
Computers & Operations Research 32 (2005) 3227–3245

www.elsevier.com/locate/cor

Solving the hub location problem with modular link capacities

HandeYamana,∗, Giuliana Carellob,1
aDepartment of Industrial Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey

bDipartimento di Automatica ed Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Available online 7 July 2004

Abstract

This paper deals with a capacitated hub location problem arising in the design of telecommunications networks.
The problem is different from the classical hub location problem in two ways: the cost of using an edge is not
linear but stepwise and the capacity of a hub restricts the amount of traffic transiting through the hub rather than
the incoming traffic. In this paper both an exact and a heuristic method are presented. They are compared and
combined in a heuristic concentration approach to investigate whether it is possible to improve the results within
limited computational times.
� 2004 Elsevier Ltd. All rights reserved.

Keywords:Hub location; Branch and cut; Tabu search; Heuristic concentration

1. Introduction and problem description

Optimization problems related to the design and installation of telecommunication networks gain
interest due to the growing importance of telecommunications. Since nowadays installing telecommu-
nication networks is expensive, an optimization phase with the goal of minimizing costs is needed in
the design process. This paper deals with an optimization problem arising in the design of a quite com-
mon network architecture, the so-calledbackbone/tributary network, in which two kinds of nodes are
present.Terminal nodesrepresent origins and destinations of the traffic demands to be routed. Usu-
ally, connecting all pairs of terminals nodes by direct links is a very costly solution. So, the traf-
fic originating in different terminal nodes must be collected in nodes calledhubs, which receive

∗ Corresponding author.
E-mail addresses:hyaman@bilkent.edu.tr(H.Yaman),giuliana.carello@polito.it(G. Carello).
1Also for correspondence.

0305-0548/$ - see front matter� 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.05.009

http://www.elsevier.com/locate/cor
mailto:hyaman@bilkent.edu.tr
mailto:giuliana.carello@polito.it

3228 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

ab

c

d

f

g h
i

l

m

n

o
e

i

k

terminal node

hub node

tributary link

backbone link

routing from e to m

Fig. 1. Backbone/tributary network instance.

traffic from terminal nodes and route it through other hubs towards the destinations. The network
connecting the terminal nodes to the hub to which they are assigned is called thetributary network
and the network connecting the hubs is called thebackbone network. Since the cost per unit of traffic
is usually cheaper in the backbone than in the tributary network, collecting traffic allows to reduce the
costs.
Different kinds of optimization problems may arise in backbone/tributary network design. Klincewicz

[1] gives a survey on these problems and Yuan[2] gives an annotated bibliography in communication
network design and routing problems that presents over 600 references. Problems differ in many aspects,
e.g. it is possible to focus on the design of the backbone and/or the tributary networks or on the hub
location problem. Furthermore, it is possible to consider different kinds of costs, e.g. to consider fixed
costs for installing hubs and/or variable costs for using them as well as fixed costs for installing the
needed capacity on the edges or variable costs for using the edges. It is possible to limit the capacities
of both edges and hubs. Moreover, in some problems, an a priori structure is specified for the networks.
For example, one can look for a network where the backbone is a tree and the tributary networks are
stars.
In this paper, we focus on networks with complete backbone and star tributary networks and solve

the location and dimensioning problems simultaneously. The locations of the hubs are chosen among
the terminal nodes and each terminal node is assigned to exactly one hub. All the outgoing traffic of
a terminal node is sent to the hub to which it is assigned, and is routed through the other hubs to-
wards the destinations. All the traffic incoming in the terminal node is routed from its origins through
the hubs towards the hub to which the node is assigned. The hubs are fully connected and each ter-
minal is directly connected to the hub to which it is assigned. The traffic between two nodes goes
from its origin to the hub of the origin, then on the direct edge to the hub of the destination and fi-
nally to its destination. InFig. 1, an example of the considered network is shown. In the network the
hub nodes arec, d, f and l. The edges of the backbone network, which is fully connected, are repre-
sented by bold lines. The routing of the traffic from terminal nodee to terminal nodem is represented
by dashed lines. First the traffic is routed tod, to whiche is assigned. Then it is routed on the direct
edge from hubd to hub l, to whichm is assigned, and finally it reachesm through the star tributary
network.
We consider fixed costs of installing hubs and fixed costs of installing the needed capacity on each edge.

The capacity needed to route the traffic on an edge is provided by the installation of an integer number
of bidirectionallinks of fixed capacity. The link capacity can be different for the backbone and for the
tributary edges. For each edge, the cost of establishing a link on this edge is given and this cost depends
on the length of the edge. Furthermore, there is a capacity which is the maximum amount of traffic that

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3229

can be routed through a hub. Given a traffic matrix, which represents the traffic demands between pairs
of terminal nodes, the problem is to find the set of nodes which receive hubs and the assignment of each
terminal node and to install capacities on links, such that all the traffic is routed respecting the capacity
constraints. The aim is to minimize the total cost of the network, which is the sum of hub costs and link
costs.
Since the backbone network is fully connected and each terminal is directly connected to its hub,

the problem belongs to the family of hub location problems. There are several kinds of hub location
problems, which are different for the capacity constraints, for the constraint on the number of hubs or
for the assignment requirements. A survey on hub location problems and on most recently proposed
algorithms can be found in Campbell et al.[3].
The problem considered here is called thecapacitated single assignment hub location problem with

modular link capacities(HMLC). The HMLC is an NP-hard problem (seeYaman[4] for the proof for a
special case).
There are many papers dealing with different kinds of hub location problems, but, to the best of our

knowledge, none of them considers all the features of HMLC or proposes exact methods for HMLC.
Among the papers dealing with problems close to our one, we cite[5–8]. Boland et al.[5] consider the
problem where each terminal node can be assigned to several hubs. Ernst and Krishnamoorthy[7] and
Labbé et al.[8] consider the capacitated hub location problem with single assignment where there is a
cost for routing the traffic but not for installing links. In[7], the capacity of each hub limits only the traffic
incoming in the hub. However, in[8], the limit is on the amount of traffic which transits through a hub as
it is the case in the HMLC. Finally, Carello et al.[6] consider a generalization of the HMLC, but they do
not propose exact methods.
Besides, many other papers have been published dealing with the optimal design of backbone/tributary

networks, taking into account technological features (among others, we can cite[9–11]). However, such
papers usually consider tributary and backbone network topologies which are different from the ones
considered in this paper (e.g. tree or ring backbone topologies), leading to quite different problems
especially from the exact solution point of view.
We formulate the HLMC as a quadratic mixed integer programming problem and compare differ-

ent linearizations. We present two different approaches to solve the HMLC, an exact method and a
metaheuristic, based on methods developed for very similar problems (see[8] and [6], respectively).
The exact method is a branch and cut algorithm and the metaheuristic is a two-level local search.
The branch and cut algorithm is based on a linearization which has an exponential number of con-
straints.
The aim of the paper is to compare these two methods and to investigate whether it is possible to

combine them in order to obtain a better performance in terms of computational time. The metaheuristic
is run first to find an initial upper bound to use in the branch and cut algorithm.
Then, the two methods are combined throughheuristic concentration(see Rosing and ReVelle[12]

and Rosing and Hodgson[13]). The metaheuristic is used to limit the number of variables considered
by the exact method, i.e. the branch and cut is applied on a subset of the potential locations of the hubs
which has been chosen by the heuristic algorithm.
The paper is organized as follows: in the next section a mixed integer programming formulation

is derived for the HLMC. A summary of known valid inequalities as well as a new family of valid
inequalities are presented and the exact method is described. In Section 3, the metaheuristic is presented.
Finally, Section 4 is devoted to the computational results and conclusions.

3230 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

2. Formulation and the exact method

Let I denote the set of terminal nodes with|I | = n. DefineK to be the set of commodities. There is a
commodity per each directed pair of nodes. For nodesi ∈ I andm ∈ I , tim denotes the traffic fromi to
m. The valuestii ’s are defined to be 0 for alli ∈ I .
Each terminal either receives a hub or is connected to another node which receives a hub. Letai be

the number of links needed to route the traffic adjacent at nodei. Then,ai = max{�∑m∈I tim/Qa�,�∑m∈I tmi/Qa�} whereQa is the capacity of a tributary link. The cost of installingai links between
nodei and nodej is denoted byCij . Any nodei that becomes a hub is assigned to itself. The cost of
installing a hub at nodei is denoted byCii . If nodei becomes a hub node, then the total amount of traffic
transiting through nodei cannot be larger than its capacityQh.
LetE = {{j, l} : j ∈ I, l ∈ I\{j}} andA = {(j, l) : j ∈ I, l ∈ I\{j}}. We denote byRjl the cost of

installing a backbone link on edge{j, l} ∈ E. If nodesj and l receive hubs, then the amount of traffic
on arc(j, l) is the sum of traffic from nodes assigned toj to nodes assigned tol. Each backbone link has
capacityQb. The capacity of links installed on edge{j, l} cannot be less than the maximum of traffic on
arcs(j, l) and(l, j).
We define the following variables: The assignment variablexij is equal to 1 if terminali ∈ I is assigned

to hubj ∈ I and 0 otherwise. If nodei receives a hub, thenxii takes value 1 and nodei is assigned to
itself. Further, we definezjl to be the traffic on arc(j, l) ∈ A andwjl to be the number of backbone links
installed on edge{j, l} ∈ E.
The HMLC can be formulated as follows:

min
∑
i∈I

∑
j∈I

Cij xij +
∑

{j,l}∈E
Rjlwjl (1)

s.t.
∑
j∈I

xij = 1 ∀i ∈ I (2)

xij �xjj ∀i ∈ I, j ∈ I\{i} (3)
∑
i∈I

∑
m∈I

(tim + tmi)xij −
∑
i∈I

∑
m∈I

timxij xmj �Qhxjj ∀j ∈ I (4)

zjl�
∑
i∈I

∑
m∈I

timxij xml ∀(j, l) ∈ A (5)

Qbwjl�zjl ∀{j, l} ∈ E (6)

Qbwjl�zlj ∀{j, l} ∈ E (7)

xij ∈ {0,1} ∀i ∈ I, j ∈ I (8)

wjl ∈ Z+ ∀{j, l} ∈ E. (9)

Constraints (2), (3) and (8) imply that each node should be assigned to exactly one node which is a
hub. Capacity constraints (4) state that the capacity of a hub cannot be less than the amount of traffic that
transits through this hub. The left-hand side of constraint (4) forj ∈ I is equal to the sumof the total traffic

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3231

adjacent at nodes that are assigned toj minus the sum of the traffic between pairs of nodes that are both
assigned toj. This subtraction is done to avoid double counting.
The traffic variableszjl ’s are computed by means of constraints (5). Constraints (6) and (7) impose

that the capacity of links installed on a given edge should be at least the maximum of traffic on the two
arcs with the same extremes. Finally, the objective function (1) consists of the cost of locating hubs and
installing links on the backbone and tributary networks.
Constraints (4) and (5) are quadratic constraints.We first present a linearization of constraints (4) using

some properties of optimal solutions. Then we discuss different ways of linearizing constraints (5).
The capacity constraint (4) forj ∈ I can be rewritten as

∑
i∈I

∑
m∈I

tmixij +
∑
i∈I

∑
m∈I

timxij (1− xmj)�Qhxjj .

Because of constraints (6) and (7) and the fact thatRjl�0 for all {j, l} ∈ E, there exists an optimal
solution where all constraints (5) are tight. This solution satisfies

∑
l∈I\{j}

zjl=
∑
l∈I\{j}

∑
i∈I

∑
m∈I

timxij xml

=
∑
i∈I

∑
m∈I

timxij
∑
l∈I\{j}

xml

=
∑
i∈I

∑
m∈I

timxij (1− xmj).

So forj ∈ I , we can replace constraint (4) by
∑
i∈I

∑
m∈I

tmixij +
∑
l∈I\{j}

zjl�Qhxjj . (10)

Labbé et al.[8] give a branch and cut algorithm to solve a very similar problem called thequadratic
capacitated hub location problem with single assignment(QHL). In QHL, wjl ’s are continuous and
wjl = zjl + zlj for {j, l} ∈ E. Moreover, the capacity constraints have the form

∑
i∈I

∑
m∈I

(tim + tmi)xij +
∑
i∈I

∑
m∈I

(tim + tmi)xij (1− xmj)�Qhxjj .

They compare several formulations for QHL which are different in the way they linearize constraints
(5). The classical hub location linearization (see Skorin-Kapov et al.[14]) uses four-indexed variables:
Ximjl is 1 if the traffic fromi tom travels fromj to l and 0 otherwise. ThenXimjl = xij xml . We can now
linearize constraints (5) using the following set of constraints:

∑
l∈I

Ximjl = xij ∀i, m, j ∈ I (11)

3232 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

∑
l∈I
Ximlj = xmj ∀i, m, j ∈ I (12)

zjl�
∑
i∈I

∑
m∈I

timX
im
jl ∀(j, l) ∈ A. (13)

Another linearization using variablesXimjl ’s (see Dantzig[15]) can be obtained by replacing constraints
(5) by the following set of constraints:

Ximjl �xij + xml − 1 ∀i, m, j, l ∈ I
Ximjl �xij ∀i, m, j, l ∈ I
Ximjl �xml ∀i, m, j, l ∈ I
zjl�

∑
i∈I

∑
m∈I

timX
im
jl ∀(j, l) ∈ A.

AsRjl�0 for all {j, l} ∈ E, the second and third sets of constraints are redundant.
The disadvantage of these formulations is their size. The number of variables isO(n4). In both for-

mulations, there is no cost related to variablesXimjl ’s. So these variables can be projected out. Labbé et
al. [8] do the projection for the second linearization and obtain the formulation where constraints (5) are
replaced by

zjl�
∑

(i,m)∈K ′
tim(xij + xml − 1) ∀K ′ ⊆ K, (j, l) ∈ A. (14)

This new formulation hasO(n2) variables and exponentially many constraints. Its LP relaxation is very
weak compared to the LP relaxation of the formulation obtained using the first linearization. Still it can
be improved by adding the so-calledprojection inequalities. These inequalities come from the projection
of variablesXimjl ’s in the first linearization. Computationally, this new formulation with the projection
inequalities outperforms the formulation that uses the first linearization. So the authors devise a branch
and cut algorithm based on this formulation.
Labbé et al.[8] compare these formulations with two other formulations based on multicommodity

flows. These multicommodity flow formulations are valid for QHL when the cost of routing the traffic
satisfies the triangle inequality. As we takewjl ’s to be integers, these formulations are not valid in our
case.
We modify the branch and cut algorithm presented by Labbé et al.[8] to solve the HMLC.We impose

the integrality of variableswjl ’s. Here we summarize briefly the algorithm. It is implemented in C++
using ABACUS 2.3 (see J˝unger and Thienel[16]) and CPLEX 7.0 as LP solver.
The first step of the algorithm is a preprocessing based on the capacity constraints. The aim of the

preprocessing is to compute lower bounds on the amount of traffic which travels on the backbone links.
Precisely, fori ∈ I , j ∈ I , we compute a lower bound on the amount of traffic from nodei to nodes in
I\{i, j}which are not assigned toj wheni is assigned toj.We use the iterative procedureCompute Traffic
given in [8]. A lower bound on the number of hubs to be installed is also computed. Valid inequalities
which impose that two nodes cannot be assigned to the same hub if their demands exceed the capacity
are also added. Then the resulting formulation is given to ABACUS.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3233

Labbé et al.[8] identify the following families of cuts as useful to close the duality gap and to reduce the
CPU time for instances of QHL: projection, cover, strengthened projection and step inequalities. Labbé
and Yaman[17] give new valid inequalities which dominate a class of projection inequalities. In the
following, we generalize this class to a larger class which dominates all projection inequalities used by
Labbé et al.[8] in their branch and cut algorithm. In our branch and cut algorithm, we use this new family
of inequalities. We use also the cover, strengthened projection and step inequalities. In the following, we
briefly describe these inequalities.
Let F be the feasible set of the HMLC andP = conv(F).

Theorem 2.1(Labbé et al. [8]). The projection inequality

∑
j∈S

∑
l∈T
zjl�

∑

(i,m)∈K ′
tim

∑
j∈S

xij +
∑
l∈T

xml − 1

 (15)

where S and T are nonempty disjoint subsets of I andK
′ ⊆ K is a valid inequality for P.

Labbé andYaman[17] give a new class of inequalities which dominate the projection inequalities when
SandT are singletons. The theorem below is a generalization of their result.

Theorem 2.2. The improved projection inequality

∑
j∈S

∑
l∈T

zjl�
∑

(i,m)∈K ′ :i /∈S,m/∈T
tim

 ∑
j∈S\{m}

xij +
∑
l∈T \{i}

xml + xim + xmi − 1

+
∑

(i,m)∈K ′ :i∈S,m/∈T
tim

 ∑
j∈S\{m}

xij +
∑
l∈T

xml + xim − 1

+
∑

(i,m)∈K ′ :i /∈S,m∈T
tim

∑
j∈S

xij +
∑
l∈T \{i}

xml + xmi − 1

+
∑

(i,m)∈K ′ :i∈S,m∈T
tim

∑
j∈S

xij +
∑
l∈T

xml − 1

 (16)

where S and T are nonempty disjoint subsets of I andK
′ ⊆ K is a valid inequality for P.

Proof. Let (i,m) ∈ K ′
. Consider the following cases:

• i /∈ S and l /∈ T : If xim = 1, then
∑
j∈S\{m} xij = 0 andxmi = 0. Moreover asm /∈ T , we also have∑

l∈T \{i} xml = 0. The case wherexmi = 1 is similar. Ifxim = xmi = 0, then the validity follows from
the validity of inequality (15).

3234 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

• i ∈ S andl /∈ T : If xim = 1, then
∑
j∈S\{m} xij = 0. Also, asm /∈ T ,∑l∈T xml = 0.

• i /∈ S andl ∈ T : If xmi = 1, then
∑
j∈S xij = 0 sincei /∈ S. Moreover,∑l∈T \{i} xml = 0. �

Now it is easy to prove the following:

Proposition 2.1. For S and T which are nonempty disjoint subsets of I andK
′ ⊆ K, inequality (16)

dominates inequality(15).

Because of the result in Proposition 2.1, we can expect inequalities (16) to bemore useful than inequal-
ities (15) in a branch and cut framework. The example below shows that for given setsSandT inequality
(16) can be violated when inequality (15) is not.

Example 2.1. Consider the following instance:I = {1,2,3,4,5}, the only nonzero traffic is from node
4 to 5 and the assignment vector is as follows:x11 = x22 = x33 = 1, x41 = 0.2, x42 = 0.3, x45 = 0.5,
x53= 0.5,x55= 0.5 andz13= z23= 0. ConsiderS= {1,2} andT = {3}. Inequality (15) isz13+ z23� t45
(x41+x42+x53−1)=0whereas inequality (16) isz13+z23� t45(x41+x42+x53+x45+x54−1)=0.5t45.
The latter cuts off the fractional solution.

The separation of inequalities (16) is as follows: For givenS andT, and a solution(x, z, w), the
right-hand side of inequality (16) is maximized at

K
′=

(i,m) ∈ K : i /∈ S,m /∈ T and

∑
j∈S\{m}

xij +
∑
l∈T \{i}

xml + xim + xmi >1

∪

(i,m) ∈ K : i ∈ S,m /∈ T and

∑
j∈S\{m}

xij +
∑
l∈T

xml + xim >1

∪

(i,m) ∈ K : i /∈ S,m ∈ T and

∑
j∈S

xij +
∑
l∈T \{i}

xml + xmi >1

∪

(i,m) ∈ K : i ∈ S,m ∈ T and

∑
j∈S

xij +
∑
l∈T

xml >1

 .

If inequality (16) for this choice ofK
′
is violated, then it is the most violated inequality forSandT.

We choose setsSandT as described by Labbé et al.[8].
The cover inequalities are based on capacity constraints. They impose that if the demand of a subset

of nodes exceeds the capacity of a hub, then all these nodes cannot be assigned to the hub at the same
time. So, the sum of the corresponding assignment variables is less than or equal to the cardinality of the
set minus one.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3235

Theorem 2.3(Labbé et al. [8]). A subsetC ⊆ I such that
∑
i∈C

∑
m∈I

tmi +
∑
i∈C

∑
m∈I\C

tim >Q
h

is called a quadratic cover. IfC ⊆ I is a quadratic cover, then the quadratic cover inequality∑i∈C xij �
(|C| − 1)xjj is valid for P.

Theprojection inequalities donot take into account the capacity constraints. So they canbestrengthened
in the following way:

Theorem 2.4(Labbé et al. [8]). For S ⊂ I , T ⊂ I such thatS∩T =∅, IS ⊆ I andIi ⊆ I for all i ∈ IS ,
the strengthened projection inequality

∑
j∈S

∑
l∈T

zjl�
∑
i∈IS

∑
m∈Ii

tim
∑
l∈T

xml − �i

1−

∑
j∈S

xij

 (17)

is valid for P where

�i =max
∑
m∈Ii

tim
∑
l∈T

uml

s.t.
∑
l∈T

uml�1 ∀m ∈ Ii

∑
m∈Ii

∑
s∈I

tsm +
∑
s∈I\Ii

tms

 uml +

∑
m∈Ii

∑
s∈Ii

tmsuml(1− usl)�Qh ∀l ∈ T

uml ∈ {0,1} ∀m ∈ Ii, l ∈ T
for all i ∈ IS .
Finally, step inequalities give lower bounds for the traffic on an arc using the number of nodes assigned

to the extremes of the arc.

Theorem 2.5(Labbé et al. [8]). LetI
′ ⊆ I andT �(I

′
) denote a lower bound on the traffic on arc(j, l) ∈

Awhen� terminalsof setI
′
areassigned to j and l for�=0, . . . , |I ′ |.DefinedT �+1(I ′

)=T �+1(I ′
)−T �(I

′
)

for all � = 0, . . . , |I ′ | − 1. If dT �+1(I ′
)�dT �(I

′
) for all � = 0, . . . , |I ′ | − 1, then the step inequality

zjl�T �(I
′
)+ dT �+1(I ′

)

∑

i∈I ′
(xij + xil)− �

is valid for P for any� = 0, . . . , |I ′ | − 1.

The cover, strengthened projection and step inequalities are separated and lifted as explained in Labbé
et al.[8].

3236 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

Different from the QHL, in HMLC, we have link variables that take integer values. So one should
also branch on these variables when they turn out to be fractional. We adapted the following branching
strategy: first branch on the assignment variables and then on the link variables. The rationale behind
this is that there are two possible values for assignment variables whereas link variables can take any
nonnegative integer value. Another reason is that, once the assignment vector is integer, one can easily
compute the best values of link variables and find feasible solutions. Having an integer assignment vector
also makes the separation of inequalities (16) an easy task.Among assignment variables, we give priority
to xjj variables. This is expected to result in a more balanced tree. We explore the nodes using best-first
search strategy.
Each time an LP is solved, we use the rounding heuristic given by Labbé et al.[8] to find an integer

feasible solution. The initial upper bound is given by the heuristic which is described in the following
section.

3. The heuristic method

The heuristic method, which is adapted from a heuristic approach proposed for similar problems
by Carello et al.[6]2, is a local search approach based on the decomposition of the problem into two
subproblems, the location subproblem and the assignment subproblem. Carello et al.[6] develop and
compare different local search-based metaheuristics to solve a similar problem, in which different kinds
of traffic are considered as well as different assignment requirements. Moreover, additional costs for the
equipment of hubs appear in the total cost.
In the heuristic method first the location subproblem is solved by a tabu search that is applied to find

the best set of hubs. To complete the solution, represented by a set of hubs, and to compute the objective
value, all the terminal nodes must be assigned. In the tabu search step, for each neighbor, the assignments
are defined by means of a greedy algorithm. Then a basic local search is applied on the 20 best sets of
hubs found by the tabu search to improve the solution of the assignment problem computed by the greedy
algorithm.
In addition to the best solution, the algorithm produces also a subset of nodes that represents, in a sense,

the best hubs selected by the heuristic. The hubs opened in the best solution belong to this subset as well
as two other hubs which appear most often in the set of best heuristic solutions. This set is called the
concentration setand the problem where hubs can be chosen only among the nodes of this set is called
theconcentrated problem. The concentrated problem is solved using the branch and cut algorithm. For
some instances, it is much easier to solve the concentrated problem than the original problem.
The main steps of the proposed heuristic algorithm are the following:

1. An initial feasible solution is found, by means of a greedy algorithm that starts with an empty set of
hubs and adds hubs one by one until a feasible solution is found. The hubs are added trying to keep as
low as possible the cost of assignments (for more details, see[6]).

2. A tabu search step is applied to the location subproblem.

2A preliminary heuristic method has been developed in a research project joint with Telecom Italia (Turin Research &
Innovation Laboratories) and a patent application has been filed to cover this issue.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3237

3. A local search on the assignment problem is applied to the 20 best sets of hubs found by the previous
step.

The heuristic is implemented in C++.

3.1. Tabu search for the location problem

Tabu search is awidely known local search-basedmetaheuristic (seeGlover,[18,19]), which overcomes
the limit of basic local search, that may be captured in local minima, by accepting as new current solutions
even non improving neighbors. In order to avoid cycles, a memory of the most recently visited solutions
is kept by means of a tabu list, in which the moves that produced the last current solutions are stored.
Neighbors generated by such tabu moves are discarded. To avoid discarding good solutions generated by
tabu moves, all the neighbors which satisfy an aspiration criterion are accepted even if they are generated
by tabu moves. The tabu search stops after a given numbers of iterations without improvement of the best
solution found.
In the tabu search phase, the solution is represented by the set of chosen hubs. Given the set of chosen

hubs, the assignments of terminal nodes are defined by means of a greedy algorithm, based on a greedy
algorithm for generalized assignment problem (see[20]). The greedy assigns terminals one by one trying
to minimize the disadvantageous assignments, as it is described in[6]: if it does not manage to find a
feasible allocation, the neighbor is discarded as unfeasible.
The neighborhood is generated by applying three different moves:

• adding move: a new hub is opened;
• removing move: a hub is removed from the set of hub nodes;
• swapping move: a hub is removed and a new one is opened in another terminal node.

Similar moves have been proposed in[9] as perturbation method. The dimension of such neighborhood
isO(n2).
The main features of the tabu search have been set according to computational experience:

• stopping criterion: the tabu search stops after 200 iterations without improvement;
• tabu list dimension: in the tabu list the moves are stored that produced the last six neighbors chosen
as new current solutions;

• aspiration criterion: a solution generated by a tabu move is accepted if it improves upon the best
solution found so far.

3.2. Local search for the assignment problem

The second step, namely the local search on the assignment subproblem, is applied on each of the 20
best sets of hubs selected by the tabu search step. In the local search the set of hubs is given and the
solution is represented by the allocations of all terminals. Starting from the allocations provided by the
greedy algorithm, the local search tries to improve the sumof network costs (except hub installation costs)
by changing the allocations of one or two terminals. A first improvement strategy is applied, namely the

3238 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

first improving neighbor found replaces the current solution. The local search stops when no improving
neighbor is found visiting a complete neighborhood.
Given a current solution, the neighborhood is generated by applying two different moves:

• the assignment of a terminal node is moved from the current hub to another;
• the hubs to which two terminal nodes are assigned are swapped: e.g. if terminal nodei is assigned to
hubk and terminal nodej to hubm in the current solution, a neighbor is generated by assigningi tom
andj to k.

Both moves are applied only if the new assignments do not violate capacity constraints. The dimension
of the neighborhood isO(n2).

4. Computational results

The proposed algorithms are tested on both real life instances and instances derived from the OR
Library (see Beasley[21]). There are three instances, with 12, 17 and 49 nodes, derived from real-life
instances (see[6]). Capacities aremodified to avoid infeasible or uncapacitated instances. Other instances
are derived using theAP data set (for hub location problems) from the OR Library.3 These instances have
10, 20, 25, 40 or 50 nodes. In the OR Library set, there are four instances for each number of nodes,
which are different for the kind of capacity and costs considered. There may be tight and loose capacities
as well as tight and loose hub costs. These instances are modified to be solved by the branch and cut
algorithm as follows: the traffic matrix is made symmetric andQh is taken to be the integer nearest to the
average value of hub capacities. Further, the capacities are modified to avoid infeasible or uncapacitated
instances.
For both sets of instances, other instances are derived from the original ones by scaling capacities

and hub costs. Up to five additional instances are derived from each original instance: capacities are
reduced, by factors 0.6 and 0.8, and hub costs are multiplied by 0.1, 0.01 and 0.001. These instances are
named as the original instance name.cap06, .cap08, .cost01, .cost001 and .cost0001, respectively. Not all
the instances with reduced capacities are feasible: computational results are reported only for feasible
instances.
For each instance, the heuristic algorithm is run to obtain an upper bound and a concentration set. The

branch and cut algorithm is initialized with the upper bound of the heuristic and solves the original and
concentrated problems. It is run on an Intel Pentium III, 1 GHz, 1 Gb RAM running under Suse 7.2 with
a limit on the maximum resident set size set to 900 Mb and a limit on CPU time set to 4 h. The runs with
the heuristic are taken on an AMD XP 2000 at 1.66 GHz, 256 Mb RAM, running under Windows XP.
LetUBHdenote the upper bound given by the heuristic. Define alsoUB, LB,DB,CUB,CLBandCDB

to be the best upper bound, final lower bound and the dual bound (the lower bound at the root node),
respectively, for the original and concentrated problems. In the tables, we report for each problem:

• Hgap = ((UBH − UB)/UB) ∗ 100 andCHgap = ((UBH − CUB)/CUB) ∗ 100
• Cgap = ((CUB − UB)/CUB) ∗ 100

3 Instances derived from OR Library are available upon request from authors.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3239

Table 1
Results for problems with 10 nodes

Problem name Original problem Concentrated problem

Hgap Dgap CPU Cgap CHgap CDgap CCPU

A1 24.93 7.63 14.26 0.00 24.93 7.63 8.32
A1.cap08 6.16 1.50 1.03 0.00 6.16 1.50 0.89
A1.cost01 20.23 8.27 11.47 0.00 20.23 8.27 5.94
A1.cost001 2.78 5.01 6.40 0.00 2.78 3.88 1.60
A1.cost0001 1.43 6.07 16.92 0.00 1.43 5.47 6.27
A2 0.00 0.28 2.60 0.00 0.00 0.28 2.56
A2.cost01 0.00 1.54 1.91 0.00 0.00 1.54 1.54
A2.cost001 0.00 4.90 12.29 0.00 0.00 4.80 5.84
A2.cost0001 0.00 6.17 16.53 0.00 0.00 6.15 6.25
A3 14.38 14.95 22.62 0.00 14.38 14.95 15.31
A3.cap08 3.59 0.87 0.65 0.00 3.59 0.87 0.66
A3.cost01 14.87 12.19 11.96 0.00 14.87 12.19 8.15
A3.cost001 0.00 7.59 6.93 0.00 0.00 2.48 1.40
A3.cost0001 1.41 7.52 15.57 0.00 1.41 6.09 8.93
A4 0.00 0.11 1.64 0.00 0.00 0.11 1.48
A4.cost01 0.00 0.97 1.61 0.00 0.00 0.97 1.81
A4.cost001 0.00 4.52 15.68 0.00 0.00 4.38 7.86
A4.cost0001 0.00 5.98 17.10 0.00 0.00 5.94 6.51

• Dgap = ((UB −DB)/UB) ∗ 100 andCDgap = ((CUB − CDB)/CUB) ∗ 100
• Fgap = ((UB − LB)/UB) ∗ 100 andCFgap = ((CUB − CLB)/CUB) ∗ 100.
• CPU(resp.CCPU): CPU time to solve the original problem (resp. concentrated problem) (in h:min:s)

We do not report the CPU time for the heuristic as it requires less than 5 min even for the largest
instances.
We first report the results for the instances derived from the OR library. InTable 1, the results for

instances with 10 nodes are presented. All problems are solved to optimality in less than 1 min. For all
instances, the concentrated problem has the same optimal value as the original problem. This suggests
that the heuristic gives a good concentration set but it cannot find a good assignment for problems where
Hgap is positive. Except for two instances, the concentrated problems are solved in shorter times. The
difference in CPU times goes up to a factor of 4.
We also solved the four original instances with 10 nodes using CPLEX 8.1.0 MIP Solver. We used

the linearization where constraints (5) are replaced by (11)–(13). The results are given inTable 2. We
observe that while the branch and cut algorithm took less than a minute to solve these problems, CPLEX
MIP solver took more than 19 min for the easiest instance. The branch and cut algorithm is more than
100 times faster for the four instances and for instance A4, it is almost 700 times faster than the MIP
solver of CPLEX. This is mostly because the number of variables in the formulation given to CPLEX is
O(n4) and it takes a long time to solve the LPs. The branch and cut algorithm is based on a formulation
which hasO(n2) variables and so it takes much shorter to solve the LP’s. As the difference between the
performances of the branch and cut algorithm and CPLEX is very large and is not expected to change in
favor of CPLEX asn increases, we did not do the test for the remaining instances.

3240 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

Table 2
Results with CPLEX for problems with 10 nodes

Problem CPU (s)

A1 2776.06
A2 1282.16
A3 2687.89
A4 1141.61

Table 3
Results for problems with 20 nodes

Problem name Original problem Concentrated problem

Hgap Dgap Fgap CPU Cgap CHgap CDgap CFgap CCPU

B1 2.15 1.14 0.00 47:48.69 0.00 2.15 1.14 0.00 52:37.99
B1.cap06 0.58 25.07 24.77 −0.04 0.62 25.04 24.74
B1.cap08 0.36 32.55 31.85 0.05 0.31 33.01 31.77
B1.cost01 0.00 3.92 0.00 01:42:56.45 0.00 0.00 3.39 0.00 01:45:48.94
B1.cost001 0.00 6.63 0.00 03:36:36.70 0.00 0.00 6.54 0.00 01:02:51.94
B1.cost0001 0.39 8.16 1.78 −1.07 1.47 6.54 0.00 01:15:33.29
B2 0.00 1.18 0.00 03:48.48 0.00 0.00 1.18 0.00 03:49.32
B2.cap06 3.14 0.71 0.23 0.00 3.14 0.71 0.24
B2.cap08 0.38 0.98 0.00 47:37.78 0.00 0.38 0.97 0.00 04:06.46
B2.cost01 0.14 4.32 0.00 01:32:34.74 0.00 0.14 3.60 0.00 01:32:05.66
B2.cost001 0.32 6.79 0.00 03:38:14.92 0.00 0.32 7.27 0.00 01:01:19.29
B2.cost0001 0.00 8.72 3.31 0.00 0.00 7.09 0.00 44:40.27
B3 0.77 0.83 0.00 01:38:36.71 0.00 0.77 0.83 0.00 01:38:30.12
B3.cap06 0.00 25.77 25.50 0.00 0.00 25.77 25.50
B3.cap08 0.00 33.87 32.81 −0.29 0.29 33.68 32.38
B3.cost01 0.00 3.26 0.00 01:00:40.17 0.00 0.00 3.24 0.00 01:21:45.83
B3.cost001 0.00 6.38 0.00 55:42.17 0.00 0.00 6.78 0.00 01:41:12.88
B3.cost0001 0.00 7.10 0.88 0.00 0.00 7.33 0.00 03:31:15.11
B4 0.03 1.08 0.00 32:09.68 0.00 0.03 1.08 0.00 32:35.43
B4.cap06 3.63 0.63 0.23 0.00 3.63 0.63 0.24
B4.cap08 2.12 0.44 0.00 01:17:22.64 0.00 2.12 0.44 0.00 01:17:43.01
B4.cost01 0.13 3.50 0.00 01:34:31.07 0.00 0.13 3.51 0.00 01:12:03.52
B4.cost001 0.32 6.61 0.00 02:09:28.38 0.00 0.32 7.00 0.00 01:02:19.05
B4.cost0001 0.00 7.94 2.16 −0.08 0.08 7.92 0.00 02:08:46.14

In Table 3, we present the results for instances with 20 nodes. The branch and cut algorithm could
not solve 10 problems to optimality. The final gap is very large for some of those problems. These are
indeed the problems where the capacity is reduced. Problems with tight capacities turn out to be harder as
also reported by Labbé et al.[8]. For B1.cap06 and B3.cap08, we found better upper bounds solving the
concentrated problems. For B2.cap08, the concentrated problem is solved more than 10 times faster than
the original problem. For other instances where the capacity is reduced, restricting the potential hubs to
the concentration set does not make the problem easier.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3241

Table 4
Results for problems with 25 nodes

Problem name Original problem Concentrated problem

Hgap Dgap Fgap Cgap CHgap CDgap CFgap

C1 0.00 31.91 31.68 0.00 0.00 31.91 31.64
C1.cap06 0.55 21.53 21.29 0.55 0.00 21.96 21.72
C1.cap08 0.00 0.89 0.54 0.00 0.00 0.89 0.54
C1.cost01 4.56 25.95 25.48 4.36 0.00 24.98 24.53
C1.cost001 6.53 11.89 10.61 4.66 1.57 9.83 8.23
C1.cost0001 15.73 4.97 3.62 12.93 0.77 7.23 5.49
C2 0.00 0.91 0.25 0.00 0.00 0.91 0.29
C2.cap06 0.00 1.38 1.17 0.00 0.00 1.46 1.16
C2.cap08 2.23 1.10 0.84 1.82 0.38 1.71 1.59
C2.cost01 0.74 2.79 1.54 0.28 0.45 1.94 1.24
C2.cost001 0.03 5.45 3.72 −0.30 0.32 4.45 3.33
C2.cost0001 0.00 3.97 1.83 0.00 0.00 3.72 1.89
C3 0.00 34.68 34.53 0.00 0.00 34.68 34.53
C3.cap06 0.00 22.15 21.98 0.00 0.00 22.15 21.98
C3.cap08 0.00 0.49 0.37 0.00 0.00 0.49 0.37
C3.cost01 0.00 23.34 22.57 0.00 0.00 23.25 22.47
C3.cost001 0.00 12.61 11.92 0.00 0.00 12.52 12.02
C3.cost0001 9.34 7.62 6.21 7.98 0.61 7.76 6.26
C4 0.00 12.83 1.13 0.00 0.00 12.83 1.12
C4.cost01 0.00 14.99 7.26 0.00 0.00 14.45 5.20
C4.cost001 5.35 11.10 4.45 −0.18 5.54 8.67 2.46
C4.cost0001 0.00 10.71 5.87 0.00 0.00 7.83 4.85

The other unsolved problems are the ones where the fixed cost of installing a hub is reduced by a factor
of 1000. The concentrated versions of these problems are all solved to optimality. As the cost of a hub
decreases, we tend to open more hubs. That is probably why restricting the hubs to the concentration set
results in easier problems. For B1.cost0001 and B4.cost0001, optimal values of the concentrated versions
give the best upper bounds.
For .cost001 instances, except B3.cost001, concentrated problems are solved two to three times faster

than the original problems and they have the same optimal value as the original problems.
In total, for four unsolved problems,Cgap is negative, implying that the best solution found for the

concentrated problem gives the best upper bound.
The results for problems of sizes 25, 40 and 50 are given inTables 4, 5and6, respectively. As these

problems are not solved to optimality, we do not present the CPU times. The concentrated version gave
the best upper bounds for five instances. The largest improvement is for instance D1.cost01 where the
upper bound is improved by around 16%. For other instances, restricting the set of hubs does not seem
useful.
In Tables 7–9we present the results for real-life instances. Problems with 12 nodes are all solved

to optimality in less than 1 h. We observe that the concentrated problems are easier to solve for these
instances. For three instances, the concentrated problem has the same optimal value as the original
problem. For the other two instances, there is a gap between the optimal values of these problems. This

3242 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

Table 5
Results for problems with 40 nodes

Poblem name Original problem Concentrated problem

Hgap Dgap Fgap Cgap CHgap CDgap CFgap

D1 0.00 2.41 2.13 0.00 0.00 2.41 2.13
D1.cap06 0.00 10.89 10.17 0.00 0.00 10.89 9.76
D1.cap08 0.00 19.82 19.77 0.00 0.00 19.82 19.76
D1.cost01 4.05 24.51 24.34 −16.18 20.89 2.67 1.90
D1.cost001 8.43 10.16 8.93 7.78 0.00 10.24 9.96
D1.cost0001 3.20 8.32 6.96 3.10 0.00 6.06 5.58
D2 0.08 8.89 8.18 0.08 0.00 8.95 7.72
D2.cost01 0.98 15.11 13.91 0.97 0.00 14.69 9.20
D2.cost001 0.00 12.42 11.49 −0.10 0.10 8.45 7.04
D2.cost0001 0.00 11.56 10.01 0.00 0.00 7.15 6.11
D3 0.00 11.71 11.66 0.00 0.00 11.71 11.66
D3.cap06 0.00 12.71 9.51 0.00 0.00 12.71 3.71
D3.cap08 0.00 17.38 17.34 0.00 0.00 17.38 17.34
D3.cost01 24.29 2.51 0.93 19.54 0.00 21.07 20.25
D3.cost001 2.16 15.46 15.10 2.11 0.00 12.77 12.22
D3.cost0001 0.00 9.05 7.90 0.00 0.00 7.07 6.73
D4 0.00 10.31 6.84 0.00 0.00 10.31 0.96
D4.cost01 0.00 11.72 9.80 0.00 0.00 11.50 8.25
D4.cost001 5.04 12.93 11.28 4.80 0.00 12.40 9.74
D4.cost0001 0.00 14.82 13.50 −2.26 2.26 10.65 9.39

implies that the optimal hubs are not all in the concentration set and so the heuristic could not find good
locations for hubs. Still, for these two problems the optimal solutions of the concentrated problems give
better upper bounds than the heuristic.
The branch and cut algorithmcould not solve the problemswith 17 nodes. But the concentrated versions

are solved to optimality except one. For this unsolved problem, the final gap for the original version is
more than 15%. The final gap for the concentrated version is 6.68%, but the upper bound is not better
than the final upper bound of the original problem. There are two other problems for which the optimal
value of the concentrated version is worse than the upper bound of the original version. For one instance,
the upper bound obtained for the concentrated problem is better than the upper bound of the heuristic.
Neither the original nor the concentrated versions of problems with 49 nodes could be solved. The final

upper bounds are the same as the initial bounds for all problems. The maximum final gap is less than 7%.
In summary, the branch and cut algorithm solves instances of small sizes faster than CPLEX MIP

solver. But for larger sizes, it cannot prove optimality. Still, for some problems, it improves the upper
bound of the heuristic and also gives some idea about the quality of the solution.
Restricting the set of locations for hubs to the concentration set is usually useful for instances where

the fixed cost of installing hubs is small, i.e. instances of type .cost0001. For these instances, concentra-
tion makes the problems easier to solve. If the optimal hubs are in the set given by the heuristic, then
the concentrated version solves the problem and saves computational time. Most problems with tight
capacities remain hard even in their concentrated versions. For some real-life instances, the concentrated
problems turned out to be easier to solve. For problems with 12 nodes, when the heuristic returned the

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3243

Table 6
Results for problems with 50 nodes

Problem name Original problem Concentrated problem

Hgap Dgap Fgap Cgap CHgap CDgap CFgap

E1 0.86 25.21 24.96 0.86 0.00 25.63 25.60
E1.cap06 0.00 10.79 10.43 0.00 0.00 10.80 10.11
E1.cap08 0.00 19.85 19.75 0.00 0.00 19.85 19.75
E1.cost01 0.00 25.04 24.80 0.00 0.00 19.97 18.83
E1.cost001 0.00 15.48 14.82 0.00 0.00 9.95 9.68
E1.cost0001 0.00 9.68 9.68 0.00 0.00 5.89 5.64
E2 0.00 13.17 12.85 0.00 0.00 12.43 11.86
E2.cost01 0.00 20.94 20.53 0.00 0.00 18.70 17.68
E2.cost001 0.00 17.14 16.98 0.00 0.00 14.74 13.31
E2.cost0001 0.00 100.00 13.62 0.00 0.00 7.26 6.89
E3 0.00 27.99 27.97 0.00 0.00 27.99 27.97
E3.cap06 0.00 12.68 11.10 0.00 0.00 12.68 10.66
E3.cap08 0.00 24.36 24.31 0.00 0.00 24.36 24.31
E3.cost01 0.00 21.69 20.27 0.00 0.00 21.68 20.25
E3.cost001 3.12 14.66 14.07 3.03 0.00 13.00 12.58
E3.cost0001 0.00 8.05 7.24 0.00 0.00 6.26 6.14
E4 0.00 11.31 9.84 0.00 0.00 10.32 7.21
E4.cost01 0.00 12.12 11.27 0.00 0.00 12.13 11.22
E4.cost001 0.00 23.11 22.40 0.00 0.00 17.92 16.74
E4.cost0001 0.00 13.54 13.54 0.00 0.00 9.63 8.87

Table 7
Results for problems with 12 nodes

Problem name Original problem Concentrated problem

Hgap Dgap CPU Cgap CHgap CDgap CCPU

H12 7.73 4.66 34:36.80 3.91 3.52 5.25 04:39.60
H12.cap06 0.00 11.69 57:51.05 0.00 0.00 11.47 13:00.18
H12.cap08 5.13 13.26 42:00.54 4.17 0.75 11.99 02:51.53
H12.cost01 5.47 7.14 37:29.63 0.00 5.47 6.08 10:41.54
H12.cost001 2.94 7.42 47:53.94 0.00 2.94 6.20 25:24.46

optimal locations for hubs in the concentration set, concentrated problems were solved two times faster
in the average. For problem H12.cap06, optimality is proved in more than 57 min for the original version
and in 13 min for the concentrated version.
For other instances, concentration did not improve the best upper bound found solving the original

problems. Still, for some instances, this analysis helped to see when the heuristic failed to find good upper
bounds and in what part (location or assignment) of the problem it actually failed.

3244 H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245

Table 8
Results for problems with 17 nodes

Problem name Original problem Concentrated problem

Hgap Dgap Fgap Cgap CHgap CDgap CFgap CCPU

H17 1.90 12.85 0.35 1.86 0.00 11.26 0.00 17:59.50
H17.cap08 2.24 22.87 15.21 0.21 2.03 22.86 6.68
H17.cost01 2.37 30.61 4.06 2.32 0.00 21.56 0.00 04:02.32
H17.cost001 0.00 52.03 15.64 0.00 0.00 27.91 0.00 08:34.55
H17.cost0001 0.00 57.06 18.13 0.00 0.00 29.05 0.00 06:34.22

Table 9
Results for problems with 49 nodes

Problem name Original problem Concentrated problem

Hgap Dgap Fgap Cgap CHgap CDgap CFgap

H49 0.00 1.96 1.87 0.00 0.00 1.62 1.60
H49.cap06 0.00 3.11 3.05 0.00 0.00 2.69 2.65
H49.cap08 0.00 2.14 2.06 0.00 0.00 1.77 1.69
H49.cost01 0.00 5.13 4.93 0.00 0.00 4.19 4.09
H49.cost001 0.00 7.06 6.91 0.00 0.00 5.88 5.83
H49.cost0001 0.00 6.40 6.16 0.00 0.00 5.26 5.15

Acknowledgements

The authors wish to thank Prof. Martine Labbé for her help and suggestions and anonymous referees
for their valuable comments.

References

[1] Klincewicz JG. Hub location in backbone tributary network design: a review. Location Science 1998;6:307–35.
[2] Yuan D. An annotated bibliography in communication network design and routing. In: Optimization models and methods

for communication network design and routing. PhD thesis, Department of Mathematics, Linköping University, Sweden,
2001.

[3] Campbell JF, Ernst AT, Krishnamoorthy M. Hub location problems. In: Drezner Z, Hamacher HW., editors. Facility
location: applications and theory. Berlin: Springer; 2002. pp. 373–407.

[4] YamanH.Concentrator location in telecommunication networks. PhD thesis, Université Libre deBruxelles, 2002.Available
athttp://smg.ulb.ac.be/.

[5] Boland N, Ebery J, Ernst A, Krishnamoorthy M. The capacitated multiple allocation hub location problem: formulation
and algorithms. European Journal of Operational Research 2000;120:614–31.

[6] Carello G, Della Croce F, Ghirardi M, Tadei R. Solving the hub location problem in telecommunication network design:
a local search approach. Networks, 2004, to appear.

[7] Ernst A, Krishnamoorthy M. Solution algorithms for the capacitated single allocation hub location problem. Annals of
Operations Research 1999;86:141–59.

http://smg.ulb.ac.be/.

H.Yaman, G. Carello / Computers & Operations Research 32 (2005) 3227–3245 3245

[8] Labbé M, Yaman H, Gourdin E. A branch and cut algorithm for the hub location problems with single assignment.
Mathematical Programming, 2004, to appear.

[9] ChamberlandS,SansoB,MarcotteO.Topological designof two-level telecommunication networkswithmodular switches.
Operations Research 2000;48:745–60.

[10] Chamberland S, Sansò B. On the design problem of multitechnology networks. INFORMS Journal on Computing
2001;13:245–56.

[11] Chamberland S, Sansò B. Topological expansion of multiple-ring metropolitan area networks. Networks 2000;36:210–24.
[12] Rosing KE, ReVelle CS. Heuristic concentration: two stage solution construction. European Journal of Operational

Research 1997;97:75–86.
[13] Rosing KE, Hodgson MJ. Heuristic concentration for thep-median: an example demonstrating how and why it works.

Computers and Operations Research 2002;29:1317–30.
[14] Skorin-Kapov D, Skorin-Kapov J, O’Kelly M. Tight linear programming relaxations of uncapacitatedp-hub median

problem. European Journal of Operational Research 1996;94:582–93.
[15] Dantzig GB. On the significance of solving linear programming problems with some integer variables. Document, The

Rand Corporation, 1959. p. 1486.
[16] Jűnger M, Thienel S. The ABACUS system for branch-and-cut-and-price algorithms in integer programming and

combinatorial optimization. Software Practice and Experience 2000;30:1325–52.
[17] Labbé M,Yaman H. Projecting the flow variables for hub location problems. Networks, 2004, to appear.
[18] Glover F. Tabu search. Part I. Orsa Journal on Computing 1989;1:190–206.
[19] Glover F. Tabu search. Part II. Orsa Journal on Computing 1990;2:4–32.
[20] Martello S, Toth P. Knapsack problems—algorithms and computer implementations. NewYork: Wiley; 1990.
[21] Beasley JE. OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society

1990;41:1069–72http://mscmga.ms.ic.ac.uk/info.htmlhttp://mscmga.ms.ic.ac.uk/info.html.

http://mscmga.ms.ic.ac.uk/info.html

	Solving the hub location problem with modular link capacities
	Introduction and problem description
	Formulation and the exact method
	The heuristic method
	Tabu search for the location problem
	Local search for the assignment problem

	Computational results
	Acknowledgements
	References

