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Abstract

We develop a simple and practical exact algorithm for the problem of locatingp facilities and assigning clients
to them within capacity restrictions in order to minimize the maximum distance between a client and the facility to
which it is assigned (capacitatedp-center). The algorithm iteratively sets a maximum distance value within which
it tries to assign all clients, and thus solves bin-packing or capacitated concentrator location subproblems using
off-the-shelf optimization software. Computational experiments yield promising results.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper the capacitated vertexp-center problem is investigated. An exact algorithm developed by
Ilhan and Pınar[1] for the basic vertexp-center problem ismodified and extended to solve the capacitated
version to optimality. Computational experiments are carried out and promising results are reported.
The basicp-center problem consists of locatingp facilities and assigning clients to them so as to

minimize the maximum distance between a client and the facility it is assigned to. The problem is
known to be NP-hard[2]. Recent articles on the basicp-center problem include Mladenovi´c et al.[3],
Elloumi et al.[4] and Daskin[5]. For a detailed exposition of thep-center problem and available solution
methodology, the reader is directed to Chapter 5 of the textbook[6].
In the capacitated version of thep-center problem, each client is labelledwith somequantity of demand,

and assignment of clients to facilities is constrained with capacity restrictions of facilities (i.e., the total
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demands of clients assigned to a certain facility cannot exceed the facility’s capacity). Namely, the
capacitatedp-center problem can be articulated as locatingp capacitated facilities on a network and
assigning clients to them within capacity restrictions so as to minimize maximum distance between a
client and the facility it is assigned to.
Typical applications of the problem are locating fire stations or health centers where stations or centers

have capacities of service. Clients can be labelled with demand values associated with their populations
or risks of casualties in case of an emergency. Obviously, an ordinary warehouse and a hypermarket (or a
factory) would claim different amounts of resources in such a situation. Demand values can be interpreted
as a measure of this difference among clients.
Let W = {w1, w2, . . . , wm} be the set of all possible locations for facilities with|W | = M, V =

{v1, v2, . . . , vn} be the set of all clients with|V | =N . The distance for each facility pair(wi, vj ) is given
asdij . We assume in this paper thatW ∪ V is the vertex (node) set of a complete graph, and distances
dij represent the length of the shortest path between verticesi andj (in the test problems of Section 4, we
deal with a single vertex set, i.e., with the special case whereW = V ). Lethi be demand associated with
client i and assume each facility sitej has a service capacity ofQj . This means, if we locate a facility on
site j, the total of the demands assigned to that facility cannot exceedQj .
Now, we present a linear mixed-integer programming formulation of the problem below.
Problem CPC:

Minimize z

subject to
∑
j∈W

xij = 1, ∀i ∈ V, (1)

xij �yj , ∀i ∈ V, j ∈ W, (2)
∑
j∈W

yj �p, (3)

∑
j∈W

dijxij �z, ∀i ∈ V, (4)

∑
i∈V

hixij �Qj, ∀j ∈ W, (5)

xij , yj ∈ {0,1}, ∀i ∈ V,∀j ∈ W, (6)

wherexij assumes value one if clienti is assigned to facility sitej, and value zero otherwise. The binary
variableyj assumes value one if facility sitej is open. Constraints (1) express the requirements that all
clients must be assigned to some facility site. Constraints (2) prevent a client from an assignment to a
facility site which is not open. In total at mostp facility sites are to be opened, a requirement which
is modeled by constraint (3). Capacity restrictions of the facilities are incorporated into the model by
constraints (5) (one can obtain the basicp-center formulation by excluding constraints (5) from the above
model).
The rest of this paper is organized as follows. Section 2 presents a brief literature survey on the

capacitatedp-center problem. Section 3 gives a detailed description of the proposed algorithm. Section 4
contains computational results obtained with the algorithm. Concluding remarks are given in Section 5.
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2. Background

The capacitated vertexp-center problem has not been thoroughly investigated yet. Among the few
papers that covered this problem, the one by Bar-Ilan et al.[7] is the first to develop a polynomial time
approximation scheme for the special case wherehi = 1 ∀i ∈ V . This procedure has an approximation
factor of 10. In this algorithm, a subgraph is generated in each iteration by choosing edges with smaller
distance value than a specified radius. Following this, in each iteration, a maximal independent set
is extracted from the subgraph. This maximal independent set is used to obtain a set of centers and
assignment of nodes to these centers. The algorithm searches the smallest radius that yields a set of
centers with cardinality at mostp.
Khuller and Sussmann[8] improve this algorithm and draw its approximation factor down to 6 by

proposing a specially tailored method for finding the maximal independent sets in the subgraph and by
changing the way nodes in the maximal independent set are handled. They assume all clients have unit
demand (i.e.,hi = 1 ∀i ∈ V ) and cover a variant where locating multiple centers on a node is possible.
They name this variant “the capacitated multip-center problem”.
Besides these heuristic algorithms, a polynomial exact algorithm for tree networks is developed by

JaegerandGoldberg[9]. Jaeger andGoldbergalso considers thecasewheremultiple centers canbe located
on a node andhi = 1 ∀i ∈ V . The method described in the article solves set-covering subproblems on
trees with a polynomial algorithm.
We are also aware of a recent study by Pallottino et al.[10] on the application of local search heuristics

to the problem. Their algorithm iteratively carries out multiple exchange of clients between facilities, and
then performs local optimization for locations of facilities.
The problem we define in this paper differs from the aforementioned articles’ problems in two ways:

(1) we do not have the requirement that allhi ’s have to be equal to 1; (2) our facilities do not have to be
equally capacitated.We can solve the problem for any demand values associated with the clients and any
capacity values associated with the facilities.

3. The proposed algorithm for solving CPC

The algorithm we propose for solving CPC is an extension of an exact algorithm developed for the
vertexp-center problem by Ilhan and Pınar[1]. This algorithm relies on solving a series of set cover-
ing problems using an off-the-shelf IP solver while carrying out an iterative search over the coverage
distances. At each iteration, it sets a threshold distance as a radius to see whether it is possible to cover
all clients withp or less facilities within this radius (i.e., it uses this radius as the coverage distance of
a set-covering problem), and updates lower and upper bounds on the optimal radius in the light of this
information.
The idea underlying the solution procedure is roughly to proceed as follows:
Step1: Select initial lower and upper bounds on the optimal objective function value, set the coverage

distance to the average of the lower and upper bounds.
Step2: Solve an appropriate set-covering subproblem with the coverage distance found.
Step3: If it turns out that it is possible to cover all clients with at mostp facilities, reset the upper bound

to the coverage distance that was just used.
Step4: If it is not possible, reset the lower bound to the coverage distance just used.
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Step5: If the lower and upper bounds are equal, stop; otherwise set the coverage distance as the average
of lower and upper bounds, and go to Step 2.
The set-covering feasibility subproblemused in this algorithm is not suitable for solving the capacitated

p-center problem. For this reason, two new subproblems are developed here for solving CPC. Both of
these subproblems have the objective of minimizing the number of facilities to be located (reasons for
choosing this objectivewill be clarified later). Now, in Section 3.1we describe the subproblems developed
and Section 3.2 includes detailed descriptions of the algorithm.

3.1. Subproblems

We develop two subproblems which give an answer as to whether we can cover all clients within a
certain radiusεwith atmostpcapacitated facilities.Weconsidered theobjective ofminimizing thenumber
of facilities to be located while covering all clients. The reason for choosing this objective function for our
subproblems is that this objective together with assignment features leads us to two well-known problems
fromcombinatorial optimization literatureassubproblems;the capacitated concentrator location problem
andthe bin-packing problem. The subproblems and their relations with these problems are explained in
this section.
The assignment variables (xij ’s) and location variables (yj ’s) to be used in our subproblems are defined

as follows:

xij =
{
1 if client at nodei is assigned to facility located at nodej,
0 otherwise,

yj =
{
1 if a facility is located at nodej,
0 otherwise.

With these variables the subproblem SP1 with respect to a radius valueε is formulated as follows:
Subproblem SP1(ε):

min
n∑

j=1
yj

s. t.
∑

j∈W : dij �ε

xij = 1 ∀i ∈ V, (7)

∑
i∈V : dij �ε

hixij �Qj ∀j ∈ W, (8)

xij �yj {(i, j) ∈ V × W : dij �ε}, (9)

xij , yj ∈ {0,1} {(i, j) ∈ V × W : dij �ε}.
Constraints (7) ensure that each client is covered by one facility whose distance to the client is at most

ε. Constraints (8) stand for capacity restrictions of facilities. And constraints (9) prevent a client to be
assigned to a node at which no facility is located.
This subproblem is a variant of ‘the capacitated concentrator location problem’ from discrete location

literature (e.g. see[11]). Capacitated concentrator location problem can be described as follows: given
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a set of possible sitesW for facilities of fixed capacityQ, we try to locate facilities at a subset of sites
inWand connectn clients fromV to these facilities, where clienti useshi units of a facility’s capacity,
in such a way that each client is connected to exactly one facility, the facility capacity is not exceeded
and total cost of assigning clients to facilities and locating facilities is minimized. Assigning clienti to a
facility on sitej has a cost ofcij units and locating (setting-up) a facility on sitej has a cost ofSj units.
The objective function of the problem is clearly

∑
i∈V

∑
j∈W

cij xij +
∑
j∈W

Sjyj ,

whereas the objective function of SP1 merely minimizes the number of facilities to be located (i.e.,
cij = 0 ∀i ∈ V, j ∈ W andSj = 1 ∀j ∈ W parameter setting is used in SP1). As to constraints, there
are two differences between SP1 and the concentrator location problem: first, in SP1 facilities located
on different nodes assume different capacities whereas in the capacitated concentrator location problem
all facilities located are equally capacitated; and secondly, in SP1 we have the set-covering conditions
under the summation operations of constraints (7) and (8) (i.e., the condition{j ∈ W : dij �ε} in (7) and
{i ∈ V : dij �ε} in (8)) unlike the capacitated concentrator location problem. These conditions stand for
the requirement that each client has to be assigned to a facility whose distance to the client is at mostε.
However, in the capacitated concentrator location problem there is no restriction as to the assignments
of clients to facilities, that is, any client can be assigned to a facility located on any node. Thus if we
replace the aforementioned condition in (7) by{∀j ∈ W }, the one in (8) by{∀i ∈ V } andQj ’s by a
fixed capacity value ofQ, constraints of SP1 exactly constitute the constraints of capacitated concentrator
location problem.
An alternative subproblem can be formulated by replacing constraints (8) and (9) in SP1 by one single

set of constraints. Intuitively, it is easy to see that the constraint set
∑

i∈V : dij �ε

hixi,j �Qjyj , ∀j ∈ W (10)

can account for these two sets of inequalities. By introducing (10), we can formulate an alternative
subproblem SP2 which defines the same feasible region as SP1.
Subproblem SP2(ε):

min
n∑

j=1
yj

s. t
∑

j∈W : dij �ε

xij = 1, ∀i ∈ V, (11)

∑
i∈V : dij �ε

hixij �Qjyj , ∀j ∈ W (12)

xij , yj ∈ {0,1} {(i, j) ∈ V × W : dij �ε}.
This subproblem resembles ‘the bin-packing problem’ (e.g. see[12]). The bin-packing problemconsists

of assigning each ofn items with weighthi ∀i ∈ V to one ofn identical bins of capacityQ so that the
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total weight of the items in each bin does not exceedQ, and the number of bins used is minimized. In a
location context, the term ‘client’ replaces ‘item’ and ‘facility’ takes place of ‘bin’. The only differences
between SP2 and bin-packing arise in the constraints. The two differences between constraints of SP1
and capacitated concentrator location problem exactly apply to SP2 and bin-packing, too.
Note that, the number of assignment variables in both subproblems is dependent on the radius value

ε. Since we cannot assign a clienti to a facility on nodej whose distance toi is more thanε, variable
xij ’s wheredij > ε are not included in our models. Thus, number of assignment variables in both of our
subproblems is equal to cardinality of the set{(i, j) : dij �ε}.

Equivalence ofSP1 andSP2: It is easy to see that SP1(ε) and SP2(ε) are equivalent in the sense that
they have identical sets of feasible solutions, and their optimal values are equal. This property can also
be established without using the integrality restrictions ofxij variables. This means that the property also
holds whenxij variables are allowed to take on continuous values between 0 and 1 in both subproblems.
However, relaxingyj variables disturbs this equivalence. For this reason, the LP relaxations of the two
subproblems are not equivalent to each other, as will be seen later. The essence of this property lies in
identical paths that the algorithm follows when we employ SP1 or SP2.

3.2. Algorithm

In [7], the roughly mentioned procedure in Section 3 for solving the basicp-center problem is split into
two phases to speed up the procedure. In Phase I, LP relaxations of the subproblems are solved to carry
out a binary search over the distance values in order to provide a suitable starting point for the search in
Phase II. The second phase iteratively increases coverage radii, starting from the radius value provided
by Phase I until the optimal radius, for which it is possible to cover all clients by at mostp facilities, is
found.
Now, the step-by-step flow of the algorithm that employs subproblem SPk (k = 1 or 2) is given. Note

that, we denote the LP relaxation of SP1 as SPLR1 (.).
Phase I
Step1: Find the minimum,l, and maximum,u, of weights of all edges,
l =min{dij : ∀i ∈ V,∀j ∈ W },
u =max{dij : ∀i ∈ V,∀j ∈ W }.
Step2: Calculatedif = �(u − l)/2�, ε = l + dif .

Step3: Solve SPLR1 (ε).

Step3.1: If optimal objective is greater thanp, then setl = ε.
Step3.2: Else setu = ε.

Step4: Calculate(u − l).

Step4.1: If (u − l)�1 then go to Step 5.
Step4.2: Else go to Step 2.

Step5: If optimal objective of previous subproblem was greater thanp, then setε = u, else setε = l.
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Table 1
Phase I bounds of the algorithm with LP relaxations of SP1 and SP2

File no. Size p SP1 SP2

Phase I obj. Iter. no. Phase I obj. Iter. no.

1 50 5 28 7 1 6
2 50 5 31 7 1 7
3 50 5 25 7 2 6
4 50 5 31 7 1 6
5 50 5 27 7 1 6
6 50 5 27 7 1 6
7 50 5 30 7 1 6
8 50 5 29 7 1 7
9 50 5 27 7 1 6
10 50 5 29 7 1 6
11 100 10 18 7 0 6
12 100 10 19 7 0 6
13 100 10 19 7 1 7
14 100 10 20 7 1 6
15 100 10 19 7 1 7
16 100 10 18 7 1 6
17 100 10 20 7 0 7
18 100 10 19 7 1 6
19 100 10 20 7 0 7
20 100 10 18 7 1 6

Phase II
Step6: Create SPk(ε) and solve.

Step 6.1: If optimal objective is greater thanp, then increase the value ofε:
ε′ =min{dij : dij > ε,∀i ∈ V,∀j ∈ W } then setε = ε′ and go to Step 6.

Step 6.2: Else stop.

Note that, in the algorithm, we use LP relaxation of SP1 (which we denote by SPLR1 (.)) in the first
phase no matter which subproblem is utilized in Phase II. The reason for this choice will be explained
now.
It is easy to see that the success of the bound obtained from first phase of the algorithm is directly

dependent on the tightness of LP relaxation of the subproblem. For instance, linear relaxation of SP2
gives loose bounds, which makes usage of the linear relaxation of SP2 in Phase I inconvenient. Although
computational experiments are explained in detail in Section 4, we will present a preliminary result
here to display the poor Phase I bounds obtained with SP2. Table 1compares Phase I objective values
obtained by using LP relaxations of SP1 and SP2. In the table, “file no.” represents the number of the
“capacitated p-median” instance in OR-Lib, “size” refers to cardinality ofV (recall that we takeV = W

in our computational experiments) and column labelled “p” gives the value of the parameterp. Under
headings “SP1” and “SP2”, we give results corresponding to Phase I of the algorithm while utilizing SP1
and SP2, respectively. Two columns under SP1 and SP2 display objective value of Phase I and number of
iterations carried out in Phase I.
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The reason for the poor objective values provided by Phase I of algorithm with SP2 is the loose bounds
that LP relaxations of SP2 give. For example in instance 1 ofTable 1, the optimal objective value for
LP relaxation of SP2 turns out to be less than or equal top for any radius value that is tried. This
causes the upper boundu in Phase I to be pulled downwards until it is equal to the initial lower bound
l =min{dij : i ∈ V, j ∈ W }), which yields 1 as the Phase I bound. However, the optimal radius for this
instance is 29. This means that in Phase II, the algorithm will be solving different SP2 instances in IP
forms for increasing radius values from 1 until 29. These findings about SP2 on instance 1 exactly apply
to other instances ofTable 1, too. This is an important handicap for the efficiency of the algorithm. On
the other hand, we can observe that the LP relaxation of SP1 yields quite successful objective values in
Phase I when compared with those of SP2. Hence, we always use the LP relaxation of SP1 (named as
SPLR1 (.)) in the first phase, even when we employ SP2 as the subproblem of Phase II.
This common usage of SPLR1 in Phase I provides that we will have the same record of lower (l) and

upper (u) bound updates in the first phase of the algorithm regardless of the subproblem we use in Phase
II. This means, SP1 and SP2 will start their searches in Phase II from exactly the same radius value. Due
to the equivalence of the two subproblems (aforementioned in Section 3.2), they will also exhibit the
same course of search in Phase II (i.e., both of the subproblems will bring along the same optimal values
for any of the radius values). In other words, SP1 and SP2 will terminate Phase II (and thus, the whole
algorithm) in the same number of iterations. Indeed the only difference between them will be the cpu
times they spend until termination of the algorithm.

3.3. A modification of Phase II

As can be seen in the computational results of Section 4, for some instances SP1 and SP2 display long
cpu times. This is primarily due to difficulty in solving IP forms of subproblems for those instances. We
now propose a modification of the given algorithm to decrease cpu time of Phase II. For this purpose
we relax integrality restrictions of assignment variables (xij ’s) to obtain the subproblems referred to as
SPR1 (ε) and SP

R
2 (ε), respectively.

Mainly, we split Phase II into two subsequent sub-phases, which we call Phase IIa and Phase IIb. In
Phase IIa, we solve the MIP versions of the subproblems (i.e., SPR

1 (.) or SP
R
2 (.)) for increasing distance

values as coverage radii. Once the subproblem used yields an optimal objective value which is at mostp
for a radius value, the algorithm terminates Phase IIa. Phase IIb starts from the terminating radius value of
Phase IIa, and solves IP versions of the subproblems (i.e., SP1(.) or SP2(.)) for increasing radius values.
Phase IIb terminates when the optimal radius (i.e., the radius that makes the optimal objective value of
the subproblem at mostp) is reached.
The ideabehind thismodification is speedingupPhase II by solving someof thePhase II subproblems in

a relaxed form.Thiswayof thinking leads us to solve oneextra subproblem in total, but fewer subproblems
solved as IPs. So, by this modification we may expect to shorten the cpu time of the algorithm. Now
follows the formal representation of Phase II after the proposed modification (for SPk wherek = 1 or 2):
Modified Phase II
Phase IIa
Step6: Create SPRk (ε) and solve.

Step6.1: If optimal objective is greater thanp, then increase the value ofε:
ε′ =min{dij : dij > ε,∀i ∈ V,∀j ∈ W } then setε = ε′ and go to Step 6.
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Step6.2: Else go to Step 7.

Phase IIb
Step7: Create SPk(ε) and solve.

Step7.1: If optimal objective is greater thanp, then increase the value ofε:

ε′ =min{dij : dij > ε,∀i ∈ V,∀j ∈ W } then setε = ε′ and go to Step 7.
Step7.2: Else stop.

Since one of the radius values is commonly used in both of Phase IIa and Phase IIb, this modification
increases the number of subproblems solved in Phase II by 1. However, computational results in Section
4 show that this modified version of the algorithm yields shorter cpu times than its original version given
in Section 3.2.
Note that, since the equivalence between the subproblems (which is stated in Section 3.2) also holds

whenxij ’s are relaxed (i.e., SPR1 (.) and SP
R
2 (.) are equivalent), SP

R
1 (.) and SP

R
2 (.) bring along the same

number of Phase II iterations (i.e. the same number of subproblems solved). That is, all results but the
cpu times will be the same for SP1 and SP2 employed in modified algorithm, just as SP1 and SP2 in the
original algorithm.

4. Computational results

In this section, we report the computational results obtained with the algorithm using the two sub-
problems. The experiments are carried out on three data sets using CPLEX 7.0 linear and mixed integer
program solvers to solve the subproblems. All programs are coded in C and run on Sun UltraSparc
Workstation running Solaris.
The first data set we use includes thecapacitated p-medianproblems from OR-Lib[13]. In OR-Lib

sizes of the instances (i.e., the cardinality ofV) are 50 and 100. This implies that we are dealing with
IP problems with 2550 and 10,100 binary variables, respectively. Coordinates of nodes on Euclidean
coordinate plane are given. Distancematrices are constructed by finding the Euclidean distances between
every pairs of nodes and rounding these values to the nearest integers.
The second data set we use comes from a capacitatedp-median article of Lorena and Senne[14]. The

sizes of the instances range from100 to 402.Coordinates of nodes onEuclidean plane are given. Distances
between the nodes are calculated by finding the Euclidean distances between each pair of nodes. In this
data set, the distance values are not rounded to the nearest integers to be able to see the performance of
the algorithm on continuous distance values.
The third data set we use comes from Pallottino et al.’s article[10]. The sizes of the instances are 100

and 150. The distance values given in this data set are integral values.
We present the results in eight tables: first four,Tables 2–5, display the results for the first data set.

The first two of the tables present the results obtained by SP1, the third and the fourth tables show the
analogous results obtained by SP2 in the experiments carried out on OR-Lib instances. Only SP1 is used
in the algorithm during our experiments on the second and third data sets. Experiments with SP2 are not
carried out in these data sets due to practical time limitations. The experiments on the first data set carried
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Table 2
Computational results on OR-Lib problems using SP1 (1�hi �20 ∀i ∈ V ,Qj = 120 ∀j ∈ W )

File no. Size p Phase I Compl. Algorithm CPLEX

Obj. Iter. no. cpu t. Obj. Iter. no. cpu t. Devia (%) cpu t. % Impv.

1 50 5 28 7 1.97 29 9 2.29 3.45 271.23 99.15
2 50 5 31 7 2.42 33 10 20.6 6.06 10237.82 99.79
3 50 5 25 7 2.17 26 9 3.89 3.85 729.18 99.47
4 50 5 31 7 2.47 32 9 5.55 3.13 662.27 99.16
5 50 5 27 7 2.27 29 10 9.97 6.90 582.24 98.29
6 50 5 27 7 2.13 31 12 35.74 12.90 878.81 95.93
7 50 5 30 7 2.08 30 8 5.69 0.00 1034.53 99.45
8 50 5 29 7 2.45 31 10 20.48 6.45 1069.14 98.08
9 50 5 27 7 2.44 28 9 6.2 3.57 727.83 99.15
10 50 5 29 7 2.2 32 11 59.25 9.38 2956.88 98.00
11 100 10 18 7 19.65 19 9 45.74 5.26 — —
12 100 10 19 7 17.59 20 9 53.31 5.00 — —
13 100 10 19 7 25.32 20 9 49.85 5.00 — —
14 100 10 20 7 22.19 20 8 32.79 0.00 — —
15 100 10 19 7 19.26 21 10 189.19 9.52 — —
16 100 10 18 7 21.59 20 10 2147.98 10.00 — —
17 100 10 20 7 18.19 22 10 16664.12 9.09 — —
18 100 10 19 7 15.72 21 10 328.08 9.52 — —
19 100 10 20 7 26.53 21 9 292.67 4.76 — —
20 100 10 18 7 18.99 21 10 20187.72 10.00 — —

Total cpu time 227.63 Total cpu time 40161.11

out using SP1 and SP2 give a general idea about performances of SP1 and SP2. Thus, cpu-time that the
algorithm would have given with SP2 can be inferred from the results of SP1 for the second and third
data sets.Tables 6and7 display the results for the second data set, andTables 8and9 display the results
for the third data set.
In all tables, “file no.” represents the identification of data file in the corresponding data set, “size”

refers to the size of the networks (i.e., number of nodes in the network) and column “p” stands for value
of the parameterp. Under heading “Phase I”, “ obj” is the objective function value obtained (i.e., bound
passed to Phase II), “iter. no.” is number of iterations carried out and “cpu t.” is the amount of cpu time
in seconds. Heading “Compl. Algorithm” includes analogous results for the complete algorithm (Phases
I and II together). We have calculated total cpu time spent by the algorithm for all of the instances in
each table. InTables 2and4, we give percent deviations of bounds obtained in Phase I from optimal
value. These percent deviation figures are calculated by dividing the difference between first and second
phase objective function values by second phase objective and multiplying by 100. These tables also
involve two more columns under heading “CPLEX”. Column “cpu t.” gives cpu time CPLEX spends for
solving CPC formulations of the instances. Column “%Impv.” displays the percent improvements of cpu
time of the algorithm over cpu time of CPLEX. Percent improvements in this column are calculated by
subtracting cpu time of complete algorithm from cpu time of CPLEX and dividing this difference by cpu
time of CPLEX. This ratio is then multiplied by 100 to obtain the percentage improvement. InTables 3
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Table 3
Computational results obtained with modified Phase II on OR-Lib problems using SPR

1 (1�hi �20 ∀i ∈ V ,Qj =120 ∀j ∈ W )

File no. Size p Phase I Compl. algorithm Cpu time impv. (%)

Obj. Iter. no. cpu t. Obj. Iter. no. cpu t. Over CPLEX Over algo.

1 50 5 28 7 1.94 29 9 2.29 99.15 0.00
2 50 5 31 7 2.34 33 10 11.8 99.88 42.72
3 50 5 25 7 2.07 26 9 4.06 99.44 −4.37
4 50 5 31 7 2.45 32 9 5.49 99.17 1.08
5 50 5 27 7 2.17 29 10 6.91 98.81 30.69
6 50 5 27 7 2.04 31 12 22.36 97.46 37.44
7 50 5 30 7 2.04 30 8 5.89 99.46 −3.51
8 50 5 29 7 2.41 31 10 12.39 98.84 39.50
9 50 5 27 7 2.34 28 9 6.51 99.11 −5.00
10 50 5 29 7 2.18 32 11 30.55 98.97 48.44
11 100 10 18 7 19.46 19 9 33.95 — 25.78
12 100 10 19 7 16.95 20 9 45.27 — 15.08
13 100 10 19 7 24.9 20 9 38.57 — 22.63
14 100 10 20 7 21.94 20 8 36.01 — −9.82
15 100 10 19 7 18.97 21 10 125.36 — 33.74
16 100 10 18 7 21.12 20 10 373.6 — 82.61
17 100 10 20 7 18.01 22 10 16180.69 — 2.90
18 100 10 19 7 15.79 21 10 183.23 — 44.15
19 100 10 20 7 26.69 21 9 260.7 — 10.92
20 100 10 18 7 18.82 21 11 690.04 — 96.58

Total cpu time 224.63 Total cpu time 18075.67

and5, solution time improvements of modified Phase II over CPLEX and original algorithm are given,
each in one column under heading “Cpu time Impv.(%)”. These improvement figures are calculated by
subtracting cpu time of modified algorithm from cpu time of CPLEX (respectively, cpu time of original
algorithm) and dividing by cpu time of CPLEX (respectively, cpu time of original algorithm). This ratio
is then multiplied by 100 to obtain the percentage value. If this value turns out to be negative, then this
means modification increased solution time of the instance under consideration. Cpu time improvements
over CPLEX are calculated only in the first four tables, because, the instances of the second and third
data sets are not tractable by CPLEX.
Before starting with the analysis of tables, we should make some explanations regarding the systemwe

have made experiments on. It was a multi-user system and cpu time that the server is employed changes
from time to time depending on the traffic and priority assignments to tasks. Trials we have made showed
that this difference in solution time is always within 1.5 s for individual instances regardless of type of
linear model we solve (an IP, an MIP or and LP). Since we have made no modification on Phase I and
we always use the same subproblem in Phase I (i.e., SPLR

1 ), we expect that Phase I spends equal amounts
of cpu time for each instance within first data set regardless of the subproblem we employ in Phase II.
However, due to explained unavoidable conditions, we observed different solution times for each instance
of first data set in the tables corresponding to SP1 and SP2. For example, total cpu timemeasures of Phase
I in the first four tables are different from each other. The difference between the lowest and highest is
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Table 4
Computational results on OR-Lib problems with the algorithm using SP2 (1�hi �20 ∀i ∈ V ,Qj = 120 ∀j ∈ W )

File no. Size p Phase I Compl. algorithm CPLEX

Obj. Iter. no. cpu t. obj. Iter. no. cpu t. Devia (%) cpu t. % Impv.

1 50 5 28 7 2.01 29 9 11.64 3.45 271.23 95.71
2 50 5 31 7 2.36 33 10 24.9 6.06 10237.82 99.76
3 50 5 25 7 2.15 26 9 6.52 3.85 729.18 99.11
4 50 5 31 7 2.42 32 9 3.34 3.13 662.27 99.50
5 50 5 27 7 2.14 29 10 43.53 6.90 582.24 92.52
6 50 5 27 7 2.16 31 12 122.2 12.90 878.81 86.09
7 50 5 30 7 2.16 30 8 3.92 0.00 1034.53 99.62
8 50 5 29 7 2.44 31 10 13.04 6.45 1069.14 98.78
9 50 5 27 7 2.37 28 9 20.96 3.57 727.83 97.12
10 50 5 29 7 2.21 32 11 16.42 9.38 2956.88 99.44
11 100 10 18 7 20.08 19 9 103.06 5.26 — —
12 100 10 19 7 18.12 20 9 117.45 5.00 — —
13 100 10 19 7 25 20 9 120.65 5.00 — —
14 100 10 20 7 22.67 20 8 513.85 0.00 — —
15 100 10 19 7 19.29 21 10 1715.75 9.52 — —
16 100 10 18 7 21.38 20 10 148.5 10.00 — —
17 100 10 20 7 18.64 22 10 3852.08 9.09 — —
18 100 10 19 7 15.88 21 10 6264.69 9.52 — —
19 100 10 20 7 26.86 21 9 266.31 4.76 — —
20 100 10 18 7 19.93 21 10 22342.75 10.00 — —

Total cpu time 230.27 Total cpu time 35711.56

7.29 s (224.63 s inTable 3and 231.92 s inTable 5), averaging 0.36 s for individual instances. This figure is
negligible when considered within cpu times of the complete algorithm displayed in these tables. Having
given this explanation on Phase I cpu times, from here on in our analysis we give comments on cpu times
of complete algorithm, and take obtained solution time data as given without paying attention to possible
fluctuations.
First, we analyze results of experiments on the first data set (Tables2–5). Sizes of first 10 instances in

OR-Lib are 50. The last 10 instances have size 100.We could solveCPC formulations of first ten instances
with CPLEX in reasonable amounts of time. However, we could not solve any of the last ten instances
within 12h of clock time. For this reason, we present CPLEX cpu times and calculate improvements of
algorithm over CPLEX for only first ten instances.
While this paper was under preparation, we became aware of the paper by Pallottino et al.[10] where

the same OR-Lib instances were used to test a local search based heuristic algorithm. In this reference,
the authors also try to solve the same test problems to optimality using the CPLEX 7.0 IP solver. They
report that CPLEX fails to report an optimal solution within 15h of computing time for instances No. 15,
18 and 20.We solved all these problems as well as the remaining ones to optimality. Our algorithm is the
first, to the best of our knowledge, to obtain provably optimal solutions to these instances, in reasonable
time.
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Table 5
Computational results obtained with modified Phase II on OR-Lib problems using SPR

2

File no. Size p Phase I Compl. Algorithm Cpu time Impv.(%)

obj. Iter. no. cpu t. obj. Iter. no. cpu t. Over CPLEX Over Algo.

1 50 5 28 7 1.99 29 9 7.19 97.35 38.23
2 50 5 31 7 2.41 33 10 11.17 99.89 55.14
3 50 5 25 7 2.16 26 9 4.15 99.43 36.35
4 50 5 31 7 2.55 32 9 3.82 99.42 −14.37
5 50 5 27 7 2.29 29 10 11.52 98.02 73.54
6 50 5 27 7 2.14 31 12 36.95 95.80 69.76
7 50 5 30 7 2.16 30 8 4.66 99.55 −18.88
8 50 5 29 7 2.44 31 10 10.88 98.98 16.56
9 50 5 27 7 2.43 28 9 23.27 96.80 −11.02
10 50 5 29 7 2.21 32 11 10.6 99.64 35.44
11 100 10 18 7 20.61 19 9 57.51 — 44.20
12 100 10 19 7 17.79 20 9 90.9 — 22.61
13 100 10 19 7 25.75 20 9 70.1 — 41.90
14 100 10 20 7 22.38 20 8 546.91 — −6.43
15 100 10 19 7 19.3 21 10 330.31 — 80.75
16 100 10 18 7 21.58 20 10 121.44 — 18.22
17 100 10 20 7 18.68 22 10 2992.58 — 22.31
18 100 10 19 7 16.07 21 10 4534.19 — 27.62
19 100 10 20 7 27.49 21 9 187.18 — 29.71
20 100 10 18 7 19.49 21 11 2528.67 — 88.68

Total cpu time 231.92 Total cpu time 11584.00

Table 6
Computational results obtained with the algorithm on the second data set instances using SP1

File no. size p Phase I Compl. algorithm

obj. Iter. no. cpu t. obj. Phase II iter. no. cpu t. Status

SJC1.dat 100 10 315.805328 12 26.82 364.72592 141 241980.88 Optimal
SJC2.dat 200 15 302.03476 11 235.52 304.13812 32 9075.2 Optimal
SJC3a.dat 300 25 274.016418 12 1076.54 278.95877 60 123559.82 Optimal
SJC3b.dat 300 30 244.002045 12 980.44 253.71243 104 41716.12 Optimal
SJC4a.dat 402 30 275.045441 12 3461.32 277.87228 51 512489.16 Lower bnd.
SJC4b.dat 402 40 236.072021 12 3293.28 239.38463 69 361921.28 Optimal

Tables 2and4 show that the cpu times that our algorithm exhibits in the first ten instances are quite
low when compared with the cpu times of CPLEX. Improvement of the algorithm over the cpu time of
CPLEX for each instance is given in right-most column of these tables. All of these improvement figures
in both of the tables are higher than 95% and most of them are around 99%. They clearly show that our
algorithm yields by far shorter solution times than CPLEX for both subproblems. All instances except
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Table 7
Computational results obtained with modified Phase II on the second data set instances using SPR

1

File no. Size p Phase I Compl. algorithm

Ph. IIa Ph. IIb
Obj. Iter. no. cpu t. Obj. Iter. no. Iter. no. cpu t. Status

SJC1.dat 100 10 315.80533 12 26.91 364.72592 102 40 196453.48 Opt.
SJC2.dat 200 15 302.03476 11 240.88 304.13812 32 1 2522.48 Opt.
SJC3a.dat 300 25 274.01642 12 1050.16 278.95877 56 5 37809.72 Opt.
SJC3b.dat 300 30 244.00205 12 1030.72 253.71243 91 14 13534.56 Opt.
SJC4a.dat 402 30 275.04544 12 3354.46 283.21899 134 13 974548.81 Lower b.
SJC4b.dat 402 40 236.07202 12 3372.53 239.38463 66 4 221112.05 opt.

Table 8
Computational results obtained with the algorithm on the third data set instances using SP1

File no. Size p Phase I Compl. algorithm

Obj. Iter. no. cpu t. Obj. Phase II iter. no. cpu t. Status

G1.txt 100 5 92 8 53.12 94 3 1237.43 Optimal
G2.txt 100 5 92 8 47.13 94 3 1362.37 Optimal
G3.txt 100 10 58 7 36.57 83 6 4511.32 Optimal
G4.txt 100 10 58 7 38.09 84 7 37972.31 Optimal
G5.txt 150 10 93 8 139.26 95 3 11318.17 Optimal
G6.txt 150 10 93 8 156.82 96 4 60668.63 Optimal
G7.txt 150 15 85 8 119.13 89 5 21193.79 Optimal
G8.txt 150 15 85 8 146.99 89 5 52427.16 Optimal

Table 9
Computational results obtained with modified Phase II on the third data set instances using SPR

1

File no. Size p Phase I Compl. Algorithm

Ph. IIa Ph. IIb
Obj. Iter. no. cpu t. Obj. Iter. no. Iter. no. cpu t. Status

G1.txt 100 5 92 8 54.62 94 3 1 322.6 Optimal
G2.txt 100 5 92 8 47.80 94 3 1 419.18 Optimal
G3.txt 100 10 58 7 37.65 83 6 1 1392.45 Optimal
G4.txt 100 10 58 7 39.28 84 7 1 3562.89 Optimal
G5.txt 150 10 93 8 148.98 95 3 1 8072.89 Optimal
G6.txt 150 10 93 8 164.46 96 4 1 10288.35 Optimal
G7.txt 150 15 85 8 125.06 89 5 1 10422.89 Optimal
G8.txt 150 15 85 8 149.68 89 5 1 18577.65 Optimal
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three (files 16, 17 and 20) are solved within 5.5min when the algorithm employs SP1. As for SP2, we see
in Table 4that files 15, 17, 18 and 20 could not be solved very efficiently.
In Tables 2and4we can also see that SP1 performs better than SP2 in 14 of the 20 instances. However,

the total of the cpu times for 20 instances display that SP2 (35711.56 s) took shorter time than SP1
(40161.11 s). This difference in the total solution times of the two subproblems is caused mainly by
instances 16 and 17. SP2 could solve instance 16 in 148.5 s and instance 17 in 3852.08 s. These solution
times are quite small compared to the figures yielded by SP1, 2147.98 s for instance 16 and 16664.12 s
for instance 17.Although SP1 gave better solution times for most of the instances, since its solution times
for the mentioned two instances turned out to be far higher than those of SP2, total cpu time measure tells
us SP2 worked faster on first data set. However, if we exclude the two instances from the total cpu time,
SP1 beats SP2 by 21349.01 to 31710.98 s. From these results we can say that SP1 works faster for most
of first data set instances, however, for some instances it may give high run times.
ComparingTables 2and3 we can assess the performance improvement of modification when SP1

is employed. In these two tables, in 4 of the instances (files 3, 7, 9 and 14), solution times of the
modified algorithm turned out to be slightly longer than those of the original algorithm. For the rest of
the instances, modified Phase II brought improvements that are displayed on the last column ofTable
3. These improvement figures clearly show that modification reduces the solution time of the algorithm
considerably. Total cpu time of the algorithm decreased from 40161.11 to 18075.67 s by themodification,
which is another sign of effectiveness of the modification in increasing the efficiency of the algorithm.
Similarly, from Tables 4and5 we see that four instances (files 4, 7, 9, 14) could be solved more

efficiently by the original algorithm using SP2. However, total cpu time is reduced from 35711.56 to
11,584 s by the modification. Also improvement figures once more clearly show that modification on
Phase II proves beneficial in increasing the efficiency of the algorithm on these instances.
If solution time of the original algorithm is already not high or number of Phase II iterations carried

out is low (e.g. one), then cpu time improvement obtained with the algorithmmay turn out to be low, even
negative. This is because our modification works by replacing some of IPs by MIPs in Phase II. At least
one IP remains in modified Phase II. If replaced IPs are already easy problems, then our modification
does not shorten solution time since we increase the total number of subproblems in second phase.
Our modification yields good results when replaced IPs are hard, bottleneck problems and their MIP
counterparts are more easily solvable. If our modification fails to by-pass the bottleneck problems, that
is, if the IPs that remain to be solved in modified Phase II are hard problems, then our modification brings
negligible or no improvement.
Whenwe compare performances of SP1 and SP2 inmodified Phase II (Tables3and5), we see that total

cpu time for SP1 is 18075.67 s, where the same figure for SP2 is 11584 s. However, a closer look at the
tables reveals that instance 17 turns out to be pathologic for SP1 (solved in 16180.69 s) and its solution
time constitutes most of the total cpu time. If we exclude this instance from total cpu time, we obtain a
total duration of 1894.98 s for SP1. The same total for SP2 is 8591.42 s, which is much higher than cpu
time corresponding to SP1. Similarly, results of modified algorithm tell that SP1 works faster for most of
the instances from OR-Lib, however, it may fail to give quick results for some of the instances. SP2 may
prove faster than SP1 for cases where SP1 took long time to solve.
In Tables 6–9we summarize our computational experience with problems that were used by Pallottino

et al. [10] to test their local search heuristic algorithms. These problems are usually much harder to
solve to optimality compared to the OR-Lib problems. Nevertheless, we were able to obtain optimal
solutions to most of these problems (with the exception of SJC4a, where we use the naming convention
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of Pallottino et al.[10] for test problems) albeit after very long computing times in certain cases. However,
it is inconceivable to obtain optimal solutions to these problems by an off-the-shelf solver such as CPLEX
even within such computing times. Furthermore, the solutions reported in[10] for the same test problems
were found to be never optimal. In fact, in most cases their solution were far from the optimal value. Our
contribution on the second and third set of test problems is to be able to solve, for the first time to the
best of our knowledge, to optimality these very difficult instances of capacitatedp-center problems. In
the only instance SJC4a where we were not able to find the optimal solution, our algorithm computed a
lower bound equal to 283.21899 after approximately 10 days of computing timewhereas the upper bound
computed by the Pallottino et al. heuristic is equal to 317.65 computed in approximately 10min of CPU
time. In the second set of test problems, the considerable increase in computing time can be attributed to
the fact that the distance matrices of these test problems contain very closely clustered distance values
which causes thenumber ofPhase II iterations to increase significantly.This difficulty is not aspronounced
in the third set of test problems, and we obtain the optimal solutions inTables 8and9 in more reasonable
computing times.We observe in the second and third set of problems that again the modification of Phase
II helps decrease run times of the algorithms. Hence, in all cases it is advisable to adopt the modified
Phase II algorithm.An exception occurred in the second set of test problems, in problem SJC4a where the
algorithm with modified Phase II took longer run time to reach a lower bound than the version without
the Phase II modification. The reason for this discrepancy is the following. In carrying out the tests on the
second and third set of data, we enforced an upper bound of 24h of CPU time (86,400 s) per subproblem.
When this bound was reached for any subproblem, the algorithm terminated with a lower bound, which
occurred only for SJC4a in our experiments. However, this bound was reached earlier in our run reported
in Table 6compared to the run inTable 7. Therefore, the algorithm with the modified Phase II carried
many more iterations (147 versus 51) than the algorithm without the modification. Hence, the longer
computing time.

5. Concluding remarks

In this paper, we propose an exact and practical algorithm for solving the capacitatedp-center problem.
To the best of our knowledge, it is the first algorithm that optimally solves the problem in general graphs.
We obtained excellent improvements over cpu times exhibited by CPLEX. However, we should state that
the algorithm we present here has still room for further improvements. Bottleneck of the algorithm is
the subproblems of Phase II. Thus, by decreasing the number of subproblems solved in Phase II and by
solving the subproblems more efficiently, we can reach smaller running time figures.
Tighter bounds from LP relaxation of SP1(.)(i.e., SPLR1 (.)) give a Phase I bound which is closer to

optimal radius value. This decreases the number of Phase II iterations. Obtaining tight bounds from
SPLR1 (.) may be possible by adding some valid inequalities or cuts to its formulation.
Moreefficient algorithms that exploit the special structuresofSP1 (thecapacitatedconcentrator location

problem) and SP2 (the bin-packing problem) can be applied to the subproblems and shorter running times
can be obtained. Indeed, several algorithms for each of these problems exist in the literature. However,
existing algorithms have to be modified to account for the differences of our subproblems from these
standard problems.
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