
E-Z9OOO(LS)LlZZ-LLEOS IId
‘Pam== VI% IIV 'A'8 ="??z J?~~wl8661 0 00'61$/86/LIZZ-LLEO

S~U~SXII 30 aDuanbas aqj saypads lt~ql wd qDea 103
uay% s! ueld ssaDold v TIO~QS (mu) p~~olun/peo~
aql 1~ Urals,& aql sl!xa pm! ualua tred ~SKJ *(s~gv)
salD!qaA pap@ paleruolne leuogDa.up!un 30 sqled
ary 10 ‘suralsrCs I~SX~UOLII ptzaqJaA0 ‘sauq ~01 ‘s.IodaA
-UOD dool Lq paAlas ual3o ala slnodq 30 sad& asau
*asfMyo13 *%*a ‘uoyal!p auo Quo u! pauodsueq an?
slapapqq ‘awo 6113tzxa uoyl~s qaea @no’ql %u!ssvd
qled Ou!Ipuaq lt+alm e 6q palDauuo3 aE suo!l~s
8u!u!qDwu 11~ *dool e u! pa%elra are sau!q3wu
‘lnohl (em) yJomlau dool p?uoy9aqp!un e UI

*(26fjl ‘my pue sgahnox ~0 scyls!maq
uo!lDnrlsuoD aql se IlaM se) poqlaw a%eq3~alu! as+
-qtzd aql ueql urnuydo arw aql u1o.13 suo!le!Aap uuuu!
-xw_u pun a8waAe 30 seal u! Jallaq dlwlo3!un twopad
asodoJd aM sys!lnaq aql leql alwpu! sllnsal lsal Jno
.@suap MOW 30 slaaal luaJaJJ!p putz sau!q3euI 0s 01 s

:IpuI-a ‘9ZIp 99~ ZIE 06-k :XZd IOWV3 %I~pUOdSaUO~.

tuol3 az!s u! %u@n2J sa3uelsu! uropue~ egg uo pasvq
a.InltXal!~ aql u10.13 s3!lspnaq %ys!xa Jay10 ql!M pand
-INOD s! scyspnaq asay ssaua+vaga Iwopwndtuo:,
au . (lanbas aql u! pauyap aq 01) ,saAotu lauol!sod,
uo paseq an? q3!qM s3!lsyaq 0~1 asodold put? I.uaI
-qord aql30 uoyk?~nuuoJ1no ah!% aM'sau!qxtu uaaM1

-aq saXIEls!p sauy smog ued 30 uIns aql Aq pauyap
is03 uuxu!u!tu aqi%u!p~a!Lsauyqxr 3oluaunB~sse ue
au!uxlalap 01 s! aApDa[qo au *luauIuo+ua SW uv u!
yowlau do01 Ieuoya.np!un e u! sau!qwu %U@IOJ.IR
Llleuydo 30 uralqold aql .~ap!suo~ aM ladEd s!ql UI

uoympoqq ??I

Ja!r\as[g 8661 @ 3psyaq a&n?q31alu! as!ml!ad UMOU~ Ilam aql 01 uos$duroD u! axmuo$md Jouadns L~oJyIn saW!pu!
SxlsyIaq paSeq ahour-OMJ ql!~ UO!)ElUaUIpadXa leuogwndruo~ mo ‘alnlelalg 8ugSfXa aql u! U8FSap 3p.Uqlf.1O%lE OJU! hM a!
pun03 lou saq Sah0u.I JO idamos aql q%noql uahg ~sa%ueq3~alu~ (hem-z dl.ruIm!ued) km-y JO SaAouI uo paseq suIqlyo8Ie
PauIaAoJdm! @301 pua saAoouI leuo!l!sod JO cap! aq] ssnmp a& malqold pnq lClah e dlleuogelndmo:, s! qxqm uraIqoId
luauu@ss~ xlelpenb e u! slInsaJ waIqoJd aql JO uo!lepwuoJ aqJ, .amrrls!p MOB 1~101 aql azwgu 01 dool e puno.m suogmo[
alqEl!em u u! paxId aq lsnw sau!qmu u aJaqM uralsk %uywe~nuew e u! tuaIqoJd 1noLeI ylomlau dooI aql lap!suoD a&

8P-9E (8661) 801 VJ=Wl @"WJJ~O KJ @"JW ~'JJ"EI

HOUV3S38
lVNOllVMdO JO

lVNkinOr
NEldOkln3

B.C. Tansel, C. BikdEuropean Journal of Operational Research IO8 (1998) 3648 31

the part must visit to complete its processing. When
a part’s operation is completed on a machine, it is
moved to its next machine on the unicyclic material
handling network. If the workstation is occupied,
the part is stored in a local buffer, waiting for the
workstation to become free.

ULN layouts are preferred to other configurations
due to their relatively lower initial investment costs
because they contain a minimal number of required
material links to connect all workstations while pro-
viding a high degree of material handling flexibility
(Afentakis, 1989). Such configurations are able to
satisfy all material handling requirements for the part
types scheduled for manufacturing in the system as
there is at least one directed path connecting any pair
of workstations. With these layouts, future introduc-
tion of new part types and process changes are easily
accommodated. Of the 53 FMSs in Japan, surveyed
by Jaikumar and Van Wassenhove (1989), ULN lay-
outs are the most common architecture. These systems
also have lower operational complexity. Gaskins and
Tanchoco (1987) point out that bidirectional mate-
rial handling paths require more sophisticated control
and higher installation costs than unidirectional paths.
This makes bidirectional paths a less favored altema-
tive than unidirectional loop networks.

The Unidirectional Loop Network Layout Problem
(ULNLP) is generally formulated as a Quadratic As-
signment Problem (QAP). The objective is to assign
each machine to exactly one of the candidate locations
such that an appropriate objective function is mini-
mized. Two types of objective criteria have been used
in the literature:

(I) minimization of the sum of flows times distances
per unit time (Bozer and Rim, 1989, Kiran and
Karabati, 1988, and Kiran, Unal and Karabati,
1992).

(2) minimization of the total number of parts that
cross the LUL station per unit time (Afentakis,
1989, and Kouvelis and Kim, 1992).

It can be shown that the two objective criteria
are equivalent (Kouvelis and Kim, 1992; Tansel and
Bilen, 1994).

Various versions of the problem have received atten-
tion in the literature. Bozer and Rim (1989) present a
linear programming (LP) relaxation for ULNLP with
equal spaced locations and claim that the LP solves

the equal spaced ULNLP optimally. However, we have
not been able to validate their proof. If their result is
true, then this identifies the equal spaced ULNLP as
a polynomial time solvable case of the QAP If true,
this would be an important polyhedral result because
the non-equal spaced ULNLP is known to be NP-hard
(Kouvelis and Kim, 1992). We remark that the non-
equal spaced ULNLP with Q conserved (balanced)
Jlow matrix (i.e. for each station, the total material
flow into a station is the same as the total outflow
from that station) is equivalent to the equal spaced
ULNLP (Bozer and Rim, 1989; Kiran, Unal and Kara-
bati, 1992). Hence, the conserved flow version of the
non-equal spaced ULNLP is also polynomially solv-
able if Bozer and Rim’s result is true. Kiran, Unal and
Karabati (1992) report that integer solutions are ob-
tained from the LP relaxation of their formulation of
the conserved flow problem. However, their test runs
are restricted to problems with up to six stations. For
larger problems we discovered in our test runs that
noninteger solutions are possible. This of course raises
questions on the validity of Bozer and Rim’s (1989)
result in the optimality of the LP relaxation for the
equal spaced problem.

For the non-conserved flow, non-equal spaced
ULNLP, the problem is formulated as a QAP with a
special cost matrix (due to the circularity of the loop
which induces a special distance matrix). Kouvelis
and Kim (1992) proved that the problem is NP-hard
by transforming it to the feedback arc set problem
which was suggested earlier by Afentakis (1989).

Bozer and Rim (1989) developed a lower bound
by modifying the well known Gilmore-Lawler bound.
They took advantage of the circularity of the dis-
tance matrix. Kiran and Karabati (1988) introduced
an exact solution algorithm with a branch and bound
(B&B) structure similar to that of Gilmore (1963)
and Lawler (1963). Computations of the lower and
upper bounds are presented. If there is a large num-
ber of buffer spaces interacting independently with
the loop network, then these buffer spaces should be
treated as separate stations. In such cases, the number
of stations increases and the B&B algorithm will not
be efficient. Kiran and Karabati (1988) developed a
polynomial approximation algorithm based on filtered
beam search technique. Kouvelis and Kim (1992)
gave three heuristic procedures, KK- 1, KK-2, and KK-

38 B.C. Tansel. C. Bilen/European Journal of Operational Research 108 (1998) 36-48

3, that are supported by some dominance rules. The
dominance rules suggest locating a machine to the last
position if it has only incoming flows from other ma-
chines. Similarly, a machine that has only outgoing
part flows should be assigned to the first position. Also
they developed an optimal B&B algorithm.

Some special cases have also been noted in the lit-
erature, Bozer and Rim (1989) proved that if the flow
matrix is symmetric, that is to say Wij = Wji for all i, j,
interchanging machines i and j does not change the
objective function value. Hence, any layout is optimal
when the flow matrix is symmetric. Kiran and Karabati
(1988) give a polynomially solvable (O(n* log(n))
special case of the problem when parts are transported
to a LUL station after every operation.

Leung (1992) considers the ULNLP problem
with the objective of minimizing the maximum num-
ber of times a part family traverses the loop before
its processing is completed. They call this prob-
lem the min-max reload loop-layout problem. Based
on graph-theoretic arguments, a heuristic is devel-
oped which constructs a layout from a solution to
the linear-programming relaxation of the problem.
Millen, Solomon and Afentakis (1992) consider the
impact of the number of LUL stations in automated
manufacturing systems with unidirectional closed
loop material handling equipment. Comparison of
material handling costs for two cases (single LUL
station and a LUL station for each machine) indicated
that providing flexibility in part entry/exit functions
reduces material handling movement.

The rest of our paper is organized as follows: in
Section 2, we give our formulation of the problem,
which is a special case of the well known quadratic
assignment problem. In Section 3, we introduce and
discuss the idea of positional moves. In Section 4,
we present two improvement type heuristic methods
based on positional moves. In Section 5, we discuss the
computational effectiveness of the proposed heuristics.
Section 6 ends the paper with concluding remarks.

2. Unidirectional loop network layout problem
formulation

The unidirectional loop network layout problem
(ULNL) can be stated as follows:

Given machines 0, 1, . . . , n, with machine 0 being
the Load/Unload (LUL) station, candidate positions
labeled 0, 1, . . . , n and pairwise non-symmetric part
flows between machines, what is the assignment of
the machines to candidate positions that yields the
minimum cost defined by the sum of partflows times
distances between the machines?

We assume the LUL station is preassigned to lo-
cation (position) 0. The remaining machines are to
be assigned to candidate locations 1, . . . , n around the
loop. The material movement is unicyclic, and it is
assumed to be in the clockwise direction.

First we discuss how the part flows are determined
from process plans. In an FMS environment, machines
are capable of processing different part types simulta-
neously.LetP={l,... , p} be the set of different part
types to be processed in the system per period. Each
part type may require different routes for their pro-
cessing. By a route, we mean the sequence in which a
part visits the machines in the system. This sequence
is given by a process plan, Zp, for a particular part type
p E P. For example, if part type 2 needs to be pro-
cessed by three machines in the order, machine 3, ma-
chinel,andmachine2,thenZz=(3,1,2).Letn~be
the number of times machines i and j appear consec-
utively (in that order) in the process plan Z,. Equiv-
alently, nc specifies the number of moves to be made
from machine i to machine j by part type p. Let up be
the number of units of part type p to be produced per
time period.

With these definitions, the part$ow from machine
i to machine j per time period is the quantity

Wij =
c

v& for all i, j, with i # j.
PEP

Observe that Wij # Wjj in general.
Let N = {l,..., n} be the station (machine) in-

dices and put fl= NU{O}. We take Wjj = 0, Vi E i@,
while wij is the quantity defined above for i, j E fl,
with i # j.

For a given machine i, the total inflow and outflow
associated with machine i are the quantities

R(i) = Cwji and C(i) = CWij.
j=O j=O

B.C. Tansel, C. Bilen/European Journal of Operational Research 108 (1998) 36-48

Fig. I. Loop network locations. Fig. 2. Determination of the distance from location 1 to k

We say the system is balanced if R(i) = C(i) for all
i E I@‘. We call the flow matrix W = [wij] a conserved
flow matrix if the system is balanced.

Generally, an automated manufacturing system is
balanced when no manual interruption is permitted so
that any part entering the system will surely exit the
system. The balancedness assumption need not hold
in systems with multiple LUL stations (note that the
manual removal of a broken part may be viewed as an
unload operation at that machine).

(4) & + dk, 2 &,, QL km.
Due to the assumption of unit spacing between ad-

jacent locations, the distance from location 1 to k is
determined by (see Fig. 2)

k-l if k > 1,
dlk =

{

n+l-l+k ifk<l,
0 if k = 1.

Define a machine assignment vector to be a permu-
tation of the integers 1,2,. . . , n, and denote it by

Assumptions underlying the formulation are as fol-
lows:

a= (a(l),...,a(n)),

Al.

A2.
A3.

A4.

A.5.

The location of the LUL station is fixed at posi-
tion 0.
The system is balanced.
Adjacent locations are unit distance apart (since
the system is balanced, the distance between ma-
chines is of no importance, as proved in Bozer
and Rim, 1989, and Kiran, Unal and Karabati,
1992).
Process plans and the number of units to be pro-
duced for each part type are given, so that pair-
wise part flows between machine pairs can be
calculated.
Parts enter and exit the system at the LUL sta-
tion.

Let the locations around the loop network be num-
bered O,l,..., n in increasing order of indices in
clockwise direction (see Fig. 1). Assumption A3 im-
plies the distance between any two adjacent locations
is one and the total length of the loop is n + 1. Let dlk
be the transport distance from location 1 to location
k. This distance has the following properties:

(l) d’k L 0 for 1 # k {

-0 iffl=k,

(2) d,k # dk, in general. ’
(3) dlk-l-dk[=n+l,Vl,kE{O ,..., n},l # k.

where cu(i) specifies the location of machine i. Let II
be the set of all permutations of 1,2, . . . , n.

The total material handling distance per period for
a given assignment (Y is

+il
n

woidoaci) -I- c Wida(i)O~
i=l i=l

The first summation in the definition of Z ((Y) accounts
for the material flow between machines, the second
(third) summation accounts for the material flow from
(to) LUL station to (from) all machines.

Observe that doa is simply a(i), and da(i)0 is
n + 1 - a(i) .

Hence, an equivalent definition of Z (CX) is

Z(a) = C C wijdrr(i)a(j) + C(woi - wio)a(i)
i=l j=l i=l

+cn + l)R(O).

Note that the last term is a constant and does not affect
the minimization.

40 B.C. Tansel. C. BilenIEuropean Journal of Operational Research 108 (1998) 36-48

Then the ULNL problem can be stated as that of
finding an assignment vector LY that minimizes the
expression 2 (a) :

(ULNLP)

ran; Z(cu).

This formulation is a special case of the QAP The
special structure results from the stated properties of
the distance matrix and the balancedness assumption.
It is well known that QAP is NP-hard with reported
computational success limited to less than 18 ma-
chines (Burkard, 1990; Burkard and Stratman, 1978).
Whether or not the special distance matrix may lead
to efficient exact methods is an open question.

3. Local optimality, interchanges, positional moves

A commonly used criterion to solve QAP is the
steepest descent criterion of pairwise interchanges. For
example, the well known CRAFT algorithm (Francis,
McGinnis and White, 1992) relies on pairwise inter-
changes between departments to reduce the score of a
layout which is computed by the sum of flows times
distances. The idea is to begin with a seed layout and
perform pairwise interchanges as long as the objec-
tive value is reduced by a positive amount. Termina-
tion occurs when no pair interchange gives any im-
provement. Such a solution is a locally optimal one.
It may be possible to improve it if one takes k-way
interchanges into account where k 2 3.

Given two assignment vectors (Y and 6, we define
(Y and ti to be k-way neighbors if there exist k distinct
position indices 41, . . . , qk such that

a(qi) #&(qi) for i = 1,. . . , k,

while

a(j)=c(j) for j $!{q19...,qk}.

The definition implies (Y and 6 are identical in n - k
position while they are non-identical in each of the
remaining k positions. Let Nk(cu) be the set of all k-
way neighbors of cy and define

CNk(&‘) =U{Nj(o) : 1 < j 6 k}.

We say an assignment vector (Y is a k-way local opti-
mum if

z(a) 6 z(6’) Qc E CNI,(cu).

Observe that k = n implies global optimality.
Let us call a heuristic method a k-way heuristic (or

a k-way interchange method) if it seeks a k-way lo-
cal optimum by performing k or fewer interchanges.
Even though one may be tempted to think that a k-way
heuristic should always find a locally optimal assign-
ment that is at least as good as one found by a h-way
heuristic where 2 < k, this is not true in general. For
example, a 2-way heuristic may find a better solution
than a 3-way or a 4-way heuristic for a given problem
instance. Despite that, it is generally expected that,
for k < &, a i&way heuristic may perform better on
the average than a k-way heuristic, since k-way inter-
changes take into account k-way interchanges.

There is also the computational burden one must
take into account. For example, a 2-way heuristic re-
quires U(n*) comparisons per iteration while a k-way
interchange method searches over O(x:Z2 j! (II>)
neighbors. The additional computational burden is
usually not justified on the basis of possible additional
improvements over 2-way interchanges.

We now focus on a new ‘neighbor’ concept which
has not been utilized in the literature. It is based on
‘positional moves’ and leads to an 0(n*) local im-
provement method whose average performance is bet-
ter than the pairwise interchange method which is also
O(n*).

Given an assignment vector, a positional move is
made by moving a machine from its current position
to one of the other candidate positions, and shifting
all affected machines by one position down in counter
clockwise direction. The affected machines are those
that occupy the positions in the clockwise direction
between the old and new positions of the moved ma-
chine. If the new ordering of the machines results in
an improvement in the value of the objective function,
the ordering of the machines is changed to that of the
new generated ordering. For example, if machines are
assigned to locations 1,. . . ,5 in the order (2,4,1,5,3),
a positional move of machine 4 to position 4 results in
the new arrangement (2,1,5,4,3). Formally, given an
assignmentcu(O),a(l),...,Lu(n),apositionalmove
of machine i to location j results in the following as-
signment vector 6: if a(i) < j < n, then (Y(i) = j;

B.C. Tansel, C. BilenIEuropean Journal of Operational Research 108 (1998) 36-48 41

5(k) =cu(k)-lforallmachineskforwhichcu(i) <
a(k) < j, while 6(k) = a(k) for all remaining ma-
chines k. If 0 < j < a(i), then d(i) = j; 5(k) =
cu(k) - 1 for machines k for which cu(i) < cw(k) < n
or 1 < cu(k) 6 j; (Y(k) = n for the unique machine k
for which cu(k) = 1; and c(k) = n(k) for all remain-
ing machines k.

We remark that while the above definition of a po-
sitional move is the most natural one, an alternate
definition is also possible by declaring the ‘affected
set’ of machines as those that occupy the positions
in the counter clockwise direction between the old
and new positions of the moved machine. With this,
if machine i is moved from its current position a(i)
to a new position j, then each machine k in posi-
tions j,j + l,..., a(i) - 1 is moved one position
up. After the move, these machines occupy positions
j+l,j+2,..., a(i) . If position n is included in the
affected set, then the machine that occupies position
n before the move occupies position 1 after the move.
Let us call this type of move a backward move and call
the the formerly defined one aforward move. While it
is possible to design heuristics based on both types of
moves, our computational tests indicate that forward
and backward moves yield essentially the same per-
formance rates. For this reason, we base our analysis
of the computational results on forward moves alone.
In what follows, every positional move that we refer
to is a forward positional move.

Let us define assignments LY and 6 to be positional
(or positionwise) neighbors if one is obtained from
the other by a positional move. Define PN(a) to be
the set of all positional neighbors of LY. We define LY
to be positionwise locally optimal if

Z(a) < Z(5) VJCU E PN((Y).

Positionwise local optimality does not imply k-way
local optimality and k-way local optimality does not
imply positionwise local optimality. However, if we
impose both criteria, we have a local optimality crite-
rion that is stronger than either one alone.

A pairwise interchange of two machines at posi-
tions, say, A and B (A < B) can be regarded as a
positional move of the machine at A to its new posi-
tion B followed by a positional move of the machine
at B - 1 (this machine’s former position was at B)
to its new position at A. In this sense, a positional
move is a more elementary step than a pairwise in-

terchange. It is certainly possible for a pairwise inter-
change to worsen the objective value while a single
step execution of only one of its corresponding con-
secutive moves to improve the objective value. With
this, pairwise interchanges may miss many possible
local improvements that are caught by single moves.
In addition, we observe that a single positional move
perturbs the positions of two or more machines (those
between the origin and destination positions) while a
pairwise interchange perturbs the positions of only two
machines (those that are interchanged). In this sense,
a positional move from position i to position j can
be regarded as a special case of a k-way interchange
where k is the number of affected machines. It is a
special case because the new positions of the affected
machines are defined in a rather special way while a k-
way interchange allows many other rearrangements of
affected machines. With this, a heuristic design based
on positional moves may partly account for improve-
ments that might have been also obtained from k-way
interchanges, where k ranges anywhere from 2 to n,
whereas traditionally used pairwise interchanges are
restricted to 2-way interchanges only.

With the above observations, the analysis of posi-
tional moves seems to deserve special attention.

4. Proposed heuristics

We propose two heuristics which we call MOVE,
and MOVE/INTERCHANGE. The first one is based
on positional moves alone and the second one is based
on both positional moves and pairwise interchanges.

We now give the details of the first heuristic, MOVE,
which is based on positional moves. Given the current
assignment (Y, the method computes the change in the
objective value that would result from moving any
machine i to any of the positions j $ a(i). This is
done for each machine i which gives a total of n(n - 1)
possibilities.

In the generation of the best possible assignment
vector we make use of an nxn matrix, which we call
PM. Rows of the PM matrix correspond to machines,
and the columns correspond to positions. The (i, j)
entry of the PM matrix gives the change in the objec-
tive value that results from moving the i-th machine
from its current location to the j-th location. Largest
positive entry in the PM matrix gives the maximum

42 B.C. Tansel, C. Bilen/European Journal of Operational Research 108 (1998) 36-48

improvement assignment. This procedure will be re-
peated until no more improvement is accomplished.
That is to say, until all the entries in the PM matrix
are non-positive.

Let a be the current assignment vector and 6 be
an assignment vector obtained from CY via a posi-
tional move. We first derive a simplified expression
for Z(a) - Z(5).

Consider moving machine p to location q by a po-
sitional move. There are two cases: a(p) < q or q <
cx (p) . Let I be the set of indices of machines whose
positions are changed by 1 unit down due to the move-
ment of machine p and f be the set of indices of ma-
chines whose positions remain unchanged (note that
0 E r) . In addition, for the case q < (Y(P) , let x be
the unique machine index whose position is moved by
2 units; i.e. this is the machine that is initially at po-
sition 1 and moved to position n. For any subsets K
and i? of Na, let

w(K,R) =~~~~ij.
iEK jEt

In the expressions that follow, whenever a set K is the
singleton {k}, we write k where {k} is meant.

It is direct to show the following:
0 Case 1: a(p) < q (No = I U JUp):

Z(a) - Z(S)

=-w(Z,I) +w(I,z) +n[w(Z,p) -w(p,Z)l.

??Cuse2:q<a(p) (iP=ZUJUxUp):

Z(n) - Z(C)

=-w(zuxuo,I\o) +w(~\o,zuxuo)

+n[w(zUxUO,p) -w(p,zUnUO)]

- w(x, N) + w(N,x) + (n - l>(wxo - ~0x1

+w(O,N\x) -w(N\x,O).

Input to the algorithm MOVE consists of a partflow
matrix, W = (wij), and an initial machine assignment
vector, (Y.

MOVE (M)
Step 1. Initialize an n x n matrix 6’ by setting @ =

W, where W = (Wij) is the part flow matrix.
Step 2. Initialize an n x 1 vector d by setting iE = a,

where cx is an arbitrary machine assignment vector.

Fig. 3. Machine 4 moved to position 4.

Move machine i to location j for all i, j, by positional
move. Calculate Z (cu) - Z (6).

Step 3. Generate the PM matrix. Change & accord-
ing to maximum improvement satisfying assignment
vector.

Step 4. Repeat Step 3 until all the entries in the PM
matrix are non-positive.

The following example demonstrates how the
heuristic works.

Example. Consider a ULNLP with n = 4 machines,
the following workflow matrix:

6 1 4 0 3
7 3 4 2 0

and an initial assignment vector (Y = (3,4,1,2).
Initially machine 1 is at position 3, machine 2 at

position 4, machine 3 at position 1 and machine 4 at
position 2. That is, a(l) = 3, n(2) = 4, cu(3) = 1,
and a(4) = 2.

Suppose we move machine 4 to position 4. This
movement results in the assignment vector d =
(2,3,1,4) (seeFig.3).Thatis,&(l) =2,6(2) =3,
G(3) = 1, and d(4) = 4.

With Z = {1,2}, f = {0,3}, and p = 4, it is direct
to compute that

Z(a) - Z(5) = - w(Z,1) f w(J,Z)

+ nlw(Z,p) - W(P* 01

= -9+11+4(9-7)=10.

The positive value indicates that the new assignment
of machines gives a better objective function value.

B.C. Tansel, C. BiledEuropean Journal of Operational Research 108 (1998) 3648 43

Our second algorithm, the Positional Move/Pair-
wise Interchange Heuristic, is a combination of the
heuristics Positional Move and the well known Pair-
wise Interchange Heuristic. First, we state the Pair-
wise Interchange method. In the Pairwise Interchange
method, given an initial assignment of the machines,
positions of the machines are swapped one pair at a
time. Initial assignment is changed with an assignment
of machines providing the maximum improvement
in the objective function value. This improvement is
determined from the PS matrix as in the case of the
Positional Move heuristic’s PM matrix.

PAIRWISE INTERCHANGE (I)
Step 1. Initialize an n x n matrix % by setting %’ =

W, where W = (wij) is the part flow matrix.
Step 2. Initialize an n x 1 vector h by setting 6 = a,

where cy is an arbitrary machine assignment vector.
Step 3. Change positions of machine i and j. Cal-

culate Z(a) -Z(s).
Step 4. Generate the PS matrix. Change 6 accord-

ing to maximum improvement satisfying assignment
vector.

Step 5. Repeat Step 3 until all the entries in the PS
matrix are nonpositive.

In the Positional Move/Pairwise Interchange heu-
ristic we use the two heuristics in the following way.
Initially a solution will be improved with the posi-
tional move heuristic alone. As mentioned before we
continue our search until all the entries in the PM
matrix are non-positive. When no more improvement
can be attained from the Positional Move heuristic we
pass to the Pairwise Interchange heuristic. Input to the
Pairwise Interchange heuristic is the last assignment
vector obtained from the Positional Move heuristic.
When no more improvement can be obtained from the
Pairwise Interchange heuristic, the Positional Move
heuristic will carry on with the last assignment (the
best solution obtained up to that time). This proce-
dure will continue until neither heuristic gives any
further improvement. We call the combined method
MOVE/INTERCHANGE (M/I).

MOVE/INTERCHANGE (M/I)
Step 1. Initialize an n x n matrix l%’ by setting G =

W, where W = (Wij) is the part flow matrix.
Step 2. Initialize an n x 1 vector 51 by setting hl =

LY, where LY is an arbitrary machine assignment vector.
Step 3. Move machine i to location j for all i, j.

Calculate Z(cu1) - Z(h1).
Step 4. Generate the PM matrix. Change 2 1 accord-

ing to maximum improvement satisfying assignment
vector.

Step 5. Repeat Step 3 until all the entries in the PM
matrix are non-positive.

Step 6. Set 62 = d 1, where 5 1 is the best assignment
obtained by positional moves.

Step 7. Change positions of machines i and j. Cal-
culate Z(n2) - Z(&2).

Step 8. Generate the PS matrix. Change 62 accord-
ing to maximum improvement satisfying assignment
vector.

Step 9. Repeat Step 8 until all the entries in the PS
matrix are non-positive.

Step 10. Set d = 52 and go to Step 2.

5. Computational results

In this section we discuss the effectiveness of the
heuristic procedures proposed in Section 2. Also a
discussion on the factors influencing the results of the
heuristics will be provided.

We compared our two heuristics MOVE and
MOVE/INTERCHANGE with the heuristic proce-
dures KK-1, KK-2, and KK-3 developed by Kou-
velis and Kim (1992), and the Pairwise Interchange
heuristic. Note that heuristic procedures KK- 1, KK-2,
and KK-3 are construction heuristics. Pairwise Inter-
change and our heuristics are improvement heuristics.
We input two types of initial assignment vectors for
the improvement heuristics. In the first type, we gen-
erate a random assignment of machines to initiate the
method. In the second type, we begin with an initial
assignment which assigns the i-th machine to the i-th
position for all i.

We generated random balanced part flow matrices.
The row sums and the column sums of the generated
part flow matrices are equal to satisfy the balanced
characteristic of the problem. In generating the ran-
dom part flow matrices we imposed a constraint on
the range of numbers in the matrix. We defined three
ranges: O-IO, O-50 and O-100, corresponding, respec-
tively, to small, medium, and high variations in the
part flow matrix.

44 B.C. Tansel, C. Bilen/European Journal of Operational Research 108 (1998) 3648

In our computational analysis, we considered eleven
problem sizes, corresponding to n = 5, 6, 7, 8,9, 10,
15, 20, 30, 40 and 50. For each combination of (size,
part flow matrix, initial assignment) we generated 10
instances. With three different types of part flow ma-
trix and two different types of initial assignment, the
number of instances tested for each problem size is
10 x 3 x 2 = 60. This makes a total of 660 runs which is
a reasonably high number to support our conclusions.

The basis of our comparisons is the percent devi-
ation of heuristics from the exact optimal value (or
from a lower bound on the optimal value when prob-
lem size is large).

Define

DH= (ZH-zE)/zE,

where:
DH = Percent deviation of the heuristic.
Zn = Objective value obtained from a given heuristic.
Zn = Exact solution value for sizes up to n = 10,

and LP relaxation optimal value for sizes greater
than 10.

For problems of size up to 10, we computed the exact
value of the problem by enumeration. For larger sized
problems, we used the LP relaxation of the IP model of
Kiran, Unal and Karabati (1992). The LP relaxation
yields a lower bound on the optimal value.

In Tables l-3 we give the average and the maximum
observed deviations from the exact solutions for all
the heuristics used in our test runs.

The following acronyms are used:
M: Heuristic MOVE.
I: Heuristic Pairwise Interchange.
M/I: Heuristic MOVE/INTERCHANGE.
KK- 1, KK-2, KK-3: Kouvelis-Kim heuristics.
r: Random initial assignment.
i: i to i type initial assignment.
12 : Problem size (number of machines).
i?: Range (of values of flows).

The following conclusions can be deduced from av-
erage deviations in Table 1:

(1) Among the three construction heuristics, the
performance of KK-3 is uniformly better than
that of KK-2 and KK- 1.

(2) Of the two pair interchange methods I(r) and
I(i) , neither seems to display a superiority over
the other.

(3) A similar conclusion holds for move based
heuristics M(r) and M(i).

(4) A similar conclusion holds for move/inter-
change based heuristics M/I(r) and M/I(i).

(5) A comparison of construction KK-3 with the
PAIRWISE INTERCHANGE method reveals
KK-3 is quite competitive, with a slight bent
in favor of the PAIRWISE INTERCHANGE
method.

(6) ??For the random initial assignment, compar-
ing the PAIRWISE INTERCHANGE method
with the MOVE method (columns I(r)
M(r)) we see a uniformly superior perfor-
mance in favor of moves for all problem sizes.
That is, column M(r) dominates column I(r).

??For i to i type initial assignment, again the
proposed move heuristic M(i) performs better
than the pairwise interchange method I(i) for
all combinations of (n, 8)) except for two com-
binations ((n = 9, R = 100) and (n = 50, i? =
lo)), where I(i) performs slightly better than
M(i).

(7) Upon comparing MOVE with MOVE/INTER-
CHANGE (columns M(+) and M/1(.)), we see
that the average performance for both is essen-
tially the same. Note that M/I(.) is computa-
tionally more expensive than M(.).

(8) Regardless of the type of initial assignment, the
MOVE and MOVE/INTERCHANGE methods
provide the best observed results in terms of av-
erage deviations. In most problems up to size
10, these heuristics give the exact solution value.
The closest competitor is PAIRWISE INTER-
CHANGE, followed by KK-3.

(9) 0% deviation from optimality is achieved in
about 12% of the problems by the pairwise
interchange method while 0% gap is achieved
in about 40% of the problems by the move
based heuristics. At most 1% gap is achieved
in about 33% of the problems by the pairwise
interchange method while 1% gap is achieved
in about 55% of the problems by the move
based heuristics.

In summary, based on average percent deviations
from optimality, move based heuristics (M/I and
M) perform better than the pairwise interchange
method (I). The third rank goes to KK-3 followed

Table 1

B.C. Tansel, C. BilenIEuropean Journal of Operational Research IO8 (1998) 36-48 45

Average percent deviations from optimality (averages are based on 10 instances for each combination of (n, R, initial assignment)

n R KK-I KK-2 KK-3 l(r) M(r) M/I(r) I(i) M(i) M/l(i)

5

6

7

8

9

10

15

20

30

40

50

10

50
100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

IO
50

100

10
50

100

10
50

100

8.61 6.46 1.20 0.95 0.00
1.01 1.18 0.13 0.00 0.00
0.91 2.93 0.42 0.00 0.00

0.00
0.00
0.00

0.00
0.00
0.00

2.82 2.54 1.15 0.78 0.00
3.07 6.5 1 I .27 0.09 0.00
8.21 4.32 0.54 0.25 0.00

0.00
0.12
2.13

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

7.77 2.69 0.00 0.37
8.11 8.66 0.04 2.88
7.22 6.87 1.17 0.53

3.91 7.54 2.16 1.26
4.64 5.85 0.83 1.46
7.36 6.52 2.31 1.51

0.00
0.00
0.00

0.00
0.00
0.20

0.77
0.13
I .53

0.00
0.00
0.77

0.00
0.00
0.77

2.41 0.24 0.24
0.89 0.00 0.00
0.50 0.43 0.00

7.64 6.87 1.32 2.94 0.99
10.23 4.77 1.62 1.48 0.05
8.01 7.04 2.70 1.14 0.34

2.17 0.00 0.00
1.46 0.00 0.00
0.27 0.40 0.15

6.01
6.26
4.67

9.24
9.28

10.28

6.88 1.95 1.54 0.16
5.25 2.92 1.96 0.61
9.00 2.78 1.83 0.89

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.99
0.05
0.14

0.08
0.61
0.50

2.73
2.46
2.83

1.50 0.38 0.22
1.88 0.83 0.83
0.82 0.00 0.00

9.70 4.08 4.61 2.73
8.81 4.67 5.02 2.46

10.24 4.68 4.52 2.83

3.65 2.85 2.55
5.05 2.99 2.80
3.92 2.25 2.25

9.73 8.95 6.14 6.03 4.32 4.32 5.79 4.23 4.23
14.15 12.89 8.15 6.11 4.71 4.7 1 6.97 4.74 5.12
12.24 12.64 6.96 6.81 5.06 5.06 8.82 5.01 4.97

22.24 21.34 19.15 18.37 15.84 15.84 17.65 15.69 15.69
18.75 19.43 16.32 14.22 13.12 13.12 14.68 13.03 13.03
22.81 22.30 18.16 16.82 15.05 15.05 16.90 14.50 14.50

25.16 23.87 21.25 20.50 19.27 19.27 20.65 19.39 19.39
30.90 30.03 28.91 28.14 24.31 24.31 26.57 24.56 24.56
30.43 31.21 26.00 25.54 22.69 22.69 25.44 24.07 24.07

28.45 27.72 25.49 24.20 23.13 23.13 24.32 25.72 23.01
27.84 26.87 24.85 25.98 23.93 23.93 24.47 23.89 23.89
31.12 27.64 26.48 25.69 24.05 24.05 25.17 24.38 24.38

by KK-2 and KK-1. We note that KK heuristics are
construction methods and their computational effort
is 0(n) which is significantly smaller than the com-
putational effort of M, M/I, and I, all of which are
improvement methods (0(n*) effort per improve-
ment cycle). In this respect, it is natural for KK
heuristics to lag behind in terms of solution quality
while achieving superiority in terms of how fast one
obtains a solution.

Additional insights can be gained from a compar-
ison of worst observed performance. Table 2 gives a

comparison of the methods in terms of maximum de-
viations from optimality.

Up to problems of size 10, the MOVEDNTER-
CHANGE method found the exact optimum almost
all the time. Even though most of the conclusions
based on average deviations continue to hold on the
basis of maximum deviations, the differences in per-
formance become much more pronounced in terms of
maximum deviations than in terms of average devia-
tions. For random initial assignment, MOVE performs
uniformly better than PAIRWISE INTERCHANGE

46 B.C. Tansel, C. Bilen/European Journal of Operational Research 108 (1998) 36-48

Table 2
Maximum deviations from optimality

n R KK-1 KK-2 KK-3 I(r) M(r) M/I(r) I(i) M(i) M/l(i)

5

6

7

8

9

10

15

20

30

40

50

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

10
50

100

19.44
3.52
2.93

6.06
11.86
20.11

13.64 4.44
2.62 0.78

11.71 2.55

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

18.39
13.22
13.08

7.52
9.78

16.81

8.33
17.29
12.20

7.84
16.29
14.99

3.95
4.52
3.26

5.71
0.00
0.00

2.99
0.52
1.48

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00 2.22
0.25 6.96
4.49 2.39

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.74
8.37

4.60
0.75
4.63

0.00 0.00
0.00 0.00
4.63 4.63

15.91 3.97 3.17 0.00 0.00 4.51 1.45 1.45
8.90 1.54 4.29 0.00 0.00 4.29 0.00 0.00

18.62 5.03 5.94 1.19 0.00 3.00 2.59 0.00

17.18 14.72 3.65 5.52 3.65 3.65 5.14 0.00
15.47 16.52 3.22 7.56 0.30 0.30 6.24 0.34
27.07 23.47 13.57 4.61 2.02 0.83 2.02 0.83

10.93 13.21 4.37 5.63 0.93 0.47
8.47 13.09 5.83 3.28 2.43 2.43
9.06 13.13 5.79 5.09 3.00 3.00

7.65
3.49
3.09

6.27
7.43
5.96

0.94
2.75
0.00

0.00
0.30
0.83

0.93
2.75
0.00

12.58 16.01 5.26 5.56 3.61 3.61
12.47 11.51 6.61 7.91 3.66 3.66
12.60 17.05 6.48 5.58 5.04 5.04

4.24 2.94
4.31 3.52
3.28 3.28

10.93 11.16 8.42 6.95 5.36 5.36 6.62 5.14 5.14
28.32 16.92 9.13 7.38 5.82 5.82 9.71 6.00 7.07
15.82 16.01 8.32 10.03 5.72 5.72 8.32 6.31 6.07

24.27 25.47 21.38 22.93 17.53 17.53 19.64 17.63 17.63
21.45 20.50 18.50 16.05 14.75 14.75 18.63 14.53 14.53
27.51 24.31 20.49 19.48 17.46 17.46 19.44 17.39 17.39

30.65 28.86 27.01 24.29 22.93 22.93 24.60 23.92 23.92
32.21 34.02 30.15 31.25 25.58 20.56 30.19 25.43 25.05
34.31 35.58 28.76 27.38 25.73 25.74 29.60 24.68 26.81

37.22 36.62 34.35 32.44 31.96 31.96 32.64 31.83 31.57
35.22 35.18 34.10 32.36 30.93 30.93 32.11 31.14 31.14
34.15 34.44 32.02 32.60 30.16 30.16 31.14 30.96 30.96

in all problem sizes. Sometimes the gap becomes forms slightly better than MOVE for the random
significantly large. For example, for n = 5, i? = 10, assignment case. For i to i type assignment, MOVE
PAIRWISE INTERCHANGE yields 5.71% maxi- performs uniformly better in terms of maximum devi-
mum deviation while MOVE yields 0%. Similarly, ations than the PAIRWISE INTERCHANGE method.
for n = 7, R = 50, maximum deviations are 6.96% vs. The differences (in %) are quite large for some
O.OO%, while for IZ = 20, i? = 100 they are 10.03% vs. cases; e.g. for it = 6, i? = 100, 8.37 versus 0.00,
5.72%. The largest gap occurs at n = 9, i? = 50, where for n = 10, i? = 10, 7.65 vs. 0.94, and for n = 40,
the maximum deviations are 7.56% for PAIRWISE a = 50, 30.19 vs. 25.43. On the other hand, there
INTERCHANGE vs. 0.30% for MOVE. Observe on is essentially no difference between the MOVE and
the other hand that MOVE/INTERCHANGE per- MOVE/INTERCHANGE methods (columns M(i)

B.C. Tansel, C. Bilen/European Journal of Operational Research IO8 (1998) 36-48 41

and M/I(i)). It is interesting to note that, of the
three entries that are significantly different in columns
M(i) and M/I(i), the ones corresponding to n = 8,
R = 50 and IZ = 15, I? = 10, have maximum deviations
(%) of 2.59 and 4.24 vs. 0.00 and 2.94, respectively,
in favor of MOVE/INTERCHANGE while the one
corresponding to n = 20, R = 50, has maximum devi-
ations of 6.00 vs. 7.07 in favor of MOVE.

In summary, based on maximum deviations from
optimality, the first rank goes to the move based
heuristics M and M/I with some superiority over the
PAIRWISE INTERCHANGE method which takes
third rank, followed by KK-3 in fourth rank.

The performances of MOVE/INTERCHANGE
and MOVE are essentially the same in the worst
case deviation with a slight bent in favor of
MOVE/INTERCHANGE. The worst case deviation
of the PAIRWISE INTERCHANGE methods seems
to be always a few points behind that of MOVE. Sim-
ilarly, KK-3 follows a few points behind PAIRWISE
INTERCHANGE.

Additionally, we used the best observed solution
obtained from the construction heuristics KK- 1,
KK-2, and KK-3 as a seed to the improvement
heuristics. Table 3 gives the percent improvement
of MOVE, MOVE/INTERCHANGE, and PAIR-
WISE INTERCHANGE over the best of KK heuris-
tics. This table also substantiates the result that
MOVE/INTERCHANGE and MOVE provide the
largest improvement over the KK-heuristics while
PAIRWISE INTERCHANGE lags considerably be-
hind.

We tried to determine the factors having an effect
on the solutions of the heuristics. In our test runs we
considered the following factors: problem size, range
of part flow matrix, and the type of the initial assign-
ment. We performed an Anova test for determining
the significance of these effects. Although an effect
of the type of initial assignment on the solutions was
suspected, such an assumption was not confirmed by
the Anova results. Observing the same thing for all
the heuristics, strengthens the result of no effect of the
type of initial assignment. The Anova results indicate
that the type of partflow matrix and the number of ma-
chines in the problem has a significant effect on the
solution. This is observed for all three heuristics.

Table 3
Improvement over best solution obtained from the construction
heuristics KK-I, KK-2, and KK-3

n
Percent improvement

a M M/I I

5 10
SO

100

6 IO

50
IO0

7 10
50

100

8 IO
SO

100

9 IO
SO

100

0.71
0.13
0.21

0.49
0.12
0.53

0.00
0.04
0.90

0.99
0.72
1.44

I .08
1.08
2.20

10 IO I .82
50 2.14

100 2.19

I5 IO
50

100

20 IO
SO

100

I .55
2.29
2.05

1.99
2.92
I .99

30 IO
SO

100

40 10
50

100

50 IO
50

100

Average
improvement

2.49
2.93
2.95

1.85
2.52
1.75

2.11
2.46
I .95

I .52

0.71 0.71
0.13 0.13
0.2 I 0.2 I

0.49 0.22
0.12 0.00
0.53 0.53

0.00 0.00
0.04 0.04
0.90 0.51

0.99 0.63
0.72 0.30
I .44 I .34

1.08 0.40
1.08 0.93
2.20 2.00

1.82 0.85
2.14 1.10
2.19 1.19

I .55 0.47
2.29 1.21
2.05 I.19

I .99 0.80
3.02 1.17
1.99 0.60

2.49 1.04
2.93 1.21
2.95 1.79

1.85 0.78
252 1%
1.75 1.35

2.1 I 0.95
2.46 0.55
1.95 0.73

1.53 0.81

6. Conclusion

Unidirectional loop networks are preferred to other
configurations due to their relatively lower initial in-
vestment costs, since they contain the minimum num-
ber of required material links to connect all worksta-
tions and possess higher material handling flexibility.

48 B.C. Tansel, C. Bilen/European Journal of Operational Research 108 (1998) 36-48

In the literature, assigning machines in a unidirec-
tional loop network with the objective of minimizing
an appropriate objective function is referred to as the
Unidirectional Loop Network Layout Problem.

In our formulation of the problem we consider the
sum of partflows times distances between the ma-
chines as the objective function. We proposed two
heuristics: MOVE and MOVE/INTERCHANGE.
The idea of positional moves that we use in our
heuristics has not been used in the earlier litera-
ture. While the MOVE heuristic considers improv-
ing the solution by making positional moves, the
MOVE/INTERCHANGE heuristic applies positional
moves and the pairwise change technique interchange-
ably, repeated one after the other.

We compared our heuristics with other heuristics
developed for the same problem. For comparison
purposes we used the three heuristics developed by
Kouvelis and Kim (1992), and the well known pair-
wise interchange heuristic. Test runs indicate that
the observed performance of our heuristics is uni-
formly better than that of other ones. In the overall,
MOVE/INTERCHANGE and MOVE heuristics gave
the best results in terms of both average and maximum
deviations from the optimal.

The performances of MOVE and MOVE/INTER-
CHANGE are essentially the same, with a very slight
bent in favor of the latter. The gap becomes signifi-
cantly wider between the third ranking PAIRWISE IN-
TERCHANGE and the second ranking MOVE. Since
the computational expenses of PAIRWISE INTER-
CHANGE and MOVE are just about the same, it is
advisable to use heuristics based on positional moves
rather than the traditionally widely accepted pairwise
interchange ones.

References

Afentakis, P., 1989. A loop layout design problem for flexible
manufacturing systems. International Journal of Flexible
Manufacturing Systems 1 (2). 143-175.

Boxer, Y., Rim, S.-C., 1989. Exact solution procedures for the
circular machine layout problem. Research Report, Department
of Industrial and Operations Engineering, University of
Michigan, Ann Arbor, MI.

Burkard, R.E., 1990. Locations with spatial interaction - quadratic
assignment problem. In: Mirchandani, P.B., Francis, R.L.
(Eds.), Discrete Location Theory. Wiley, New York, pp. 387-
434.

Burkard. R.E., Stratman, K.H., 1978. Numerical investigations
on quadratic assignment problems. Naval Research Logistics
Quarterly 25 (I), 129-144.

Francis, R.L., McGinnis, L.F., White, J.A., 1992. Facility Layout
and Location: An Analytical Approach, 2nd ed., Prentice-Hall,
Englewood Cliffs, NJ.

Gaskins, R.J., Tanchoco, J.M.A., 1987. Flow path design for
automated guided vehicle systems. International Journal of
Production Research 25 (5), 667-676.

Gilmore, PC., 1963. Optimal and suboptimal algorithms for
the quadratic assignment problem. SIAM Journal on Applied
Mathematics 10 (2). 305-313.

Jaikumar, R., Van Wassenhove, L.N., 1989. A production planning
framework for flexible manufacturing systems. Journal of
Manufacturing Operations Management 2 (l), 52-79.

Kiran, A.S., Karabati, S., 1988. Exact and approximate solution
algorithms for the loop layout problem. Research Report No.
1988-19, Department of Industrial and Systems Engineering,
University of Southern California, Los Angeles, CA.

Kiran, AS., Unal, A.T., Karabati, S., 1992. A location problem
on unicyclic networks: balanced case. European Journal of
Operational Research 62 (2), 194-202.

Kouvelis, P., Kim, M.W., 1992. Unidirectional loop network layout
problem in automated manufacturing systems. Operations
Research 40 (3). 533-550.

Lawler, E.L., 1963. The Quadratic Assignment Problem.
Management Science 9 (4), 586-599.

Leung, J., 1992. Graph-theoretic heuristic for designing loop
layout manufacturing systems. European Journal of Operational
Research 57 (2). 243-252.

Millen, R., Solomon, M.M., Afentakis, P., 1992. The impact of a
single input/output device on layout considerations in Flexible
Manufacturing Systems. International Journal of Production
Research 30 (1). 89-93.

Tansel, B.C., Bilen, C., 1994. Layout problem in flexible
manufacturing systems. Research Report 93-19, Department
of Industrial Engineering, Bilkent University, Ankara 06533,
Turkey.

