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Abstract

We analyze the problem of pricing and hedging contingent claims in a financial market described by a multi-period, discrete-time, finite-state
scenario tree using an arbitrage-adjusted Sharpe-ratio criterion. We show that the writer’s and buyer’s pricing problems are formulated as conic
convex optimization problems which allow to pass to dual problems over martingale measures and yield tighter pricing intervals compared to the
interval induced by the usual no-arbitrage price bounds. An extension allowing proportional transaction costs is also given. Numerical experiments
using S&P 500 options are given to demonstrate the practical applicability of the pricing scheme.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental question of financial economics is to price
an uncertain future stream of payments, i.e. a stochastic future
cash flow. The prevailing approach to pricing is to replicate
the uncertain cash flow using existing financial instruments and
to find a price relative to these instruments so as to avoid an
arbitrage opportunity in the financial market (hedging). When
the financial market is complete, i.e. all stochastic future cash
flows can be replicated using existing liquid instruments this
approach yields unique sets of prices without any assumptions
about individual investor’s preferences. Ross (1976, 1978)
proves that the no-arbitrage condition is equivalent to the
existence of a linear pricing rule and positive state prices that
correctly value all assets. This linear pricing rule comes from
the risk neutral probability measure in the Cox–Ross option
pricing model; Harrison and Kreps (1979) showed that the
linear pricing operator is an expectation taken with respect to
a martingale measure.
I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Editor Berç Rustem.
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The pricing problem is complicated by the fact that most
financial markets are incomplete, i.e. not all future uncertain
cash flows can be replicated exactly using the existing
instruments. This observation leads to a wealth of literature on
pricing and hedging in incomplete markets; see e.g., Bernardo
and Ledoit (2000), Carr, Geman, and Madan (2001), Černý and
Hodges (2000) and Staum (2004). A common approach is to
find the cheapest portfolio dominating a stochastic future cash
flow and the most expensive portfolio dominated by it, and use
these respective values as bounds on the price of the stochastic
cash flow. These bounds are referred to as super-replication and
sub-replication bounds or no-arbitrage (or equilibrium) bounds.
We use these bounds as a benchmark in the present paper.

Against this background, the purpose of this paper
is to investigate how an arbitrage-adjusted Sharpe-ratio
criterion (Černý, 2004; Judice, 2005) and convex optimization
can help us develop a simple valuation framework in an
incomplete market. We show in a multi-period framework that
in the absence of arbitrage (i.e. in the absence of infinite
Sharpe ratios) while aiming for a finite Sharpe ratio and
giving up a totally risk averse attitude in the non-negative
terminal wealth positions, price bounds tighter than the no-
arbitrage bounds to the contingent claim can be computed in
an incomplete market. The present work is inspired by the
contributions of Cochrane and Saa-Requejo (2000) and those of
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Černý (2003, 2004) where the authors develop similar ideas but
essentially departing from the dual space of pricing measures.
We start from the more natural primal hedging space which
is the domain where investors operate rather than from the
space of martingale measures. In the simple framework of
discrete-time, multiperiod, finite state probability framework
resulting in a scenario tree, after laying the background in
Section 2 we show in Section 3 how the problems of writers and
buyers are formulated as convex (conic) optimization problems,
and pass to the results of Černý (2003) and Cochrane and
Saa-Requejo (2000) using convex programming duality. The
conic programming approach of the present paper has the
advantage of accommodating imperfections including taxes,
transaction costs, and other regulatory or institution specific
requirements in a more flexible manner than other approaches.
We extend the approach to include proportional transaction
costs in Section 4. To demonstrate the computational feasibility
of the pricing approach advocated in this paper in a practical
setting, in Section 5 we report the results of realistic numerical
experiments on S&P 500 index options data and using off-
the-shelf interior point software, and compare them with those
of King, Koivu, and Pennanen (2005) based on no-arbitrage
pricing. We conclude with a discussion and future research
problems in Section 6.

2. The stochastic scenario tree, arbitrage, martingales and
pricing bounds

As in King (2002) we assume that security prices and other
payments are discrete random variables supported on a finite
probability space (Ω ,F, P) whose atoms are sequences of real-
valued vectors (asset values) over the discrete time periods
t = 0, 1, . . . , T . We further assume the market evolves as
a discrete, non-recombinant scenario tree (hence, suitable for
incomplete markets) in which the partition of probability atoms
ω ∈ Ω generated by matching path histories up to time t
corresponds one-to-one with nodes n ∈ Nt at level t in the tree.
The set N0 consists of the root node n = 0, and the leaf nodes
n ∈ NT correspond one-to-one with the probability atoms
ω ∈ Ω . In the scenario tree, every node n ∈ Nt for t = 1, . . . , T
has a unique parent denoted π(n) ∈ Nt−1, and every node
n ∈ Nt , t = 0, 1, . . . , T − 1 has a non-empty set of child nodes
S(n) ⊂ Nt+1. We denote the set of all nodes in the tree by N .
The probability distribution P is obtained by attaching positive
weights pn to each leaf node n ∈ NT so that

∑
n∈NT

pn = 1.
For each non-terminal (intermediate level) node in the tree we
have, recursively, pn =

∑
m∈S(n) pm, ∀n ∈ Nt , t = T −

1, . . . , 0. Hence, each intermediate node has a probability mass
equal to the combined mass of the paths passing through it. The
ratios pm/pn, m ∈ S(n) are the conditional probabilities that
the child node m is visited given that the parent node n = π(m)

has been visited.
A random variable X is a real-valued function defined on

Ω . It can be lifted to the nodes of a partition Nt of Ω if each
level set {X−1(a) : a ∈ R} is either the empty set or is a finite
union of elements of the partition. In other words, X can be
lifted toNt if it can be assigned a value on each node ofNt that
is consistent with its definition on Ω , King (2002). This kind
of random variable is said to be measurable with respect to the
information contained in the nodes of Nt . A stochastic process
{X t } is a time-indexed collection of random variables such that
each X t is measurable with respect Nt . The expected value of
X t is uniquely defined by the sum EP (X t ) :=

∑
n∈Nt

pn Xn .

The conditional expectation of X t+1 on Nt is given by the
expression EP (X t+1|Nt ) :=

∑
m∈S(n)

pm
pn

Xm . Under the light
of the above definitions, the market consists of J + 1 tradable
securities indexed by j = 0, 1, . . . , J with prices at node
n given by the vector Sn = (S0

n , S1
n , . . . , S J

n ). We assume
as in King (2002) that the security indexed by 0 has strictly
positive prices having the same value at every node of a given
time step t . This asset corresponds to the risk-free asset in the
classical valuation framework. Choosing this security as the
numéraire, and using the discount factors βn = 1/S0

n we define
Z j

n = βn S j
n for j = 0, 1, . . . , J and n ∈ N , the security prices

discounted with respect to the numéraire. Note that Z0
n = 1 for

all nodes n ∈ N .
The amount of security j held by the investor in state (node)

n ∈ Nt is denoted θ
j

n . Therefore, to each state n ∈ Nt is
associated a vector θn ∈ RJ+1. We refer to the collection
of vectors θ0, θ1, . . . , θ|N | as Θ . The value of the portfolio at
state n (discounted with respect to the numéraire) is Zn · θn =∑J

j=0 Z j
nθ

j
n .

An arbitrage is a sequence of portfolio holdings that begins
with a zero initial value (note that short sales are allowed),
makes self-financing portfolio transactions throughout the
planning horizon and achieves a non-negative terminal value
in each state, while in at least one terminal state it achieves
a positive value with non-zero probability. The self-financing
transactions condition is expressed as Zn ·θn = Zn ·θπ(n), n > 0.

Definition 1. If there exists a probability measure Q =

{qn}n∈NT such that

Z t = EQ(Z t+1|Nt ) (t ≤ T − 1) (1)

then the vector process {Z t } is called a vector-valued martingale
under Q, and Q is called a martingale probability measure for
the process.

Definition 2. A discrete probability measure Q = {qn}n∈NT is
equivalent to a (discrete) probability measure P = {pn}n∈NT if
qn > 0 exactly when pn > 0.

King proved the following (c.f. Theorem 1 of King (2002))
result that is a re-statement of Theorem 1 of Harrison and Kreps
(1979) in our setting (see also Ross (1976, 1978)):

Theorem 1. The discrete state stochastic vector process {Z t } is
an arbitrage free market price process if and only if there is at
least one probability measure Q equivalent to P under which
{Z t } is a martingale.

Consider now the pricing problem of a contingent claim F
with pay-offs Fn, n > 0. The seller of the contingent claim is
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interested in solving the following problem (WA):

min Z0 · θ0

s.t. Zn · (θn − θπ(n)) = −βn Fn, ∀n ∈ Nt , t ≥ 1

0 ≤ Zn · θn ∀n ∈ NT ,

while the buyer’s problem of finding the maximum acceptable
price would be (BA)

max − Z0 · θ0

s.t. Zn · (θn − θπ(n)) = βn Fn, ∀n ∈ Nt , t ≥ 1

0 ≤ Zn · θn ∀n ∈ NT .

The writer’s problem deals with the actual cost of a self-
financed portfolio process that replicates the pay-outs that will
be due to the holder of the claim without risking negative
terminal wealth positions in any of the states of the market.
Among such portfolios, one giving the smallest cost portfolio
is an optimal portfolio, and its cost is the minimum amount
the writer should charge to sell the claim. The buyer’s problem
is simply the opposite. He/she is prepared to pay at most
the current value of the optimal portfolio that replicates the
proceeds from the claim in a self-financed manner and at no risk
of negative terminal positions. We refer to the optimal values of
the above problems commonly as “no-arbitrage bounds”.

Under the assumption of no-arbitrage in the market, these
problems lead to the following pricing interval obtained using
linear programming duality – see King (2002) for details:[

1
β0

min
q∈Q

EQ

(
T∑

t=1

βt Ft

)
;

1
β0

max
q∈Q

EQ

(
T∑

t=1

βt Ft

)]
,

where Q represents the set of all measures that make the price
process a martingale (not necessarily equivalent to P). More
precisely, Q is the set of qn , n ∈ N described as

Q =

qn|qn ≥ 0, n ∈ NT , qn Zn

=

∑
m∈S(n)

qm Zm, n ∈ Nt , t ≤ T − 1, q0 = 1

 .

3. Pricing bounds using the Arbitrage-adjusted sharpe
ratio

The main question of the present section is: can we find
sharper pricing bounds to contingent claims than the no-
arbitrage bounds obtained by solving problems WA and BA?
We may begin by relaxing the requirement that final wealth
positions Zn · θn be non-negative for all n ∈ NT . To this end,
we propose to split every final wealth position Zn · θn into the
sum of a non-negative component vn and an unrestricted-in-
sign (free) component xn :

Zn · θn = vn + xn ∀n ∈ NT , (2)

and to replace the inequalities Zn · θn ≥ 0, ∀n ∈ NT in
problems WA and BA by the Eq. (2). This relaxation of the
pricing problem might result in extremely large negative final
wealth positions that are unacceptable for the person who is
trying to construct a sequence of hedging portfolios for a
given contingent claim. To limit the magnitude of negative final
wealth positions, we impose the restriction that the expected
value of free component xn of the final wealth remain non-
negative and be at least a positive multiple of its standard
deviation. In other words, if xn , for n ∈ NT represent the
realizations of random variable X , using some positive real λ

we impose the restriction

E(X) ≥ λ
√

V (X), (3)

where E(X) denotes expectation and V (X) denotes variance of
X . More precisely, in our setting this restriction translates into

∑
n∈NT

pn xn ≥ λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

. (4)

We note that inequality (3) could be also be viewed as E(X)
√

V (X)
≥

λ which is precisely a lower-bound restriction on the Sharpe
ratio (Černý, 2003; Judice, 2005) of the unrestricted-in-sign
component of the final wealth position. We term the Sharpe
ratio of the unrestricted-in-sign component of the final wealth
position the “arbitrage-adjusted Sharpe ratio”. Put in other
words, we take the viewpoint of the investor who is willing
to give up the requirement of non-negative final wealth in all
states of nature, and can accept some negative wealth positions
provided that they satisfy restriction (4). The term “arbitrage-
adjusted” reflects the feature that the new pricing problems
introduced below tend to give identical results with no-arbitrage
pricing problems WA and BA in the limit when λ approaches
infinity as we explain in Remark 1 following Theorem 2.
This development is motivated by the classical problem of
finance where investors are interested in identifying zero cost
investment opportunities with the highest possible Sharpe ratio.
In our context, a writer who identifies a sequence of portfolio
holdings resulting in non-negative wealth positions in all states
of nature while hedging the cash outlays of a contingent claim
can be thought of having achieved an infinite Sharpe ratio as
follows. The writer can set the X component of the final wealth
position to zero in all states of nature while keeping the non-
negative wealth positions in the variables vn . This results in
both zero expected value and zero variance of X , which may be
combined with an infinitely large λ. Hence, we can identify a
sequence of hedging portfolios for a contingent claim resulting
in non-negative final wealth positions with an arbitrarily large
λ in (3), and hence with an infinite arbitrage-adjusted Sharpe
ratio.

The writer of a contingent claim is now concerned with the
following question: what is the actual cost of a self-financed
portfolio process that replicates the pay-outs that will be due
to the holder of the claim while risking some negative terminal
wealth positions held in check by a restriction on the Sharpe
ratio? Among such portfolios, one giving the smallest cost
portfolio is an optimal portfolio, and its cost is the minimum
amount the writer should charge to sell the claim. The buyer’s
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1 Conic (second-order cone) duality theory has some features that can lead to
pathological cases of primal-dual problems. Since these cases are not essential
to our development, we leave them aside, and refer the interested reader to the
excellent book by Ben-Tal and Nemirovski (2001), Lecture 2 for an extensive
treatment of conic duality theory. The assumption of strict feasibility helps us
to avoid these cases. Using Theorem 1, this assumption also implies that the
market has no arbitrage.
problem is simply the opposite. What is the maximum he/she
should be prepared to pay to acquire a particular claim? At most
it is the current value of the optimal portfolio that replicates the
proceeds from the claim in a self-financed manner and allowing
some negative terminal positions controlled by a restriction on
Sharpe ratio.

The writer’s problem for financing a contingent claim F
(referred to as WSP) is

min Z0 · θ0

s.t. Zn · (θn − θπ(n)) = −βn Fn, ∀n ∈ Nt , t ≥ 1

∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT ,

while the buyer’s problem of finding the maximum acceptable
price (referred to as BSP) is

max − Z0 · θ0

s.t. Zn · (θn − θπ(n)) = βn Fn, ∀n ∈ Nt , t ≥ 1

∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0,

vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT .

There are two crucial properties to problems WSP and BSP.
The first property is that any sequence of portfolio holdings
θ0, θ1, . . . , θn that replicate the cash flows of the contingent
claim (i.e. satisfying the first constraint of problem WA and
BA, respectively) and resulting in non-negative terminal wealth
positions for all n ∈ NT yields a feasible solution for the
corresponding problem WSP (or, BSP) for every choice of λ.
This property follows by setting vn equal to Zn · θn for all
n ∈ NT (which are all non-negative), and all the xn’s to zero.

The second crucial property is that when λ increases to ∞,
one effectively solves the duals to problems WA and BA of the
previous section, respectively, after suppressing the variables
xn , i.e. we reach the arbitrage pricing theory in the limit as λ

increases without bound. The easiest way to see this is through
convex programming duality as we shall do in Remark 1
following Theorem 2.

Notice that both problems above are convex optimization (in
fact, conic) problems. We analyze first the writer’s problem
using Lagrange duality since the analysis of the buyer’s
problem is similar. Forming the Lagrange function and carrying
out the separate maximizations over the variables xn, vn,Θ ,
respectively, we obtain the following dual problem in the
variables {ωn}n∈NT , {qn}n∈NT :

max
∑
n>0

βnqn Fn (5)

subject to

‖ω̃‖2 ≤ λ, (6)
qn = pn(1 + p̃T ω̃) −
√

pnωn, ∀n ∈ NT , (7)

qm Zm =

∑
n∈S(m)

qn Zn, ∀m ∈ Nt , 0 ≤ t ≤ T − 1 (8)

q0 = 1, (9)

qn ≥ 0, ∀n ∈ NT , (10)

where p̃ is the vector with components
√

pn , and ω̃ is the
vector with components {ωn}n∈NT . The derivation of this dual
problem is given in the Appendix. The dual of the buyer’s
problem is simply

min
∑
n>0

βnqn Fn (11)

subject to (6)–(10), i.e. minimizing the same objective over
the same set of constraints. Using the property that the first
entry of Zn is equal to 1 for all n, we have that the vector qn
is a probability measure that makes the price process {Z t } a
martingale. Now, observe that one can solve the Eq. (7) for ωn ,
n ∈ NT , and obtain the following solution:

ωn = −
√

pn(qn/pn − 1), n ∈ NT .

Hence, it is immediately seen after elimination of ωn’s that the
constraint (6) can be re-written as√√√√∑

n∈NT

pn

(
qn

pn
− 1

)2

≤ λ. (12)

The above constraint is a second-order (Lorentz) cone
inequality in the terminology of Ben-Tal and Nemirovski
(2001) for the vector with |NT | + 1 components where the
first |NT | components have the form

√
pn(

qn
pn

− 1), and the last
component is λ.

Now, we can state the following result whose proof follows
from the previous development and the Conic Duality Theorem
– see Ben-Tal and Nemirovski (2001).

Theorem 2. Assuming that problems BSP and WSP possess
strictly feasible solutions1 we have

1. the minimum price charged by a writer of contingent claim
F desiring an arbitrage-adjusted Sharpe ratio of terminal
wealth positions equal to λ or higher is given by

1
β0

max
q∈Q(λ)

EQ

(
T∑

t=1

βt Ft

)
,

where the set Q(λ) is the set of all martingale measures for
the discrete price process {Z t } satisfying the side condition
(12),
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2. the maximum price acceptable to the buyer seeking at least
an arbitrage-adjusted Sharpe ratio of λ from the terminal
wealth positions is given by

1
β0

min
q∈Q(λ)

EQ

(
T∑

t=1

βt Ft

)
.

Proof. From the preceding derivation of the dual problem, we
can formulate the dual problem as simply

min
∑
n>0

βnqn Fn (13)

subject to (8), (9), (10) and (12). Let Q(λ) be the set of qn
satisfying (8), (9), (10) and (12). This gives the dual problem
as expressed in part 1. The rest is a consequence of the
Conic Duality Theorem; see Corollary 2.4.1 of Ben-Tal and
Nemirovski (2001).

Remark 1. Notice that when λ increases to ∞, one effectively
solves the no-arbitrage pricing problems WA and BA of
the previous section through their respective duals, since the
constraint (12) disappears, and the setsQ(λ) coincides with the
set Q of the previous section, which corresponds to dual of the
no-arbitrage pricing problem.

Remark 2. The strict feasibility assumption of the previous
theorem means the following. For the primal problem WSP,
a strictly feasible solution is a sequence of portfolio holdings
θ0, θ1, . . . , θ|N | with the associated xn for all n ∈ NT such that
the constraint

∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

holds as a strict inequality with vn > 0 for all n ∈ NT . For the
dual problem to WSP, strict feasibility means the existence of
qn > 0, n ∈ NT , satisfying (8) and (9) such that the restriction
(12) holds as a strict inequality. Similar comments apply to BSP
and its dual.

Remark 3. As an important consequence of the theorem,
we obtain the following pricing interval whose end-points
correspond to the maximum price a potential buyer is willing
to pay to acquire the contingent claim and the minimum price
the writer of the contingent claim is willing to charge, and all
this while limiting the risk of falling short in the sense of a
restriction on the arbitrage-adjusted Sharpe ratio of terminal
wealth at level λ:[

1
β0

min
q∈Q(λ)

EQ

(
T∑

t=1

βt Ft

)
;

1
β0

max
q∈Q(λ)

EQ

(
T∑

t=1

βt Ft

)]
.

The above interval is a narrower interval in width compared
to the arbitrage-free pricing interval as a result of the
observation that both the writer and the buyer’s dual problems
have feasible sets contained in the feasible set of the arbitrage-
bound problems of the previous section.

Remark 4. As λ is decreased, the dual feasible set shrinks
since we have Q(λ1) ⊆ Q(λ2) for λ1 ≤ λ2. Therefore, we
expect to be able to decrease λ to a limiting value beyond which
the feasible set Q(λ) is empty. To compute this limiting point,
one can simply solve the conic optimization problem referred
to as ML (where λ is now a variable)

min
q,λ

{λ : (8), (9), (10), (12)}.

Notice that the problem ML can be solved as a strictly convex
quadratic programming problem after eliminating the variable
λ and squaring the objective function:

min
q

{ ∑
n∈NT

pn

(
qn

pn
− 1

)2

: (8)–(10)

}
.

The above problem has unique optimal solution due to strict
convexity of the objective function.

4. Proportional transaction costs

In financial markets the investor typically has to pay
transaction costs proportional to the magnitude of the trade
in risky assets; see Cvitanić and Karatzas (1996), Edirisinghe,
Naik, and Uppal (1993) and Soner, Shreve, and Cvitanić (1995)
for discussions and related work on the subject. In this section
we show how the approach of the previous section can be
appropriately modified to take this aspect of financial markets
into account. While it is well-known that there exists no non-
trivial hedging portfolio for European options in a continuous
time trading setting under proportional transaction costs as
shown in Soner et al. (1995), one can obtain non-trivial hedges
in discrete time with the approach of the present paper.

Let θ̄n represent the sub-vector with J components of
the vector θn , obtained by excluding the first component
corresponding to the riskless asset. Let Z̄n have an identical
definition. We denote the transaction cost factor by η. Now, the
writer’s problem for financing a contingent claim F under a
restriction λ on the arbitrage-adjusted Sharpe ratio is (referred
to as WSPTC)

min Z0 · θ0 + η Z̄0 · |θ̄0|

s.t. Zn · (θn − θπ(n)) + η Z̄n · |θ̄n − θ̄π(n)| = −βn Fn,

∀n ∈ Nt , t ≥ 1∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT ,

while the buyer’s problem of finding the maximum acceptable
price is (referred to as BSPTC)

max − Z0 · θ0 − η Z̄0 · |θ̄0|

s.t. Zn · (θn − θπ(n)) + η Z̄n · |θ̄n − θ̄π(n)| = βn Fn,

∀n ∈ Nt , t ≥ 1∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0
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vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT .

We transform the above problems into equivalent problems
without using the absolute value operator, and by a well-known
reformulation involving auxiliary variables and inequalities.
Using appropriately dimensioned vectors t0, t1, . . . , t|N | this
reformulation yields

min Z0 · θ0 + η Z̄0 · t0
s.t. − t0 ≤ θ̄0 ≤ t0

Zn · (θn − θπ(n)) + η Z̄n · tn = −βn Fn, ∀n ∈ Nt , t ≥ 1

−tn ≤ θ̄n − θ̄π(n) ≤ tn ∀n ∈ Nt , t ≥ 1

∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT ,

tn ≥ 0 ∀n ∈ Nt , t ≥ 1

for WSPTC. The buyer’s problem BSPTC is transformed
similarly.

Using Lagrange duality, we obtain the following dual
problems to WSPTC and BSPTC, respectively over variables
qn, n ∈ Nt , 0 ≤ t ≤ T , αn, γn ∈ Rm, n ∈ Nt , 0 ≤ t ≤ T − 1:

max(min)
∑
n>0

βnqn Fn (14)

subject to

‖ω̃‖2 ≤ λ, (15)

qn = pn(1 + p̃T ω̃) −
√

pnωn, ∀n ∈ NT , (16)

qm =

∑
n∈S(m)

qn, ∀m ∈ Nt , 0 ≤ t ≤ T − 1 (17)

qm Z̄m − αm + γm =

∑
n∈S(m)

qn Z̄n,

∀m ∈ Nt , 0 ≤ t ≤ T − 1 (18)

αm + γm ≤ η Z̄m ∀m ∈ Nt , 0 ≤ t ≤ T − 1 (19)

αm, γm ≥ 0 ∀m ∈ Nt , 0 ≤ t ≤ T − 1 (20)

q0 = 1, (21)

qn ≥ 0, ∀n ∈ NT . (22)

After elimination of the ωn variables as in the previous section,
we find that the dual problems consist in maximizing (or,
minimizing) the function

∑
n>0 βnqn Fn over all the measures

qn, n ∈ NT (and qn ≥ 0, ∀n ∈ Nt , 0 ≤ t ≤ T − 1) and vectors
(α, γ ) = (αn, γn ∈ Rm

+, n ∈ Nt , 0 ≤ t ≤ T − 1) satisfying
(12), (17), (18), (19) and (20). Let us denote the feasible set
of the above problems by Qη(λ). Then we have the following
result, the proof of which is similar to the proof of Theorem 2,
therefore omitted.

Theorem 3. Assuming that problems BSPTC and WSPTC
possess strictly feasible solutions we have
1. the minimum price charged by a writer of contingent claim
F desiring an arbitrage-adjusted Sharpe ratio of terminal
wealth positions equal to λ or higher in the presence of
proportional transaction costs for trades in the risky assets
is given by

1
β0

max
q,α,γ∈Qη(λ)

EQ

(
T∑

t=1

βt Ft

)
,

2. the maximum price acceptable to the buyer seeking at least
an arbitrage-adjusted Sharpe ratio of λ from the terminal
wealth positions in presence of proportional transaction
costs for trades in the risky assets is given by

1
β0

min
q,α,γ∈Qη(λ)

EQ

(
T∑

t=1

βt Ft

)
.

Remark 5. For the primal problem WSPTC, a strictly feasible
solution is a sequence of portfolio holdings θ0, θ1, . . . , θ|N |

with the associated xn for all n ∈ NT such that the constraints

∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

−t0 ≤ θ̄0 ≤ t0
−tn ≤ θ̄n − θ̄π(n) ≤ tn ∀n ∈ Nt , t ≥ 1

hold as strict inequalities with vn > 0 for all n ∈ NT , and
tn > 0 for all n ∈ Nt , t ≥ 1. For the dual problem to
WSPTC, strict feasibility means the existence of qn > 0,
n ∈ NT , satisfying (17)–(18) such that the restrictions (12),
(19), (20) hold as strict inequalities. Similar comments are valid
for BSPTC and its dual.

Remark 6. Notice that Q(λ) ⊆ Qη(λ). Hence, we expect the
price bounds to widen in the presence of transactions costs.

Remark 7. To find the limiting value of λ we solve the problem
MLTR below as a strictly convex quadratic programming
problem as in the previous section:

min
q,α,γ

{ ∑
n∈NT

pn

(
qn

pn
− 1

)2

: (17)–(22)

}
.

Our results show that the original probability measure P plays
a role in our asset pricing procedures, whereas in arbitrage-
based theory the measure P does not appear except for the
fact that the martingale measure used in valuation is drawn
from the closure of the set of martingale measures equivalent
to the original measure (King, 2002). This dependence can
be alleviated to some extent by allowing the specification
of several original measures in the formulation of pricing
problems. This approach, equivalent to a worst-case approach
with discrete scenarios, (see e.g., Chapter 6 of Rüstem and
Howe (2002)) is not presented here for lack of space.
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5. Computational results with S&P 500 options

In this section we demonstrate how the models advocated
in the previous sections can be used to determine the pricing
interval for an option. For simplicity of exposition we use the
basic pricing models of Section 3 with a slight modification
involving the “calibrated option bounds” model proposed by
King et al. (2005) for comparison with the no-arbitrage pricing
methods.

5.1. Calibrated option bounds

In the setting of King et al. (2005) liquid options traded in
the market are used as benchmarks for hedging purposes in
addition to securities. These liquid options give the investor the
possibility of forming buy-and-hold strategies in the hedging
portfolio sequence. In other words, every liquid option can
be bought or shorted by the investor at time zero with the
purpose of hedging a contingent claim, and no intermediary
trading is available for these options. Assuming there are K
such liquid options, we denote them by Gk , k = 1, . . . , K . Bid
and ask prices observed in the market at time 0 for option k
are denoted by Ck

b and Ck
a , respectively, with the latter greater

than or equal to the former. We use Gk
n to denote the payoff of

option k at node n of the scenario three, and Gn the vector of
option payoffs at node n. The non-negative K -vectors ξ+ and
ξ− denote, respectively, the long and short initial buy-and-hold
positions in the liquid options. We assume a zero interest rate,
therefore we have S0

n = 1, ∀n ∈ N . Now, the writer’s problem
WSP should be modified as

min S0 · θ0 + Ca · ξ+ − Cb · ξ−

s.t. Sn · (θn − θπ(n)) = Gn · (ξ+ − ξ−) − Fn,

∀n ∈ Nt , t ≥ 1∑
n∈NT

pn xn − λ

√√√√∑
n∈NT

pn

(
xn −

∑
n∈NT

pn xn

)2

≥ 0

vn + xn = Sn · θn, ∀n ∈ NT ,

vn ≥ 0, ∀n ∈ NT

ξ+, ξ− ≥ 0.

By following the steps of Section 3 it is easy to verify that
the dual problem of the previous program is

max
∑
n>0

qn Fn

s.t.

√√√√∑
n∈NT

pn

(
qn

pn
− 1

)2

≤ λ

qm Sm =

∑
n∈S(m)

qn Sn, ∀m ∈ Nt , 0 ≤ t ≤ T − 1

q0 = 1∑
n∈N \N0

qnGn ≤ Ca∑
n∈N \N0

qnGn ≥ Cb

qn ≥ 0, ∀n ∈ NT .
The modifications required for the buyer’s problem are
similar. All the results of Section 3 can be re-iterated for
the above primal and dual problems, after the necessary
modifications.

5.2. Numerical results

We adopt the experimental setting of King et al. (2005)
in our numerical experiments. We use 48 European options
written on the S&P500 index, shown in Table 1 in our
computational experimentation. The option data were available
in the market on September 10, 2002. The first 21 of the
options are call options, and the remaining are put options.
Strikes and maturities as well as actual bid and ask prices
(columns Cb and Ca) of these options are given in Table 1.
We compute “calibrated” pricing bounds for each option. This
means that the buyer or writer of the option can include buy-
and-hold positions in the 47 remaining options into his/her
hedge portfolio sequence.

We use two different settings: one with four trading periods
and the other with five periods. In the four periods setting, we
assume that investors can trade at days 0, 17, 37 and 100 (the
maturity dates of the options), while in the five periods setting,
we assume trading days are 0, 8, 17, 37 and 100. Since going
to five periods does not change the results much, we report our
full results for the four-period model, which already provides
substantial improvement over the no-arbitrage pricing models
in some cases, while we give a few illustrative results with
five periods in the interest of keeping the length of the paper
reasonable.

We use S = (1, S1) as the traded securities. We generate
a scenario tree by the Gauss–Hermite process as described
in King et al. (2005), Omberg (1988) and Pennanen and Koivu
(2002). We assume that the value S1 of the S&P 500 index
evolves as a geometric Brownian motion with daily drift d and
volatility σ . Let l be the length of period t in days. Then, the
logarithm ζt = ln S1

t evolves according to

ζt = ζt−1 + dt + εt ,

where dt = lt d, and εt is normally distributed with zero mean
and standard deviation σt =

√
ltσ . Using given parameters ζ0,

the initial value of ζ , lt , t = 1, . . . , T , d and σ , we construct
a scenario tree approximation to the stochastic process ζt

using Gauss–Hermite quadrature to obtain a sample (ε
i1
1 )

ν1
i1=1

of dimension ν1 with associated positive probabilities (π
i1
1 )

ν1
i=1.

Hence, we obtain an approximation of possible values of the
index at time t = 1 using the equation ζ

i1
1 = ζ0 + d1 + ε

i1
1 ,

i1 = 1, . . . , ν1. For time period t = 2 we generate a sample
(ε

i2
2 )

ν2
i2=1 of dimension ν2 with associated positive probabilities

(π
i2
2 )

ν2
i2=1 to get the possible values of the logarithmic index

as ζ
i1,i2
2 = ζ

i1
1 + d2 + ε

i2
2 , i1 = 1, . . . , ν1, i2 = 1, . . . , ν2.

Repeating this procedure for all time points up to time T ,
we obtain a scenario tree where the nodes Nt at time t are
labeled by the t-tuple (i1, . . . , it ). In the notation of Section 3,
we have that the set N of all nodes in the tree are given
as the union of all nodes for each time point t , i.e. N =
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Table 1
Computational results on S&P 500 options (λ = 5.7)

Option number Type Strike Maturity Cb Ca Arbitrage interval Sharpe interval

1 Call 890 17 31.5 33.5 30.98–32.00 31.27–31.76
2 Call 900 17 24.4 26.4 24.67–26.05 24.67–25.32
3 Call 905 17 21.2 23.2 21.79–23.08 21.79–22.65
4 Call 910 17 18.5 20.1 18.93–20.30 18.93–20.03
5 Call 915 17 15.8 17.4 16.08–17.51 16.08–17.47
6 Call 925 17 11.2 12.6 10.43–12.77 10.58–12.77
7 Call 935 17 7.6 8.6 7.68–9.09 7.68–9.09
8 Call 950 17 3.8 4.6 3.39–4.79 3.39–4.76
9 Call 955 17 3 3.7 2.99–3.89 2.99–3.89

10 Call 975 17 0.95 1.45 0.65–1.66 0.65–1.66
11 Call 980 17 0.65 1.15 0.66–1.44 0.66–1.43
12 Call 900 37 42.3 44.3 40.58–42.58 40.58–42.58
13 Call 925 37 28.2 29.6 26.38–28.38 26.87–28.38
14 Call 950 37 17.5 19 13.82–18.98 14.32–18.77
15 Call 875 100 77.1 79.1 75.48–77.48 75.48–77.48
16 Call 900 100 61.6 63.6 59.88–61.88 59.88–61.88
17 Call 950 100 35.8 37.8 32.27–39.29 33.81–38.90
18 Call 975 100 26 28 23.71–28.74 24.99–28.74
19 Call 995 100 19.9 21.5 17.73–22.48 18.90–22.48
20 Call 1025 100 12.6 14.2 8.02–16.44 10.07–15.99
21 Call 1100 100 3.4 3.8 0.00–12.80 3.91–9.85
22 Put 750 17 0.4 0.6 0.00–1.15 0.55–1.13
23 Put 790 17 1 1.3 0.87–1.44 1.01–1.19
24 Put 800 17 1.3 1.65 1.16–1.74 1.21–1.48
25 Put 825 17 2.5 2.85 2.18–2.86 2.33–2.75
26 Put 830 17 2.6 3.1 2.74–3.15 2.78–3.08
27 Put 840 17 3.4 3.8 3.20–3.90 3.44–3.80
28 Put 850 17 3.9 4.7 4.40–4.80 4.41–4.76
29 Put 860 17 5.5 5.8 4.61–5.94 5.41–5.79
30 Put 875 17 7.2 7.8 6.80–7.98 7.66–7.98
31 Put 885 17 9.4 10.4 9.97–10.78 10.25–10.73
32 Put 750 37 5.5 5.9 3.80–6.64 3.80–5.53
33 Put 775 37 6.9 7.7 6.33–7.95 7.60–7.74
34 Put 800 37 9.3 10 7.90–11.23 9.90–10.90
35 Put 850 37 16.7 18.3 13.49–19.53 15.84–18.87
36 Put 875 37 23 24.3 21.77–25.65 22.43–25.49
37 Put 900 37 31 33 32.72–34.05 32.72–33.87
38 Put 925 37 41.8 43.8 43.62–45.02 43.62–45.02
39 Put 975 37 73 75 72.24–76.91 72.70–76.79
40 Put 995 37 88.9 90.9 87.09–94.08 87.73–92.95
41 Put 650 100 5.7 6.7 2.60–8.58 2.72–5.75
42 Put 700 100 9.2 10.2 6.65–11.25 10.02–10.60
43 Put 750 100 14.7 15.8 11.80–16.20 15.02–16.05
44 Put 775 100 17.6 19.2 16.95–19.75 17.84–19.72
45 Put 800 100 21.7 23.7 20.07–24.57 21.04–24.45
46 Put 850 100 33.3 35.3 32.74–36.50 32.97–36.37
47 Put 875 100 40.9 42.9 42.52–43.80 42.52–43.78
48 Put 900 100 50.3 52.3 52.02–54.02 52.02–54.02
N1 ∪ · · · ∪ NT . The parent node a(i1, . . . , it ) of (i1, . . . , it )

is the node labeled (i1, . . . , it−1); the child nodes D(i1, . . . , it )

of the node (i1, . . . , it ) is the set {(i1, . . . , it+1) ∈ Nt+1|it+1 ∈

{1, . . . , νt+1}}. Finally the probability distribution P for the leaf
nodes is specified as p(i1, . . . , iT ) = π

i1
1 · · · π

iT
T , and Sn = eζn

for all n ∈ N . As the number of branches ν increases, the
tree converges weakly to a discrete time geometric Brownian
motion as shown in Pennanen and Koivu (2002).

For four periods we assume a branching structure of ν1 =

50, ν2 = 10, ν3 = 10 yielding 5000 leaf nodes in the tree.
The resulting optimization models have approximately 10,600
equations and 11,200 variables. We use d = 0.0001, σ =

0.013175735 and S1
0 = 909.58, which was the closing value

of the index on 10.9.2002. For the five-period model we use
ν1 = 20, ν2 = 10, ν3 = 10, ν4 = 10, resulting in 20, 000 leaf
nodes and in conic optimization problems with approximately
24, 500 equations and 42, 200 variables.

We used the state-of-the-art conic interior point opti-
mizer MOSEK (MOSEK Solver Manual, 2007) through
GAMS (Brooke, Kendrick, & Meeraus, 1992) to determine
buyer’s and writer’s prices for each option. We exhibit the re-
sults for models in Table 1. In the table the column with the
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label “Arbitrage Interval” shows the no-arbitrage pricing in-
tervals of King et al., which we re-obtained using our own
implementation. In the experiments of King et al. using the
no-arbitrage assumption, for most of the options actual prices
fall in the pricing interval determined by buyer’s and writer’s
problems. Our results show that, if the market makers use the
arbitrage-adjusted Sharpe ratio restriction instead of the non-
negativity restriction on final wealth positions they can ob-
tain tighter bounds closer to the actual prices, especially for
the cases where arbitrage bounds fail to get close to actual
prices (e.g., Table 1 options numbered 14, 17, 19, 20, 21, 34,
35, 36, 40, 42, 43, 44, 45). It is possible to improve further
some of the results by choosing different λ values for differ-
ent problems. However, for consistency, we report results with
the same value of λ equal to 5.7. Passing to five periods, we
obtain consistently good results with λ = 7.3 after some pre-
liminary experimentation. For example, with option number
3, the no-arbitrage pricing interval is [21.06, 23.08] whereas
the pricing interval from the arbitrage adjusted Sharpe ratio
is [21.76, 22.98]. The respective intervals are [15.20, 17.60],
and [15.78, 17.59] for option number 5, and [86.49, 94.08]

and [87.45, 92.87] for option number 40. For option number
42, the no-arbitrage pricing interval is [6.65, 11.25] whereas
the proposed interval is [10.02, 10.57]. The improvement pat-
tern of arbitrage-adjusted Sharpe ratio bounds over no-arbitrage
bounds in narrowing the interval and getting closer to the ob-
served market prices in a significant number of cases per-
sists here as in the four periods case. All the optimization
problems are usually solved within minutes of computing
time.

6. Discussion and future research

While we were able to solve non-trivial conic programming
instances by off-the-shelf interior point solvers, a current
limitation of the approach of the present paper is the ability to
handle instances corresponding to a larger number of branches
and time periods – allowing a sixth trading period with ten
branches from each leaf node would yield approximately half
a million variables in the primal problem. This exponential size
growth is typical in stochastic programming; see e.g. Sodhi
(2005) and van Delft and Vial (2004). While the results
we obtain with four and five trading period problems are
satisfactory in the present application since the bounds obtained
are close to the market prices of the options and the results
show little change when passing from four periods to five
periods, it may be necessary to increase the number of
periods, and thus the size of the tree in other applications.2
2 To solve problems with a larger number of periods, e.g., ten periods, in
an option hedging exercise with a stock and a bond, e.g. as in Edirisinghe et al.
(1993), one can use, for instance, three branches from each node (trinomial tree)
with the current conic programming solvers. However, in the current calibrated
bounds application, opening only three branches results in the impossibility
of the exercise for some options, and leads to arbitrage opportunities, and
thus to unbounded primal and infeasible dual problems by the violation of
strict feasibility assumptions. This complication is not encountered with larger
numbers of branches.
State and time aggregation procedures were proposed in the
literature as a remedy to exponential size growth (Klaassen,
1998; Sodhi, 2005). However, these procedures usually produce
upper and lower bounds to the optimal value of the original
problem. Since our aim is to improve the potentially loose
no-arbitrage bounds, these aggregation approaches may result
in inaccuracies which may defeat the purpose of passing
to Sharpe ratio based bounds in the first place. It appears
more beneficial to look for algorithms that exploit the special
structure of the original problem. A careful look into problems
WSP and BSP reveals that these problems have a natural
network structure since they are defined on a tree structure.
The complicating factor is the conic constraint. Were it not
for the conic constraint, one could use a network simplex
algorithm to solve larger instances. A potentially promising
avenue for further research can be to exploit the presence of
a single conic constraint as in Erdogan and Iyengar (2006).
These authors develop an algorithm based on duality for
linear problems with equality and inequality constraints and a
single second-order cone constraint, which corresponds to our
problems WSP and BSP. However, their implementation does
not exploit sparsity, and is currently limited to instances that
can be considered small. An important competing approach
to solving optimization problems defined on scenario trees
is Dynamic Programming (DP). DP is a very powerful
technique that models the overall dynamic decision process as
a sequence of simpler and smaller optimization problems. In
the present scenario tree setting the coupling constraints (4)
in the primal problem and constraint (12) in the dual problem
constitute a first impediment to the immediate application
of DP techniques since these constraints involve decision
variables for the entire collection of leaf nodes of the tree.
Besides, DP also suffers from the exponential growth of the
event tree, and explosion of state space, known as the “curse
of dimensionality”. A good discussion of the limitations of
DP in general, and recent approximation ideas can be found
in Powell (2007). It seems that successful DP applications
in discrete-time financial hedging such as Bensaid, Lesne,
Pagès, and Scheinkman (1992) and Edirisinghe et al. (1993)
usually limit the number of branches in the tree to two or
three.

In summary, we are currently not aware of any software
system capable of handling larger instances than the ones we
solved with the interior point algorithm of MOSEK. However,
given that solving the conic programs of this paper by off-the-
shelf solvers was unthinkable a decade ago, further research
on faster and structure exploiting algorithms is expected to
increase our ability to tackle larger instances. This is an
important future research question.
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Appendix. Derivation of dual problem for WSP

The writer’s problem for financing a contingent claim F that
we referred to as WSP is rewritten as follows for convenience:

min Z0 · θ0

s.t. Zn · (θn − θπ(n)) = −βn Fn, ∀n ∈ Nt , t ≥ 1∑
n∈NT

pn xn = t

t − λ

√∑
n∈NT

pn(xn − t)2 ≥ 0

vn + xn = Zn · θn ∀n ∈ NT ,

vn ≥ 0 ∀n ∈ NT .

We can view the expression λ
√∑

n∈NT
pn(xn − t)2 as λ times

the two-norm of the vector with |NT | components given
by

√
pn(xn − t). Furthermore, using the dual representation

of the two-norm (see pp. 275–276 of Horn and Johnson
(1985), Section 5.4: Analytic properties of vector norms)
which is expressed as λ‖z‖2 = maxζ :‖ζ‖2≤λ zT ζ – note that
one also has −λ‖z‖2 = minζ :‖ζ‖2≤λ zT ζ – we can rewrite

λ
√∑

n∈NT
pn(xn − t)2 as max‖ω‖2≤λ

∑
n∈NT

ωn
√

pn(xn − t)

where we use ω to represent the vector with components ωn ,
n ∈ NT .

Now, the above problem has the following Lagrange dual
problem:

max
‖ω‖2≤λ,ξ≥0,q,w,V

min
Θ,x,v≥0,t

L(Θ, V, x, v, q, w, ξ, ω, t),

where

L(Θ, V, x, v, q, ξ, ω, t) = Z0 · θ0

+

T∑
t=1

∑
n∈Nt

qn
(
Zn · (θn − θπ(n)) + βn Fn

)
+

∑
n∈NT

wn(Zn · θn − vn − xn)

+ ξ

(
−t +

∑
n∈NT

ωn
√

pn(xn − t)

)

+ V

(
t −

∑
n∈NT

pn xn

)
.

Minimizing with respect to θn , for n ∈ Nt , 0 ≤ t ≤ T − 1
we obtain qm Zm =

∑
n∈S(m) qn Zn, ∀m ∈ Nt , 0 ≤ t ≤

T − 1 which are Eq. (8) where we set q0 = 1 (in fact, we
artificially introduce a q0 = 1 to avoid writing the above
equations separately for t = 0 and the remaining time points
t = 1, . . . , T −1). Minimization with respect to θn , for n ∈ NT
yields qn = −wn , for n ∈ NT . Minimization with respect
to vn ≥ 0 gives wn ≤ 0, for n ∈ NT . Therefore, we have
qn ≥ 0 for all n ∈ NT . Minimization with respect to xn yields
−wn + ξωn

√
pn − V pn = 0 for all n ∈ NT . Replacing −wn

by qn we obtain qn + ξωn
√

pn − V pn = 0 for all n ∈ NT .
Finally, minimizing over t we obtain V = ξ( p̃T ω̃ + 1), where
ω̃ denotes the vector with components ωn , n ∈ NT . Substituting
this expression for V in the equations qn +ξωn

√
pn −V pn = 0

for all n ∈ NT we obtain, using the fact
∑

n∈NT
qn = 1, that

ξ = 1. Therefore, we can replace all occurrences ξωn by ωn .
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