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Abstract

In this study, we deal with the robotic cell scheduling problem with two machines and identical parts. In an ideal
FMS, CNC machines are capable of performing all the required operations as long as the required tools are stored
in their tool magazines. However, this assumption may be unrealistic at times since the tool magazines have limited
capacity and in many practical instances the required number of tools exceeds this capacity. In this respect, our study
assumes that some operations can only be processed on the first machine while some others can only be processed on
the second machine due to tooling constraints. Remaining operations can be processed on either machine. The problem
is to find the allocation of the remaining operations to the machines and the optimal robot move cycle that jointly min-
imize the cycle time. We prove that the optimal solution is either a 1-unit or a 2-unit robot move cycle and we present
the regions of optimality. Finally, a sensitivity analysis on the results is conducted.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Efforts to improve productivity while maintaining the flexibility of conventional systems led to the devel-
opment of Flexible Manufacturing Systems (FMS). The term FMS covers a range of systems from Flexible
Manufacturing Cells (FMC) to Flexible Transfer Lines. An FMC is an integrated computer controlled sys-
tem of a set of computer numerical control (CNC) machines and an automated material handling device.
An FMC in which the material handling is done by a robot is called a robotic cell. A robotic cell with two
machines consists of two machines located serially and served by a robot. In this study, consistent with the
0377-2217/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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robotic cell scheduling literature, we will assume that each part being processed goes through the input buf-
fer, the first machine, the second machine and finally the output buffer in that order. After loading a part to
one of the machines, the robot either waits for the part to complete its processing or moves to unload an-
other machine as soon as the processing of the part finishes (there is no waiting time to take a part from the
input buffer or to drop a part to output buffer). A state of the system is defined by whether the robot and the
machines are loaded or empty and by the location of the robot.

In the existing literature, the allocation of the operations to each machine is assumed to be constant and
for given processing times the optimum robot move cycle minimizing the cycle time is to be determined. In
some manufacturing operations such as chemical electroplating this assumption is meaningful and these
operations mostly require no-wait constraints (see for example Dawande et al., 2003). However, in the case
of machining operations for which the CNC machines are used, the allocation of the operations to the ma-
chines is also a decision problem. This is because CNC machines are capable of performing a wide range of
operations with means of using different cutting tools. Therefore, assuming that processing times are fixed
on each CNC machine may not accurately represent the capabilities of the CNC machines and limits the
number of alternatives unnecessarily for these systems.

In this study, we consider a robotic cell of two identical CNC machines which repeatedly produces one
type of product. We assume that there is an infinite number of parts to be processed, where a part is defined
by a fixed set of operations to be performed in any order and each operation requires a unique type of cut-
ting tool to be performed. That is, one tool can perform different operations but an operation can only be
performed by a unique type of tool. We also assume that some tools are loaded only on the first machine
and some others are loaded only on the second machine. A third set of tools are duplicated and loaded on
both machines. As a result of this, an operation can either be processed only on the first machine, only on
the second machine or on either machine. This assumption is valid since the tool magazines of these ma-
chines have limited capacity. Additionally, though duplicating the required tools increases flexibility, dupli-
cating all of them may not be economically justifiable. Then the problem is not only sequencing the robot�s
activities but also partitioning the set of flexible operations into two machines. The objective is to minimize
the cycle time which is defined as the long run average time required by the robotic cell to complete one
part. More formally, we assume that we have infinite number of parts and if Sn denotes the completion time
of the nth part then the long run average cycle time is lim supn!1Sn/n (Crama et al., 2000). Cyclic produc-
tion in a robotic cell refers to the production of finished parts by repeating a fixed sequence of robot moves.
As discussed in Dawande et al. (2003), the main motivation for studying cyclic production comes from
practice: cyclic schedules are easy to implement and control and are the primary way of specifying the oper-
ation of a robotic cell in industry. Furthermore, Dawande et al. (2002a) show that for the problem of sched-
uling operations in bufferless robotic cells that produce identical parts (similar to our problem), it is
sufficient to consider cyclic schedules in order to maximize throughput. They proved that there is at least
one cyclic schedule in the set of all schedules that optimizes the throughput of the cell.

In the literature, there exist various problems concerning the robotic cells. An extensive survey of the
robotic cell scheduling problems can be found in Crama et al. (2000) and Dawande et al. (2003). Robotic
cells with no storage buffers at or between machines are widely used in practice (Miller and Walker, 1990),
and as stated by Kise et al. (1991), small-scale flexible manufacturing cells with simple material handling
devices are quite common in real applications. Since there can be several machines requesting services of
the robot at once, there will be conflicts in which one machine will have to wait while another is served
and if this waiting time is not handled properly, the overall throughput of the cell will decrease (King
et al., 1993).

For 2-machines, no-buffer, identical parts robotic cell scheduling problem, Sethi et al. (1992) proved
that the optimal solution is a 1-unit cycle where an n-unit cycle can be defined as, starting with an initial
state of the system, loading and unloading all of the machines exactly n times and returning to the initial
state of the system (note that in an n-unit cycle exactly n parts are produced). They also conjectured that
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optimal 1-unit cycles are superior to every n-unit cycle, for n P 2. 1-unit cycles are important since they
are simple, easy to implement and control. Crama and van de Klundert (1997) considered the identical
parts problem with m machines and showed that, considering only 1-unit cycles, the problem can be
solved in (strongly) polynomial time. Hall et al. (1997) considered three machine cells producing single
part-types and proved that the repetition of 1-unit cycles dominates more complicated policies that pro-
duce two units. The validity of the conjecture of Sethi et al. (1992) for 3-machine robotic flowshops is
established by Crama and van de Klundert (1999). Brauner and Finke (1997) disproved this conjecture
for cells of size four or large.

Additionally, there are many studies considering the multiple parts robotic cell scheduling problem in
which the objective is to find the optimal robot move sequence as well as the optimal part input sequence
that jointly minimize the cycle time. The complexity of these problems can be found in Sriskandarajah et al.
(1998) and Hall et al. (1998).

With the settings of this study, we prove that the optimal solution is not necessarily a 1-unit cycle as in
the case of Sethi et al. (1992) and that a 2-unit cycle can also give the optimal cycle time for some parameter
values. We also show that the problem considered by Sethi et al. (1992) is a special case of the problem
under consideration in this study. We report some sensitivity analysis results on the parameters such as:
the loading and unloading time of the robot and the transportation time of the robot.

The remainder of the paper is organized as follows. In the next section we introduce our problem and
present the notations, definitions and the assumptions pertaining to this study. The solution of the opera-
tion allocation problem with tooling constraints is presented in Section 3 and the last section is devoted to
the concluding remarks.
2. Problem definition

In this section, we will state our problem more formally and provide the required definitions and nota-
tions. We will also highlight the difference of the considered problem from the earlier studies with the aid of
an example.

The workstations in a robotic cell for machining operations are CNC machines and in these machines
the processing of a part requires performing a series of operations using different sets of cutting tools.
The cutting tools are stored in the tool magazines of these machines. In an ideal FMS, each machine is
capable of performing all operations of all parts scheduled for production as long as it has the required
tools in its tool magazine. However, Gray et al. (1993) observe that a CNC has a limited tool magazine
capacity and the total set of tools required to process all jobs usually exceeds this capacity. Furthermore,
duplicating all the required tools and loading them to each tool magazine may not be economically justi-
fiable due to high tool investment costs. Therefore, we assume that there is a single copy of some tools. A
subset of these single copies are loaded on the first machine and the remaining ones are loaded on the
second machine. On the other hand, some tools are duplicated and loaded on both machines. As a conse-
quence, each part to be processed has three sets of operations. O1 is the set of operations that can only be
processed on the first machine, O2 is the set of operations that can only be processed on the second
machine, and O is the set of operations that can be processed on either machine. The allocation of the oper-
ations that are in set O to the machines can be modified for each individual part. We assume that we have
an infinite number of identical parts to be processed on these two machines and each part is defined by a
fixed set of operations to be performed in any order. So the problem is to find the optimal robot move cycle
with the corresponding allocation of operations that are in set O to the machines in order to minimize the
cycle time. In fact, allocation of the operations to the machines is equivalent to partitioning set O into two
subsets so that, the operations that are in the first subset will be processed on the first machine while the
operations in the other subset will be processed on the second machine.
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The following definitions well accepted in the literature are borrowed from Crama and van de Klundert
(1997).

Definition 1. An n-unit robot move cycle is a sequence of robot moves during which each machine is loaded
and unloaded exactly n times, and finally the cell returns to its initial state.

Definition 2. Robot activity Ai corresponds to the following sequence of movements: unload a part from
machine i, transport it to machine i + 1, and load machine i + 1.

According to Definition 2, in a 2-machine robotic cell where the machines are numbered as 1 and 2, the
input buffer is numbered as 0 and the output buffer is numbered as 3, we have exactly three robot activities:
A0, A1 and A2.

Since in an optimal cycle we require that the robot move path is as short as possible, any two consecutive
activities uniquely determine the robot moves between those activities. Therefore, any robot move cycle can
be uniquely described by a permutation of the above activities. For two machines, we have two 1-unit robot
move cycles: S1: A0A1A2 and S2: A2A1A0. Let us recall that a state of the system is defined by whether the
robot and the machines are loaded or empty and by the location of the robot. These two 1-unit cycles have
one common state in which the first machine is empty and the second machine has just been loaded by the
robot. Thus, a transition from one of these cycles to the other can only be made at this common state. If
the robot waits in front of the second machine to finish the processing of the part, then the robot follows the
activities of the S1 cycle. Else if the robot travels to input buffer to take a part and load the first machine,
then the robot follows the activities of the S2 cycle. During these transitions no extra movements are made,
thus no loss occurs in terms of robot transportation time.

Hall et al. (1997) define two other robot move sequences to represent higher unit robot move cycles.
These are the transition movements of the robot from performing cycle S1 to S2 (represented as S12)
and S2 to S1 (represented as S21). If a part is produced according to the S1 (S2) cycle in the first machine
and according to the S2 (S1) cycle in the second machine then the transition movement S12 (S21) is made. To
properly clarify these new robot move sequences, we shall use the terminology of Dawande et al. (2002b).
Full waiting is defined as the robot which has just loaded a machine waiting in front of a machine through
the whole processing time of a part. On the other hand, partial waiting is the waiting time from the arrival of
the robot at the machine till the processing of the part completes at this machine. Now, we are ready to
list the S12 robot movements which can be described as A0A1A0: (i) load the first machine and perform
a full wait, (ii) load the second machine and immediately return to input buffer, (iii) load the first machine,
and (iv) while processing continues on the first machine, return to the second machine and perform a partial
wait.

In a similar fashion, in S21 movement which can be described as A2A1A2, the robot does not wait in front
of the first machine for the part but instead travels to the second machine, unloads it and drops the part to
the output buffer and returns back to the first machine to unload the part. That is, a partial waiting on the
first machine and a full waiting on the second machine are encountered.

Further analysis of the sequences yields the following: (i) an execution of S1 starts and ends with empty
machines, (ii) an execution of S2 starts and ends with loaded machines, (iii) an execution of S12 starts with
empty machines and ends with full machines, and (iv) an execution of S21 starts with loaded machines and
ends with empty machines. Based on these observations, the transition digraph in Fig. 1 depicts the feasible
transitions among sequences.

Hall et al. (1997) showed that any robot move cycle can be represented by the four robot move se-
quences: S1, S2, S12 and S21. For example, S12S21 is a 2-unit robot move cycle, actually it is the only 2-unit
robot move cycle and we can describe this cycle by the robot activity sequence: A0A1A0A2A1A2. S12S21 and
S21S12 represent the same robot move cycle, the only difference being the starting state of the cycle (the ani-
mated views of these robot move cycles can be found at the web site http://www.ie.bilkent.edu.tr/~robot).

http://www.ie.bilkent.edu.tr/~robot
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Fig. 1. Transition digraph.
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We will use the following parameters and decision variables:

ti processing time of operation i for i 2 O1 [ O2 [ O. Note that the processing times of operation i

on both machines are equal for any i in O

PM1 total processing time of the operations that are in set O1, P M1 ¼
P

i2O1
ti

PM2 total processing time of the operations that are in set O2, P M2 ¼
P

i2O2
ti

P total processing time of the operations that are to be allocated to either one of the machines,
P ¼

P
i2Oti

� the load (or unload) time of workstations by the robot
d time taken by the robot to travel between two consecutive stations. We assume that the robot tra-

vel time from machine i to j is jj � ijd. So the triangular equality is satisfied. For example, the trans-
portation time from input buffer to the second machine is j2 � 0jd = 2d and the transportation
time from output buffer to input buffer is j0 � 3jd = 3d

T long run average cycle time to produce one part, a decision variable of our problem

Note that if set O is empty, that is when P = 0, there is no allocation problem. As a consequence, the
problem becomes identical with the problem considered by Sethi et al. (1992). Another important observa-
tion is that the order in which the operations are processed on the machines does not have an effect on the
cycle time.

In order to calculate the cycle time of any given robot move cycle, the processing times of parts on each
machine must be known in advance. However, in order to find the processing times of the parts on the ma-
chines, we have to know the allocation of the operations in set O to the machines. Furthermore, the allo-
cation of the operations to the machines need not be fixed for each part to be processed. That is, for one
part, O can be partitioned as Z1 and (OnZ1) and for the next part to be processed it can be partitioned as Z2

and (OnZ2) where Z1 5 Z2. So the processing time of the first part on the first machine is
P

i2O1[Z1
ti while

the processing time of the second part on the same machine is
P

i2O1[Z2
ti. The processing times of the first

and second parts on the second machine are
P

i2O2[ðOnZ1Þti and
P

i2O2[ðOnZ2Þti, respectively. Thus the process-
ing times of the machines may change from one repetition of the robot move cycle to the other. In fact,
using different allocations for each part to be processed on these two machines may yield a shorter cycle
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time than the case when we have a fixed allocation type. In what follows, we give an example of such a
situation for the robot move cycle S2.

Example 1. Let us consider the robot move cycle S2. Assume that a part has five operations to be processed
with the corresponding operation times: t1 = 15, t2 = 30, t3 = 45, t4 = 10, and t5 = 30. Also let � = 5 and
d = 10. Furthermore, assume that because of the tooling constraints, operation 3 must be processed on the
first machine and operation 5 must be processed on the second machine. Thus, P M1 ¼ t3 ¼ 45,
P M2 ¼ t5 ¼ 30 and P ¼ t1 þ t2 þ t4 ¼ 55. Sethi et al. (1992) proved that the cycle time of S2 for fixed
processing time, i.e., same allocation of the operations for all parts, is:
T ¼ 6�þ 8dþmaxf0; a� ð2�þ 4dÞ; b� ð2�þ 4dÞg;

where a and b are the processing times of the part on the first and second machine respectively, i.e.,
a ¼ P M1 þ a0 and b ¼ P M2 þ P � a0 where a 0 takes some value in f0; 10; 15; 25; 30; 40; 45; 55g. Since
maxfP M1 þ a0; P M2 þ P � a0gP 2�þ 4d ¼ 50 the max term in the description of T will take a nonnegative
value and hence will be minimized when ja� bj is minimized. With the given operation times this happens if
operation 1 is allocated to the first machine and operations 2 and 4 are allocated to the second machine. So
a ¼ P M1 þ t1 ¼ 60, b ¼ P M2 þ t2 þ t4 ¼ 70 and ja� bj ¼ 10. Then the cycle time becomes 130 (another alter-
native is to allocate operations 1 and 4 to the first machine and operation 2 to the second machine). On the
other hand, let us now assume that for the first part to be processed we allocated the operations as before so
that we have a1 ¼ P M1 þ t1 ¼ 60 and b1 ¼ P M2 þ t2 þ t4 ¼ 70, where a1 and b1 represent the processing time
of the first part on the first and the second machines, respectively. However, assume that for the second part
we allocated such that a2 ¼ P M1 þ t1 þ t4 ¼ 70 and b2 ¼ P M2 þ t2 ¼ 60 where a2 and b2 are the respective
processing times of the second part on the two machines. Assume further that these two allocation types
are used alternately in processing the parts. Then, in one repetition of the cycle, a part with the first allo-
cation type will be processed on the first machine and a part with the second allocation type will be pro-
cessed on the second machine. This is because, during one repetition of the cycle S2, two different parts
become available in the system; one new part enters the system and one previously entered part exits the
system. In the second repetition of S2, a part with the second allocation type will be processed on the first
machine and a part with the first allocation type will be processed on the second machine because we use
these two allocation types alternatingly. Then, the long run average cycle time to produce one part can be
found as follows: Since we consider cyclic robot moves, let the cycle start with the state in which the second
machine is loaded by a part with the first allocation type and the robot is in front of the input buffer to take
a part with the second allocation type. In order to find the long run average time to produce one part, we
have to produce two parts with different allocation types and take the average. This means repeating the S2

cycle two times. Let wij be the partial waiting time in front of machine i, i = 1, 2, for the part with allocation
type j, j = 1, 2. The total loading/unloading and travel times are the same for both repetitions of the S2

cycle, namely,6�þ 8d. In the first repetition of the cycle there is partial waiting in front of machine 2 for
the part with the first allocation type, w21, and another partial wait in front of the first machine for the part
with the second allocation type, w12. On the other hand, in the second repetition we have w11 and w22. One
can easily conclude that w11 ¼ maxf0; a1 � ð2�þ 4dþ w22Þg, w12 ¼ maxf0; a2 � ð2�þ 4dþ w21Þg, w21 ¼
maxf0; b1 � ð2�þ 4dÞg and w22 ¼ maxf0; b2 � ð2�þ 4dÞg. From these,
w12 þ w21 ¼ maxf0; a2 � ð2�þ 4dÞ; b1 � ð2�þ 4dÞg;
w11 þ w22 ¼ maxf0; a1 � ð2�þ 4dÞ; b2 � ð2�þ 4dÞg.
Hence, the long run average cycle time to produce one part is:
T ¼ 6�þ 8dþmaxf0; a1 � ð2�þ 4dÞ; b2 � ð2�þ 4dÞg
2

þmaxf0; a2 � ð2�þ 4dÞ; b1 � ð2�þ 4dÞg
2

and with the given data this boils down to T ¼ 125.
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This example shows that fixing the allocation type of every part limits the better of available alternatives.
Note that finding the allocation of the operations to the machines even if the robot move cycle is fixed is not
an easy task. This will be further explored in Section 3.

We will refer to the following definitions throughout this paper especially when finding the cycle times of
the robot move cycles with differing part allocation types.

Definition 3. In a k-allocation type production, the allocation of every kth part in the infinite sequence is
identical and k is minimal with this property. That is, k is the period of the allocation.

Note that a 2-unit robot move cycle with one-allocation type means that all parts to be processed have
the same allocation of operations to the machines. A 2-unit cycle with two-allocation types means that
two identical parts with different allocation of operations to the machines are produced alternatingly. The
cycle time for this case is found by calculating the total time to finish one repetition of the cycle and
dividing by two. On the other hand, a 2-unit cycle with three-allocation types means that the allocation
of operations for parts 1; 4; . . . ; 3zþ 1 are the same. This also holds for parts 2; 5; . . . ; 3zþ 2 and parts
3; 6; . . . ; 3z. In order to find the cycle time of an n-unit cycle with k-allocation types, we have to find
the least common multiple of n and k; let this number be M. To find the average time to produce
one part, we have to repeat the cycle M/n times and divide the total time by M. In particular, for a
2-unit cycle with three-allocation types, we have to repeat the cycle 3 times and divide the total time
by M = 6.

Note also that in a k-allocation type production for a specific k, the allocation of the operations is not
unique but rather there exist finitely many different allocations. Let rk be a specific allocation of operations
for a k-allocation type production and r�k be the optimal allocation of operations for a k-allocation type
production. We further need the following definition for the processing times of the parts on both
machines.

Definition 4. Consider any robot move cycle using a k-allocation type production. Let rk be a specific
allocation of the operations to the machines. Then, Pj (rk) is the summation of the operation times that are
allocated to the first machine for a part which uses the jth allocation type where j 6 k. Note that under this
setting, the total processing time of this part on the second machine is simply P � P jðrkÞ.

In light of these new definitions, in Example 1 above there exist two different allocation types. In
particular, a1 represents P M1 þ P 1ðr2Þ whereas a2 represents P M1 þ P 2ðr2Þ. These are the processing
times on the first machine. The processing times on the second machine for the first and second allo-
cation types are P M2 þ P � P 1ðr2Þ and P M2 þ P � P 2ðr2Þ respectively. Fig. 2 depicts a k-allocation type
production.

In addition to these definitions, we let T S2ðrkÞ be the average cycle time (to produce one part) of S2 using
k-allocation types with specific allocation rk and T S2ðoptÞ ¼ minrkfT S2ðrkÞg. Let T S12S21ðrkÞ and T S12S21ðoptÞ be de-
fined in a similar fashion for move cycle S12S21.

In the next section we will reduce the number of potentially optimal robot move cycles to three and we
will find the regions of optimality for these robot move cycles according to the given parameters such as, the
loading and unloading time � and the robot transportation time d.
3. Scheduling with tooling constraints

In order to find the optimal robot move cycle, we have to compare the cycle times of the robot move
cycles. The cycle times depend on the allocation of the operations. In the next subsection we will determine
the optimal allocation types for three robot move cycles and prove that according to given parameter values
one of these three robot move cycles is optimal. In Section 3.2 we will determine the regions of optimality
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for each of the three robot move cycles and Section 3.3 is devoted to the sensitivity analysis on problem
parameters.

3.1. Optimal allocation of operations

In this section we will first observe that there is no allocation problem for S1. Theorems 1 and 3 will
determine the optimal k to be used with the cycles S2 and S12S21 respectively. In Theorem 2 we will
prove that determining the optimal allocation of operations to the machines is NP-complete for robot move
cycle S2. We shall assume P M1 P P M2 throughout all proofs. The other case can be treated in a similar
fashion.

The cycle times of the three robot move cycles discussed previously are presented in Appendix A. The
cycle time of S1, given in Eq. (A.1) does not depend on the processing times of the parts on the machines
individually but only depends on the total processing time, in our case P þ P M1 þ P M2. Thus, whatever the
allocation of the operations be, the cycle time is the same and hence there is no allocation problem for S1.

The following theorem provides the optimal k to be used with S2:

Theorem 1. Consider a cyclic production performing the 1-unit cycle S2. We have:

1. If P M1 P P þ P M2, then using one-allocation is optimal,

2. Otherwise, using either one-allocation or two-allocation is optimal.

Proof

1. The total time to complete production of all k parts with k-allocation type for cycle S2 under specific
allocation of operations rk, is given in Appendix A, Eq. (A.4). Since P M1 P P þ P M2, then
P M1 þ P jðrkÞP P M2 þ P � P ðj�1ÞðrkÞ; 8j 2 ½1; . . . ; k� where for notational purposes we take
P 0ðrkÞ � P kðrkÞ. Therefore, under optimal allocation r�k , we have P jðr�kÞ ¼ 0; 8j. However, this is noth-
ing but one-allocation type and the optimal cycle time is:
T S2ðoptÞ ¼ 6�þ 8dþmaxf0; P M1 � ð2�þ 4dÞg.
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2. Consider again (A.4). Since P M1 < P þ P M2, under optimal allocation r�k , each max term will individually
be minimized when the last two nonzero components are as close as possible, i.e., when
P M1 þ P jðr�kÞ � P þ P M2 � P ðj�1Þðr�kÞ, "j. Consider two such consecutive relations, say for jth and
ðjþ 1Þth max terms:
P M1 þ P jðr�kÞ � P þ P M2 � P ðj�1Þðr�kÞ; ð1Þ
P M1 þ P ðjþ1Þðr�kÞ � P þ P M2 � P jðr�kÞ. ð2Þ
From relations (1) and (2), if the equalities cannot be satisfied, then the difference between both sides of
each equality must be minimized. That is, both jP M1 þ P jðr�kÞ � ðP þ P M2 � P ðj�1Þðr�kÞÞj and
jP M1 þ P ðjþ1Þðr�kÞ � ðP þ P M2 � P jðr�kÞÞj must be minimized. Note however that if P jðr�kÞ and P ðj�1Þðr�kÞ min-
imize the first difference, then P jðr�kÞ and P ðjþ1Þðr�kÞ ¼ P ðj�1Þðr�kÞ simultaneously minimize the second differ-
ence. This yields either a one-allocation ðP ðj�1Þðr�kÞ ¼ P jðr�kÞ ¼ P ðjþ1Þðr�kÞ for all j) or a two-allocation
ðP ðj�1Þðr�kÞ ¼ P ðjþ1Þðr�kÞ and P jðr�kÞ 6¼ P j�1ðr�kÞ for all j). h
Though Theorem 1 guides us in selecting the optimal allocation type in a cyclic production S2, finding
the optimal allocation of operations to the two machines is not an easy job even when there is a fixed allo-
cation type and even when P M1 ¼ P M2 ¼ 0. More formally, we shall now show that the following decision
problem is NP-complete.

S2 operation allocation for one-allocation type decision problem (problem S2TAP):

Instance: A finite set of operations O with respective integer processing times ft1; . . . ; tpg, loading/
unloading time �, transportation time d and a real number K.
Question: Can we find an allocation of operations to the two machines, r1, so that the long run average
cycle time T S2ðr1Þ 6 K?
Theorem 2. Problem S2TAP is NP-complete.

Proof. S2TAP is in NP since whenever we are given a specific allocation of operations, we can readily find
the corresponding long run average cycle time and hence decide if it is less than or equal to K. It is apparent
from expression (A.2) for T S2ðr1Þ (see Appendix A) that the well known NP-complete problem 2-partition
(see Garey and Johnson, 1976) readily reduces to S2TAP. h

The following theorem determines the optimal k to be used with S12S21.

Theorem 3. For 2-unit robot move cycle S12S21, using two allocation types is optimal.

Proof. In order to prove this theorem, we will first compare the cycle time of two-allocation type for the
cycle S12S21 with the cycle time of one-allocation type for the cycle S12S21. The long run average cycle times
of one-allocation and two-allocation types for the cycle S12S21 are given in Eqs. (A.5) and (A.6),
respectively.

We first argue that the optimal allocation for two-allocation type for the cycle S12S21 is found by letting
P 1ðr�2Þ ¼ ðP � P 2ðr�2ÞÞ ¼ 0. Let us first rewrite Eq. (A.6) by entering 1

2 ðP 1ðr2Þ þ ðP � P 2ðr2ÞÞÞ into the max
term, i.e., adding it to all the three arguments of max. This leads us to the following form:
T S12S21ðr2Þ ¼ 1=2ð12�þ 14dþ P M1 þ P M2Þ þ 1=2ðmaxfP 1ðr2Þ þ P � P 2ðr2Þ; P M1 þ P 1ðr2Þ
þ P � ð2�þ 4dÞ; P M2 þ 2P � P ðr Þ � ð2�þ 4dÞgÞ.
2 2
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Now, P2(r2) only appears with a negative coefficient and P1(r2) only appears with a positive coefficient.
To minimize, we must increase P2(r2) and decrease P1(r2) accordingly. So, we take P 1ðr�2Þ ¼ 0 and
P 2ðr�2Þ ¼ P . Since we also have P M1 P P M2 the cycle time corresponding to this allocation type becomes:
T S12S21ðr�2Þ ¼
12�þ 14dþ P M1 þ P M2 þmaxf0; ðP þ P M1Þ � ð2�þ 4dÞg

2
. ð3Þ
Let us move P in Eq. (A.5) inside the max term. Thus we have:
T S12S21ðr�1Þ ¼ 1=2ð12�þ 14dþ P M1 þ P M2Þ þ 1=2ðmaxfP ; P þ P M1 þ P 1ðr�1Þ
� ð2�þ 4dÞ; P þ P M2 þ ðP � P 1ðr�1ÞÞ � ð2�þ 4dÞgÞ.
Comparing this with Eq. (3), it is easily seen that T S12S21ðr2Þ 6 T S12S21ðr1Þ.
Now let us consider the cycle time for k-allocation (k > 2) type for the cycle S12S21. Observe that, in

robot move cycle S12S21, initially, the machines are empty and the robot is waiting in front of the input
buffer. Since this is a 2-unit cycle, exactly two parts are loaded and unloaded to each machine and at the
end, identical to the initial state, the machines are again empty and the robot is waiting in front of the input
buffer. Then, in a k-allocation type for the cycle S12S21, this 2-unit cycle is repeated exactly k/2 times to
produce all k parts with different allocation types. The objective is to find the optimal allocation for these
parts to the machines. However, the optimal allocation at each repetition of the cycle must be the same as
the optimal allocation of the operations for a unique cycle S12S21. This is because, a k-allocation type is a
concatenation of k/2 two-allocation types for the cycle S12S21. Thus, we conclude that the optimal cycle
time for a k-allocation type for the cycle S12S21 is the same as the optimal cycle time for a two-allocation
type for the cycle S12S21. h

Now, we are ready to provide one of the major results of our paper which will restrict our search for the
optimal cycle to three robot move cycles. We first recall a result due to Hall et al. (1997).

Lemma 1 (Hall et al., 1997). In any feasible robot move cycle, the number of S12 sequences is equal to the

number of S21 sequences.

Theorem 4. At least one of the cycles S1, S2 or S12S21 has a cycle time that is less than or equal to the cycle

time of any given n-unit robot move cycle.

For the clarity of the presentation, this proof is deferred to Appendix B.
In summary, we have three potentially optimal robot move cycles. For the robot move cycle S2, we have

an allocation problem. However, we know from Theorem 1 that if P M1 P P þ P M2, then the allocation
problem disappears and we have T S2ðoptÞ ¼ 6�þ 8dþmaxf0; P M1 � ð2�þ 4dÞg. Else, we can find lower
and upper bounds for this cycle time. We get a lower bound when it is possible to have
P M1 þ P jðr2Þ ¼ P M2 þ ðP � P jðr2ÞÞ, j 2 ½1; 2�. Since any feasible solution provides an upper bound for
the optimal cycle time, we will present a feasible solution that can be attained with any given problem in-
stance and use this feasible solution as an upper bound. For a given problem instance, let us allocate all of
the operations that are in set O to the first machine for the first part and to the second machine for the
second part. Note that such an allocation is feasible with any given problem parameter values. Thus,
P 1ðr2Þ ¼ ðP � P 2ðr2ÞÞ ¼ P in Eq. (A.3). Let T S2

represent the lower bound of cycle S2 and T S2
represent

the upper bound. In other words:
T S2
¼ 6�þ 8dþmaxf0; ðP þ P M1 þ P M2Þ=2� ð2�þ 4dÞg;

T S2
¼ 6�þ 8dþmaxf0; P þ P M1 � ð2�þ 4dÞ; P þ P M2 � ð2�þ 4dÞg

2

þmaxf0; P M1 � ð2�þ 4dÞ; P M2 � ð2�þ 4dÞg
2

.
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Since we assumed that P M1 P P M2 the upper bound becomes:
T S2
¼ 6�þ 8dþ 1

2
maxf0; P þ P M1 � ð2�þ 4dÞg þ 1

2
maxf0; P M1 � ð2�þ 4dÞg.
Now we are ready to present the optimal S2 cycle times along with lower and upper bounds based on a
set of breakpoints partitioning the search space.

(1) If P M1 P P þ P M2, then
(i) If P M1 P 2�þ 4d, then
T S2ðoptÞ ¼ 4�þ 4dþ P M1. ð4aÞ
(ii) Otherwise,
T S2ðoptÞ ¼ 6�þ 8d. ð4bÞ
(2) Else (i.e. P M1 < P þ P M2) we have lower and upper bounds. The lower bounds are as follows:
(i) If ðP þ P M1 þ P M2Þ=2 P 2�þ 4d, then
T S2
¼ 4�þ 4dþ ðP þ P M1 þ P M2Þ=2. ð4cÞ
(ii) Otherwise,
T S2
¼ 6�þ 8d. ð4dÞ
The upper bounds are as follows:

(i) If P M1 P 2�þ 4d, then
T S2
¼ 4�þ 4dþ P M1 þ P=2. ð4eÞ
(ii) Else if P þ P M1 < 2�þ 4d, then
T S2
¼ 6�þ 8d. ð4fÞ
(iii) Else,
T S2
¼ 5�þ 6dþ ðP þ P M1Þ=2. ð4gÞ
On the other hand, the cycle time of two-allocation type for the cycle S12S21 is given in Eq. (A.6). Since
P M1 P P M2 and employing Theorem 3, we get the following cycle time:
T S12S21ðoptÞ ¼ 6�þ 7dþ ðP
M1 þ P M2Þ

2
þ 1

2
maxf0; ðP M1 þ PÞ � ð2�þ 4dÞg.
Therefore, we have the following breakpoints for this cycle time:

(1) If P þ P M1 P 2�þ 4d then,
T S12S21ðoptÞ ¼ 5�þ 5dþ P M1 þ ðP þ P M2Þ
2

. ð5aÞ
(2) Else,
T S12S21ðoptÞ ¼ 6�þ 7dþ ðP
M1 þ P M2Þ

2
. ð5bÞ
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3.2. Regions of optimality

In the sequel, we will prove a group of lemmas which will jointly lead to Theorem 5 presenting the re-
gions of optimality for these three robot move cycles.

Lemma 2. If P M1 þ P M2 P 2d, then S2 gives the minimum cycle time.

Proof. Assume P M1 þ P M2 P 2d. Let us first compare T S1
and T S12S21ðoptÞ. T S1

is as given in Eq. (A.1).

1. If P þ P M1 P 2�þ 4d, T S12S21ðoptÞ is given in Eq. (5a). A simple comparison yields T S12S21ðoptÞ < T S1
.

2. Otherwise, T S12S21ðoptÞ is given by Eq. (5b). Then we have the following:
T S1
¼ 6�þ 6dþ P þ P M1 þ P M2 P 6�þ 6dþ P þ ðP

M1 þ P M2Þ
2

þ 2d
2

P T S12S21ðoptÞ ) T S12S21ðoptÞ 6 T S1
.

We will now compare T S2ðoptÞ with T S12S21ðoptÞ.

(1) If P M1 P P þ P M2, then

(1.1) If P M1 P 2�þ 4d, this implies that P þ P M1 P 2�þ 4d. Then, T S2ðoptÞ and T S12S21ðoptÞ are given by

Eqs. (4a) and (5a) respectively. Hence, we conclude that in this region T S2ðoptÞ < T S12S21ðoptÞ.
(1.2) If P M1 < 2�þ 4d and P þ P M1 P 2�þ 4d, then T S12S21ðoptÞ is the same as above. T S2ðoptÞ in this

region is given in Eq. (4b). Since P þ P M1 P 2�þ 4d and P M1 þ P M2 P 2d we have:

T S12S21ðoptÞ ¼ 5�þ 5dþ P þ P M1 þ P M1 þ P M2

2
P 5�þ 5dþ 2�þ 4dþ 2d

2
¼ 6�þ 8d ¼ T S2ðoptÞ

) T S2ðoptÞ 6 T S12S21ðoptÞ.

(1.3) If P þ P M1 < 2�þ 4d, T S2ðoptÞ and T S12S21ðoptÞ are presented in Eqs. (4b) and (5b), respectively.
Since P M1 þ P M2 P 2d we have:

T S12S21ðoptÞ ¼ 6�þ 7dþ ðP
M1 þ P M2Þ

2
P 6�þ 8d ¼ T S2ðoptÞ ) T S2ðoptÞ 6 T S12S21ðoptÞ.
(2) Else if P M1 < P þ P M2, then we have upper and lower bounds for the cycle time of S2. If we can show

that T S2

6 T S12S21ðoptÞ, then we can conclude that T S2ðoptÞ 6 T S12S21ðoptÞ. We have the following cases:

(2.1) If P M1 P 2�þ 4d, this implies that P þ P M1 P 2�þ 4d. T S2

and T S12S21ðoptÞ are given in Eqs. (4e)
and (5a), respectively. We conclude easily that T S2ðoptÞ 6 T S2

< T S12S21ðoptÞ.
(2.2) If P M1 < 2�þ 4d and P þ P M1 P 2�þ 4d, T S2

and T S12S21ðoptÞ are given in Eqs. (4g) and (5a),
respectively. Since P M1 þ P M2 P 2d, we have:

T S12S21ðoptÞ ¼ 5�þ 5dþ P þ P M1 þ P M1 þ P M2

2
P 5�þ 5dþ P þ P M1 þ 2d

2
¼ 5�þ 6dþ ðP þ P M1Þ

2

) T S2ðoptÞ 6 T S2
6 T S12S21ðoptÞ.

(2.3) If P þ P M1 < 2�þ 4d, this implies that P M1 < 2�þ 4d. For this case, T S2
and T S12S21ðoptÞ are given

in Eqs. (4f) and (5b), respectively. Since P M1 þ P M2 P 2d we conclude easily that for this case
also T S2ðoptÞ 6 T S2

6 T S12S21ðoptÞ.
Since in all of the cases T S2
6 T S12S21ðoptÞ, we conclude that S2 has the minimum cycle time. h
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Lemma 3. If 2P þ P M1 þ P M2
6 2d, then S1 gives the minimum cycle time.

Proof. 2P þ P M1 þ P M2
6 2d) P þ P M1 < 2�þ 4d. T S12S21ðoptÞ is given in Eq. (5b). When we compare this

with T S1
given in Eq. (A.1), since 2P þ P M1 þ P M2

6 2d, we have:
T S1
¼ 6�þ 6dþ P þ P M1 þ P M2 ¼ 6�þ 6dþ 2P þ P M1 þ P M2 þ P M1 þ P M2

2
6 6�þ 7dþ ðP

M1 þ P M2Þ
2

) T S1
6 T S12S21ðoptÞ.
Now we will compare T S1
with T S2ðoptÞ. We have the following cases:

(1) Assume P M1 P P þ P M2. Since 2P þ P M1 þ P M2
6 2d, then P M1 < 2�þ 4d. Using T S2ðoptÞ as given in

Eq. (4b) we have:
T S1
¼ 6�þ 6dþ P þ P M1 þ P M2

6 6�þ 6dþ 2P þ P M1 þ P M2
6 6�þ 8d

) T S1
6 T S2ðoptÞ.
(2) If P M1 < P þ P M2, since 2P þ P M1 þ P M2
6 2d, then ðP þ P M1 þ P M2Þ=2 < 2�þ 4d. T S2

for this region

is given in Eq. (4d). The comparison in case 1 above is valid for this case also. Hence, we conclude that
T S1
6 T S2ðoptÞ. h

Lemma 4. If P M1 þ P M2 < 2d, 2P þ P M1 þ P M2 > 2d and P þ 2P M1 þ P M2
6 2�þ 6d, then S12 S21 gives the

minimum cycle time.

Proof. Since P M1 þ P M2 < 2d, then P M1 < 2�þ 4d. If P M1 P P þ P M2 then T S2ðoptÞ is given in Eq. (4b), which
is 6�þ 8d. If P M1 < P þ P M2, we have to show that T S12S21ðoptÞ 6 T S2

. Since P þ P M1 þ P M2
6

P þ 2P M1 þ P M2
6 2�þ 6d, then ðP þ P M1 þ P M2Þ=2 6 �þ 3d < 2�þ 4d. T S2

for this region is given in Eq.
(4d), which is also 6�þ 8d. Thus, in both cases we will compare T S12S21ðoptÞ with 6�þ 8d. We have the
following cases:

(1) If P þ P M1 P 2�þ 4d, T S1
and T S12S21ðoptÞ are given in Eqs. (A.1) and (5a), respectively. Observing these

cycle times we conclude that T S12S21ðoptÞ < T S1
. In order to compare the cycle times of S2 and S12S21 we

have:
T S12S21ðoptÞ ¼ 5�þ 5dþ P þ 2P M1 þ P M2

2
6 5�þ 5dþ 2�þ 6d

2
¼ 6�þ 8d) T S12S21ðoptÞ 6 T S2ðoptÞ.
(2) Otherwise, T S12S21ðoptÞ is given in Eq. (5b). Since 2P þ P M1 þ P M2 > 2d, we have:
T S1
¼ 6�þ 6dþ 2P þ P M1 þ P M2

2
þ P M1 þ P M2

2
> 6�þ 6dþ 2d=2þ ðP

M1 þ P M2Þ
2

¼ T S12S21ðoptÞ

) T S12S21ðoptÞ < T S1
.

When we compare the cycle time of S2 with the cycle time of S12S21, since P M1 þ P M2 < 2d, using
Eq. (5b) we have:

T S12S21ðoptÞ ¼ 6�þ 7dþ ðP M1 þ P M2Þ=2 < 6�þ 7dþ 2d=2 ¼ 6�þ 8d) T S12S21ðoptÞ < T S2ðoptÞ. �
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Lemma 5. If P M1 þ P M2 < 2d, 2P þ P M1 þ P M2 > 2d and P þ 2P M1 þ P M2 > 2�þ 6d, then either S2 or S12S21

gives the minimum cycle time.

Proof. In this region since we assumed that P M1 þ P M2 < 2d, we have:
2�þ 6d 6 P þ 2P M1 þ P M2 < P þ P M1 þ 2d) P þ P M1 > 2�þ 4d.
T S12S21ðoptÞ is given in Eq. (5a). When we compare this cycle time with T S1
given in Eq. (A.1), we conclude

that T S12S21ðoptÞ < T S1
. h

As a result of this lemma we showed that S1 is dominated in this region. On the other hand the
following example will show that we cannot establish any dominance relation between cycles S2 and
S12S21.

Example 2. Let us suppose that we have four operations with a total processing time of 100, and � = 10
and d = 10. Because of the tooling constraints, one of the operations with a processing time of 10 must be
processed on the first machine, and another one with a processing time of 5 must be processed on the
second machine. Therefore, P M1 ¼ 10 and P M2 ¼ 5. The remaining two operations with a total operation
time of 85 will be allocated to the machines. When we observe the parameters, we see that Lemma 5 is
applicable to this case. Since P þ P M1 P 2�þ 4d, the cycle time for S12S21 is given in Eq. (5a) and with
given parameters becomes 155.

For S2, the allocation of the operations becomes important. For the first case, assume that we have a
total of two operations to be allocated for which, one operation has a processing time of 50 and the other
35 making a total of 85. Calculating the cycle time of S2 given in Eq. (A.3), we get 140, which is less than
the cycle time of S12S21. For the second case, assume that we have again two operations to be allocated
for which, one operation has a processing time of 75 and the other 10 making a total of 85. Now,
the cycle time for S2 is equal to 160. Since this is greater than 155, for this case S12S21 is optimal. There-
fore we conclude that depending on the allocation of the operations of S2, either S2 or S12S21 can be
optimal.

Combining the findings in Lemmas 2–5, we now provide the main result of this paper.

Theorem 5

(1) If P M1 þ P M2 P 2d, then S2 gives the minimum cycle time,
(2) Else,
(2.1) If 2P þ P M1 þ P M2
6 2d, then S1 gives the minimum cycle time,

(2.2) Else,
(2.2.1) If 2P M1 þ P M2 þ P 6 2�þ 6d, then S12S21 gives the minimum cycle time,

(2.2.2) Else, depending on the allocation of the operations for S2, either S2 or S12S21 gives the min-

imum cycle time.
Remember that for this theorem and the proof we assumed that P M1 P P M2. For the reverse case, the
results can easily be adapted in analogy with the above analysis resulting in the following corollary:
Corollary 1. If we assume that P M1 < P M2 all cases of Theorem 5 are still valid except case 2.2.1 which should

be replaced with the following:

(2.2.1) If P M1 þ 2P M2 þ P 6 2�þ 6d, then S12S21 gives the minimum cycle time.
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3.3. Sensitivity analysis

In this subsection we will perform a sensitivity analysis on parameters such as the robot transportation
time d, and the loading (or unloading) time of the machines �, and show how the regions of optimality
change with a change in these parameters. We represent PM2 as aPM1, where 0 6 a 6 1. The following
example will be useful in order to analyze the parameters graphically.

Example 3. Assume that � ¼ d ¼ 10 and a ¼ 0, which means that P M2 ¼ 0. We can show the regions for
this case as a graph of P versus PM1 as in Fig. 3.

Consider parameters �, d, and a one at a time. Theorem 5, case 1 states that if P M1 þ P M2 P 2d, then S2

gives the minimum cycle time. From here we conclude that if the transportation time is zero or negligible,
then S2 always gives the minimum cycle time. This is logical since we can consider the robot as a third
machine which is the bottleneck one. Then, the main concern is to minimize the waiting time of the robot in
front of the machines. In order to achieve this, in cycle S2, while processing of a part continues on one of
the machines, the robot makes other activities (such as transportation, loading or unloading of the other
machine, waiting in front of the other machine, etc.) without being late.

The definition of n-unit cycles states that every machine is loaded and unloaded exactly n times. Thus the
loading/unloading times are equivalent for all cycles. However, in cycles S2 and S12S21, while processing
continues on one of the machines, the robot does not wait in front of the machine and makes other
activities and when the robot returns back to the machine to unload there is a partial waiting time in front
of this machine. The loading/unloading time affects these partial waiting times.

We defined a as PM2/PM1 and assumed that 0 6 a 6 1. When we increase PM2 from 0 to PM1, this is in
favor of S2 because in cycle S2 the optimal allocation is the one which balances the processing times on both
machines and when PM2 is close to PM1, the ability to balance the processing times increases.
4. Conclusion

In this paper, we studied the 2-machines, identical parts robotic operation allocation problem with tool-
ing constraints. The operation allocation flexibility is a direct consequence of assuming that the machines in
the robotic cell are CNC machines as is the case for machining operations. The problem is to find the allo-
cation of the operations to the machines and the corresponding robot move cycle that jointly minimize the
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cycle time. As a solution to this problem, we proved in Theorem 4 that the optimal solution is either a 1-unit
or a 2-unit cycle. In Theorem 5, we presented the regions of optimality for these robot move cycles. We
showed that the study of Sethi et al. (1992) becomes a special case of our study. We conducted a sensitivity
analysis on parameters. Suggested future research directions include considering non-identical machines so
that the time to complete a specific operation is different for the two machines. Another topic is to consider
a dual-gripper robot which manages loading and unloading at the same time.
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Appendix A. Cycle time calculations

We will find the cycle times of S1, S2 and S12S21 for a given k-allocation type. Let us start with S1. Sethi
et al. (1992) proved the cycle time of S1 to be:
T S1
¼ 6�þ 6dþ aþ b;
where a and b are the processing times of the part on the first and second machines respectively. With our
notation this cycle time is the following
T S1
¼ 6�þ 6dþ P þ P M1 þ P M2 ðA:1Þ
and it does not depend on the allocation type. So whatever the allocation is, this cycle time is the same.
Now consider S2. Sethi et al. (1992) also provided that:
T S2
¼ 6�þ 8dþmaxf0; a� ð2�þ 4dÞ; b� ð2�þ 4dÞg;
where a and b are defined as above. With our definitions the above equation is the cycle time of S2 with one-
allocation type where, a ¼ P M1 þ P 1ðr1Þ and b ¼ P M2 þ P � P 1ðr1Þ. Then the cycle time of a one-allocation
for cycle S2 with our notation is the following:
T S2ðr1Þ ¼ 6�þ 8dþmaxf0; P M1 þ P 1ðr1Þ � ð2�þ 4dÞ; P M2 þ P � P 1ðr1Þ � ð2�þ 4dÞg. ðA:2Þ
Now consider a two-allocation type for the cycle S2: for a part with the first allocation type, the process-
ing time on the first machine is P M1 þ P 1ðr2Þ and on the second machine is P M2 þ P � P 1ðr2Þ. For a part
with the second allocation type, the processing times on the first and the second machines are
P M1 þ P 2ðr2Þ and P M2 þ P � P 2ðr2Þ respectively. Then, the long run average cycle time to produce one part
with cycle S2 with a specific two-allocation type r2 is:
T S2ðr2Þ ¼ 6�þ 8dþ 1=2ðmaxf0; P M1 þ P 1ðr2Þ � ð2�þ 4dÞ; P M2 þ ðP � P 2ðr2ÞÞ � ð2�þ 4dÞgÞ
þ 1=2ðmaxf0; P M1 þ P 2ðr2Þ � ð2�þ 4dÞ; P M2 þ ðP � P 1ðr2ÞÞ � ð2�þ 4dÞgÞ. ðA:3Þ
We can easily generalize this for a k-allocation type for the cycle S2 as follows:
T S2ðrkÞ ¼ 6�þ 8dþ 1=kðmaxf0; P M1 þ P 1ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P kÞðrkÞ � ð2�þ 4dÞgÞ
þ 1=kðmaxf0; P M1 þ P 2ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 1ðrkÞÞ � ð2�þ 4dÞgÞ
þ 1=kðmaxf0; P M1 þ P 3ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 2ðrkÞÞ � ð2�þ 4dÞgÞ þ � � �
þ 1=kðmaxf0; P M1 þ P kðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P ðk�1ÞðrkÞÞ � ð2�þ 4dÞgÞ. ðA:4Þ
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Now let us consider cycle S12S21. The long run average cycle time for one-allocation type for the cycle
S12S21 can be derived as follows: The activity sequence of this robot move cycle is A0A1A0A2A1A2. Initially
both machines are empty and the robot is in front of the input buffer just starting to take a part. The robot
takes a part from the input buffer transports it to the first machine and loads it, (� + d + �); waits in front of
the machine to finish the processing of the part, (P M1 þ P 1ðr1Þ); unloads the part transports it to the second
machine and loads it, (� + d + �); returns back to the input buffer, takes another part, transports it to the
first machine and loads it, (2d + � + d + �); travels to the second machine, (d); waits if necessary, (w21);
unloads the machine, transports the part to the output buffer and drops it (� + d + �); travels to the first
machine, (2d); waits if necessary, (w11); unloads the machine, transports the part to the second machine
and loads it, (� + d + �); waits for the machine to finish the processing, (P M2 þ ðP � P 1ðr1ÞÞ); unloads
the machine, transports it to the output buffer, drops the part and returns back to the input buffer so that
the initial and the final states are the same, (� + d + � + 3d). As a result, total time to produce two parts is:
T S12S21ðr1Þ ¼ 12�þ 14dþ P þ P M1 þ P M2 þ w11 þ w21;
where w11 ¼ maxf0; P M1 þ P 1ðr1Þ � ð2�þ 4dþ w21Þg and w21 ¼ maxf0; P M2 þ P � P 1ðr1Þ � ð2�þ 4dÞg.
In other words, w11 þ w21 ¼ maxf0; P M1 þ P 1ðr1Þ � ð2�þ 4dÞ; P M2 þ P � P 1ðr1Þ � ð2�þ 4dÞg.
Hence the cycle time for one-allocation for the cycle S12S21 is:
T S12S21ðr1Þ ¼
12�þ14dþP þP M1þP M2þmaxf0;P M1þP 1ðr1Þ�ð2�þ4dÞ;P M2þP �P 1ðr1Þ�ð2�þ4dÞg

2
.

ðA:5Þ

Now consider the case when we have two-allocation types:
T S12S21ðr2Þ ¼
12�þ 14dþ P M1 þ P M2 þ P 1ðr2Þ þ ðP � P 2ðr2ÞÞ þ w12 þ w21

2
;

where w12 ¼ maxf0; P M1 þ P 2ðr2Þ � ð2�þ 4dþ w21Þg and w21 ¼ maxf0; P M2 þ P � P 1ðr2Þ � ð2�þ 4dÞg. In
other words,
T S12S21ðr2Þ ¼ 1=2ð12�þ 14dþ P M1 þ P M2 þ P 1ðr2Þ þ ðP � P 2ðr2ÞÞÞ þ 1=2ðmaxf0; P M1 þ P 2ðr2Þ
� ð2�þ 4dÞ; P M2 þ P � P 1ðr2Þ � ð2�þ 4dÞgÞ. ðA:6Þ
Appendix B. Proof of Theorem 4

The following definition will play a crucial role in the forthcoming context.

Definition 5. State 0 is defined to be the state in which both machines are empty and the robot is in front of
the input buffer.

Consider any n-unit robot move cycle during which State 0 is encountered. Clearly, the allocations
immediately preceding and those immediately following this state can be treated as completely independent
from each other. As far as the cycle time computations are involved, the contribution of the portion of the
cycle between two State 0�s is simply additive. This observation deserves further attention:

Fact 1. The average cycle time of an n-unit robot move cycle is simply the average of the cycle time
corresponding to a sub-cycle between two State 0�s and the cycle time of the remaining cycle after the sub-
cycle is extracted.

After inspecting the cycles we have introduced thus far, it is easy to state that:



794 H. Gultekin et al. / European Journal of Operational Research 174 (2006) 777–796
Fact 2. S1 cycle starts and ends with State 0. S12 sequence starts with State 0 and S21 sequence ends with
State 0.

With these observations, we are now ready to proceed with the proof of Theorem 4.

Proof. Hall et al. (1997) showed that any n-unit robot move cycle can be represented by the four robot
move sequences: S1, S2, S12 and S21. However, not all of these sequences can follow any other since
otherwise the basic feasibility assumptions of Crama et al. (2000) stating that the robot cannot load an
already loaded machine and cannot unload an already empty machine may be violated. Fig. 1 depicts the
feasible transitions from one sequence to another. Now let us consider any n-unit robot move cycle with the
optimal allocation type. In its generality, we assume this cycle to contain at least one of these four robot
move sequences. The allocation of the operations does not affect the loading/unloading and transportation
times but only affects the processing times which in turn affect the waiting times of the robot in front of the
machines. Let us first analyze one of the S1 cycles within this n-unit robot move cycle. Using Facts 1 and 2
above we conclude that the allocation for this cycle does not affect the remaining part of the cycle. Also, as
mentioned previously, there is no allocation problem for S1 cycle, and the waiting time for S1 is
P þ P M1 þ P M2, independent of the allocation. When we remove the activity sequence A0A1A2,
corresponding to S1 from the activity sequence of the n-unit robot move cycle, we get a new feasible
ðn� 1Þ-unit robot move cycle for which the optimal allocation for the remaining parts does not change.

Assume that there are a total of z S1 cycles within the n-unit robot move cycle where z ¼ 0; 1; . . . ; n. Let
T n�z be the cycle time of the new ðn� zÞ-unit robot move cycle, say Cn�z, which is attained by removing the
activity sequences of all S1 cycles. Hence, the cycle time of our n-unit robot move cycle is:
T n ¼
z � T S1

þ ðn� zÞ � T n�z

n
.

This equation states that T n P minfT S1
; T n�zg.

Now let us consider Cn�z. From Fig. 1 we see that between two S12 sequences one S21 sequence must be
performed. Between one S12 and one S21 any number of S2 sequences can be performed. Thus we can
partition Cn�z into sub-cycles each of which starts with S12 performs a number of S2�s and ends up with S21.
Furthermore, as stated as Fact 1 above, the allocation for such cycles does not affect the allocation for the
remaining part of the cycle and is not affected by the allocation of the remaining part of the cycle. The cycle
time of the whole n-unit robot move cycle is a convex combination of the cycle times of these sub-cycles. Let
Ti be the cycle time of the ith sub-cycle with the optimal allocation type then, clearly, T n�z P minifT ig.
Henceforth, T n P minfT S1

;minifT igg.
Now let us consider any such cycle which starts with S12, performs a total of l S2�s l ¼ 0; 1; . . . and ends

up with S21. Note that this is an ðlþ 2Þ-unit cycle. Let us represent this cycle as S12ðl� S2ÞS21. Since in
every cycle each machine is loaded and unloaded an equal number of times, the average loading/unloading
time to produce one part for all cycles are equal to each other, namely, 6�. Repeating cycle S2 l times
requires a total of 8ld. Repeating S12 one time, which has an activity sequence of A0A1A0, requires 5d and
the following activity of this sequence can only be A2 which requires an additional d to travel between final
state of S12 (first machine) to the initial state of the next sequence (second machine). In a similar way
repeating S21 (A2A1A2) one time requires 5d and an additional 3d to travel between the last state of S21

(output buffer) to initial state of the following sequence which must start with activity A0 (input buffer).
Then the average travel time to produce one part with the cycle S12ðl� S2ÞS21 is:
6dþ 8ldþ 8d
lþ 2

¼ 8lþ 14

lþ 2
d.
The last component in our cycle time representations is the total waiting time of the robot in front of the
machines. We can find the waiting time as follows: Assume for the cycle S12ðl� S2ÞS21 using k allocation
types is optimal and consider the specific allocation rk. The first part will be produced according to the cycle
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S12 which implies a full waiting time in front of the first machine: P M1 þ P 1ðrkÞ, and will be processed
according to S2 on the second machine which means a partial waiting time in front of the second machine:
w21 ¼ maxf0; P M2 þ ðP � P 1ðrkÞÞ � ð2�þ 4dÞg. The next l parts will be processed according to S2 cycle on
both machines. The partial waiting time for the second part on the first machine is:
w12 ¼ maxf0; P M1 þ P 2ðrkÞ � ð2�þ 4dþ w21Þg. Then we have:
w12 þ w21 ¼ maxf0; P M1 þ P 2ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 1ðrkÞÞ � ð2�þ 4dÞg.

Proceeding in the same way for all parts, total waiting time to produce l + 2 parts is:
P M1 þ P M2 þ P 1ðrkÞ þ ðP � P ðlþ2ÞðrkÞÞ
þmaxf0; P M1 þ P 2ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 1ðrkÞÞ � ð2�þ 4dÞg
þmaxf0; P M1 þ P 3ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 2ðrkÞÞ � ð2�þ 4dÞg
þmaxf0; P M1 þ P 4ðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P 3ðrkÞÞ � ð2�þ 4dÞg þ � � �
þmaxf0; P M1 þ P ðlþ1ÞðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P lðrkÞÞ � ð2�þ 4dÞg
þmaxf0; P M1 þ P ðlþ2ÞðrkÞ � ð2�þ 4dÞ; P M2 þ ðP � P ðlþ1ÞðrkÞÞ � ð2�þ 4dÞg.
In the above equation let us insert P1(rk) and ðP � P ðlþ2ÞðrkÞÞ into the first and last max terms
respectively. By this change all other max terms remain the same but these two become:
maxfP 1ðrkÞ; P M1 þ P 2ðrkÞ þ P 1ðrkÞ � ð2�þ 4dÞ; P M2 þ P � ð2�þ 4dÞg and

maxfP � P ðlþ2ÞðrkÞ; P M1 þ P � ð2�þ 4dÞ; P M2 þ ðP � P ðlþ1ÞðrkÞÞ þ ðP � P ðlþ2ÞðrkÞÞ � ð2�þ 4dÞg.
Under the optimal allocation we must have P 1ðr�kÞ ¼ 0 and P ðlþ2Þðr�kÞ ¼ P . This means for the first part
allocating all operations that are in set O to the second machine and for the last part allocating them to the
first machine. Furthermore, since we assumed that P M1 P P M2, letting P ðlþ1Þðr�kÞ ¼ 0 does not change the
cycle time. As a result of these, the last max term of the above equation becomes:
maxf0; P M1 þ P � ð2�þ 4dÞ; P M2 þ P � ð2�þ 4dÞg ¼ maxf0; P M1 þ P � ð2�þ 4dÞg.

After including the loading/unloading and travel times, the cycle time of S12ðl� S2ÞS21 under optimal

allocation r�k becomes:
6�þ ð14þ 8lÞ
ðlþ 2Þ dþ 1

ðlþ 2Þ ðP
M1 þ P M2Þ ðB:1Þ

þ 1=ðlþ 2Þðmaxf0; P M1 þ P 2ðr�kÞ � ð2�þ 4dÞ; P M2 þ P � ð2�þ 4dÞgÞ ðB:2Þ
þ 1=ðlþ 2Þðmaxf0; P M1 þ P 3ðr�kÞ � ð2�þ 4dÞ; P M2 þ ðP � P 2ðr�kÞÞ � ð2�þ 4dÞgÞ ðB:3Þ
þ 1=ðlþ 2Þðmaxf0; P M1 þ P 4ðr�kÞ � ð2�þ 4dÞ; P M2 þ ðP � P 3ðr�kÞÞ � ð2�þ 4dÞgÞ ðB:4Þ
þ � � �
þ 1=ðlþ 2Þðmaxf0; P M1 � ð2�þ 4dÞ; P M2 þ ðP � P lðr�kÞÞ � ð2�þ 4dÞgÞ ðB:ðl þ 1ÞÞ
þ 1=ðlþ 2Þðmaxf0; P M1 þ P � ð2�þ 4dÞgÞ. ðB:ðl þ 2ÞÞ
Let W ðS12S21Þ represent the waiting time of two-allocation for cycle S12S21 with optimal allocation r�k ,
which in Eq. (3) was found to be: W ðS12S21Þ ¼ 1

2
ðmaxf0; P þ P M1 � ð2�þ 4dÞgÞ. Then, the (B.(l+2))nd com-

ponent in the above representation is 2
ðlþ2ÞW ðS12S21Þ. Consider lines (B.2)–(B.(l+1)) above. They share the

same pattern as the waiting time component corresponding to an l-allocation type for the cycle S2 in (A.4).
Let W ðS2Þ be this waiting time component in (A.4) when we plug in the respective allocations from (B.2)–
(B.(l+1)). The summation of the components (B.2)–(B.(l+1)) is then l

lþ2
W ðS2Þ. In conclusion,
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T S12ðl�S2ÞS21
¼

2ð6�þ 7dþ P M1þP M2

2
þ W ðS12S21ÞÞ þ lð6�þ 8dþ W ðS2ÞÞ

lþ 2
.

In particular, the cycle time of S12ðl� S2ÞS21 is a convex combination of the cycle times of two-allocation
for S12S21 and l-allocation for S2. Clearly,
T S12ðl�S2ÞS21
P minfT S2ðoptÞ; T S12S21ðoptÞg.
Finally, we have managed to show that the cycle time of the n-unit cycle we started out with,
T n P minfT S1

; T S2ðoptÞ; T S12S21ðoptÞg. h
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