
Theory and Methodology

Match-up scheduling under a machine breakdown

M. Selim Akturk *, Elif Gorgulu

Department of Industrial Engineering, Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

Received 1 May 1995; accepted 1 September 1997

Abstract

When a machine breakdown forces a modi®ed ¯ow shop (MFS) out of the prescribed state, the proposed strategy

reschedules part of the initial schedule to match up with the preschedule at some point. The objective is to create a new

schedule that is consistent with the other production planning decisions like material ¯ow, tooling and purchasing by

utilizing the time critical decision making concept. We propose a new rescheduling strategy and a match-up point

determination procedure through a feedback mechanism to increase both the schedule quality and stability. The

proposed approach is compared with alternative reactive scheduling methods under di�erent experimental set-

tings. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Heuristics; Branch and bound

1. Introduction

Traditional scheduling procedures consider
static and deterministic future conditions even
though this may not be the case in actual sched-
uling problems. After a disruption, the preplanned
schedule can become inapplicable to the new
conditions. As Graves [9] stated, there is no
scheduling problem but rather a rescheduling
problem. Responding to such dynamic factors
immediately as they occur is called real-time
scheduling. Given an initial schedule and a per-
turbing event, the system is rescheduled to cope

with these new conditions. This can also be called
a time critical decision making process since the
shop waits to receive the new schedule. There are
primarily two distinct strategies to deal with the
disruption e�ects on the preschedule, which are
just-in-case e�orts and a reactive scheduling. In the
®rst one, the possibility of future disruptions is
considered within the initial schedule by allocating
some slack time to prevent an activity that may or
may not occur during the given time period. In
reactive scheduling, an operational solution is
suggested to compensate the disruption e�ects
when it occurs.

An on-line simulation methodology is proposed
by Davis and Jones [6] to analyze several sched-
uling rules in a stochastic job-shop. Nof and Grant
[19] analyze various simulation experiments to

European Journal of Operational Research 112 (1999) 81±97

* Corresponding author. Fax: 90 312 266 4126; e-mail:

akturk@bilkent.edu.tr

0377-2217/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII S 0 3 7 7 - 2 2 1 7 (9 7) 0 0 3 9 6 - 2

compare three types of automatic recovery
procedures, such as rerouting, splitting orders and
rescheduling, when disruption events occur. Their
experiments indicate that the rescheduling policy is
better than the others when there is a machine
breakdown. A reactive scheduling approach is
developed by Smith et al. [20], which use di�erent
knowledge sources and aim to make decisions
faster with less emphasis on optimality. It utilizes
the `opportunistic reasoning' idea which decides
on one of their strategic schedule revision alter-
natives according to the current conditions of the
system. For the knowledge-based systems, the
most di�cult operation is to decide which know-
ledge source has to be activated. A discussion on
the knowledge-based reactive scheduling systems
can be found in Blazewicz et al. [4] and Szelke and
Kerr [21]. Bean et al. [3] propose a `match-up'
heuristic method for scheduling problems with
disruptions. They show that assuming enough idle
time is present in the original schedule and dis-
ruptions are su�ciently spaced over time, the op-
timal rescheduling strategy is to match-up with the
preschedule at some time in the future. They
search the time horizon with equal increments and
a unique match-up point, and then reschedule
from the disruption to the match-up time using the
best of six single machine priority ordering rules. If
the best single machine solution results in excessive
tardiness costs, then their procedure proceeds to
the multimachine lot assignment rule to redistrib-
ute lot-to-machine assignments. Leon et al. [16]
develop robustness measures and robust schedul-
ing methods to deal with machine breakdowns and
processing time variability where a right-shift
control policy is used in case of a disruption to
minimize the expected makespan. Wu et al. [22],
on the other hand, propose a di�erent reactive
scheduling approach by utilizing various local
search heuristics based on genetic algorithms for a
single machine problem.

The remainder of this paper is organized as
follows. In Section 2, we discuss the underlying
assumptions and de®ne the problem. We present
the proposed reactive hierarchical scheduling ap-
proach in Section 3. Computational analysis of the
proposed approach along with a comparison of
alternative reactive scheduling methods is reported

in Section 4. Finally, some concluding remarks are
provided in Section 5.

2. Problem statement

We propose a new approach to reschedule the
preschedule in the case of a machine breakdown in
a modi®ed ¯ow shop (MFS), which is a physical
arrangement of machines in a cellular manufac-
turing system (CMS). There is a direct relationship
between scheduling models and shop ¯oor con-
®gurations. Job shops represent the most versatile,
most ¯exible and the most general of all operating
systems. In a job shop, work ¯ow is not uni-di-
rectional, that is, a part can enter the job shop at
any machine and leave the shop from any ma-
chine. The ¯ow shop is a simpli®ed job shop where
all the jobs follow the same routing. For a pure
¯ow shop, parts can enter at only the ®rst machine,
can only follow a single path through the shop,
and can exit only at the last machine. Each cell
within a CMS is considered an MFS, which falls
between a job shop and ¯ow shop. In an MFS,
parts can enter the cell at one of several machines,
can progress through the cell by a limited number
of paths, and can exit the cell at one of several
machines. In an MFS, parts follow a uni-direc-
tional ¯ow, i.e. the backtracking is not allowed,
but they do not have the same routing. A simple
example of an MFS with three jobs and six ma-
chines is given in Fig. 1, where the numbers cor-
respond to the jobs. A more detailed discussion on
the design of MFS can be found in Akturk and
Balkose [2]. Furthermore, the research on total
tardiness in multimachine con®gurations is quite
limited. To our knowledge there are few exact
approaches for F 2jjT problem as discussed by
Koulamas [10] but there is no published research
on the MFS problem.

We assume that the breakdown time is not
known a priori, but immediately after the event
occurs the down duration can be determined.
There are no alternative machines in the cell;
therefore an operation on a machine cannot be
swapped to another machine. Furthermore, a job
that is preempted due to a machine breakdown
resumes its processing from the point at which the

82 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

interruption occurred, and otherwise preemptions
are not allowed. A similar problem de®nition with
a single disruption due to either a machine
breakdown or preventive maintenance during the
scheduling period is formulated as a machine
scheduling problem with an availability constraint
in the literature. Adiri et al. [1] consider the single
machine scheduling problem with the objective of
minimizing the total completion time where the
machine is not available in some periods due to a
machine breakdown. They assume that a job that
is preempted due to a breakdown must be re-
started. They studied both a stochastic case where
the breakdowns occur at random times and the
times for repair are random, and the deterministic
case where the time for a single breakdown is
known before scheduling begins. They show that
the deterministic single machine scheduling prob-
lem with a single breakdown is NP-hard. Lee and
Liman [14] investigate the deterministic problem of
Adiri et al., except that a single disruption is now
due to a preventive maintenance, and provide a
simpler proof of NP-hardness. Lee and Liman [15]
study the two-parallel-machines scheduling prob-
lem of minimizing the total completion time where
one machine is not available for a speci®ed period
of time. They prove that the problem is NP-hard
and provide a pseudo-polynomial dynamic pro-
gramming algorithm to solve it.

Lee [12] studies the deterministic machine
availability constraint problem with di�erent per-
formance measures, including makespan, total
weighted completion time, maximum lateness and
number of tardy jobs, for single machine and
parallel machines situations. In each case, he either

provides a polynomial exact algorithm to solve the
problem, or proves that the problem is NP-hard.
He also demonstrates that the rules which are
shown to be e�ective for a certain scheduling
problem, such as the longest processing time rule
for PmjjCmax problem, may not work as well for
the same problem with a machine availability
constraint, i.e. Pmjr ÿ ajCmax. In this notation,
r ÿ a in the second ®eld denotes a resumable ac-
tivity constraint that means if a job cannot ®nish
before the machine breakdown then it can con-
tinue after the machine is available again. On the
other hand, nr ÿ a denotes a nonresumable activ-
ity constraint such that job must be restarted after
the machine breakdown. Lee [13] shows that the
two-machine ¯ow shop scheduling problem with
an availability constraint to minimize the make-
span, either F 2jr ÿ a�M1�jCmax or F 2jr ÿ a�M2�j
Cmax, is NP-hard in the ordinary sense, although
the traditional two-machine ¯ow shop problem,
F 2jjCmax, can be solved optimally in polynomial
time. Since it is assumed that one machine is al-
ways available, he only imposes availability con-
straint in one machine, i.e. M1 or M2, during the
scheduling horizon. He also provides heuristic
and pseudo-polynomial algorithms to solve this
problem.

The proposed strategy in this research utilizes
the match-up idea, where the state reached by the
revised schedule is the same as that reached by the
initial schedule, and the preschedule can be fol-
lowed if no disruption occurs. Furthermore, the
match-up values of each machine can be di�erent
as opposed to a single match-up point for all
machines since they all have di�erent conditions in

Fig. 1. An example of a modi®ed ¯ow shop.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 83

terms of ¯exibilities they incur. Therefore, a feed-
back mechanism is developed to determine the
next match-up value on each machine instead of
searching the time horizon with equal increments
and a unique match-up point as suggested by Bean
et al. [3]. Moreover, a reactive hierarchical sched-
uling approach is proposed, which considers the
additional constraints of the rescheduling prob-
lem. There are other production planning deci-
sions like material ¯ow, tooling and purchasing in
the decision making hierarchy which are contin-
gent to the results of the initial schedule. Although
it might be impossible to eliminate the reschedul-
ing problem totally for other decision levels in the
hierarchy, our objective is to create a new schedule
that is as consistent as possible with the conse-
quent production planning decisions.

After a machine breakdown, a match-up point
for each machine is determined and a part of the
initial schedule that covers the time interval be-
tween the disruption and match-up time is re-
scheduled. There are two decisions that are closely
related:
1. Choosing a match-up point for each machine

which means determining a part of the initial
schedule to be rescheduled.

2. Finding a schedule for the chosen time interval
that the state of the reschedule at the match-up
point is the same as that reached by the initial
schedule.
We will approach to this problem heuristically

because of the computational complexity of solv-
ing for both decisions simultaneously. In the pro-
posed heuristic approach, there are two objectives:

1. The deviation from the existing schedule
should be as small as possible due to the restric-
tions caused by other decision levels in the hier-
archy, which are contingent to the results of the
initial schedule. There are two types of deviations
that are both undesirable in the reschedule:
· earliness: new beginning time can be earlier than

the one at the initial schedule,
· tardiness: new completion time can be later than

the one at the initial schedule.
In the proposed heuristic, we do not allow earli-
ness because the new schedule should be consistent
with the material ¯ow plans, otherwise material
may not be ready at the new scheduled operation

starting times. However we try to minimize the
tardiness since some jobs could be tardy anyway
due to the down duration.

2. We utilize a time critical decision making
concept because of the real-time nature of the en-
vironment. Therefore the computation should be
completed in a reasonable amount of time since
the shop waits to receive the new schedule. The
match-up point is an important factor on the
computation time, and it should be minimized to
reduce the problem size, which also supports the
previous objective of minimizing the deviation.

As a result, the beginning time, which is equal
to the end of the machine breakdown, and match-
up time of the reschedule de®ne the time interval
to be rescheduled. They also become hard con-
straints in addition to the non-interference and
precedence constraints of an MFS, such that each
machine can handle at most one job at a time and
each job has a speci®ed processing order through
the machines. The beginning time constraint states
that, since disruption is not foreseen, jobs pro-
cessed previously cannot be rescheduled. The
match-up time constraint brings the system to a
state at which the initial schedule is applicable
again.

In summary, we assume that a production
schedule is produced o�-line and in advance of
execution. This preschedule then serves as the
basis for the production planning decisions of
other shop ¯oor activities. We propose a reactive
scheduling approach for the problem of resched-
uling an MFS. The approach is based on the idea
of match-up scheduling which revises the pre-
schedule after a machine breakdown occurs in the
system. The match-up schedule is constructed such
that at some time after the disruption, the state of
the system returned to its planned trajectory as
speci®ed by the preschedule. There are two ob-
jectives that guide the proposed heuristic, which
are minimization of job tardiness and the match-
up point, i.e. the length of the rescheduling period.
The rescheduling attempt begins with the deter-
mination of a match-up point on each machine in
order to determine the operation pool, which will
be discussed in the following section. If we refer to
the literature on machine scheduling problem with
an availability constraint, our problem can be

84 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

formally de®ned as solving a deterministic MFS
problem with a set of resumable jobs to minimize
total tardiness of all jobs for a given match-up
point on each machine under the assumption that
one machine is not available for a certain period
of time due to a machine breakdown. Based on the
computational complexity results of machine
scheduling with an availability constraint, we can
easily conjecture that our problem is also NP-
hard.

3. Reactive hierarchical scheduling

The proposed reactive hierarchical scheduling
approach (RHSA) initially selects a match-up
point for each machine, then reschedules the
speci®ed job and machine pool up to the match-up
point. A ¯ow chart of the proposed approach is
given in Fig. 2.

3.1. Initial pool determination

When a machine is broken down, the down
time may cover the processing time of some jobs
on the initial schedule. To insert this disruption
duration into the initial schedule, idle times that
already exist in the preschedule of down machine
are utilized. Therefore jobs on the disrupted ma-
chine could be rescheduled in such a way that the
down time of the machine is compensated for by
the idle times in the preschedule. This, however,
changes the start and ®nish times of the resched-
uled jobs and renders the schedules for the other
machines infeasible. As a result, jobs on the ma-
chines which are a�ected by the brokendown ma-
chine must also be rescheduled. The initial pool
determination procedure starts by setting a match-
up point for the brokendown machine. Next, the
rescheduling pool for the brokendown machine is
determined. This is followed by a match-up point
determination for each of the other machines and

Fig. 2. Flow-chart representation of the algorithm's framework.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 85

augmenting the rescheduling pool based on the
a�ected jobs on those machines.

An algorithmic description of the initial pool
determination procedure can be outlined as fol-
lows, where the notation used throughout the pa-
per is given in Table 1.

S1 Jobs to be rescheduled on kd are collected in
the set Jkd

as follows:
S1.0 Jobs following the breakdown at the
down machine are sequenced in a chronolog-
ical order O�1�, O�2�, O�3�; . . . such that
O�1� � min8i �Xi;kd j Xi;kd P td). We use sub-
script �i� to denote the job scheduled in ith
position after the breakdown.
S1.1 Find the minimum np that satis®es
tu �

Pnp
i�1 p�i�;kd ÿ X�np�1�;kd 6 0. Set T M

kd
�

X�np�1�;kd and Jkd
� fO�1�;O�2�; . . . ;O�np�g.

S2 To determine Jk for any machine other than
kd , set T M

k � maxi2Jkd
Xi;k � pi;k. For any i in

the initial schedule that satis®es td 6Xi;k

6 T M
k for k 6� kd , then add i to Jk. Set

J � J1 [J2 [� � � [Jm and n � jJj.

In the ®rst step, new jobs are added to the
brokendown machine's pool until the total col-
lected idle time exceeds the length of the break-
down duration. In the second step, all the jobs in
the brokendown machine's pool are included by
other machines' pools to ensure the continuity of
time horizon. Furthermore, the jobs that are not
processed on the brokendown machine, but
scheduled in between two jobs of set J on any of
the machines in the initial schedule, are also added
to the job pool. Therefore, all operations of a job
and consequently all machines processing it are
included into the pool to increase job ¯exibility.
Since the additional requirements due to the pre-
cedence and non-interference constraints are not
considered in the ®rst step, we may not ®nd a

Table 1

Notation summary

n number of jobs in the match-up pool

m number of machines in the cell

pi;k processing time of job i on machine k
kd the brokendown machine

T B
k beginning time of the schedule for machine k in the initial schedule

T M
k match-up time of the schedule for machine k in the new schedule

Tmax maximum match-up point (end point of initial schedule)

kf
i ®rst machine that processes job i in the cell

kl
i last machine that processes job i in the cell

Xi;k planned operation starting time of job i on machine k in the initial schedule

ESi;k possible earliest start time of operation �i; k�
LFi;k possible latest ®nish time of operation �i; k� without any tardiness

Yi;k starting time of job i on machine k in the new schedule

td the beginning time of disruption

tu the ending time of disruption

O�i� the ith job after the disruption in the initial sequence

UNSCH set of unscheduled jobs

Jk job pool for machine k and J � Sm
k�1 Jk

Mi set of machines that process job i
I job set of upstream machines

II job set of the brokendown machine

III job set of downstream machines

Cj;: completion time of job j on machine group (�)
Bj;: beginning time of job j on machine group (�)
F: set of infeasible jobs on pair (�)
e:�j� amount of infeasibility for job j on pair (�)
e maxb amount of enlargement on the brokendown machine

e maxd amount of enlargement on the downstream machines

86 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

feasible schedule. But the infeasible solution will
still give a feedback about the amount of en-
largement that is expected to be required in the
next iteration.

We will now discuss the di�culty of resched-
uling a set of jobs in J. As stated earlier, a job that
is preempted due to a machine breakdown resumes
its processing from the point at which the inter-
ruption occurred. Therefore, the beginning time of
the match-up schedule, T B

kd
, is equal to the sum of

tu and the remaining processing time of the pre-
empted job, if there is any. If we keep the same
sequence on the brokendown machine, kd , then

Y�1�;kd � maxfT B
kd
; X�1�;kdg;

Y�2�;kd � maxfY�1�;kd � p�1�;kd ; X�2�;kdg;
..
...
.

Y�np�;kd � maxfY�npÿ1�;kd � p�npÿ1�;kd ; X�np�;kdg:
In the initial pool determination procedure, we

have collected enough idle time to cover the down
duration of �tu ÿ td�, such that

Pnp
i�1�X�i�1�;kd

ÿX�i�;kd ÿ p�i�;kd �P tu ÿ td . Therefore,

T B
kd
> X�1�;kd) Y�1�;kd � T B

kd
;

Y�1�;kd � p�1�;kd > X�2�;kd) Y�2�;kd � Y�1�;kd � p�1�;kd ;

..

...
.

Y�npÿ1�;kd � p�npÿ1�;kd > X�np�;kd) Y�np�;kd

� Y�npÿ1�;kd � p�npÿ1�;kd :

Let us extend these results to a regular ¯ow
shop problem. If Y�i�;kd � p�i�;kd > X�i�;kd�1 for any
i � 1; . . . ; np, which could happen since
Y�i�;kd > X�i�;kd 8 i 2 Jkd

, then the new schedule be-
comes infeasible due to the precedence relation-
ships. In that case, we can still retain the same
sequence and set Y�i�;kd�1 � Y�i�;kd � p�1�;kd and up-
date the starting times of the other jobs for
k � kd � 1; . . . ;m, accordingly. This strategy is
called the right-shift procedure as discussed in
Section 4, which might result in a large deviation
from the completion times in the initial schedule.
Another possibility would be to calculate the ear-
liest possible start times, ri, and the latest possible
completion times, or deadlines, �di, for each job on
machine kd , such that ri;kd � maxfT B

kd
; Xi;kdÿ1

�pi;kdÿ1g and �di;kd � Xi;kd�1. Therefore, our aim will
be to ®nd a feasible schedule for the 1jri; �dij
problem. Du and Leung [7] establish NP-hardness
of 1jpmtn; ri; �dij

P
Ci as stated in Lawler et al. [11].

Furthermore, we may not even ®nd a feasible
schedule for this problem without changing either
ri or �di values, or both, that means solving the
rescheduling problem for both the upstream and
downstream machines. After discussing the com-
putational complexity of the rescheduling prob-
lem, it is justi®able to develop a heuristic method
as discussed below to solve the match-up sched-
uling problem in a reasonable computation time.

3.2. Rescheduling within the pool

After deciding on a pool size, the domain set for
rescheduling problem is formed. The disrupted
machine is in a nonworking condition for some
time though it has previously scheduled jobs to be
processed on that period. So it becomes a bottle-
neck because of the delayed jobs and a high utili-
zation is required to cover this disruption
duration. Therefore, the problem is decomposed
into three distinct parts that are the bottleneck
machine, machines in the upstream direction of it
and the ones in the downstream direction, ac-
cording to the sequence of machines in the MFS.
First, the earliest start and latest ®nishing times of
each job in the rescheduling pool are calculated for
the ®rst and last machine visited by that job, re-
spectively. The earliest start and latest ®nishing
times for each of these jobs on the remaining
machines are calculated next. The scheduling at-
tempt begins with the most critical resource, which
is the brokendown machine. After this the latest
®nishing times are updated for the upstream ma-
chines and the earliest start times are updated for
the downstream machines. If a feasible solution is
found after both of these updates then the match-
up is completed. Otherwise, the job pool is en-
larged if the end of the preschedule is not reached.

An outline of the proposed approach is given
below, in which �i; kprec

i � is the immediate prede-
cessor machine such that job i visited before
coming to machine k, while �i; ksuc

i � as the imme-
diate successor machine of job i on machine k, i.e.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 87

operation �i; k�. Each job has jMij operations in a
predetermined sequence on the machines. In step
1, we ensure that the beginning time and the
match-up time of the rescheduling pool become
constraints of the rescheduling problem in addi-
tion to the precedence constraints such that
Yi;k P T B

k and Yi;k � pi;k 6 T M
k for 8i 2 J and

8k 2Mi.

S1 Calculate ESi;k;LFi;k for 8i 2 J and 8k 2Mi

as follows:
S1.1 ESi;kf

i
� max�Xi;kf

i
; T B

kf
i
� and LFi;kl

i
�

min�Xi;kl
i
� pi;kl

i
; T M

kl
i
� for 8i 2 J.

S1.2

ESi;k �
max�ESi;kprec

i
� pi;kprec

i
; T B

k � if i 2 Jkprec
i

max�Xi;kprec
i
� pi;kprec

i
; T B

k � if i 62 Jkprec
i

(
for 8i 2 J and 8k 2Mi; k 6� kf

i .

LFi;k �
min�LFi;ksuc

i
ÿ pi;ksuc

i
; T M

k � if i 2 Jksuc
i

min�Xi;ksuc
i
; T M

k � if i 62 Jksuc
i

(
for 8i 2 J and 8k 2Mi; k 6� kl

i .
S2 Schedule the brokendown machine, kd , using
the algorithm discussed in Section 3.2.1.
S3 Update LF bounds for operations on the up-
stream machines,

LFi;k �
Yi;kd if ksuc

i � kd ;

LFi;ksuc
i
ÿ pi;ksuc

i
otherwise

(
for k � 1; . . . ; kd ÿ 1 and 8i 2 Jk: Schedule
upstream machines using the algorithm discus-
sed in Section 3.2.2.
S4 Update ES bounds for operations on the
downstream machines,

ESi;k �
Yi;kd � pi;kd if kprec

i � kd ;

ESi;kprec
i
� pi;kprec

i
otherwise

(
for k � kd � 1; . . . ;m and 8i 2 Jk: Schedule
downstream machines using the algorithm dis-
cussed in Section 3.2.3.
S5 If a feasible solution exists in both Steps 3
and 4, then STOP, match-up is completed. Else
go to Step 6.

S6 If Tmax is not reached, then enlarge the pool
by adding new jobs using the proposed enlarge-
ment procedure discussed in Section 3.3 and go
to Step 1. Else STOP, a complete rescheduling is
performed.

3.2.1. Scheduling the brokendown machine
We propose a new dominance rule embedded in

a branch and bound algorithm (BB) to schedule a
set of jobs on the brokendown machine to mini-
mize the deviation from the match-up point, which
is equivalent to minimizing total tardiness with
unequal ready times problem, 1jrjj

P
Tj. Du and

Leung [8] have shown that the total tardiness
problem, 1j jP Tj, is NP-hard in the ordinary
sense, whereas unequal release dates problem,
1jrjj

P
Tj is strongly NP-hard because the alter-

natives of inserting machine idle times need to be
considered as stated by Lawler et al. [11]. Al-
though customer orders may not arrive simulta-
neously in real-life problems, to our knowledge,
there is only one exact approach in the literature to
solve the 1jrjj

P
Tj problem by Chu [5]. To sim-

plify the notation, we let ESj;kd � rj and LFj;kd

� dj for 8j 2 Jkd
, and dropped the machine index

kd for clarity.
The proposed dominance rule can be used not

only to eliminate nodes of a search tree in a BB
algorithm, but also to provide an initial upper
bound on the minimum value of the total tardi-
ness. The dominance rule stated in Theorem 1 is a
su�cient condition for some job i to precede some
other job j at the current time tc; it does not imply
that an optimal sequence actually exists in which i
precedes j. Proposition 1 and the consequent def-
inition of a global dominance, on the other hand,
state conditions for the existence of an optimal
sequence in which job i precedes job j is guaran-
teed. Finally, Theorem 3 extends these results and
states conditions for the existence of a conditional
global dominance of job i over job j at any time t.
If such a condition holds, then no sequences in
which job j precedes job i need to be considered.
Thus, the number of sequences that have to be
considered in an implicit enumeration technique
can be reduced. In the following theorems, pj, rj

and dj are the processing time, ready time and due-
date of job j on the machine kd , respectively, and tc

88 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

is the current time. Detailed proofs of these theo-
rems are not included here due to space limitations
but can be obtained from the author.

Theorem 1. For any two jobs i and j with pi6 pj;
assuming both ready at the current time tc: the
following rules minimize the total tardiness.

�i� for pi 6� pj

use the earliest due date �EDD� rule

if di ÿ pj P tc;

use the shortest processing time �SPT � rule

otherwise:

8>>><>>>:
�ii� for pi � pj use EDD:

Theorem 2. Let i � j denote job i precedes job j
according to the dominance rule stated in Theorem
1. For any three jobs i, j and k ready at the current
time, the transitivity property holds for the domi-
nance rule, i.e., if i � j and j � k, then i � k.

The proposed dominance rule provides a
breakpoint of precedence, b1, which is de®ned as
di ÿ pj for each pair of jobs i and j, where pi6 pj.
Furthermore, the order of jobs may change in two
sides of that breakpoint. Due to transitivity con-
dition stated in Theorem 2, there is only one job
that satis®es the dominance rule at time tc. When
unequal release dates are introduced, another
breakpoint, b2, appears as maxfri; rjg. In the time
region where only one of the two jobs is ready, the
®rst-in ®rst-out (FIFO) rule is applied until both
jobs become available. There are at most three
di�erent possible orderings between each pair of
jobs, which is illustrated in Fig. 3 for jobs i and j,
where pi < pj, dj < di and ri < rj. A breakpoint
could be inactive, such that the order of jobs is

same in two sides of that breakpoint, as de®ned in
Proposition 1.

Proposition 1. The ®rst breakpoint, b1; becomes
inactive in the following cases:

(i) If di6 dj; then EDD � SPT.
(ii) If maxfri; rjg < di ÿ pj < tc; then always

SPT.
(iii) If di ÿ pj < maxfri; rjg; which means

b1 < b2,

(a) If ri6 rj; then always SPT.

(b) If ri > rj; then FIFO until ri and SPT after-
wards.

On the other hand, the second breakpoint, b2,
becomes inactive

(i) If maxfri; rjg6 tc.
(ii) If maxfri; rjg6 di ÿ pj and FIFO � EDD.
(iii) If maxfri; rjg > di ÿ pj and FIFO � SPT.

The following de®nition of a global dominance
is derived from Proposition 1, which is very im-
portant for reducing the number of nodes in a BB
algorithm since the ordering of each pair of jobs is
®xed when both breakpoints are inactive.

De®nition 1 (Global dominance). If job i dominates
job j for every t P tc, i.e., both breakpoints are
inactive, then this unconditional ordering is called
a global dominance and denoted by i! j.

Based on Theorem 1, which states a su�cient
condition for local optimality, the following the-
orem is proved to establish the branching condi-
tion.

Theorem 3. Let j be the dominant job at time tc, if
either j! i or tc � pj6 di ÿ pj or ri P tc

� minfpj;DIg, where DI gives the remaining id-
leness on the machine kd ; for any job i, then for the
rest of the problem job j precedes job i in an optimal
schedule.

Proof. The argument is trivial when j! i. The last
condition ri P tc �minfpj;DIg is necessary both
to have an active schedule and to satisfy the
match-up constraint. Furthermore, if job jFig. 3. An illustration of the dominance rule.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 89

dominates job i at time tc and pi P pj then it
remains more desirable than job i regardless of any
breakpoint. So let us look at the case where job j
dominates job i at time tc due to EDD criterion.
Then the following conditions must hold dj < di,
pi < pj and di ÿ pj P tc � pj. Let us consider a
schedule S in which jobs i and j satisfy the above
conditions and job j precedes job i. We construct a
new schedule S0 by interchanging the positions of
jobs i and j. Obviously, this interchange will not
a�ect the completion times of other jobs. More-
over, for jobs i and j, the tardiness of job j after
choosing job i is denoted as T j

i<j and total tardiness
of i and j after this decision is denoted as Ti<j

where

Ti<j � T i
i<j � T j

i<j � max�0 ; tc � pi ÿ di�
� max�0 ; tc � pi � pj ÿ dj�;

Tj<i � T j
j<i � T i

j<i � max�0 ; tc � pj ÿ dj�
� max�0 ; tc � pj � pi ÿ di�:

Furthermore �tc � pi ÿ di� < 0 and �t � pj

� pi ÿ di� < 0, because pi < pj and di P tc � 2pj.
Therefore T i

i<j � T i
j<i � 0. On the other hand,

�tc � pi � pj ÿ dj� > �tc � pj ÿ dj�, which means
T j

i<j P T j
j<i. We thus conclude that Tj<i 6 Ti<j.

Hence we conclude that scheduling job i as a ®rst
job of the remaining sequence cannot improve
total tardiness. �

Corollary 1. Let j be the dominant job at time tc: If
there is an unscheduled job i such that job i is not
globally dominated by job j, tc � pj > di ÿ pj and
ri < tc �minfpj;DIg, then the current schedule may
be improved by scheduling job i before job j.

We now present a BB algorithm based upon the
dominance theorems, where each node represents
a partial schedule. There are primarily two alter-
native decisions at each node either choosing a job
among the available and unscheduled ones using
the dominance rule, or selecting a job that satis®es
the branching condition stated in Corollary 1.

S0 [Initialization] Set seq 0, ub 1, tc
r�1�, and S ;.

S1 [Selecting dominant] Let j be the dominant
job at tc.
S2 [Global dominance] If j! i or tc � pj

6 di ÿ pj or ri P tc �minfpj;DIg for every
i 2S and i 6� j then goto Step 4.
S3 [Selecting subproblem] Calculate lb, if
lb < ub then insert every unscheduled job i
dominating j at t 2 �tc; tc � pj� such that
ri < tc �minfpj;DIg, to the active stack, AS,
then store ti maxftc; rig and seqi seq. Else
goto Step 5.
S4 [Upper bounding] Set S�seq� j, tc
maxftc � pj; rming and seq seq� 1. If
seq < n then goto Step 1. Else if TS < ub, set
�S S and ub TS.
S5 [Branching] If AS 6� ; pick job i from AS
(LIFO) and set tc ti � pi, S�seqi� i and
seq seqi � 1 then goto Step 1.
S6 [Report optimum] Else report Sopt �S.

The ®rst step ®nds the dominant job at tc as a
result of the proposed dominance rule. If job j
satis®es the conditions of Theorem 3 for all the
remaining unscheduled jobs then we increment the
current time tc, either to the maximum of the
completion time of job j or to the earliest release
date of the unscheduled jobs rmin, and select the
next dominant job at new tc. Otherwise, a lower
bound is calculated and if it is greater than or
equal to the upper bound then this node is elimi-
nated. In Step 3, the set of unscheduled jobs which
are available and dominate job j in the interval
�tc; tc � pj� are selected for branching at the same
level, as explained in Corollary 1. These jobs are
kept in the active stack, AS. The starting time and
the sequence of them are also recorded. In Step 4,
if tardiness of the current schedule TS is strictly
less than the upper bound, S is kept as the in-
cumbent schedule. If the current schedule is com-
pleted and the AS is not empty then we pick the
last inserted job i, last-in ®rst-out (LIFO), in a
depth-®rst enumeration scheme (DFES) and
schedule it with sequence seqi in Step 5 and a new
subtree is grown by returning to Step 1, otherwise
the incumbent schedule �S is reported as optimal.
We have implemented the LIFO rule in a DFES as
a search strategy, because the complete schedule
occurs at the bottom level of the search tree and

90 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

the DFES provides an initial upper bound due to
the proposed dominance rule.

3.2.2. Upstream machines' schedule
After an optimum solution is found for the

disrupted machine, its scheduled jobs' beginning
times specify the due dates for the upstream ma-
chines. This is a constraint-directed problem with
no objectives but strict bounds. The aim is to ®nd a
feasible solution, even though it may not always
exist. But the violation of due-dates caused by the
schedule of the disrupted machine are allowed in
order to provide a feedback information for the
enlargement procedure. In the proposed approach,
the scheduling attempt begins with the most re-
stricted jobs. These jobs have no slack time and
should be scheduled at their ready times since any
tardiness corresponds to the violation of the pre-
cedence constraints. After scheduling a job, the
earliest start and the latest ®nish times of other
jobs' operations processed by the same machine
are updated. For each of the unscheduled jobs a
one-step look ahead feasibility check is performed
to ®nd candidate jobs at a given time. At the be-
ginning of the procedure, a job-oriented schedul-
ing is performed to place the critical jobs, and for
the remaining jobs a machine-oriented scheduling
is applied, though it shifts back to the job-oriented
approach as any job becomes critical. An outline
of the proposed approach is given below.

S0 Calculate slack values, si, of each job as,
si � ESi;f ÿ LFi;kdÿ1 ÿ

Pkdÿ1
k�1 pi;k. If there ex-

ists any critical job, i.e. si � 0, schedule it
through all machines. Set k � 1.
S1 Update ESi;k and LFi;k based on the sched-
uled jobs for k � 1; . . . ; kd ÿ 1.
S2 Set t � mini2UNSCHESi;k. For every
i 2 UNSCH, apply a one-step look ahead pro-
cedure such that if job i is scheduled at time t,
either do any of the remaining jobs could be-
come infeasible, or does it overlap with any of
the previously scheduled jobs. If the number
of feasible alternatives is more than one, then
choose the most critical job, with minimum si

value, to be scheduled at time t, call i�. Other-
wise, choose the one causing minimum tardiness
on other unscheduled jobs.

S3 Update ESi;k and LFi;k based on the sched-
uled job. If any job becomes critical when all
other jobs have positive slack then schedule it
through all upstream machines. If there are un-
scheduled jobs on the current machine k, then
set t � t � pi�;k and go to Step 1. Else if machine
k's schedule is completed, then set k � k � 1. If
k < kd then go to Step 1.
S4 Check the feasibility of the schedule. If at
least one job is scheduled after its due-date then
the schedule is infeasible, so apply the Pool En-
largement Procedure, which is described in Sec-
tion 3.3.

3.2.3. Downstream machines' schedule
An operation-oriented scheduling scheme,

which is a hybrid approach of machine and job-
oriented applications, is performed to minimize
the total tardiness. The proposed backward
scheduling heuristic for the downstream machines
begins scheduling from the match-up points, where
the due-date is considered as a hard constraint if it
is equal to the match-up time. In this scheme, on
each machine, a candidate job is looked for by the
dominance rule stated in Theorem 1, while ready
times are taken as due-dates and due-dates as
ready times. The candidate job is not scheduled
before the beginning time of the last job scheduled
at the succeeding machine. Such a restriction
avoids making a decision for a time interval on
some machine before the same time interval is
being scheduled for the succeeding machines.
Furthermore, the latest ®nish time of job i on
machine k either corresponds to the due-date if k is
the last machine of the job or to the beginning time
of the succeeding operation of the same job that is
already scheduled. For the ®rst case, the latest
®nish time is a soft constraint which means that a
job can be tardy. However, in the second case it is
a hard constraint since the latest ®nish time
represents the precedence relations. An outline of
the proposed approach can be summarized as
follows:

S0 Set tk � T M
k , for k � kd � 1; . . . ;m.

S1 Set i� � maxi2UNSCHfLFi;mg, and Yi�;m �
tm ÿ pi�;m.
S2 Set tm � tm ÿ pi�;m and k � mÿ 1.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 91

S3 If k � kd then go to Step 6, otherwise recal-
culate ESj;l and LFj;l for l � kd � 1; . . . ;m
based on the scheduled job.
S4 Let j� be the dominant job at time tk on ma-
chine k due to Theorem 1.
S5 If LFj�;k P tk or k is the last machine of j�,
then

if tk ÿ pj�;k P tk�1, then set Yj�;k � tk ÿ pj�;k
and tk � tk ÿ pj�;k.
Otherwise, set k � k ÿ 1 and go to Step 3.

else
if LFj�;k ÿ pj�;k P tk�1, then set Yj�;k � LFj�;k
ÿ pj�;k and tk � LFj�;k ÿ pj�;k.
Otherwise, set k � k ÿ 1 and go to Step 3.

S6 Check the feasibility of the schedule. If at
least one job is scheduled before its ready time
then schedule is infeasible. If it is feasible then
apply left shift procedure to minimize the tardi-
ness, otherwise apply the Pool Enlargement
Procedure.

3.3. Enlarging the pool size

In this hierarchical scheme, the overall re-
scheduling problem is decomposed into three parts
by relaxing the precedence constraints among
them, and also by utilizing a spatial decomposition
due to the MFS assumption. Therefore, the re-
sulting schedule may not be feasible since the
completion time of a job's operation might be
greater than the beginning time of its succeeding
operation only if they are performed in two dif-
ferent machine groups, although it is penalized in
the algorithm. Consequently, the current pool
should be enlarged to increase both the amount of
idle time on each machine and the number of
possible sequences that a job can be scheduled.
There is a trade-o� since the enlargement in the
pool should give the required amount of ¯exibility
by adding a minimum number of jobs to the pool
due to our second objective of time critical deci-
sion making. Because, a large match-up value can
increase both complexity and nervousness of the
system.

There are three possible pairs that can have
infeasibilities between each other which are the
upstream machines' group and the brokendown

machine, the brokendown machine and the
downstream machines' group, and the upstream
and downstream machines' groups. The amounts
of infeasibilities are checked for jobs using both of
the machine groups in the pair. The maximum
amount of infeasibility is accepted as the required
enlargement quantity, which is the amount of idle
time that should be added to the pool to get a
feasible schedule for the corresponding pair. Ini-
tially, an enlargement is performed by the down-
stream machine group according to the other
group in the pair. New jobs are added to its job
pool till the amount of collected idle time is equal
to the demanded quantity. Consequently, these
newly contained jobs are also added to the job
pools of the other two machine groups to ensure
continuity. Furthermore, the earliest start and
latest ®nish times of the infeasible jobs are updated
according to the current degree of infeasibility
between the machine groups. An outline of the
pool enlargement procedure is given below.

S1 Check the feasibility of the current schedule:
S1.1 Check the feasibility between upstream
machines and the brokendown machine. Set
F1 � ;. For every j 2 I \II, if
Cj;II > Bj;I then job j causes infeasibility,
so calculate e1�j� � Cj;II ÿ Bj;I and job j is
added to the set F1.
S1.2 Check the feasibility between down-
stream machines and the brokendown ma-
chine in a similar way. Calculate e2�j�
values and determine the set F2.
S1.3 Check the feasibility between upstream
machines and downstream machines in a
similar way. Calculate e3�j� values and deter-
mine the set F3.

S2 If e1�j� � 0 8 j 2F1, e2�j� � 0 8 j 2F2

and e3�j� � 0 8 j 2F3 then STOP, schedule is
feasible.
S3 Let e maxb and e maxd be maxfe1�j�g and
maxfe2�j� ; e3�j�g, respectively.
S4 If e maxb > 0 and e maxd � 0, then,

S4.1 Enlarge the brokendown machine's pool
to add e maxb amount of idleness,
S4.2 Enlarge the pools of the other machines
to include the new jobs added to the broken-
down machine's pool, STOP.

92 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

Else if e maxb P 0 and e maxd > 0, then,
S4.1 Enlarge the pool of the every down-
stream machine to add e maxd amount of id-
leness,
S4.2 Enlarge each of the downstream ma-
chines' job pool to make sure that any job
in one of these machines' is also included
by other downstream machines' pools,
S4.3 Enlarge the pools of upstream machines
and the brokendown machine to include the
new jobs added to the downstream machines'
pools. If this indirect enlargement of the bro-
kendown machine allows at least e maxb

amount of idleness then STOP. Otherwise,
enlarge the brokendown machine's pool to
complete e maxb amount of idleness, and in-
clude these new jobs to the pools of the other
machines, STOP.

4. Experimental results

There are two major input variables that can
a�ect the e�ciency of the proposed approach,
which are the initial schedule and the duration of
the breakdown. Though the down duration is a
measurable quantity, this is not easy for the initial
schedule. That causes a need for decomposing the
factors that a�ect the initial schedule. These are
classi®ed as the idle time percentage in the sched-
ule, the variance of processing times, ready times
and due-dates. They can have a signi®cant impact
on the amount, distribution and frequency of idle
times in the planning horizon. A summary of the
®xed parameters and the ®ve experimental factors
are given in Tables 2 and 3, respectively, where
U � �a; b� represents a uniformly distributed ran-
dom variable in interval �a; b�. In each complete
trial or replication of the experiment, all possible

combinations of the levels of the factors are in-
vestigated. It is a 4 � 24 full-factorial design, which
corresponds to 64 treatment combinations. The
number of replications of each combination is ta-
ken as ®ve, that gives 320 di�erent randomly
generated runs.

In an MFS the number of operations per job is
not constant as discussed earlier. In the proposed
experimental setting, there are 10 machines and
each job might visit each machine with a 75%
probability indicated as the precedence relation-
ships, hence the average number of operations per
job is 7.5. Furthermore, the ®rst factor in the ex-
perimental design is the idle time percentage in the
initial schedule. Consequently, the idle times are
selected randomly from the interval U � �1; 3� and
the number of idle time occurrences on each ma-
chine, nidle, is determined as follows:

nidle � Idle time %

1 ÿ Idle time%
� 300 � 4

� �� �
2

�
;

where 300, 4 and 2 correspond to the number of
jobs, mean processing time and mean idle time,
respectively. Moreover, an expected makespan is
required to determine the range of ready times as
the third experimental factor, which is found as
follows:

Expected makespan

� 1:1��0:75 � 4 � 300� � �2nidle��:
Finally, the distribution for the length of the
breakdown is taken as the last experimental factor
whereas the beginning time of the breakdown is
equal to the starting time of the ®fth job on the
®fth machine in the initial schedule.

An initial schedule for each run is generated by
using the best of four dispatching rules which are
the Shortest Processing Time (SPT), Earliest Due
Date (EDD), Apparent Urgency (AU) heuristic
proposed by Morton et al. [17], and the modi®ed
AU heuristic for the inserted idleness consider-
ation [18]. The AU heuristic is a composite dis-
patching rule that combines the SPT rule and the
minimum slack (MS) rule. Under the AU rule jobs
are scheduled one at a time; that is, every time the
machine becomes free, a ranking index is com-
puted for each remaining job i. The job with the

Table 2

Fixed variables

Number of machines 10

Number of jobs 300

Brokendown machine 5th machine

Precedence relationships 75%

Mean processing time 4 units

Mean idle time 2 units

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 93

highest ranking index is then selected to be pro-
cessed next. The ranking index, pi�k; t� is a func-
tion of the time t and de®ned as

pi�k; t� � 1=pik exp ÿ max di ÿ t ÿ pik

ÿ
Xm

q�k�1

piq; 0

!,
�b�p�

!
;

where we set the look-ahead parameter b at 2 as
suggested in [17], and �p is the average processing
time. The AU rule is modi®ed for the inserted id-
leness case and a revised priority function for any
job i on machine k, Ii�k; t�, is calculated as follows
[18]:

Ii�k; t� � pi�k; t��1ÿ b max �ESik ÿ t; 0� = �p�:
We ®rst ®nd the set of jobs that will be processed
on the ®rst machine and a sequence is found by
applying these rules independently. We then de®ne
the job pool on the second machine meanwhile we
update the earliest start times of the jobs that were
already processed on the ®rst machine, and pro-
ceed on. The schedule that minimizes the sum of
tardiness and earliness is selected as the initial
schedule.

There are two main steps in the proposed ap-
proach, which are ®nding a match-up point and

rescheduling up to it. The match-up point and
consequently the rescheduling pool are determined
with individual match-up points for each machine,
while di�erent amounts of increases are allowed at
each iteration, (variable DTk), by using a feedback
mechanism from the previous iteration. The re-
scheduling pool is decomposed into three parti-
tions and a new solution methodology is proposed
to each one by utilizing a hierarchical scheme.
There can be alternative approaches to each step.
The match-up point could be equal for all ma-
chines, determined with ®xed increments on the
time horizon without any feedback, (®xed DT), as
suggested by Bean et al. [3]. The pool can be re-
scheduled with the best of four dispatching rules of
SPT, EDD, AU and the modi®ed AU heuristic as
discussed above. Alternative approaches are cre-
ated by combining the di�erent aspects of these
two steps as shown in Table 4. In addition, a static
pushback strategy, also called the right-shift pro-
cedure, is included in the experimental analysis. In
this strategy, when a machine breakdown occurs,
the job sequences on each machine are kept same,
only the starting times are shifted to the right (in a
Gantt chart representation) as far as necessary to
accommodate the disruption. Furthermore, in the
RHSA and the right shift, earliness is not allowed
as discussed earlier, while the forward dispatching
rules might deviate from the initial starting times,

Table 4

Alternative approaches for comparison

Alternatives Rescheduling method Match-up point

RHSA Hierarchical approach Variable DTk

Alt 1 Best of dispatching rules Variable DTk

Alt 2 Best of dispatching rules Fixed DT � Tmax=10

Alt 3 Best of dispatching rules Fixed DT � Tmax=20

Alt 4 Best of dispatching rules Fixed DT � Tmax=40

Right shift Same job sequence Variable

Table 3

Experimental Factors

Factors # Levels Values

Idle time percentage 4 0.05, 0.10, 0.20, 0.40

Processing time variability 2 U � [3, 5], U � [1, 7]

Ready time 2 U � [0, makespan], U � [0, (0.8 � makespan)]

Due-date coe�cient 2 U � [2, 3], U � [5, 6]

Breakdown duration 2 U � [12, 16], U � [20, 24]

94 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

i.e. earliness is allowed. All of these alternatives,
including RHSA, are coded in C language and
implemented on the Sun Sparc system.

There are primarily two main objectives, which
are the schedule quality and schedule stability. The
schedule quality is quanti®ed in terms of two
performance measures that are the earliness and
tardiness. Both terms measure the amount of
change between the preschedule and the new
schedule. The schedule stability is measured by the
computation time and the match-up point. The
results of the experimental analysis over 320 ran-
domly generated runs are summarized in Table 5
along with the minimum and maximum of all runs
to indicate the range of values. When we compare
the proposed RHSA with the other match-up al-
ternatives in terms of the total deviation that is the
sum of tardiness and earliness, the RHSA per-
forms better than others at 0.1% signi®cance level
due to a paired t-test. The match-up point is also
an important measure, that a large match-up value
is not desirable due to our second objective. The
RHSA again outperforms the others and the
amount of improvement is notable at 0.1% sig-
ni®cance level. The match-up time is proportional
to the computation time in the RHSA. The reason
of our heuristic's low computation time is the low
match-up value which decreases the size of the

pool to be rescheduled and reduces the number of
iterations. Furthermore, the breakdown machine
scheduling corresponds to a relatively easy in-
stance of 1jrjj

P
Tj problem. Therefore an initial

upper bound of the BB algorithm generated by the
proposed dominance rule gives the optimum so-
lution in almost all of the runs, which signi®cantly
reduces the computation time of the BB algorithm.
Furthermore, the range of values can be very
helpful to analyze which problem characteristics
are easy or hard on each performance measure.
For each factor, low and high levels are repre-
sented by 0 and 1, respectively. In general, the low
idle time percentage and high breakdown duration
create the most di�cult instance for all alterna-
tives, namely 00001. On the other hand, the easy
instances correspond to the high idle time per-
centage and low breakdown duration, i.e. 11010
and 11110, as expected.

Since the objective functions, or performance
measures, are not expressed in commensurable
terms, a unique measure is desired that includes all
of the four performances in it in order to allow an
overall evaluation. The following eigenvalue nor-
malization procedure is used to have a common
unit of measure for each objective, since it is less
sensitive both to the range for the actual values
and to the number of data points than the (0-1)

Table 5

Comparison of the match-up alternatives

Tard. Earl. Comp. (s.) Match-up point Overall perform.

Minimum 0 0 0.468 41

RHSA Average 83.5 0 0.745 119.1 0.183

Maximum 365 0 2.22 210

Minimum 0 0 0.24 41

Alt 1 Average 297.7 572.5 1.67 187.8 0.664

Maximum 3249 6073 13.924 861

Minimum 0 4 0.25 144

Alt 2 Average 101.4 105.4 1.174 253.9 0.347

Maximum 595 471 10.514 480

Minimum 0 18 0.264 100

Alt 3 Average 86.1 199.4 1.098 193.7 0.333

Maximum 507 744 7.942 423

Minimum 0 4 0.328 70

Alt 4 Average 78.9 172.3 1.81 163.7 0.359

Maximum 498 599 25.254 434

Minimum 0 0 0.37 82

Right Shift Average 141.9 0 0.561 143.4 0.221

Maximum 629 0 0.77 377

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 95

scaling function, where 0 indicates the best value
and 1 indicates the worst value among the alter-
natives for each objective.

Nij � Aij��������������������P
j2q A2

ij

q ;

where Aij stands for the value of ith objective in jth
alternative, q is the set of alternatives and Nij is the
normalized value of the Aij value. A global mea-
sure is found by using an eigenvector normaliza-
tion with equal weights as shown in the last
column of Table 5, which also indicates the e�ec-
tiveness of the proposed approach. On the other
hand, the right-shift procedure is the second best
heuristic when there is a low idle time percentage
in the initial schedule due to its low computation
time. Whereas Alternative 1, which is a mixture of
the proposed enlargement procedure and the dis-
patching rules, is the second best heuristic when
there is a high idle time percentage. Among alter-
natives of 2, 3 and 4, Alternative 3 is better than
the others in the overall measure, although Alter-
native 4 performs better than Alternative 3 in
terms of the total deviation because of its smaller
DT value. It allows determining the match up
point earlier, which improves the schedule quality
but increases the computation time.

Finally, a two-way analysis of variance (AN-
OVA) test is applied on three measures of the
tardiness, computation time and match-up point
to test the equality of observed responses from the
di�erent treatments of the chosen factors. A sum-
mary of ANOVA tables is given in Table 6 with
the corresponding signi®cance levels, p, for each
factor. The percentage of idle time in the initial
schedule, factor A, the ready time interval, factor
C, job slack times, factor D, and the breakdown

duration, factor E, are signi®cant on the match-up
point. The factor A directly represents the amount
of idle time in the initial schedule, while the factor
C indirectly a�ects the distribution of idle time on
the Gantt Chart. Therefore, both the total amount
and the frequency of idle time occurrences in the
initial schedule in conjunction with the job criti-
cality and the breakdown duration are important
factors in the case of disruptions.

5. Conclusions

This paper presents a reactive scheduling ap-
proach to compensate the disruption e�ect caused
by a machine breakdown on the initial schedule.
We propose a new rescheduling strategy by using a
spatial decomposition due to the CMSs along with
a variable match-up time approach with a feed-
back mechanism for the enlargement procedure. In
order to schedule the jobs on the brokendown
machine, we have proved a new dominance rule
embedded in a BB algorithm and the consequent
theorems to provide the su�cient condition for
local optimality as a function of time. Further-
more, our objective is to create a new schedule that
is consistent with the other production planning
decisions like material ¯ow, tooling and purchas-
ing by utilizing the time critical decision making
concept. The proposed approach, RHSA, is com-
pared with several match-up alternatives and the
static pushback strategy under di�erent experi-
mental settings. The experiments indicate that
RHSA results in less deviation with a smaller
match-up point and computation time. Therefore
we can conjecture that the proposed RHSA im-
proved the schedule quality and stability, and also
reduced the computation time. Furthermore, we

Table 6

Summary of ANOVA results

Factors Tardiness Comp. time Match-up

Idle time percent. p � 0:000 p � 0:000 p � 0:000

Processing time var. p � 0:000 p � 0:774 p � 0:245

Ready time p � 0:079 p � 0:544 p � 0:003

Due-date coef. p � 0:779 p � 0:000 p � 0:002

Breakdown duration p � 0:000 p � 0:046 p � 0:000

96 M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97

also show that the initial schedule has an impor-
tant e�ect on the rescheduling problem. Conse-
quently, an initial schedule should not be
evaluated only by regular performance measures,
but also by its inherent ¯exibility and robustness.

Acknowledgements

The authors would like to thank the three
anonymous referees for their helpful comments
and suggestions on improving the format and
contents of the paper.

References

[1] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan,

Single machine ¯ow-time scheduling with a single break-

down, Acta Informatica 26 (7) (1989) 676±696.

[2] M.S. Akturk, H.O. Balkose, Part-machine grouping using

a multi-objective cluster analysis, International Journal of

Production Research 34 (8) (1996) 2299±2315.

[3] J.C. Bean, J.R. Birge, J. Mittenehal, C.E. Noon, Match-up

scheduling with multiple resources, release dates and

disruption, Operations Research 39 (3) (1991) 470±483.

[4] J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling

in Computer and Manufacturing Systems, Springer, Ber-

lin, 1993.

[5] C. Chu, A branch-and-bound algorithm to minimize total

tardiness with di�erent release dates, Naval Research

Logistics Quarterly 39 (2) (1992) 265±283.

[6] W.J. Davis, A.T. Jones, A real-time production scheduler

for a stochastic manufacturing environment, International

Journal of Computer Integrated Manufacturing 1 (2)

(1988) 101±112.

[7] J. Du, J.Y. Leung, Minimizing mean ¯ow time with release

time and deadline constraints, Technical Report, Com-

puter Science Program, University of Texas, Dallas, 1988.

[8] J. Du, J.Y. Leung, Minimizing total tardiness on one

machine is NP-hard, Mathematics of Operations Research

15 (1990) 483±495.

[9] S.C. Graves, A review of production scheduling, Opera-

tions Research 29 (4) (1981) 646±675.

[10] C. Koulamas, The total tardiness problem: review and

extensions, Operations Research 42 (6) (1994) 1025±1041.

[11] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B.

Shmoys, Sequencing and scheduling: algorithms and

complexity, in: S.C. Graves, A.H.G. Rinnooy Kan, P.H.

Zipkin (Eds.), Handbooks in OR&MS, vol. 4, Elsevier,

Amsterdam, 1993.

[12] C.-Y. Lee, Machine scheduling with an availability

constraint, Journal of Global Optimization, 9 (1996)

395±416.

[13] C.-Y. Lee, Minimizing the makespan in the two-machine

¯owshop scheduling problem with an availability con-

straint, in: Operations Research Letters, 20 (1997) 129±

139.

[14] C.-Y. Lee, S.D. Liman, Single machine ¯ow-time sched-

uling with scheduled maintenance, Acta Informatica 29 (4)

(1992) 375±382.

[15] C.-Y. Lee, S.D. Liman, Capacitated two-parallel machine

scheduling to minimize sum of job completion times,

Discrete Applied Mathematics 41 (1993) 211±222.

[16] V.J. Leon, S.D. Wu, R.H. Storer, Robustness measures

and robust scheduling for job shops, IIE Transactions 26

(5) (1994) 32±43.

[17] T.E. Morton, R.V. Rachamadugu, A.P.J. Vepsalainen,

Accurate myopic heuristics for tardiness scheduling,

Working Paper 36-83-84, GSIA, Carnegie Mellon Univer-

sity, 1984.

[18] T.E. Morton, D.W. Pentico, Heuristic Scheduling Sys-

tems: With Applications to Production Systems and

Project Management, Wiley, New York, 1993.

[19] S.Y. Nof, F.H. Grant, Adaptive/predictive scheduling;

review and a general framework, Production Planning and

Control 2 (4) (1991) 298±312.

[20] S.F. Smith, P.S. Ow, N. Muscettola, J. Potvin, D.C.

Matthy, An integrated framework for generating and

revising factory schedules, Journal of Operational Re-

search Society 41 (6) (1990) 539±552.

[21] E. Szelke, R.M. Kerr, Knowledge-based reactive schedul-

ing, Production Planning and Control 5 (2) (1994) 124±

145.

[22] S.D. Wu, R.H. Storer, P. Chang, One-machine resched-

uling heuristics with e�ciency and stability as criteria,

Computers and Operations Research 20 (1) (1993) 1±14.

M.S. Akturk, E. Gorgulu / European Journal of Operational Research 112 (1999) 81±97 97

