
Computers & Operations Research 34 (2007) 2463–2477
www.elsevier.com/locate/cor

Scheduling in a three-machine robotic flexible manufacturing cell
Hakan Gultekin, M. Selim Akturk∗, Oya Ekin Karasan
Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

Available online 26 October 2005

Abstract

In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading
of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible
enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research
in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the
number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known
parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated
the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit
and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles
in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new
robot move cycle which is a direct consequence of process and operational flexibility of CNC machines. We prove that this proposed
cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles. We also
present a worst case performance bound of using this proposed cycle.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Robotic cell; Cyclic scheduling; Automated manufacturing

1. Introduction

Industrial robots are used extensively in manufacturing companies performing tasks ranging from assembly to testing
and inspection. Material handling is one of the important applications of robots. A manufacturing cell in which loading
and unloading operations are made by robots is called a robotic cell. These kinds of robots are used extensively in
chemical, electronic and metal cutting industries. In this study, we restrict ourselves to robotic cells used in machining
applications. The machines used in such systems are predominantly CNC machines and they are capable of performing
several different operations by fast and inexpensive tool changes. Consequently, we assume that, each part to be
processed has a fixed number (p) of operations with identical operation times on the three machines (tl for operation
l) which can be performed in any order on the three machines. Furthermore, we assume that each operation can be
assigned to any one of the machines.

Three different cell layouts are considered in the literature for robotic cells: robot-centered cells (where the robot
movement is rotational), in-line robotic cells (where the robot moves linearly), and mobile-robot cells (generalization
of in-line robotic cell and robot-centered cell) [1]. In this study we deal with the in-line robotic cell layout with three

∗ Corresponding author. Tel.: +90 312 2664126; fax: +90 312 266 4054.
E-mail address: akturk@bilkent.edu.tr (M.S. Akturk).

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.09.015

http://www.elsevier.com/locate/cor
mailto:akturk@bilkent.edu.tr

2464 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

Input Buffer
Machine 1 Machine 2

Output Buffer
Machine 3

Linear Tracks
Robot

Fig. 1. Inline robotic cell layout.

machines as shown in Fig. 1. In these cells the robot moves on the linear tracks to transport the parts between the
machines. After loading a part on one of the machines, the robot either waits in front of the machine to finish the
processing, moves to unload another machine or moves to input buffer to take another part and load the first machine.
At any time instant, a part is either on one of the machines, on the robot or at the input or output buffer. Crama et al.
[2] state the following assumptions which can be referred to as basic feasibility assumptions:

(i) Robot never loads an already loaded machine.
(ii) Robot never unloads an already empty machine.

A state of the system can be specified by the position of the robot and whether the machines are loaded or empty.
Consistent with the literature, we will deal with cyclic schedules in this study.A cyclic schedule is one in which the robot
performs the same set of activities continuously. A cycle starts with an initial state of the system, the robot performs a
set of activities and when the system returns back to the initial state, the cycle is completed. A cycle in which n parts
are produced is called an n-unit cycle.

Various problems concerning the robotic cells arise in the literature. Crama et al. [2] and Dawande et al. [3] provide
extensive surveys in this research area. Sethi et al. [4] developed the necessary framework and proved that for 2-machine
identical parts case, the optimal solution is a 1-unit cycle and conjectured that 1-unit cycles are optimal for m-machine
robotic cells. They also proved that the number of 1-unit cycles in the m-machine case is exactly (m!). The validity of
the conjecture of Sethi et al. [4] for 3-machine robotic flow-shops is established by Crama and Van de Klundert [5].
Brauner and Finke [6] simplified this proof. In a later study, Brauner and Finke [7] proved that 1-unit cycles do not
necessarily yield optimal solutions for cells of size four or large. Hall et al. [8] showed that for multiple part types,
even in 2-machines case there are instances for which 1-unit cycles are dominated. Aneja and Kamoun [9] proposed
an O(n log n) time algorithm for the same problem which determines the optimal robot move cycle and the part input
sequence simultaneously. Geismar et al. [10] developed a 1.5 approximation for the multi-unit cyclic solution. Akturk
et al. [11] considered a robotic cell with two identical CNC machines which possess operational and process flexibility.
For this problem, they proved that 1-unit cycles are not necessarily optimal and that a 2-unit cycle can also be optimal
and presented the regions of optimality.

Current study deviates from the existing literature in that we assume the robotic cell to be a flexible manufacturing
cell (FMC). An FMC is a production cell consisting of CNC machines, connected through an automated material
handling system and controlled by a centralized computer. “Flexibility” is the key term which distinguishes FMCs
from traditional ones. There are several types of flexibilities such as machine, material handling, operation, process
and routing flexibilities. In this study we consider operation flexibility (the ability to change the ordering of several
operations) and process flexibility (the ability of machines to perform multiple operations). Such flexibilities are
achieved by considering alternative tool types for operations and loading multiple tools to the tool magazines of the
machines.

Furthermore, in this study we will investigate the additional flexibility introduced by the CNC machines. A new robot
move cycle which is a direct consequence of operational and process flexibilities will be proposed. We will compare
the cycle times (throughput values) of the proposed cycle and the robot move cycles considered in the literature thus
far and exhibit the regions of optimality.

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2465

In the following section, the notation and basic assumptions pertinent to this study will be introduced and a new cycle
will be proposed. In Section 3, the solution methodology will be introduced and a worst case performance bound of
using the proposed cycle will be derived. Section 4 is devoted to the concluding remarks and future research directions.

2. Notation and assumptions

In this section we present the basic assumptions and the notation to be used throughout this study as well as propose
a new cycle. We shall resort to the following definition borrowed from [12] throughout the text.

Definition 1. Ai is the robot activity defined as; robot unloads machine i, transfers part from machine i to machine
i + 1, loads machine i + 1. The input buffer is denoted as machine 0 and the output buffer is denoted as machine 4.

Using this definition we can list the six feasible 1-unit cycles of 3-machine robotic cells as follows:

S1 = (A0A1A2A3), S2 = (A0A2A1A3), S3 = (A0A1A3A2),

S4 = (A0A3A1A2), S5 = (A0A2A3A1), S6 = (A0A3A2A1).

The above definition of robot activities is necessary and enough for the traditional research in this area where the system
is assumed to be a flowshop. In such systems, all of the parts go through the same sequence of machines, namely 1,
2 and 3. However, in the settings of this study, each part may have an alternative route through the machines. This
flexibility results in new cycles and in order to represent these we need the following definition:

Definition 2. Aij is the robot activity defined as; robot unloads machine i, transfers part from machine i to machine j
and loads machine j, where j > i.

With the assumptions of this study we propose a new cycle which can be represented with the sequence of activities;
A01A02A03A14A24A34. In words, the robot first loads machines 1, 2 and 3 in respective order, all of the operations
of the parts are performed by a single machine, then the robot unloads machines 1, 2, and 3 and drops the parts to
the output buffer in respective order. Note that three parts are produced by a single repetition of this cycle, hence it
is a 3-unit cycle. The derivation of the cycle time for this proposed cycle is shown in Appendix A. (The animated
views of the proposed cycle and the 1-unit cycles considered in the literature so far can be found at the web site
http://www.ie.bilkent.edu.tr/∼robot.)

Let us first pinpoint the differences of this study from the classical ones. In traditional robotic cell scheduling literature,
the processing time of each part on each machine is a known parameter. However, in this study the processing times
of the parts on the machines are decision variables. The identical parts have a number of operations to be completed
on three machines and the individual operation times are known and identical for all machines. Let O = {1, 2, . . . , p}
be the set of all operations. The processing times of a part on each of the three machines depend on the allocation
of these operations to the machines. An allocation of operations to the three machines means partitioning set O into
three subsets; O1, O2 and O3, where Oi is the set of operations allocated to machine i. Consequently, by finding the
optimal allocation of the operations to the machines we can minimize the cycle time. Moreover, the allocation of the
operations to the machines need not be the same for all parts. The operations of each part can be allocated differently.
Since during one repetition of the cycle more than one part can be processed on different machines simultaneously,
having different allocations for these parts is an opportunity to minimize the cycle time. However, since we consider
cyclic production, that is, the robot performs the same set of activities repeatedly, after some point the allocation of the
operations of a part, say the (k +1)st part k =1, 2, . . . , becomes identical with the first part. Then, the allocation of the
operations of the parts 1 through k is used in the same order repeatedly for the remaining parts. That is, k is the period
of the allocation types. Note that, for a specific k, there are a finite (though large) number of different ways to allocate
the operations of the parts. For the clarity of the consequent discussion, we need the following definition and notation.

Definition 3. Let �k = [�ij] denote a specific allocation matrix with k different allocation types. The (i, j)th entry,
�ij, i = [1, 2, . . . , k] and j = [1, 2, 3], of this matrix corresponds to the set of operations allocated to the j th machine

http://www.ie.bilkent.edu.tr/robot

2466 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

for every (rk + i)th part in the infinite sequence where r = 0, 1, 2, For this matrix we have:

• Each row corresponds to a proper 3-partitioning of the operation set O. With our notation, for any i, �i1∪�i2 ∪�i3=O

and �i1 ∩ �i2 = ∅ and �i1 ∩ �i3 = ∅ and �i2 ∩ �i3 = ∅.
• No two rows are identical.

We also let �∗
k denote the optimal allocation of operations when a total of k different allocation types is used.

For example, for a cycle for which specific two different allocation types are used, the allocations of the operations
are represented as follows:

�2 =
[
�11 �12 �13
�21 �22 �23

]
.

That is, there are two distinct 3-partitions of operations to the machines which are used alternately. Before we proceed
with a numerical example let us list the remaining notation to be used throughout the text.

tl : Processing time of operation l. Note that the processing time of operation l on all three machines are equal,
∀l = 1, 2, . . . , p.

P : Total processing time of the operations that will be allocated to the machines, P = ∑p
l=1tl . Note that the

sum of the processing times on three machines corresponding to each row of the allocation matrix is also
equivalent to P.

Pij: Total processing time on machine j for the part which corresponds to the ith row of the specific allocation
matrix �. That is, Pij =∑

l∈�ij
tl . Also, we let P� = [Pij].

wij: Waiting time of the robot for machine j to finish the processing of the part which is produced according to the
ith row of the allocation matrix �. Note that, if the processing of the part is already finished when the robot
arrived to machine j, then the waiting time is 0.

�: The load and unload time of machines by the robot. Consistent with the literature we assume that load-
ing/unloading times for all machines are the same.

�: Time taken by the robot to travel between two consecutive machines.
TSj(�k): Cycle time, i.e., the long run average time that is required to produce one part using robot move cycle Sj and

the specific allocation matrix �k .

Example 1. Let us assume that each part has 5 operations to be performed on the three machines with corresponding
operation times t1 = 30, t2 = 25, t3 = 35, t4 = 30 and t5 = 15. Thus, total processing time of each part is P = 135.
Let us also assume that � = 2 and � = 4. Now consider the robot move cycle S6 which is defined by the following
activity sequence A0A3A2A1. In our study, the cycle time derived by Sethi et al. [4] corresponds to the case where the
allocations of the operations of all parts are identical. Let �1 be a specific allocation. Then, the cycle time for this case
is the following:

TS6(�1) = 8� + 12� + max{0, P11 − 4� − 8�, P12 − 4� − 8�, P13 − 4� − 8�}.
The optimal allocation in this case is: �∗

11 = {1, 5} with P ∗
11 = 45, �∗

12 = {2, 4} with P ∗
12 = 55, and �∗

13 = {3} with
P ∗

13 = 35. The corresponding cycle time is

TS6(�∗
1) = 64 + max{0, 45 − 40, 55 − 40, 35 − 40} = 79.

Now let us assume that two different allocation types are used repeatedly. That is, a specific allocation is now represented
by �2. The new cycle time to produce one part for this case is the following:

TS6(�2) = 8� + 12� + 1
2 max{0, P11 − 4� − 8�, P12 − 4� − 8�, P13 − 4� − 8�}

+ 1
2 max{0, P21 − 4� − 8�, P22 − 4� − 8�, P23 − 4� − 8�}.

The optimal allocations of the operations for this case are, in the first allocation type, �∗
11 = {1, 2}, �∗

12 = {3},
�∗

13 = {4, 5}. In other words, P ∗
11 = 55, P ∗

12 = 35 and P ∗
13 = 45. As for the second allocation type, �∗

21 = {4, 5} with

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2467

Fig. 2. Gantt chart for Example 1.

P ∗
21 = 45, �∗

22 = {1, 2} with P ∗
22 = 55, and finally �∗

23 = {3} with P ∗
23 = 35. Then the corresponding cycle time is the

following:

TS6(�
∗
2) = 64 + 1

2 max{0, 55 − 40, 55 − 40, 45 − 40} + 1
2 max{0, 45 − 40, 35 − 40, 35 − 40} = 74.

The Gantt chart in Fig. 2 compares these two cases. In order to see the difference, the Gantt chart of one allocation
case is drawn for two repetitions of the cycle. One can observe that the completion times of the first repetition of both
cycles (bold dashed line in the figure) are the same but the completion times of the second repetition of the robot
activities are different. In one allocation case the second repetition is exactly the same as the first repetition (which
means the processing times on the machines are the same). However, for two different allocations case, the time of the
second repetition is less than the first repetition because the total waiting time of the robot in front of the machines is
reduced by 10 units. Then, in order to produce 1 part, this makes 5 units or 5/79 = 6.3% decrease in between the cycle
times of these two cases.

In fact, in this example using three different types of allocations is optimal. The optimal allocation matrix and the
corresponding processing times are

�∗
3 =

[{1, 2} {4, 5} {3}
{3} {1, 2} {4, 5}

{4, 5} {3} {1, 2}

]
⇒ P ∗

� =
[55 45 35

35 55 45
45 35 55

]
.

The cycle time for this case is, TS6(�∗
3) = 70.67. The cycle time of the proposed cycle A01A02A03A14A24A34, with

given parameters is T = 69, which is optimal for this example. This corresponds to 10
79 = 12.7% decrease from the

best cycle time that can be found using the results reported in the literature. It is important to note that this significant
decrease in cycle time can be obtained with no additional cost, just by capturing the inherent flexibility of the CNC
machines.

At this point one can conjecture that if the whole processing of a part can be done on a single machine, there is
no reason for performing a portion of it on a machine and the rest on another. Thus, in this way some load/unload
time will be saved and the proposed cycle will always be optimal and there is no reason to consider the robot move

2468 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

cycles derived under the assumption of a flowshop type system. As we will see later in this study, this conjecture
holds when the robot is the bottleneck. That is, when the total processing time of the parts is small with respect to
the load/unload time, �, and transportation time, �. However, when the machines are bottleneck instead of the robot,
that is, total processing time might become greater with respect to � and �, the proposed cycle may result in higher
cycle time values. In other words, if the processing time exceeds some threshold then the average idle time of the ma-
chines waiting for some part to be loaded is greater in the proposed cycle. The following is a concrete example
to this nature.

Example 2. Consider 6 operations with t1 = 40, t2 = 45, t3 = 50, t4 = 60, t5 = 50, t6 = 55 so the total processing time
of each part is P = 300. Also let � = 2 and � = 10. In this case for cycle S6 let �1 be a specific allocation matrix in
which �11 = {1, 4}, �12 = {2, 6} and �13 = {3, 5} resulting in P11 = 100, P12 = 100 and P13 = 100. The cycle time
in this case is TS6(�1) = 148. On the other hand the cycle time of the proposed cycle is 152.

In the next section we will present the solution procedure for this problem and list the regions of optimality for the
proposed cycle.

3. Solution procedure

In this section we will compare the proposed cycle with the flowshop type robot move cycles presented in the
literature and find the regions of optimality for each of these cycles. Recall that the flowshop type robot move cycles are
those that are considered thus far in the research on this area except in Akturk et al. [11]. In these cycles each part to be
processed follows the same sequence of machines. Geismar et al. [10] provide a lower bound for the cycle time of such
classical robot move cycles when there are m machines. With Theorem 1, we extend this result to our case involving
the operation allocation problem as well. With Theorem 2, we are able to find the regions where the proposed cycle
dominates the flowshop type robot move cycles. Next, for the regions where the flowshop type robot move cycles are
not dominated; in Lemma 1 we will prove that the proposed cycle dominates all 1-unit cycles except S6 and in Lemma
3 we will prove that the proposed cycle dominates all 2-unit cycles. Theorem 3 derives a worst case performance bound
for using the proposed cycle.

In the following theorem we will derive a lower bound for the cycle time of the flowshop type robot move cycles.
Let Tflowshop represent the lower bound for these cycles. Note that, Tflowshop �minSj,k{TSj(�∗

k)
}. That is, the lower

bound is over all flowshop type robot move cycles, Sj’s, and for the optimal allocations, �∗
k , over all possible allocation

periods, k.
The following result will prove useful when comparing the proposed cycle’s times with those of the flowshop type

robot move cycles. The fact that the result is allocation independent is further going to ease our analysis.

Theorem 1. For a 3 machine robotic cell, the cycle time of any n-unit flowshop type robot move cycle with any
allocation matrix �k is no less than

Tflowshop = max{8(� + �) + min{P, �}, 4� + 4� + (P/3)}. (1)

Proof. Let us consider any specific allocation matrix �k . The reasoning behind the first term in the max function
is as follows: the robot loads and unloads all 3 machines exactly once, (6�), also takes a part from the input buffer,
(�), and drops a part to the output buffer, (�), in every cycle. Then the total load and unload time is exactly 8�. As
the forward movement, the robot travels all the way from the input buffer to the output buffer in some sequence of
robot activities, which takes at least 4� and in order to return back to the initial state the robot must travel back to the
input buffer which again takes at least 4�. Thus the travel time is at least 8�. On the other hand, after loading a part
to machine j, the robot has two options: it either waits in front of the machine, (Pij) or travels to another machine to
make some other activities which at least takes � time units. Then, for all allocation types and for all machines, we have∑k

i=1
∑3

j=1 min{Pij, �}/k. We divide by k since we defined the cycle time as the time required to produce one part.

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2469

Furthermore, since min{P, �}�∑3
j=1 min{Pij, �}, we have, (1/k)

∑k
i=1 min{P, �} = min{P, �} and the first term of

the max function becomes,

8(� + �) + min{P, �}.
The reasoning behind the second term of the max function is the following: the cycle time of any cycle is greater

than the time between two consecutive loadings of a machine for which the consecutive loading time is the greatest.
But in order to make a consecutive loading, the robot must at least perform the following activities: after loading a part
to some machine j, the robot either waits in front of the machine or makes some other activities which takes at least
Pij amount of time; then, the robot unloads machine j, (�); transports the part to machine (j + 1), (�); loads it, (�);
returns back to machine (j − 1), (2�); unloads it, (�); transports the part to machine j, (�); and loads it, (�). This in
total makes 4� + 4� + Pij. In order to find the greatest consecutive loading time we take maxij{Pij}. However, since∑3

j=1Pij = P ∀i, we have, P/3�maxi,j {Pij}. Then the second term of the max function becomes 4� + 4� + P/3.
This completes the proof. �

The forthcoming theorem compares the cycle time of the proposed cycle with the lower bound of the traditional
robot move cycles and provides the regions where the proposed cycle is optimal.

Theorem 2. If ��2� or P �16� + 13�, then the proposed cycle gives the minimum cycle time.

Proof. In order to prove this theorem we will compare the cycle time of the proposed cycle given in (A.1) and
the lower bound of the cycle times of the flowshop type move cycles given in (1). When we consider Tflowshop,
there are two breakpoints with respect to P where the cycle time has a different form. These are: (P = �) and
(P = 12� + 15�). The first one of these comes from the two arguments of the min term inside the max and the
second breakpoint comes from the comparison of the two arguments of the max term. In the same way Tproposed
also has a breakpoint with respect to P, which is: (P = 4� + 10�). Comparing this with the ones we get from
Tflowshop, one can easily show that � < 4� + 10� < 12� + 15�. In the following cases we will consider each of these
regions:

1. If P ��, then the cycle time of the proposed cycle is

Tproposed = 4� + 8�.

The lower bound of the cycle times of flowshop type robot move cycles is

Tflowshop = 8� + 8� + P ⇒ Tproposed < Tflowshop.

2. If � < P �4� + 10�, then Tproposed = 4� + 8� < 8� + 9� = Tflowshop.

3. If 4�+10� < P �12�+15�, then Tproposed = 1
3 (8�+14�+P) and Tflowshop =8�+9�. Comparing these two, one can

show that the proposed cycle dominates the flowshop type robot move cycles if P �16� + 13� and no dominance
relations exist otherwise. On the other hand, if ��2� then 16� + 13��12� + 15�. This means that for ��2� the
breakpoint is outside the region of consideration which means the proposed cycle dominates all of the flowshop
type robot move cycles.

4. If P > 12� + 15�, then Tproposed = 1
3 (8� + 14� + P) and Tflowshop = 4� + 4� + P/3. Comparing these two, one can

show that for ��2� the proposed cycle dominates the flowshop type robot move cycles but for � > 2� no dominance
relations exist. �

Now let us consider the region where the lower bound of the flowshop type robot move cycles is less than the
cycle time of the proposed robot move cycle. That is, � > 2� and P > 16� + 13�. First we concentrate on the 1-
unit robot move cycles since they are simple, practical, easy to understand and provably optimal for 3-machine
flowshop type systems. The following lemma is very useful in reducing the number of potentially optimal robot
move cycles.

2470 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

Lemma 1. The proposed cycle dominates all flowshop type 1-unit cycles except S6.

Proof. Let us consider each 1-unit cycle one by one:
S1: For the cycle S1, whatever the allocation of the operations is, the cycle time is the same. The cycle time derived

by Sethi et al. [4] is

TS1(�k) = 8� + 8� + P .

As it is seen, the cycle time does not depend on the allocation. When we compare this cycle time with the cycle time
of the proposed cycle given in (A.1), Tproposed < TS1(�k). Thus we conclude that the proposed cycle dominates S1.

S2: Let us derive the cycle time of the cycle S2 considering the assumptions of this study. Consider an arbitrary
allocation matrix �k and the ith repetition of this cycle. Initially the second machine is loaded with a part having
allocation type (i −1) and the robot is in front of the input buffer. The robot takes a part from the input buffer and loads
it to the first machine, (2�+�), moves to second machine, waits if necessary for the machine to finish the processing of
the part with allocation type (i − 1), (� + w(i−1)2), unloads the second machine and loads the third machine, (2� + �),
moves to the first machine, waits if necessary for the machine to finish the processing of the part with allocation type i,
(2� + wi1), unloads the first machine and loads the second machine, (2� + �), moves to the third machine and waits if
necessary for the part with allocation type (i − 1), (� + w(i−1)3), unloads the machine and drops the part to the output
buffer, (2� + �), returns back to input buffer, (4�). Hence the time for the ith repetition of the cycle S2 with allocation
matrix �k becomes

8� + 12� + wi1 + w(i−1)2 + w(i−1)3.

Let us denote max{0, a} as (a)+. With this notation, wi1 = (Pi1 − 2� − 4� − w(i−1)2)
+, w(i−1)2 = (P(i−1)2 − 4� −

8� − w(i−1)3)
+ and w(i−1)3 = (P(i−1)3 − 2� − 4� − wi1)

+ are the waiting times in front of the machines 1, 2 and 3,
respectively. For all k repetitions, we have the following:

TS2(�k) = 8� + 12� + 1/k

(
k∑

i=1

(wi1 + w(i−1)2 + w(i−1)3)

)
.

Using the fact that a�(a)+ we get

k∑
i=1

(wi1 + w(i−1)2 + w(i−1)3)�
k∑

i=1

(Pi1 + P(i−1)2 + P(i−1)3 − 8� − 16�)

−
k∑

i=1

(wi1 + w(i−1)2 + w(i−1)3)

Since the allocation of every (rk + i)th part in the infinite sequence is identical, then

k∑
i=1

(Pi1 + P(i−1)2 + P(i−1)3 − 8� − 16�) = k(P − 8� − 16�)

and

k∑
i=1

(wi1 + w(i−1)2 + w(i−1)3) =
k∑

i=1

(wi1 + w(i−1)2 + w(i−1)3) = W ,

where W is defined to be the total waiting time in front of the three machines for the k parts produced according to the
allocation matrix �k . This yields

2W �k(P − 8� − 16�) ⇒ W �k/2(P − 8� − 16�).

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2471

Thus for S2 we have

TS2(�k) �8� + 12� + 1/k(k/2(P − 8� − 16�)) = 1
2 (8� + 8� + P). (2)

S3: Using the above procedure, the time for the ith repetition of S3 is

8� + 10� + Pi1 + wi2 + w(i−1)3,

where wi2 = (Pi2 − 2� − 4� − w(i−1)3)
+ and w(i−1)3 = (P(i−1)3 − 4� − 6� − Pi1)

+ are the waiting times in front of
machines 2 and 3, respectively. Then we have the following:

Pi1 + wi2 + w(i−1)3 �Pi1 + Pi2 − 2� − 4� − w(i−1)3 + P(i−1)3 − 4� − 6� − Pi1.

This yields

2(Pi1 + wi2 + w(i−1)3)�2(Pi1 + w(i−1)3) + wi2 �Pi1 + Pi2 + P(i−1)3 − 6� − 10�.

For all k repetitions we have the following:

2
k∑

l=1

(Pi1 + wi2 + w(i−1)3)�
k∑

l=1

(Pi1 + Pi2 + P(i−1)3 − 6� − 10�).

Let W be as defined previously. Then we can write the following:

2W �P − 6� − 10� ⇒ W � 1
2 (P − 6� − 10�).

Then for S3 we have the following:

TS3(�k) �8� + 10� + 1
2 (P − 6� − 10�) = 1

2 (P + 10� + 10�). (3)

S4: Total time for the ith repetition of S4 is the following:

8� + 12� + wi1 + Pi2 + w(i−1)3,

where wi1 = (Pi1 − 2�− 6�−w(i−1)3)
+ and w(i−1)3 = (P(i−1)3 − 2�− 6�)+ are the waiting times in front of machines

1 and 3, respectively. A similar procedure that we used for S3 yields, W � 1
2 (P − 4� − 12�) and

TS4(�k) � 1
2 (12� + 12� + P). (4)

S5: Total time for the ith repetition of S5 is the following:

8� + 10� + wi1 + w(i−1)2 + P(i−1)3,

where wi1 = (Pi1 − 4� − 6� − w(i−1)2 − P(i−1)3)
+ and w(i−1)2 = (P(i−1)2 − 2� − 4�)+ are the waiting times in front

of the machines 1 and 2, respectively. From here we get, W � 1
2 (P − 6� − 10�) and the lower bound for S5 becomes

TS5(�k) � 1
2 (10� + 10� + P). (5)

Comparing the lower bounds for the cycles S2, S3, S4 and S5, given in Eqs. (2), (3), (4) and (5), respectively, we
get the following:

TS2(�k) < TS3(�k) = TS5(�k) < TS4(�k),

where TSj(�k) = min�k
{TSj(�k)}. Let us compare TS2(�k) = 1

2 (P + 8� + 8�) with the cycle time of the proposed cycle
given in (A.1):

1
2 (8� + 8� + P) = 1

2 (1
3 (24� + 24� + 3P)).

2472 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

Since in this region P > 16� + 13�,

1
6 (24� + 24� + 2P + P) > 1

6 (40� + 37� + 2P) = 1
3 (20� + (18.5)� + P)

> 1
3 (8� + 14� + P) = Tproposed.

Thus we can conclude that the proposed cycle dominates S2, S3, S4 and S5.
S6: Example 2 shows that S6 cannot be dominated by the proposed robot move cycle. �

1-unit cycles are important because they are simple, practical and easy to understand. Also if the system is assumed
to be a flowshop then 1-unit cycles are provably optimal for 2-machine cells [4] and 3-machine cells [5]. However,
Akturk et al. [11] proved that with the assumption of operational flexibility, even in 2-machines case, a 2-unit cycle
can result in smaller cycle times than the 1-unit robot move cycles for some parameter ranges. This motivates us to
consider the 2-unit cycles. Hall et al. [8] derived the activity sequences of all feasible 2-unit cycles in a 3-machine
robotic cell. In Appendix B we present a completely new procedure to derive the activity sequences of these cycles and
list them. This new procedure utilizes the fact that all 2-unit cycles are made up from two 1-unit cycles. That is, let Si
and Sj be two different 1-unit cycles. Then, in a 2-unit cycle, Sij is simply a combination of Si and Sj; during some part
of the cycle the robot follows the activity sequence of Si and during the remaining part of the cycle the robot follows
the activity sequence of Sj.

The following lemma derives a general lower bound, T2, for all of the 2-unit robot move cycles with any allocation
matrix �k .

Lemma 2. T2 = 1
2 (P + 8� + 8�) where T2 �minSij,k{TSij(�∗

k
)
}.

Proof. For the clarity of the presentation, we refer the reader to Appendix C for the proof. �

The following lemma proves that the proposed cycle dominates all flowshop type 2-unit robot move cycles.

Lemma 3. The proposed cycle dominates all flowshop type 2-unit cycles.

Proof. With Theorem 2 we assert that the proposed cycle gives the minimum cycle time for P �16�+ 13�. Now let us
consider the region where P > 16� + 13�. In this region the cycle time of the proposed cycle given in (A.1) becomes
4� + 8� + 1

3 (P − 4� − 10�) which can be rewritten as 1
3 (P + 8� + 14�). When we compare this cycle time with the

lower bound we found in Lemma 2, we have the following:

T2 = 1
2 (P + 8� + 8�) = 1

6 (3P + 24� + 24�)� 1
6 (2P + 40� + 37�)

= 1
3 (P + 20� + (18.5)�) > 1

3 (P + 8� + 14�) = Tproposed.

This completes the proof. �

Until now we considered all the 1 and 2-unit cycles and showed that the proposed cycle dominates all except the
1-unit cycle S6. Knowing that the proposed cycle dominates all 2-unit cycles, one can conjecture that it also dominates 3
and higher unit cycles. Proving or disproving this conjecture is not so simple because the number of feasible robot move
cycles increases drastically as n, the number of units produced in one cycle increases and deriving and comparing these
cycles with the proposed cycle become quite complex. Additionally, the proposed cycle is simple, practical and easy
to implement. Furthermore, there is no allocation problem to be solved for this cycle. More importantly, the following
theorem derives a worst case bound for using the proposed cycle. As a result of these observations, we conclude that
what little improvement we might attain (if any) by considering 3 and higher unit cycles will not be sufficient enough
to justify the effort that will be spent for this purpose.

Theorem 3. The worst case performance bound of using the proposed cycle is 1.08.

Proof. Let us consider the region � > 2� and P > 16� + 13� since otherwise the proposed cycle is optimal as stated in
Theorem 2. Let T ∗ represent the cycle time of the optimal robot move cycle with optimal allocation matrix. We know

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2473

from (1) that T ∗ � 1
3 (12� + 12� + P). Thus we have

Tproposed

T ∗ �
1
3 (8� + 14� + P)

1
3 (12� + 12� + P)

= 1 + 2� − 4�

12� + 12� + P
.

Since P > 16� + 13�,

Tproposed

T ∗ < 1 + 2� − 4�

25� + 28�
.

Let � = �� where ��2;

Tproposed

T ∗ < 1 + 2� − 4

25� + 28
.

In order to find the worst case performance take the limit as (� → ∞);

lim
�→∞

(
1 + 2� − 4

25� + 28

)
= 1.08. �

� being infinity means that the load/unload time is negligibly small. One can also assume it to be infinity if the robot
travel time is extremely high. However, the latter case does not have much practical relevance.

4. Conclusion

In this study we considered a 3-machine FMC in which the loading and unloading of the machines are made by a
robot. The machines in an FMC are CNC machines and they possess different kinds of flexibilities. In this paper we
focused on the process and operational flexibilities. In existence of such flexibilities, we assumed identical parts, each
having a number of operations to be performed on these three machines. We also assumed all machines to be able to
perform all the required operations in order to finish the processing of a part. We investigated the productivity gain
attained by the additional flexibility introduced by the FMCs.

We proposed a new robot move cycle which is a direct consequence of the assumption of process and operational
flexibilities. In Theorem 1, we derived a lower bound for the flowshop type robot move cycles considered in the
literature and compared this lower bound with the cycle time of the proposed cycle. In Theorem 2, we found the regions
of optimality for the proposed cycle. We then considered the 1-unit and 2-unit cycles individually and showed that
the proposed cycle dominates all of the 1-unit robot move cycles except S6 and dominates all of the 2-unit robot
move cycles.

Options for future research includes extending the results of this study to the m-machine general case, assuming
non-identical machines so that the processing time of the tasks on different machines are different, assuming multiple
parts instead of identical parts so that each of them has a number of operations to be allocated to the three machines,
and assuming the machines to have limited tool magazine capacity so that they can hold a limited number of tools thus
preventing them to perform all the operations that a part requires.

Appendix A. Cycle time calculation of the proposed cycle

We will derive the cycle time of the proposed cycle (the animated view can be found at http://www.ie.bilkent.edu.tr/
∼robot). Initially the robot is in front of the input buffer and all of the machines are empty. The robot takes a part from
the input buffer, transports it to the first machine and loads it to the first machine, (� + � + �); returns back to the input
buffer, takes another part, transports it to the second machine, loads the second machine, (� + � + 2� + �); returns
back to the input buffer, takes the third part, transports to the third machine and loads this machine, (2� + � + 3� + �);
returns back to the first machine in order to unload the machine, (2�); if the processing of the part is already finished,
unloads the machine without waiting, otherwise waits in front of the machine in order to finish the processing, (w1);
unloads the machine, transports the part to the output buffer, drops the part, returns back to the second machine in

http://www.ie.bilkent.edu.tr/robot
http://www.ie.bilkent.edu.tr/robot

2474 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

order to unload the machine, (� + 3� + � + 2�); waits if necessary, (w2); unloads the machine, transports the part to
the output buffer, drops the part, returns back to the third machine, (� + 2� + � + �); waits if necessary, (w3); unloads
the machine, transports the part to the output buffer, drops the part, returns back to the input buffer so that the initial
and the final states of the cycle will be identical, (� + � + � + 4�). Then the total time to produce three parts is

12� + 24� + w1 + w2 + w3,

where w1 = max{0, P − 4� − 10�}, w2 = max{0, P − 4� − 12� − w1} and w3 = max{0, P − 4� − 10� − w1 − w2}.
From here,

w1 + w2 = max{w1, P − 4� − 12�} = max{0, P − 4� − 10�, P − 4� − 12�}
= max{0, P − 4� − 10�}

and

w1 + w2 + w3 = w1 + w2 + max{0, P − 4� − 10� − w1 − w2} = max{w1 + w2, P − 4� − 10�}
= max{0, P − 4� − 10�, P − 4� − 10�} = max{0, P − 4� − 10�}.

Then, the long run average cycle time to produce one part is

Tproposed = 4� + 8� + 1
3 max{0, P − 4� − 10�}. (A.1)

Appendix B. Derivation of the 2-unit robot move cycles

Let us present the procedure for deriving the activity sequences for the 2-unit robot move cycles. In a 2-unit cycle,
each activity is made exactly twice. A 2-unit robot move cycle is in fact a combination of two 1-unit cycles. At some
part of the 2-unit cycle it follows the activity sequence of one of the 1-unit cycles and in the remaining part it follows
the activity sequence of the other 1-unit cycle. Then, in order to follow the activity sequences of two 1-unit robot move
cycles, there must be a transition state from one of them to the other and later another transition from the latter one
to the initial. This requires the two 1-unit robot move cycles to have at least one common state. In the context of this
study, any state of the system can be defined as a triplet (x1x2x3), xi ∈ {0, 1} where xi = 0 indicates that machine
i is empty and xi = 1 indicates that machine i is loaded. For example, (011) is a state in which machine 1 is empty
and machines 2 and 3 are loaded. The following lists the activity sequences and the states of all 1-unit robot move
cycles:

S1 : A0A1A2A3 : (000) → (100) → (010) → (001)

S2 : A0A2A1A3 : (010) → (110) → (101) → (011)

S3 : A0A1A3A2 : (001) → (101) → (011) → (010)

S4 : A0A3A1A2 : (001) → (101) → (100) → (010)

S5 : A0A2A3A1 : (010) → (110) → (101) → (100)

S6 : A0A3A2A1 : (011) → (111) → (110) → (101)

In the above list all cycles have a common state with each other except cycles S1 and S6. This means that we will
have C(6, 2) − 1 = 14, 2-unit robot move cycles. Let us give an example of constructing a 2-unit robot move cycle
from two 1-unit robot move cycles. Let Sij be defined as the 2-unit cycle made up from 1-unit cycles Si and Sj. Let us
consider S1 and S2 for this example. The common state for these two cycles is (010). Thus, without loss of generality,
we may start with the activities of S1 and follow them until we reach state (010); A0A1 At the common state we
start following the activity sequence of S2 until we reach to that common state again; A0A1A0A2A1A3 Finally,
we end up with the remaining activities of S1; A0A1A0A2A1A3A2A3.

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2475

The robot activity sequences for each of the 14 2-unit robot move cycles over 3-machines are listed below.

S12 = A0A1A0A2A1A3A2A3 S26 = A0A2A1A0A3A2A1A3
S13 = A0A1A2A0A1A3A2A3 S34 = A0A1A3A2A0A3A1A2
S14 = A0A1A2A0A3A1A2A3 S35 = A0A1A3A0A2A3A1A2
S15 = A0A1A0A2A3A1A2A3 S36 = A0A1A0A3A2A1A3A2
S23 = A0A1A3A0A2A1A3A2 S45 = A0A2A3A1A2A0A3A1
S24 = A0A2A1A3A2A0A3A1 S46 = A0A1A0A3A2A3A1A2
S25 = A0A2A1A3A0A2A3A1 S56 = A0A2A1A0A3A2A3A1

Appendix C. Derivation of lower bounds for the 2-unit robot move cycles

Let TSij(�∗
k
)

be the lower bound of the cycle time of the 2-unit cycle Sij with any allocation matrix �k . Note that

TSij(�∗
k
)
�min�k

{TSij(�k)
}. We will show that T2 �TSij(�∗

k
)
. We will consider each 2-unit cycle, Sij, one at a time and

derive a lower bound, TSij(�∗
k
)
, for each of them. For each of these cycles, we will consider one repetition of the cycle

where we assume w.l.o.g. that the cycle starts with the state that the robot is in front of the input buffer just taking a part
with ith allocation type. We will find a lower bound for the total time of this particular repetition and show that this
lower bound does not depend on i, which means that the lower bound for the total time of this repetition of the cycle is
also a lower bound for the total time of all repetitions of the cycle. Now let us consider each 2-unit cycle one at a time.

S12: Using a similar procedure used in Appendix A, one can calculate the total time for one repetition of this cycle
starting with loading a part with ith allocation type as 16� + 20� + Pi1 + wi2 + w(i+1)1 + wi3 + w(i+1)2 + P(i+1)3,
where wi2 = (Pi2 − 2� − 4�)+, w(i+1)1 = (P(i+1)1 − 2� − 4� − wi2)

+, wi3 = (Pi3 − 2� − 4� − w(i+1)1)
+ and

w(i+1)2 = (P(i+1)2 − 2� − 4� − wi3)
+.

Since we have Pi2 −2�−4��wi2, Pi3 −2�−4�−w(i+1)1 �wi3, 0�w(i+1)2 and 0�P(i+1)3, we have 16�+20�+
Pi1 +Pi2 −2�−4�+w(i+1)1 +Pi3 −2�−4�−w(i+1)1 �16�+20�+Pi1 +wi2 +w(i+1)1 +wi3 +w(i+1)2 +P(i+1)3.
Since in a 2-unit cycle two parts are produced in one repetition, a lower bound to produce one part can be found as

TS12(�∗
k
)
= 1

2 (P + 12� + 12�) > T2.

S13: Total time of one repetition of this cycle is 16� + 18� + Pi1 + Pi2 + P(i+1)1 + wi3 + w(i+1)2 + P(i+1)3, where
wi3 = (Pi3 − 4� − 6� − P(i+1)1)

+ and w(i+1)2 = (P(i+1)2 − 2� − 4� − wi3)
+.

Since P(i+1)2−2�−4�−wi3 �w(i+1)2, we have 16�+18�+P(i+1)1+wi3+P(i+1)2−2�−4�−wi3+P(i+1)3 �16�+
18� + Pi1 + Pi2 + P(i+1)1 + wi3 + w(i+1)2 + P(i+1)3. Thus, a lower bound for the time to produce one part can be
found as

TS13(�∗
k
)
= 1

2 (P + 14� + 14�) > T2.

S14: Total time of one repetition of this cycle is 16� + 20� + Pi1 + Pi2 + w(i+1)1 + wi3 + P(i+1)2 + P(i+1)3, where
wi3 = (Pi3 − 2� − 6�)+ and w(i+1)1 = (P(i+1)1 − 2� − 6� − wi3)

+.
Since P(i+1)1−2�−6�−wi3 �w(i+1)1, we have 16�+20�+P(i+1)1−2�−6�−wi3+wi3+P(i+1)2+P(i+1)3 �16�+

20� + Pi1 + Pi2 + w(i+1)1 + wi3 + P(i+1)2 + P(i+1)3. Thus, a lower bound for the time to produce one part can be
found as

TS14(�∗
k
)
= 1

2 (P + 14� + 14�) > T2.

S15: Total time of one repetition of this cycle is 16� + 18� + Pi1 + wi2 + w(i+1)1 + Pi3 + P(i+1)2 + P(i+1)3, where
wi2 = (Pi2 − 2� − 4�)+ and w(i+1)1 = (P(i+1)1 − 4� − 6� − wi2 − Pi3)

+.
Since Pi2 − 2� − 4��wi2 and 0�w(i+1)1, a lower bound for the total time to produce one part can be found as

TS15(�∗
k
)
= 1

2 (P + 14� + 14�) > T2.

2476 H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477

S23: Total time of one repetition of this cycle is 16� + 22� + Pi1 + w(i−1)3 + wi2 + w(i+1)1 + wi3 + w(i+1)2, where
w(i−1)3 = (P(i−1)3 − 4� − 6� − Pi1)

+, wi2 = (Pi2 − 4� − 8� − w(i−1)3)
+, w(i+1)1 = (P(i+1)1 − 2� − 4� − wi2)

+,
wi3 = (Pi3 − 2� − 4� − w(i+1)1)

+ and w(i+1)2 = (P(i+1)2 − 2� − 6� − wi3)
+.

Since Pi2 − 4� − 8� − w(i−1)3 �wi2, Pi3 − 2� − 4� − w(i+1)1 �wi3 and 0�w(i+1)2, a lower bound for the total
time to produce one part can be found as

TS23(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

S24: Total time of one repetition of this cycle is 16� + 24� + w(i−1)2 + wi1 + w(i−1)3 + wi2 + wi3 + w(i+1)1,
where w(i−1)2 = (P(i−1)2 − 2� − 4�)+, wi1 = (Pi1 − 2� − 4� − w(i−1)2)

+, w(i−1)3 = (P(i−1)3 − 2� − 4� − wi1)
+,

wi2 = (Pi2 − 2� − 4� − w(i−1)3)
+, wi3 = (Pi3 − 2� − 6�)+ and w(i+1)1 = (P(i+1)1 − 2� − 6� − wi3)

+.
Since Pi1 − 2� − 4� − w(i−1)2 �wi1, Pi2 − 2� − 4� − w(i−1)3 �wi2, Pi3 − 2� − 6��wi3 and 0�w(i+1)1, a lower

bound for the total time to produce one part can be found as

TS24(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

S25: Total time of one repetition of this cycle is 16� + 22� + w(i−1)2 + wi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1,
where w(i−1)2 = (P(i−1)2 − 2� − 4�)+, wi1 = (Pi1 − 2� − 4� − w(i−1)2)

+, w(i−1)3 = (P(i−1)3 − 2� − 4� − wi1)
+,

wi2 = (Pi2 − 4� − 8� − w(i−1)3)
+ and w(i+1)1 = (P(i+1)1 − 4� − 6� − wi2 − Pi3)

+.
Since, Pi1 − 2� − 4� − w(i−1)2 �wi1, Pi2 − 4� − 8� − w(i−1)3 �wi2 and 0�w(i+1)1, a lower bound for the total

time to produce one part can be found as

TS25(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

S26: Total time of one repetition of this cycle is 16� + 24� + w(i−1)2 + wi1 + w(i−1)3 + wi2 + wi3 + w(i+1)1, where
w(i−1)2 = (P(i−1)2 − 4� − 8� − wi3)

+, wi1 = (Pi1 − 2� − 4� − w(i−1)2)
+, w(i−1)3 = (P(i−1)3 − 4� − 8� − wi1)

+,
wi2 =(Pi2 −4�−8�−w(i−1)3)

+, w(i+1)1 =(P(i+1)1 −4�−8�−w(i−1)3 −wi2)
+ and wi3 =(Pi3 −2�−4�−w(i+1)1)

+.
Since Pi1 − 2� − 4� − w(i−1)2 �wi1, Pi2 − 4� − 8� − w(i−1)3 �wi2 and Pi3 − 2� − 4� − w(i+1)1 �wi3, a lower

bound for the total time to produce one part can be found as

TS26(�∗
k
)
= 1

2 (P + 8� + 8�) = T2.

S34: Total time of one repetition of this cycle is 16� + 22� + Pi1 + w(i−1)3 + wi2 + wi3 + w(i+1)1 + P(i+1)2,
where w(i−1)3 = (P(i−1)3 − 4� − 6� − Pi1)

+, wi2 = (Pi2 − 2� − 4� − w(i−1)3)
+, wi3 = (Pi3 − 2� − 6�)+ and

w(i+1)1 = (P(i+1)1 − 2� − 6� − wi3)
+.

Since Pi2 −2�−4�−w(i−1)3 �wi2, Pi3 −2�−6��wi3 and 0�w(i+1)1, a lower bound for the total time to produce
one part can be found as

TS34(�∗
k
)
= 1

2 (P + 12� + 12�) > T2.

S35: Total time of one repetition of this cycle is 16� + 20� + Pi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1 + P(i+1)2, where
w(i−1)3 =(P(i−1)3 −4�−6�−Pi1)

+, wi2 =(Pi2 −4�−8�−w(i−1)3)
+ and w(i+1)1 =(P(i+1)1 −4�−6�−wi2 −Pi3)

+.
Since Pi2 − 4� − 8� − w(i−1)3 �wi2 and 0�w(i+1)1, a lower bound for the total time to produce one part can be

found as

TS35(�∗
k
)
= 1

2 (P + 12� + 12�) > T2.

S36: Total time of one repetition of this cycle is 16� + 22� + Pi1 + w(i+1)1 + w(i−1)3 + wi2 + wi3 + w(i+1)2, where
w(i−1)3=(P(i−1)3−6�−10�−Pi1)

+, wi2 =(Pi2 −4�−8�−w(i−1)3)
+, w(i+1)1=(P(i+1)1−4�−8�−w(i−1)3−wi2)

+,
wi3 = (Pi3 − 2� − 4� − w(i+1)1)

+ and w(i+1)2 = (P(i+1)2 − 2� − 4� − wi3)
+.

Since Pi2 − 4� − 8� − w(i−1)3 �wi2, Pi3 − 2� − 4� − w(i+1)1 �wi3 and 0�w(i+1)2, a lower bound for the total
time to produce one part can be found as

TS36(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

H. Gultekin et al. / Computers & Operations Research 34 (2007) 2463–2477 2477

S45: Total time of one repetition of this cycle is 16� + 22� + w(i−1)2 + P(i−1)3 + wi1 + Pi2 + wi3 + w(i+1)1,
where w(i−1)2 = (P(i−1)2 − 2� − 4�)+, wi1 = (Pi1 − 4� − 6� − w(i−1)2 − P(i−1)3)

+, wi3 = (Pi3 − 2� − 6�)+ and
w(i+1)1 = (P(i+1)1 − 2� − 6� − wi3)

+.
Since Pi1 − 4�− 6�−w(i−1)2 −P(i−1)3 �wi1, Pi3 − 2�− 6��wi3 and 0�w(i+1)1, a lower bound for the total time

to produce one part can be found as

TS45(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

S46: Total time of one repetition of this cycle is 16� + 20� + Pi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1 + w(i+1)2, where
w(i−1)3 = (P(i−1)3 − 6� − 10� − Pi1)

+, wi2 = (Pi2 − 4� − 8� − w(i−1)3)
+ and w(i+1)1 = (P(i+1)1 − 6� − 10� −

w(i−1)3 − wi2 − Pi3)
+.

Since Pi2 − 4� − 8� − w(i−1)3 �wi2 and 0�w(i+1)1, a lower bound for the total time to produce one part can be
found as

TS46(�∗
k
)
= 1

2 (P + 12� + 12�) > T2.

S56: Total time of one repetition of this cycle is 16� + 22� + w(i−1)2 + wi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1,
where w(i−1)2 = (P(i−1)2 − 2� − 4�)+, wi1 = (Pi1 − 2� − 4� − w(i−1)2)

+, w(i−1)3 = (P(i−1)3 − 4� − 8� − wi1)
+,

wi2 = (Pi2 − 4� − 8� − w(i−1)3)
+ and w(i+1)1 = (P(i+1)1 − 6� − 10� − w(i−1)3 − wi2 − Pi3)

+.
Since Pi1 − 2� − 4� − w(i−1)2 �wi1, Pi2 − 4� − 8� − w(i−1)3 �wi2 and 0�w(i+1)1, a lower bound for the total

time to produce one part can be found as

TS56(�∗
k
)
= 1

2 (P + 10� + 10�) > T2.

Thus, for any 2-unit cycle, Sij, we showed that T2 �TSij(�∗
k
)
. Consequently, we can use T2 as a global lower bound

for the 2-unit robot move cycles.

References

[1] Logendran R, Sriskandarajah C. Sequencing of robot activities and parts in two-machine robotic cells. International Journal of Production
Research 1996;34:3447–63.

[2] Crama Y, Kats V, Van de Klundert J, Levner E. Cyclic scheduling in robotic flowshops. Annals of Operations Research 2000;96:97–124.
[3] Dawande M, Geismar HN, Sethi S, Sriskandarajah C. Sequencing and scheduling in robotic cells: recent developments. Journal of Scheduling

2005;8:387–426.
[4] Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W. Sequencing of parts and robot moves in a robotic cell. International Journal of

Flexible Manufacturing Systems 1992;4:331–58.
[5] Crama Y, Van de Klundert J. Cyclic scheduling in 3-machine robotic flow shops. Journal of Scheduling 1999;4:35–54.
[6] Brauner N, Finke G. On a conjecture about robotic cells: new simplified proof for the three-machine case. INFOR 1999;37:20–36.
[7] Brauner N, Finke G. Cycles and permutations in robotic cells. Mathematical and Computer Modeling 2001;34:565–91.
[8] Hall NG, Kamoun H, Sriskandarajah C. Scheduling in robotic cells: classification, two and three machine cells. Operations Research 1997;45:

421–39.
[9] Aneja YP, Kamoun H. Scheduling of parts and robot activities in two-machine robotic cell. Computers & Operations Research 1999;26:

297–312.
[10] Geismar HN, Dawande M, Sethi S, Sriskandarajah C. Approximation algorithms for k-unit cyclic solutions in robotic cells. European Journal

of Operational Research 2002;162:291–309.
[11] Akturk MS, Gultekin H, Karasan OE. Robotic cell scheduling with operational flexibility. Discrete Applied Mathematics 2005;145:334–48.
[12] Crama Y, Van de Klundert J. Cyclic scheduling of identical parts in a robotic cell. Operations Research 1997;45:952–65.

	Scheduling in a three-machine robotic flexible manufacturing cell
	Introduction
	Notation and assumptions
	Solution procedure
	Conclusion
	Appendix A. Cycle time calculation of the proposed cycle
	Appendix B. Derivation of the 2-unit robot move cycles
	Appendix C. Derivation of lower bounds for the 2-unit robot move cycles
	References

