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Abstract-A new approach is suggested to study transient and stable regimes in overloading 
retrial queueing systems. This approach is based on limit theorems of averaging principle and diffusion 
approximation types for so-called switching processes. Two models of retrial queueing systems of 
the types h?/G/i/w.r (multidimensional Poisson input flow, one server with general service times, 
retrial system) and M/M/m/w.r (m servers with exponential service) are considered in the case 
when the intensity of calls that reapply for the service tends to zero. For the number of re-applying 
calls, functional limit theorems of averaging principle and diffusion approximation types are proved. 
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1. INTRODUCTION 

The complexity of a real model of information and computing systems leads to the necessity of the 
creation of new, more complicated models of queueing systems and developing new approaches in 
the investigations. Taking into account a complex structure of real systems, only in rare special 
cases is it possible to get analytic solutions for various characteristics. Therefore, asymptotic 
methods play a basic role in investigation and approximative modelling. 

The paper is devoted to the development methods of asymptotic analysis such as averaging 
methods and methods of diffusion approximation for so-called retrial queueing systems. In these 
systems, customers finding the service busy may join the special retrial queue and repeat their 
attempts for service after some random time. 

In recent years, there have appeared many publications concerning the development of the- 
oretical, numerical, and approximating methods for different classes of retrial queueing models 

(see [l-15]). 
Different asymptotic approaches for various classes of general queueing systems are considered 

in [16-Z!] (see also, references therein). 
In the present paper, a new approach is suggested based on asymptotic results of averaging 

principle and diffusion approximation types for so-called switching processes. 

08957177/99/g - see front matter. @ 1999 Elsevier Science Ltd. All rights reserved. Typeset by d&&l&X 
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The class of Switching Processes (SP) was introduced in the author’s works (see [23,24]). SP 

are described as two-component processes (z(t), q(t)), t L 0, with the property having a sequence 

of epochs ti < ts < .. . such that on each interval [tk,tk+i), z(t) = z(&) and the behaviour 

of the process c(t) depends only on the value (Z(tk),<(tk)). This means that the character of 

development of SP varies spontaneously (switches) at certain epochs of time which can be random 

functionals of previous trajectory. Epochs tk are switching times and s(t) is the discrete switching 

component. 

SP can be described in terms of constructive characteristics and they are very suitable in 

analyzing and investigating stochastic systems with “rare” and “fast” switches (see [18,24-27]), 

and they also can be adequate mathematical models at the analytical and approximate handling 

wide classes of queueing systems and networks. 

We note that SP are in some sense the generalization of well-known classes of random processes 

such as Markov processes homogeneous in the second component [28]; processes with independent 

increments and semi-Markov switches [29], piecewise Markov aggregates [16]; Markov processes 

with semi-Markov interference of chance [30], and Markov and semi-Markov evolutions [31-34). 

Two large classes of limit theorems were investigated for SP in triangular scheme. For the first 

class (the number of switches does not tend to infinity), convergence theorems in the class of 

SP were proved in [18,24]. These results made it possible to construct the theory of asymptotic 

enlargement (merging) of states and decreasing dimension for nonhomogeneous Ma&v and semi- 

Markov processes and to obtain various applications in queueing theory. In particular, several 

results devoted to the asymptotic analysis of flows of rare events on trajectories of SP were 

obtained in books [18,35] and applications to the analysis of highly-reliable systems with repeated 

calls were given by [12]. 

In the case of fast switches (number of switches tends to infinity), both the avertsgin principle 

and the diffusion approximation for different subclasses of SP were proved in [25,26,36-381. Ap- 

plications of these results to study asymptotic behaviour of characteristics of Markov queueing 

systems and networks under transient conditions and with large number of calls were investigated 

in [19,25-271. Some applications to retrial queueing systems were obtained in [13,14]. 

In this paper, we give a general description of SP and we study some classes of retrial queueing 

systems in overloading case and in transient conditions. The method of investigation is based 

on averaging principle and diffusion approximation type theorems for SP which are given in the 

Appendix. 

2. SWITCHING STOCHASTIC PROCESSES 

In this section, we give the general definition and consider some subclasses of SP. 

2.1. Simple Recurrent Process of Semi-Markov Type 

Let Fk = {(&(Cr), Q(Q)), cr E Rr}, k 2 0, be jointly independent families of random variables 

with values in R’ x [O,oo) and So be independent of Fk, k > 0, random variable in R’. Denote 

to = 0, tk+l = tk + Tk(sk), Sk+1 = Sk + 

and put 

s(t) = Sk, =tk<t<tk+l, t 1 0. (2.2) 

Then, the process S(t) forms a simple Recurrent Process of Semi-Markov type (RPSM) 

(see [25,26,36]). 

In the case when the distributions of families Fk do not depend on the parameter k, the 

process S(t) is a homogeneous SMP (Semi-Markov Process). Moreover, when the distributions 

of families Fk do not depend on the parameter Q, epochs tk, k 2 0 form a recurrent flow, and 

S(t) is a generalized renewal process. In particular, when the variables rk(Q) have exponential 

distributions, process S(t) is an MP (Markov Process). 
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2.2. General Case of RPSM 

Let 

9 = {(~k(2,cr),Tk(2,a),pk(3,a)),z E X,a c R’h k>O 

be jointly independent families of random variables taking values in the space R’ x [0, 00) x X, 
X be some measurable space, (50, So) be an initial value. We put 

to = 0, 

Sk+1 = Sk + tkbk,Sk)r 

S(t) = Sk, 

tk+l = tk + Tk(xk, Sk), 

xk+l = Bk(zk, Sk), k 2 0, (2.3) 

z(t) = xk, a.5 tk 5 t < tk+l, t 1 0. (2.4) 

Then the pair (z(t),,S(t)), t 2 0 forms a general RPSM with feedback between both components. 

In particular, when the distribution of the variables @k(x,a) does not depend on the parame- 

ter LY, the sequence Zk forms an MP and we obtain an RPSM with additional Markov switches. 

2.3. Switching Processes 

Now we consider a general construction of an SP. Let 

Fk = {(Ck(t,2,Q),7k(2,a),Pk(Z,a)),t > O,r E X,a E Rr}, k>O 

be jointly independent parametric families where <k(t, z, cy) for each fixed k, 2, a is a random prcl 

cess belonging to Skorokhod space Dk and Tk(Z, a), &(x7 a) be possibly dependent on <k(‘, 2, a) 

random variables, Tk(-) > 0, @k(.) E X. Also, let (~0, SO) be an initial value. We put 

to = 0, tk+l = tk + Tk(xk,sk), Sk+1 = Sk + tk(zk, Sk), 

zk+l = Pk(Zk,Sk)v k 2 0, 
(2.5) 

where &(r, a) = (k(Tk(T a), 27 a), and set 

c(t) = Sk + Ck(t - tk,xkrSk), z(t) = xkr =tk<t<tk+l, t 2 0. (24 

Then, a two-component process (z(t),<(t)), t 2 0 is called an SP (see [18,23, 241). 

If variables &(z,Cr) do not depend on the argument a, then the sequence Zk forms itself an 

MP. Let, in addition, {<(t,z), t 2 0) be a family of Markov processes and c(t,z,a) denotes the 

process <(t, x) with initial value a. In that case, the process (z(t), c(t)) forms a Markov (when 

the process z(t) is an MP) or semi-Markov (when the process z(t) is an SMP) random evolution 

(see 131-34)). 

3. ASYMPTOTIC ANALYSIS OF 
SWITCHING RETRIAL SYSTEMS 

In this section, we consider applications of limit theorems for SP given in the Appendix to the 

asymptotic analysis of some classes of retrial queueing systems. 

3.1. System &i~~~iIw.7- 
Let us consider a one-server system with multiple Poisson input (a call of type i has the 

rate Ai, i = F, T < co). Let there also be given a family of distribution functions {Fi(s),i = 

G}, (Fi(0) = O), values {qiy i = G}, (0 5 qi 5 l), and a family of continuous functions 

{Vi(g),i = c,g E R;}. If a call of type i enters the system and finds the server idle, then 

with probability qi the service immediately begins, the service times pi are independent random 

variables with distribution function Fi(z). Otherwise, with probability pi = 1 - qi, it can get a 
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refusal from a service, and in that case, it will attempt to be served later. Calls waiting to try 

again for service are said to be in the ‘orbit’. If the call finds the server busy, it directly goes in 

‘orbit’. 

Denote $(t) = {S?)(t), i = F} where S?‘(t) is the number of calls of the type i in the orbit. 

If $(t) = n$, then on the small interval [t,t + h], each call in the orbit independently of others 
can reapply for service with probability (l/~)~(~)~ + o(h). If a call finds the server idle, then the 
server immediately begins to serve it with service time pi. If a call finds the server busy, then it 

returns to the orbit. 

Let S = (.si,sz, . . . , s,) be a column vector. By symbol 8*, we denote the conjugate vector. 

Suppose that there exist the expected values 

EQ = mi, i=r;;. (3.1) 

Let us introduce the following variables: 

X(s) = 2(&q, + S&(3)), r?l = 2 mJiqi. (3.2) 
i=l is1 

Also, let &d(g) be column vectors with elements Xi, m~q(@, respectively, and matrix M = 

X&(S)*. We denote by Ip, IQ, and G diagonal matrices with elements on the diagonal pi, qi, and 

vi (a), correspondingly, and put 

g(3) = 1 + 62 + (&(S), s), A(s) = Ipi i- &i + (M - G)s. (3.3) 

Below we give two theorems that show the asymptotic behaviour of the vector s,(nt) when 

n-+00. 

THEOREM 3.1. AVERAGING PRINCIPLE. Suppose that nN1$(0) 5 SO, functions vi(g) satisfy 

the local Lipschitz condition, and 

mi > 0, i=l,. 

Then, for any T > 0, 

sup In-l&(nt) - a(t)( z 0, n+oo, 
O<t<T -- 

where 

g(0) = se, &(t) = g(s(t))-‘.&s(t)) dt, 

and a unique solution of the equation (3.6) exists on each interval. 

convergence in pro~bj~~%~ 

(3.4) 

(3.5) 

(3.6) 

(Here, symbol 3 means 

PROOF. At first, we represent the process S(t) as an SP. Let us denote by t,i < t,s < tns < . - s 

sequential times of finishing service. We consider these times ss switching times. Denote s,, = 
$(&), k > 0, and introduce the family of random variables m(Z) such that 

If the server is free, under the condition that .%k = no, we have two flows of calls. In the first 
one, the call of type i has the intensity q&i, the second one consists of the calls in the orbit and 
the call of type i has the intensity sqi(Z). Therefore, we can represent the variable ~~(8) in the 

form 

m(a) = rl(@)) + K(g), (3.7) 
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where q(x(a)) is an exponentially distributed random variable with parameter X(g) and 51, ~(3) 
are independent, and n(s) can be represented in the form 

K(S) = 
Kj with probability X(9)-‘(Xjqj + sjVj(8)), 

j=l,r 

Introducing indicators xji(S) (correspondingly, xjz(S)) of the following events: after an idle 
period, a call of type j which comes from the input flow (correspondingly, from the orbit) occupies 
the server. It means that 

p {Xjl(S) = 1) = 1 - P (Xjl(3) = 0) = X(&T)-‘Xjqj, 

p{Xj2(s) = 1) = 1 - P{Xjz(S) = 0) = X(S)-‘gjvj(S). 

According to these notations, we can write that 

T*(S) = 77(x(g)) + 2 (Xjl (s) + Xj2(a)) nj* (3.8) 
j=l 

In our case, we have no discrete component z(t). Let us define now the family of processes 
&(t, 9). According to the construction on the idle interval, we have a Poisson flow with pa 
rameter Xipi of calls of type i which go directly to the orbit, and on the busy period, we have 
a Poisson flow with parameter Xi of calls of type i which go directly to the orbit. Denote by 

n::‘(t) = {II::‘(t), i = F}, k 1 0, vector-valued jointly independent at different k Poisson 

processes for which components l$,t’(t) are independent Poisson processes with parameters ai. 
Suppose, without loss of generality, that at time t,c = 0, the server is idle. Then, on the interval 
[tnc, t,,i], we introduce the process 

[n’no (t, s) = I$ (t) .* ’ as t < 9 (A (3))) 

LO (k 9) = nE\, (V (A (3))) - 2 EjXj2 (S) + 2 (Xjl (3) (3.9) 

j=l j=l 

+Xj2 (a)) n?!(t) I ’ as 77 (A (S)) < t 5 7, (a), 

where ej is the column vector in which the jth component is equal to 1 and others are equal to 0. 
On each interval [i&k, &+I), the process &(t, a) is constructed in the same way. 

Then, the process S,(t) is equivalent to the SP constructed by families &(r, a) according to 
formulae (2.5),(2.6) (without component z(a)). 

Let us introduce the family of vector-valued variables cn(9) such that 

According to the construction, we can represent f,(g) in the form 

&(S) = Cl~‘,,(?)(X(.T))) - 2 CjXjZ(S) + 2 (Xjl(S) + Xj2(3)) @o Cn_i). (3.10) 
j=l j=l 

Now we use Theorem A.1 from the Appendix. For simplicity, we omit index k and index n where 
it is possible. It is easy to calculate that 

m(s) = ET,,(S) = X(s)-’ 
( 

1 + e(Xiqi + sivi(a))mi = X(s)-‘g(s), 
i=l (3.11) 

E(S) = EC&) = a(s)-’ (IpX + 7jzi + (M - G)s) . 
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Then, in our case, gn(s) I ]&(a)( + 1 and condition (A.5) automatically takes place. Now we 

prove that the convergence in (3.5) takes place for any T > 0. It is easy to see that 

m(s) 2 X(S)-’ + minmi > minna,, 
.i i 

and according to the condition (3.4) in (A.9), loo0 m(v(u))du = +co. 

Further, the function A(S) = m(S)-‘b(B) satisfies the local Lipschitz condition and has no more 

than linear growth. Thii means that the solution of equation (3.6) exists on each interval and is 

unique and finally implies Theorem 3.1 

Let us consider as an example a one-dimensional case (only one type of calls). We keep the 

previous notations and just omit the index i and symbol -. Then we get 

X(s) = xq + SV, m(s) = X(s)-’ + m, 

A(s) = Xp + X2qm + (Am - l)sv(s). 

g(s) = 1 + Xqm + urns, 
(3.12) 

COROLLARY 3.1. Suppose that EK. = m > 0, n-‘S,,(O) z so, and function V(S) satisfies local 
Lipschitz condition. Then, the relation (3.5) takes place where in equation (3.6), the functions 

g(s), A(s) are given in the expression (3.12). 

We mention that if Xm < 1 and sv(s) -+ oo as s + co, equation (3.6) has a point of stability s+, 

which is the minimal solution of the equation 

sv(s) = (1 - Am)-‘X(p + Xmq). 

In particular, if v(s) 3 v, then s* = (1 - Am)-‘Y-‘A(p+ X7n~) and s(t) -+ s* as t + 00. 

In the case where Xm = 1, we get unusual behaviour for s(t), 

s(t) = & (J2x mv(Aqm + p)t + (1 + Aqrn + mvs0)2 - 1 - Xqm 
> 

. 

Now we will study the diffusion approximation. We keep the notations of Theorem 3.1. Suppose 

that there exist Elcf, i = p. Put $ = Var IE~ and introduce the following variables: 

r%(S) = zmjsjuj, cUj(S) = A(S)-’ (Xjqj + SjUj) 3 

i=l 
(3.13) 

Put f(s) = X(S)-‘(7fL + k(s)) and introduce vectors 

j(s) = -g(S)-‘f(S)I& + x(a)-‘GB, a(a) = g(s)-’ (&$ + Gs) . 

Let B(S) and pm(s) b e column vectors with components Pi(a) and &(s)m, correspondingly, where 

a(s) = X(S)-lSjVi(S)* W e put B(s) = J(-(s)&s)* +z(s)&(s)*. Also, let A and Al(g) be diagonal 

matrices with elements Xi on the diagonal and PiXi + S,Yij correspondingly. Denote 

D2(s) = g(s)-2&2(s) (1*x + Gs) (&A + Gs_)* + X(B)-2GSs”G 

+ g(s)-2X(Z)-2 (X(l)f(B)&i - Gs) (X(S)f(g)&x - Gs)’ (3.14) 

- B(s) - B(s)* + x(s)-‘Al(s) + j(s)A. 

Further, suppose that functions vi(B) are continuously differentiable and denote by Q(s) 

= (g(a)-‘A(s))’ a matrix derivative of the vector g(S)-‘A(5). Put 

in(t) = + (ST@) - nS(t)) , t E (O,T]. 
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THEOREM 3.2. DIFFUSION APPROXIMATION. Suppose that conditions of Theorem 3.1 hold and 
7&2&(O) - so) 3 70. 

Then the sequence of processes Tn(t) J-converges on any interval [0, T] to the diffusion pr+ 
cess T(t) which satisfies the following stochastic differential equation: 

d?(t) = Q(s(t))$t) dt + D(a(t))m(s(t))-1’2d8(t), =i@) = 70, (3.15) 

where the function S(.) satisfies equation (3.61, the function m(s) is given in (3.11), and c(t) is 
the standard Wiener process in R’. 

PROOF. We use the same representation for variables 7,(S) and m(s) (see (3.8),(3.10)). Accord- 
ing to Theorem A.2, we need to calculate the variance of the variable 

a(s) = &(3) -b,(a) - g(S)-‘A(B)(T,(I) - m(s)), 

(see (3.11)). For convenience, we can split &( 9) into two independent parts, 

$‘,(a) = I=$‘,, (17(X(S))) - x(a)-‘l,x - g(S)_‘@) (77,(X(S)) - x(s)-‘) ( 

and the remaining part. After calculations, we obtain that E&,(s)&(a)* = 02(a), which implies 
the statement of Theorem 3.2. 

REMARK 3.1. If equation (3.6) has the point of stability L, and SO = g,, then we have so-called 
quasi-stationary regime in which S(t) = 3, and the process T(t) in Theorem 3.2 satisfies the 
equation 

dy(t) = Q(st)$t) dt + ~(Qn(s,)-1’2 dur(t), $0) = 70, 

which describes the Ornstein-Uhlenbeck process. 

We mention that some similar models for a one-dimensional case were considered in [13,14,19]. 

3.2. System M/Mfm/w.r 

Now we consider a system with m identical servers and service intensity p. The input is a 
Poisson flow of identical calls with parameter X. Denote by Q,.,(t) the number of busy servers at 
time t. Let there be given families {pi(s),qi(s),~i(s),i = Gm) and {v(s),c~(s),g(s)}, s 2 0, of 
continuous nonnegative functions. Here, 

pi(S) + Qi(S) + Ti(S) = 1, Q:(S) + g(S) = 1, foranys>O, i=O,m. 

Let Sri(t) denote the number of calls in the orbit at time t. If a call enters the system at time t 

and (Qn(t), G(t)) = (Cm), (i I T), th en with probability pi(s), service immediately begins and 
with probability qi(s), the call directly goes to the orbit, and with probability TV, the call gets 

a refusal and leaves the system. If i = m, we put p,,,(s) = 0. 
If S,,(t) = ns, each call in the orbit independently of others can reapply for service with 

local intensity at time t (l/n)v((l/n)&(t)) = (l/n)v(s). If a call finds an idle server, service 

immediately begins. If a call finds all servers busy, then it returns to the orbit with probability 

a(s) or with probability g(s), it leaves the system. 

We study an averaging principle for the process (l/n)&(d). Denote 

P(j7 s, = ~(S)-l+$ ‘@(pi (.)x + SY(S)), j=O,, 
LO 

where (3.16) 

E(S) = 2 &. ‘i(pi(S)X + SV(S)), 
j=o J!c13 i=o 

and i = 1. 
i=O 
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Let us define the function 

i(s) = x 2 P(i, S)%(S) - sv(s)(l - (1 - g(s))p(m, s)). (3.17) 
i=O 

THEOREM 3.3. Suppose that n-1&(O) 5 SO, functions pi(s), qi(s), g(s), v(s) satisfy local 
Lipschitz condition and function v(s) is bounded. Then, for any T > 0, 

sup Jn-‘S,(nt) - s(t)1 5 0, 
O<t<T 

7X+ co, 

where 

s(0) = so, ds(t) = b(s(t)) dt, (3.19) 

and a unique solution of equation (3.19) exists on any interval. 

PROOF. At first we represent the process (Qn(t),Sn(t)) as an SP. In our case, process (Q,,(t), 

S,,(t)) is a Markov process with values in (0, 1,. . . ,m} x (0, 1,. . . }. Denote by t,i < tn2 c . . . 

the sequential times of any transition in the system. We mention that some transitions may not 

cause the changing of the state, but they are connected with some service processes (for instance, 

loss of an input call). We consider times t,i < t,,2 < * .. as switching times. In the scale of 

time nt, the first component is quickly varying and we will use Theorem A.3. 

Define the process (Qn(t), Sn(t)) as a right-continuous process and let us write the intensities 

of transition probabilities. Put Xi(s) = A + ip + sv(s), i 5 m. If S,,(t) = ns, then transition 

probabilities do not depend on n and we omit index n for simplicity. Let A((& ns), (j, ny)) denote 

the intensity of transition probability from the state (Qn(t), &(t)) = (i, ns) to the state (j, ny). 

Then, 

I 

icL, if j = i - 1, y = s, 

pi(s)& if j = i + 1, y = s, 

I ds), ifj=i+l, y=s-1, 

0, otherwise, 0 2 i < m, 

mi-k ifj=m-1, y=s, 

r&s)& ifj=m, y=s, 

x((m, s), (j, y)) = I h(S)A ifj=m, y=s+l, 

9(s)4s), ifj=m, y=s-1, 

I cy(s)sv(s), if j = m, y = s, 

0, otherwise. 

Let us introduce the family of random variables [(i, s) such that 

P{5(4 s) E C} = P {Sn(tn2) - Sn(rni) E C I (Qn(h), &(&I>) = (i,ns)} 

Then the variable ((i, s) can be represented in the form: for i < m, 

1, with probability Xi(s)- qi(s), 

<(i,s) = : 

i 

. . 1 

-1, with probability Xi(s)-‘sv(s), 

0, otherwise, 

1, with probability X,(s)-‘qm(s), 

<(m,s) = -1, with probability A,(s)-‘g(s)sv(s), 

0, otherwise. 
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Now, we can describe the process (Q,,(t),&(t)) as an SP in the same way as in the Appendix, 

Section A.2. In our case, the variable r,,k(i, s) has exponential distribution with parameter 

Xi(s) and the variable &(i, s) has the same distribution as the variable [(i, s) introduced above. 

Further, denote at each iixed s 2 0 by Ek(s), Ic L 0 a Markov process with transition probabilities 

( MS)-%4 ifj = i - 1, 

Pij(S) = 1 Xi(S)-‘(ri(S) + &(S))X, if j = i, 

Xi(S)-‘(pi( + W(S)), if j = i + 1, 

otherwise, i = 0, m - 1, 

&nW’w, ifj=m-1, 

p,j(S) = X,(S)-'(A + SY(S)), ifj =m, 

= 0, otherwise. 

At any s 2 0, the state space forms one essential class. Denote by {rr(i, s), i = Gm) a stationary 

distribution of Ek(s), k 2 0. It is easy to see that in each bounded region (0 < s 5 L}, the 

process Zk(s) is uniformly ergodic. 

Let us introduce functions 

m(S) = 2 T(i, S)&(S)-', 
i=o (3.20) 

b(s) = Ad(s) - sv(s)m(s) + sv(s)(l - g(s))+,s>X,(s)-‘. 

Denote b(s) = m(s)-‘b(s). Then, according to Theorem A.3, the relation (3.18) holds where s(t) 
is a solution of equation (A.19). Further, as the function V(S) is bounded for some ~0 > 0, 

$yllf sm(s) > c4J. 

This relation implies that 

I 

cc 
m(~(u)) du = +co, 

0 

and convergence in (3.18) takes place for any T > 0. 
Now, let us calculate the function b(s) in an explicit form. We mention that values m(s)-‘~(i, s) 

xX(i, s)-1, i = fim, at each fixed s are stationary probabilities for the Markov process with 

continuous time Z(t, s), t 2 0, given by intensities &j(S) = X(i, S)pij(S) (here we allow transitions 

back to the same state). But the process cE(t, s), t 2 0, is equivalent to the birth and death process 

s(t, s) with intensities of birth Q(S) and death C&(S) in the state i, respectively, Q(S) = piX+sv(s), 

i < m, di(s) = ip, i 5 m. Therefore, stationary probabilities of the process Z(t, s) are given by 

expression (3.16) and after simple calculations, we get that b(s) = b(s), which finally proves 

Theorem 3.3. 

Let us study the cases when equation (3.19) has stability 

CASE 1. Suppose that 

i&9(“, = 90 > 0, inf V(S) = ~0 > 0, 
- 820 

points. 

c%(O) > 0. 

i=O 

(3.21) 

This means that there always is a flow of lost calls in the state m (when all servers are busy). 

Then, b(O) > 0 and b(s) I X - smogs + --oo as s + 00. Denote by s+ the minimal root of the 

equation 

b(s) = 0, (3.22) 



74 V. V. ANISIMOV 

(it, exists according to continuity). In some small neighborhood of S. b(s) > 0 at s < s. and 

i(s) < 0 at s > s*. This means that the point sr is a point of stability for solutions with initial 

value so in some neighborhood of s*. 

We mention that in this case, a stable solution exists for any values of X and ~1. This fact can 

be explained in the following way: ifs is large, then the flow of lost calls also has a large intensity 

no less than svogo. 

CASE 2. Suppose that g(s) E 0, qm(s) f 1, ~~oqi(0) > 0, W(S) + 00 as s + 00 and 

A < mp. (3.23) 

This means that if a call finds all servers busy, it goes with probability one into the orbit and 

there is no flow of lost calls in the state m. It is not difficult to calculate that 

lim p(m,s) = 1, 
.9+os 

lim b(s) = X - mp. (3.24) 
s-+m 

As 8(O) > 0, relations (3.23),(3.24) imply that the minimal root of the equation (3.22) exists and 

it is the point of stability. 

In particular, if m = 1, functions pi(.), qi(.), vi(.) d o not depend on s, and g(s) = 0, then 

i(s) = 
x2 + SV(X - p) 

x+/J+sv ’ 

which corresponds to expressions in (3.12) for the case q = 1, p = 0, m = X-r. 

These results show that a technique based on limit theorems of averaging principle and diffusion 

approximation for switching processes gives us a new effective approach for studying transient and 

stable regimes of operating for rather complex retrial queueing systems in overloading conditions. 

We mention that some asymptotic results for similar systems on the base of another technique 

were obtained in [8]. 

APPENDIX 

A.l. Averaging Principle and Diffusion Approximation for SP 

Here we give limit theorems for SP in the case of fast switches. We consider the process on the 
interval [0, nT] and suppose that its characteristics depend on the parameter of series n in such 
a way that the number of switches tends, in probability, to infinity. Then, under some natural 

assumptions, the normed trajectory of SP uniformly converges, in probability, to some function 
which is the solution of a nonstochastic differential equation, and the normalized deviation be- 
tween trajectory and this solution weakly converges in Skorokhod space D~~,JJ to some diffusion 

process (see [25,26,36-381). 
Let us consider a simple case of SP (characteristics do not depend on the parameter z, that 

means there is no discrete component). 

At each n > 0, let Fnk = {(&(t,a),r&((31)), t > 0, a E Rm}, k 2 0, be jointly independent 
families of random functions, S,,, be an initial value. We Put &k(o) = <nk(%k(a),a) and 

construct SP &(t) according to formulae (2.5),(2.6), 

t n0 = 0, bzk+l = tnk + Tnk(Snk), ‘%k+l = Snk + ‘%k(Snk), k 2 0, 

G(t) = Snk + <nk(t - tnk, Snk), a.5 tnk 5 t < tnk+l, t 2 0. 
(A-1) 

Denote 

&k(o) = t<ima) iCnk(t,Q)I 1 
n 

Suppose that the distributions of variables (&k(.) , T&(‘)) do not depend on index k. Assume 
that functions m,(a) = ET,,~(TKY), &(cr) = E{,l(ncr) exist. 
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THEOREM A. 1. AVERAGING PRINCIPLE. Suppase that the following conditions hold. 

(1) For any N > 0, 

lim limsup SUP {ET~I(~)x(T~I(w) > L) + El~~nr(~~)I~(l~~l(na)l > L)) = 0. 
L-+cQ n--rm lal<N 

(‘4 As m=(lwl, IanI) < N, 

(A.21 

(m,(al) - m(cr2)l + I&(w) - bn(a2)l < Crvbl - ~2l+ an(N), (A.3) 

where CN are bounded constants, cu,( N) -+ 0 uniformly on icrll < N, Ia21 < N, n -+ co. 
_) (3) There exist functions m(a) > 0 and b(o) such that for any (Y E R’ as n 

ml(Q) -+ m(a), b,(a) --t b(a). 

(4) For any E > 0, N > 0, 

00, 

(A-4) 

lim 7t sup P 
n-co lal<N 

(5) Moreover, 

Then. 

n-‘&o -5 so. 

sup (n-‘&(nt) - s(t)] 5 0, 
o<t<rr _- 

where 

s(0) = so, ds(t) = m(s(t))-‘b(s(t)) dt, 

(A.5) 

(A.6) 

(A.7) 

(A.@ 

and T is any positive number such that Y(+co) > T with probability 1 where 

J 

t 
y(t) = m(n(u)) du, (A.9) 

n(0) = s:, +(a) = b(rl(u)) du, 

(it is assumed that a solution of equation (A.8) exists on each interval and is unique). 

Now we consider the convergence of the process 

m(t) = t E PJI 

to some diffusion process. Denote 

h&) = mn(4-%&), &a) = m(a)-‘b(a), 

p,(a) = &(na> -b,(a) - &)(G&~) -W(Q)), 

D:(o) = EP,(Q)P~(Q)*, 

(we denote the conjugate vector by the symbol *), 

THEOREM A.2. DIFFUSION APPROXIMATION. Let conditions (A.3)-(AX) be satisfied where 
in (A.3), &o,(N) --* 0, and in addition, the following conditions hold. 

(1) There exist continuous, matrix-vaked functions 02(cr) and Q(a) and vector-valued func- 
tion g(a) such that uniformly in each bounded region (oyI < N, as n ---) co, 

and 

D:(o) ---) D2(o), (A.lO) 
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%(Q,Z) +&lab+ 9(a), at any t E.R~. 

(2) For any iv > 0, 

(3) For any E > 0, N > 0, 

lim n sup P 
n--rca (a(<N 1 

+(no) > E = 0. 
> 

(4) Moreover, 

m(0) 3 70. 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

Then, the sequence of processes m(t) J-converges on any interval [0, I?], such that y(+oo) > T, 
to the diffusion process y(t) which satisfies the following stochastic differential equation: 

d?(t) = {Q(s(t))y(t) + ds(t))) dt + W(WW>)-“2 d4t), ~(0) = TO, (A.15) 

where s(.) satisfies equation (A.8) (J- convergence denotes the weak convergence of measures in 
Skorokhod space Dlo,T~) and w(t) is the standard Wiener process in R’. 

The proof of these two theorems can be found in [26]. 

A.2. Averaging Principle for General RPSM 

Now, we give an averaging principle for a general RPSM. For any n > 0, let there be given 
jointly independent families of random vectors 

FL = {(&&, a), W&Q), P&, a)), z E X, Q E R”), k > 0, 

with values in the space RT x [0, CQ) x X, where X is some measurable space. Also, let (~~0, S,o) 
be an initial value independent of &, k > 0. We put 

Lo = 0, tnkfl = tnk + %k(%k, snk), 

S n/c+1 = ‘%k + ‘%k(%k,‘%k), %k+l = &tk(%k, %k), k 10, (A.16) 

&z(r) = t&k, &z(t) = %k, Z3.5 tnk 5 t < tnk+l, t 2 0. (A.17) 

Then the pair (xn(t), S,(t)), t > 0 forms a general RPSM with feedback between both compe 
nents. Suppose for simplicity that distributions of families F,,k do not depend on the index k > 0 
and let the moment functions exist 

m,(z, c-r) = %r(~, no), bn(~, 0) = E&I(c no). 

Denote ~~(2, A, a) = P{&(z, (Y) E A}, 2 E X, A E B x , cy E R’ and let, for any fixed o &k (a), 
k 2 0, be an MP in X with transition probabilities 

P {&k+l(Q) E A 1 hk(a) = x} = P&G 4 a). 

Suppose that there exists a family of transition probabilities q(z, A, a), z E X, A E Bx, a! E RT 
uniformly continuous in o in each bounded region Ial 5 L uniformly in 2 E X, A E Bx and for 
anyL>O, 

(A.18) 
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Further, suppose that MP L&(a), k > 0, is uniformly ergodic with stationary measure ?r(A, a) 
uniformly in a in each bounded region and in n > 0. Denote 

THEOREM A.3. Suppose that (A.18) holds. 

(1) 

(2) For any 2 as n=(lall, bzl) < N, 

where CN are some constants, cm(N) -+ 0 uniformly in Iall < N, Ia21 < IV, n -t 00. 
(3) There exist functions b(a), m(a) > 0 and possibly random variable SO such that as n + co, 

Then, 

sup In- 
O<t<T 

‘S,(nt) - s(t)/ f, 0, 

where 

40) = so, ds(t) = m(s(t))-‘b@(t)) dt, 

and T is any positive number such that y(+co) > T with probability 1 where 

(A.19) 

y(t) = I’m(du)) dw 

~(0) = so, dv(a) = b(rl(u)) du. 

(A.20) 

The proof of this result follows from the averaging principle for general switching recurrent 
sequences and switching processes (see [37,38]). 
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