWISE INTERCHANGE method 
with the MOVE method (columns I(r) 
M(r)) we see a uniformly superior perfor- 
mance in favor of moves for all problem sizes. 
That is, column M(r) dominates column I(r). 

??For i to i type initial assignment, again the 
proposed move heuristic M(i) performs better 
than the pairwise interchange method I(i) for 
all combinations of (n, 8)) except for two com- 
binations ((n = 9, R = 100) and (n = 50, i? = 
lo)), where I(i) performs slightly better than 
M(i). 

(7) Upon comparing MOVE with MOVE/INTER- 
CHANGE (columns M( +) and M/1( .) ), we see 
that the average performance for both is essen- 
tially the same. Note that M/I(.) is computa- 
tionally more expensive than M( .). 

(8) Regardless of the type of initial assignment, the 
MOVE and MOVE/INTERCHANGE methods 
provide the best observed results in terms of av- 
erage deviations. In most problems up to size 
10, these heuristics give the exact solution value. 
The closest competitor is PAIRWISE INTER- 
CHANGE, followed by KK-3. 

(9) 0% deviation from optimality is achieved in 
about 12% of the problems by the pairwise 
interchange method while 0% gap is achieved 
in about 40% of the problems by the move 
based heuristics. At most 1% gap is achieved 
in about 33% of the problems by the pairwise 
interchange method while 1% gap is achieved 
in about 55% of the problems by the move 
based heuristics. 

In summary, based on average percent deviations 
from optimality, move based heuristics (M/I and 
M) perform better than the pairwise interchange 
method (I). The third rank goes to KK-3 followed 
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Average percent deviations from optimality (averages are based on 10 instances for each combination of (n, R, initial assignment) 

n R KK-I KK-2 KK-3 l(r) M(r) M/I(r) I(i) M(i) M/l(i) 

5 

6 

7 

8 

9 

10 

15 

20 

30 

40 

50 

10 

50 
100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

IO 
50 

100 

10 
50 

100 

10 
50 

100 

8.61 6.46 1.20 0.95 0.00 
1.01 1.18 0.13 0.00 0.00 
0.91 2.93 0.42 0.00 0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

2.82 2.54 1.15 0.78 0.00 
3.07 6.5 1 I .27 0.09 0.00 
8.21 4.32 0.54 0.25 0.00 

0.00 
0.12 
2.13 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

7.77 2.69 0.00 0.37 
8.11 8.66 0.04 2.88 
7.22 6.87 1.17 0.53 

3.91 7.54 2.16 1.26 
4.64 5.85 0.83 1.46 
7.36 6.52 2.31 1.51 

0.00 
0.00 
0.00 

0.00 
0.00 
0.20 

0.77 
0.13 
I .53 

0.00 
0.00 
0.77 

0.00 
0.00 
0.77 

2.41 0.24 0.24 
0.89 0.00 0.00 
0.50 0.43 0.00 

7.64 6.87 1.32 2.94 0.99 
10.23 4.77 1.62 1.48 0.05 
8.01 7.04 2.70 1.14 0.34 

2.17 0.00 0.00 
1.46 0.00 0.00 
0.27 0.40 0.15 

6.01 
6.26 
4.67 

9.24 
9.28 

10.28 

6.88 1.95 1.54 0.16 
5.25 2.92 1.96 0.61 
9.00 2.78 1.83 0.89 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.99 
0.05 
0.14 

0.08 
0.61 
0.50 

2.73 
2.46 
2.83 

1.50 0.38 0.22 
1.88 0.83 0.83 
0.82 0.00 0.00 

9.70 4.08 4.61 2.73 
8.81 4.67 5.02 2.46 

10.24 4.68 4.52 2.83 

3.65 2.85 2.55 
5.05 2.99 2.80 
3.92 2.25 2.25 

9.73 8.95 6.14 6.03 4.32 4.32 5.79 4.23 4.23 
14.15 12.89 8.15 6.11 4.71 4.7 1 6.97 4.74 5.12 
12.24 12.64 6.96 6.81 5.06 5.06 8.82 5.01 4.97 

22.24 21.34 19.15 18.37 15.84 15.84 17.65 15.69 15.69 
18.75 19.43 16.32 14.22 13.12 13.12 14.68 13.03 13.03 
22.81 22.30 18.16 16.82 15.05 15.05 16.90 14.50 14.50 

25.16 23.87 21.25 20.50 19.27 19.27 20.65 19.39 19.39 
30.90 30.03 28.91 28.14 24.31 24.31 26.57 24.56 24.56 
30.43 31.21 26.00 25.54 22.69 22.69 25.44 24.07 24.07 

28.45 27.72 25.49 24.20 23.13 23.13 24.32 25.72 23.01 
27.84 26.87 24.85 25.98 23.93 23.93 24.47 23.89 23.89 
31.12 27.64 26.48 25.69 24.05 24.05 25.17 24.38 24.38 

by KK-2 and KK-1. We note that KK heuristics are 
construction methods and their computational effort 
is 0(n) which is significantly smaller than the com- 
putational effort of M, M/I, and I, all of which are 
improvement methods (0(n*) effort per improve- 
ment cycle). In this respect, it is natural for KK 
heuristics to lag behind in terms of solution quality 
while achieving superiority in terms of how fast one 
obtains a solution. 

Additional insights can be gained from a compar- 
ison of worst observed performance. Table 2 gives a 

comparison of the methods in terms of maximum de- 
viations from optimality. 

Up to problems of size 10, the MOVEDNTER- 
CHANGE method found the exact optimum almost 
all the time. Even though most of the conclusions 
based on average deviations continue to hold on the 
basis of maximum deviations, the differences in per- 
formance become much more pronounced in terms of 
maximum deviations than in terms of average devia- 
tions. For random initial assignment, MOVE performs 
uniformly better than PAIRWISE INTERCHANGE 
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Table 2 
Maximum deviations from optimality 

n R KK-1 KK-2 KK-3 I(r) M(r) M/I(r) I(i) M(i) M/l(i) 

5 

6 

7 

8 

9 

10 

15 

20 

30 

40 

50 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

10 
50 

100 

19.44 
3.52 
2.93 

6.06 
11.86 
20.11 

13.64 4.44 
2.62 0.78 

11.71 2.55 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

18.39 
13.22 
13.08 

7.52 
9.78 

16.81 

8.33 
17.29 
12.20 

7.84 
16.29 
14.99 

3.95 
4.52 
3.26 

5.71 
0.00 
0.00 

2.99 
0.52 
1.48 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 2.22 
0.25 6.96 
4.49 2.39 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.74 
8.37 

4.60 
0.75 
4.63 

0.00 0.00 
0.00 0.00 
4.63 4.63 

15.91 3.97 3.17 0.00 0.00 4.51 1.45 1.45 
8.90 1.54 4.29 0.00 0.00 4.29 0.00 0.00 

18.62 5.03 5.94 1.19 0.00 3.00 2.59 0.00 

17.18 14.72 3.65 5.52 3.65 3.65 5.14 0.00 
15.47 16.52 3.22 7.56 0.30 0.30 6.24 0.34 
27.07 23.47 13.57 4.61 2.02 0.83 2.02 0.83 

10.93 13.21 4.37 5.63 0.93 0.47 
8.47 13.09 5.83 3.28 2.43 2.43 
9.06 13.13 5.79 5.09 3.00 3.00 

7.65 
3.49 
3.09 

6.27 
7.43 
5.96 

0.94 
2.75 
0.00 

0.00 
0.30 
0.83 

0.93 
2.75 
0.00 

12.58 16.01 5.26 5.56 3.61 3.61 
12.47 11.51 6.61 7.91 3.66 3.66 
12.60 17.05 6.48 5.58 5.04 5.04 

4.24 2.94 
4.31 3.52 
3.28 3.28 

10.93 11.16 8.42 6.95 5.36 5.36 6.62 5.14 5.14 
28.32 16.92 9.13 7.38 5.82 5.82 9.71 6.00 7.07 
15.82 16.01 8.32 10.03 5.72 5.72 8.32 6.31 6.07 

24.27 25.47 21.38 22.93 17.53 17.53 19.64 17.63 17.63 
21.45 20.50 18.50 16.05 14.75 14.75 18.63 14.53 14.53 
27.51 24.31 20.49 19.48 17.46 17.46 19.44 17.39 17.39 

30.65 28.86 27.01 24.29 22.93 22.93 24.60 23.92 23.92 
32.21 34.02 30.15 31.25 25.58 20.56 30.19 25.43 25.05 
34.31 35.58 28.76 27.38 25.73 25.74 29.60 24.68 26.81 

37.22 36.62 34.35 32.44 31.96 31.96 32.64 31.83 31.57 
35.22 35.18 34.10 32.36 30.93 30.93 32.11 31.14 31.14 
34.15 34.44 32.02 32.60 30.16 30.16 31.14 30.96 30.96 

in all problem sizes. Sometimes the gap becomes forms slightly better than MOVE for the random 
significantly large. For example, for n = 5, i? = 10, assignment case. For i to i type assignment, MOVE 
PAIRWISE INTERCHANGE yields 5.71% maxi- performs uniformly better in terms of maximum devi- 
mum deviation while MOVE yields 0%. Similarly, ations than the PAIRWISE INTERCHANGE method. 
for n = 7, R = 50, maximum deviations are 6.96% vs. The differences (in %) are quite large for some 
O.OO%, while for IZ = 20, i? = 100 they are 10.03% vs. cases; e.g. for it = 6, i? = 100, 8.37 versus 0.00, 
5.72%. The largest gap occurs at n = 9, i? = 50, where for n = 10, i? = 10, 7.65 vs. 0.94, and for n = 40, 
the maximum deviations are 7.56% for PAIRWISE a = 50, 30.19 vs. 25.43. On the other hand, there 
INTERCHANGE vs. 0.30% for MOVE. Observe on is essentially no difference between the MOVE and 
the other hand that MOVE/INTERCHANGE per- MOVE/INTERCHANGE methods (columns M(i) 
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and M/I(i)). It is interesting to note that, of the 
three entries that are significantly different in columns 
M(i) and M/I(i), the ones corresponding to n = 8, 
R = 50 and IZ = 15, I? = 10, have maximum deviations 
(%) of 2.59 and 4.24 vs. 0.00 and 2.94, respectively, 
in favor of MOVE/INTERCHANGE while the one 
corresponding to n = 20, R = 50, has maximum devi- 
ations of 6.00 vs. 7.07 in favor of MOVE. 

In summary, based on maximum deviations from 
optimality, the first rank goes to the move based 
heuristics M and M/I with some superiority over the 
PAIRWISE INTERCHANGE method which takes 
third rank, followed by KK-3 in fourth rank. 

The performances of MOVE/INTERCHANGE 
and MOVE are essentially the same in the worst 
case deviation with a slight bent in favor of 
MOVE/INTERCHANGE. The worst case deviation 
of the PAIRWISE INTERCHANGE methods seems 
to be always a few points behind that of MOVE. Sim- 
ilarly, KK-3 follows a few points behind PAIRWISE 
INTERCHANGE. 

Additionally, we used the best observed solution 
obtained from the construction heuristics KK- 1, 
KK-2, and KK-3 as a seed to the improvement 
heuristics. Table 3 gives the percent improvement 
of MOVE, MOVE/INTERCHANGE, and PAIR- 
WISE INTERCHANGE over the best of KK heuris- 
tics. This table also substantiates the result that 
MOVE/INTERCHANGE and MOVE provide the 
largest improvement over the KK-heuristics while 
PAIRWISE INTERCHANGE lags considerably be- 
hind. 

We tried to determine the factors having an effect 
on the solutions of the heuristics. In our test runs we 
considered the following factors: problem size, range 
of part flow matrix, and the type of the initial assign- 
ment. We performed an Anova test for determining 
the significance of these effects. Although an effect 
of the type of initial assignment on the solutions was 
suspected, such an assumption was not confirmed by 
the Anova results. Observing the same thing for all 
the heuristics, strengthens the result of no effect of the 
type of initial assignment. The Anova results indicate 
that the type of partflow matrix and the number of ma- 
chines in the problem has a significant effect on the 
solution. This is observed for all three heuristics. 

Table 3 
Improvement over best solution obtained from the construction 
heuristics KK-I, KK-2, and KK-3 

n 
Percent improvement 

a M M/I I 

5 10 
SO 

100 

6 IO 

50 
IO0 

7 10 
50 

100 

8 IO 
SO 

100 

9 IO 
SO 

100 

0.71 
0.13 
0.21 

0.49 
0.12 
0.53 

0.00 
0.04 
0.90 

0.99 
0.72 
1.44 

I .08 
1.08 
2.20 

10 IO I .82 
50 2.14 

100 2.19 

I5 IO 
50 

100 

20 IO 
SO 

100 

I .55 
2.29 
2.05 

1.99 
2.92 
I .99 

30 IO 
SO 

100 

40 10 
50 

100 

50 IO 
50 

100 

Average 
improvement 

2.49 
2.93 
2.95 

1.85 
2.52 
1.75 

2.11 
2.46 
I .95 

I .52 

0.71 0.71 
0.13 0.13 
0.2 I 0.2 I 

0.49 0.22 
0.12 0.00 
0.53 0.53 

0.00 0.00 
0.04 0.04 
0.90 0.51 

0.99 0.63 
0.72 0.30 
I .44 I .34 

1.08 0.40 
1.08 0.93 
2.20 2.00 

1.82 0.85 
2.14 1.10 
2.19 1.19 

I .55 0.47 
2.29 1.21 
2.05 I.19 

I .99 0.80 
3.02 1.17 
1.99 0.60 

2.49 1.04 
2.93 1.21 
2.95 1.79 

1.85 0.78 
252 1% 
1.75 1.35 

2.1 I 0.95 
2.46 0.55 
1.95 0.73 

1.53 0.81 

6. Conclusion 

Unidirectional loop networks are preferred to other 
configurations due to their relatively lower initial in- 
vestment costs, since they contain the minimum num- 
ber of required material links to connect all worksta- 
tions and possess higher material handling flexibility. 
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In the literature, assigning machines in a unidirec- 
tional loop network with the objective of minimizing 
an appropriate objective function is referred to as the 
Unidirectional Loop Network Layout Problem. 

In our formulation of the problem we consider the 
sum of partflows times distances between the ma- 
chines as the objective function. We proposed two 
heuristics: MOVE and MOVE/INTERCHANGE. 
The idea of positional moves that we use in our 
heuristics has not been used in the earlier litera- 
ture. While the MOVE heuristic considers improv- 
ing the solution by making positional moves, the 
MOVE/INTERCHANGE heuristic applies positional 
moves and the pairwise change technique interchange- 
ably, repeated one after the other. 

We compared our heuristics with other heuristics 
developed for the same problem. For comparison 
purposes we used the three heuristics developed by 
Kouvelis and Kim ( 1992), and the well known pair- 
wise interchange heuristic. Test runs indicate that 
the observed performance of our heuristics is uni- 
formly better than that of other ones. In the overall, 
MOVE/INTERCHANGE and MOVE heuristics gave 
the best results in terms of both average and maximum 
deviations from the optimal. 

The performances of MOVE and MOVE/INTER- 
CHANGE are essentially the same, with a very slight 
bent in favor of the latter. The gap becomes signifi- 
cantly wider between the third ranking PAIRWISE IN- 
TERCHANGE and the second ranking MOVE. Since 
the computational expenses of PAIRWISE INTER- 
CHANGE and MOVE are just about the same, it is 
advisable to use heuristics based on positional moves 
rather than the traditionally widely accepted pairwise 
interchange ones. 
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