
European Journal of Operational Research 177 (2007) 897–923

www.elsevier.com/locate/ejor
Production, Manufacturing and Logistics

Modelling imperfect advance demand information
and analysis of optimal inventory policies

Tarkan Tan a,*, Refik Güllü b, Nesim Erkip c
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Abstract

We consider an inventory control problem where it is possible to collect some imperfect information on future demand.
We refer to such information as imperfect Advance Demand Information (ADI), which may occur in different forms of
applications. A simple example is a company that uses sales representatives to market its products, in which case the col-
lection of sales representatives’ information as to the number of customers interested in a product can generate an indi-
cation about the future sales of that product, hence it constitutes imperfect ADI. Other applications include internet
retailing, Vendor Managed Inventory (VMI) applications and Collaborative Planning, Forecasting, and Replenishment
(CPFR) environments. We develop a model that incorporates imperfect ADI with ordering decisions. Under our system
settings, we show that the optimal policy is of order-up-to type, where the order level is a function of imperfect ADI. We
also provide some characterizations of the optimal solution. We develop an expression for the expected cost benefits of
imperfect ADI for the myopic problem. Our analytical and empirical findings reveal the conditions under which imperfect
ADI is more valuable.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction and related literature

There has been many improvements in Supply Chain Management (SCM) and inventory control, especially
making use of developments in Information Technologies (IT) that made information flow faster, easier, and
cheaper. Along with benefits such as decreasing demand variability by sharing information along supply chain
members through means like Electronic Data Interchange (EDI), or decreasing lead times through means
like faster and more accurate handling of demand information, there are also opportunities for further
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improvements that make use of information. Such an opportunity may arise if information on future demand
is employed, which is the subject of this study.

Information on future demand is referred to as Advance Demand Information (ADI), which is usually
assumed to be perfect in the literature, that is customer orders that are available prior to their materialization
are considered. In this study we focus on imperfect ADI, which means that early uncertain indication of pro-
spective future orders is utilized.

The structure of imperfect ADI considered in this study covers a number of real life cases, some of which we
discuss below. In most of these cases imperfect ADI already exists in the system of concern. As a consequence,
it is easy and inexpensive to collect imperfect ADI in most applications.

Consider a company that uses sales representatives to market its products. The contact of a sales represen-
tative with a customer is prone to yield sales potential, unless the offer is rejected at once. In some cases the
sales representatives prepare sales vouchers as means for giving quotations to the customers showing willing-
ness to buy. Since it usually takes some time for a potential sale to materialize, the collection of sales repre-
sentatives’ information as to the number of customers interested in a product (such as the number of
outstanding sales vouchers) can generate an indication about the future sales of that product, hence it consti-
tutes imperfect ADI. In connection with this example, Easton and Moodie [6] discuss how ‘‘outstanding bids’’
(that is, pending proposals at prospective customers) can be employed in quoting the lead time and contract
price for a new bid in a single resource production environment.

Internet retailing, by its nature, allows collection of imperfect ADI. A visit to a commercial web site is an
indication of interest in one or more of the commodities (or services) offered by the company. Making use of
links to more specific sub-pages or different forms of filtering are examples of tools that can be employed to
differentiate between potential customers and the rest of the visitors. There are also other tools that can help to
obtain more accurate ADI through the internet. Prospective (or actual) customers can fill in lists that clearly
state the specific commodities they are interested in, or similarly they can prepare ‘‘wish lists’’ that can be used
later for easier access to their preferred commodities when they have the necessary funding and/or time to real-
ize the purchase. Alternatively, they can send the list to family and friends for birthdays or other special occa-
sions, such as a wedding, to suggest gifts that can be purchased. Incomplete ‘‘shopping carts’’ also provide an
indication on a customer’s interests, since a customer with an incomplete shopping cart may finalize her order
some other time. Another option is to add the possibility of watching the price changes for the commodities
specified by the customer. The customer can be warned by e-mail (or by some other means such as mobile
phone text message service) whenever there is a change in the price of a commodity she included in her list
and/or whenever the price of the commodity drops below her preferred (and stated) price level. Some retailers
do have such options in their web sites.

In business-to-business relations, retailers may share their forecasts with the supplier. Consequently, this
information may serve as an action to reserve capacity, and hence the supplier can devise a probability struc-
ture to estimate their conversion into customer orders. A Vendor Managed Inventory (VMI) environment, in
which the manufacturer is responsible for maintaining the supplier inventory levels, is a typical example. Also,
as a complementing feature, consider ‘‘Collaborative Planning, Forecasting, and Replenishment’’ (CPFR),
which is becoming more common (see CPFR site at www.cpfr.org). The CPFR Committee is a VICS (Volun-
tary Interindustry Commerce Standards) committee, made up of retailers, manufacturers, and solution pro-
viders, who developed a set of business processes that the entities taking place in a supply chain can use
for collaboration. The mission of this committee is to create collaborative relationships between buyers and
sellers through co-managed processes and shared information towards the aim of increasing the overall effi-
ciency in the supply chain.

In this study we investigate the impact of using imperfect ADI on inventory policies. A decrease in uncer-
tainty of future demand may allow the supplier to order in advance, which would shorten the duration
between the placement of the actual demand by the customer and its delivery. Note that this time is shorter
than the traditional lead time, as the order is placed before the actual demand occurs. The way we utilize
imperfect ADI is through treating each individual ADI (e.g., each sales voucher) as a prospective demand,
and assigning it a probability, p, of being realized as demand in the next time period. We note that the demand
realization probability, p, may be referred to as ‘‘customer reliability level’’, as well. On the other hand, there
is a probability, r, for which an ADI will remain in the system without being converted into a demand
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realization. We refer to r as the ‘‘information sojourn rate’’. As we discuss in Section 2.1 this model structure
enables us to represent reasonably complicated advance demand information environments. We consider peri-
odic review ordering policies and we model the situation in the following manner:

• The total size of imperfect ADI, denoted by k, is the prospective number of demands available in a period
(say yesterday), which includes both new customer information that has become available and those that
had been collected previously and still remain in the system.

• A portion of the prospective demand materializes and becomes actual demand (each prospective demand
with probability p) during the current period (say today).

• A portion of the prospective demand stays in the system for one or more number of periods (each prospec-
tive demand with probability r) before either becoming a demand or leaving the system.

• We assume that the materialized demand is the actual (realized) demand, (that is, there are no order can-
cellations) and is a function of k.

Note that there is a gap of at least one period between collecting ADI and receiving the actual demand. In
other words, there is an imperfect information about a period’s demand before its realization. This study
intends to explore the impact of this information. We note that the number of customers that actually place
orders may depend on ADI through a more complicated probability model. However, the simple multinomial
model that we employ captures the partial realization of an ADI, and it can be estimated from customer
demand history. In Section 4 we propose and analyze an extension to the unique customer reliability level
in which the ADI is analyzed according to the sources that generate it and then segmented accordingly, each
segment having its own customer reliability level.

When a demand has materialized, the customer order for the unit is due l periods later. We refer to l as
‘‘demand-lead-time’’ (as introduced by Hariharan and Zipkin [11]). While in some cases l is zero, positive l

can be observed in many applications. This is especially common in service systems or customized products.
Purchase agreements also constitute an example for a case of positive demand-lead-time. The time, L, that is
required to satisfy an order (that is the traditional ‘‘lead time’’) will be referred to as ‘‘supply-lead-time’’. As
we later demonstrate, the difference between L and l is what matters in determining inventory policies, rather
than individual values of L and l. The same result also holds in Hariharan and Zipkin [11] for a different
model. They conclude that ADI improves system performance in the same way as a reduction in supply-
lead-times, under the situation of no order cancellation. Cheung and Zhang [3] model and analyze customer
order cancellations, which they consider as an addition to the list of sources of ‘‘bullwhip effect’’. Bullwhip
effect is a term introduced by Lee et al. [15], and it stands for the propagation of variance of demand along
supply chain members. Most of the authors define ADI the way Hariharan and Zipkin do; that is, as perfect
information on future demand. Our definition generalizes this concept to imperfect information, for which
perfect information becomes a special case with p = 1.

The literature on different forms of advance demand information has been rapidly increasing in recent years.
Treharne and Sox [22] consider a non-stationary demand situation that can be partially observed, and hence
produces partial information. Assuming that the demand in any given period arises from one of a finite collec-
tion of probability distributions, they model the demand as a composite-state, partially observed Markov deci-
sion process. Accordingly, they show that a state-dependent base stock policy is optimal for their problem
environment. DeCroix and Mookerjee [4] consider a periodic-review problem in which there is an option of
purchasing advance demand information at the beginning of each period. They consider two levels of demand
information: Perfect information allows the decision maker to know the exact demand of the coming period,
whereas the imperfect one identifies a particular posterior demand distribution. They characterize the optimal
policy for the perfect information case. Gallego and Özer [7] model ADI through a vector of future demands
and show the optimality of a state-dependent order-up-to policy. Van Donselaar et al. [23] investigate the effect
of sharing uncertain ADI between the installers of a project and the manufacturers, in a project-based supply
chain. The uncertainty in their setting arises from not having accomplished the selection of installers and man-
ufacturers. Thonemann [21] elaborates further on a similar problem in which there is a single manufacturer and
a number of installers. He considers two types of ADI: Information on whether or not the installers will place
an order, and information on which product they will order. Zhu and Thonemann [25] consider a problem that
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consists of a number of customers that may provide their demand forecasts. These forecasts are employed to
improve the demand forecast of the retailer through an additive Martingale model of forecast evolution.
Assuming a linear cost associated with the number of customers that share information, they investigate the
relation between the optimal number of customers to contact and the problem parameters.

Karaesmen et al. [14] consider a capacitated problem under ADI and stochastic lead times. They model the
problem via a discrete time make-to-stock queue. Dellaert and Melo [5] model partial ADI in a make-to-stock
environment through a Markov decision process given the existence of customer priorities and when the supply-
lead-time is negligible. ADI in this case is the currently committed demand on some constant number of periods
in the future (with the exception of next period’s demand information being perfect); that is, it is possible to
receive more orders in those periods but not less, making the minimum demand known for these periods.

Our contributions in this study can be summarized as follows: (1) we present a fairly general probability
structure for modelling imperfect advance demand information, (2) we demonstrate useful structural proper-
ties of the optimal policy, (3) under myopic policy we come up with an explicit expression for the expected cost
benefits of employing imperfect advance demand information, (4) our computational results provide useful
managerial insight for parameter settings where imperfect ADI becomes most beneficial.

Our probability model for representing the evolution of ADI records and the dynamic cost model are pre-
sented in Section 2. We characterize optimal policies in Section 3. We cover an extension of the problem in
Section 4 where the ADI is segmented based on the sources that generate it. We investigate the value of
ADI, first by elaborating on the myopic problem and then empirically solving the general problem in Section
5. We state our concluding remarks and possible extensions of this study in Section 6.
2. Description of the model

In this section our aim is twofold. We present our imperfect advance demand information model in Section
2.1. Then, in Section 2.2 we present a dynamic model that enables us to characterize optimal inventory policies
under ADI and partial customer reliability. The notation is introduced as need arises, but we summarize our
major notation in Table 1 for the ease of reference. Subscripts are omitted for simplicity, whenever
unnecessary.

2.1. Modelling imperfect advance demand information

In our imperfect advance demand information model we let Mn be the random variable denoting the size of
advance demand information collected within period n � 1 which becomes available at the beginning of period
n, n = 1,2, . . . We denote the observed realization of Mn as mn. We assume that {Mn, n = 1,2, . . .} is an inde-
pendent and identically distributed sequence with lM = E[Mn] and r2

M ¼ Var½Mn�. Customers who indicate
their willingness to materialize their demands place their orders in period n, and the system observes the real-
ized (actual) demand at the beginning of period n + 1. Also let Kn be the total number of prospective custom-
ers (total ADI size) who would be willing to place orders in periods n,n + 1, . . . and An be the number of
customers who leave the system at the beginning of period n without materializing any demand although they
previously provided ADI. That is, Kn is the number of potential customers who have been recorded as ADI in
periods t 6 n � 1, but have neither materialized their orders nor confirmed that they will not place any order,
and An is the number of customers who have been recorded as ADI until the beginning of period n � 1 but
declared during period n � 1 that they decided not to place any order. Let kn be the realization of Kn. Note
that kn also includes those customers whose advance demand information has just been collected (mn) in per-
iod n � 1. Let Dn(k) be the demand observed at the beginning of period n (that is, collected in period n � 1), as
a function of total ADI size available at the beginning of period n � 1. We assume that there are no other
sources of demand, that is all of the demand is originated by the information generated in advance. We also
assume that an arriving ADI in a period does not leave the system at the same period. Consequently, we can
express the total ADI size available at the beginning of period n + 1 as
Knþ1ðknÞ ¼ kn � Dnþ1ðknÞ � Anþ1ðknÞ þMnþ1. ð1Þ



Table 1
Relevant notation

N Number of decision epochs in the planning horizon
l Demand-lead-time
L Supply-lead-time
s Effective lead time (= L � l)
mn Size of advance demand information which is accumulated within period n � 1 and available

(observed) at the beginning of period n

M Generic random variable denoting the size of an (unobserved) ADI which is accumulated in a period
lM Expected value of M

r2
M Variance of M

kn Total size of advance demand information available at the beginning of period n

K Generic random variable denoting the total size of ADI available at the beginning of a period
Dn+1(k) Realized (actual) demand at the beginning of period n + 1, to be met at the beginning of period n + l + 1

(which is a function of the observed ADI, kn = k)
xc

n Net inventory carried during period n

xn Effective inventory position
Qn Amount ordered at the beginning of period n

yn Effective inventory position right after ordering Qn

fn(x,k) Expected minimum cost of operating the system from the beginning of period n until the end of the
planning horizon when the effective inventory position at the beginning of period n is x, and
the size of available ADI on next period’s demand is k

Wn(k) Random variable that denotes the demand that is realized during periods n + 1,n + 2, . . . ,n + s; that is,
during the effective lead time, given that k is the total size of ADI available in period n

Gk(w) Distribution function of Wn(k)
b Penalty cost per unit of backorder per period
c Production (or procurement) cost per unit
h Inventory holding cost per unit per period
s Salvage cost per unit (which is negative if salvage value exists)
p Probability that an observed individual ADI record will be realized as demand
r Probability that an observed individual ADI record waits in the system one more period
a Discounting factor (0 < a 6 1)
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Each ADI record available at the beginning of period n becomes a demand realization in period n with
probability p > 0 or waits in the system for one additional period with probability r P 0, independent of
how long it has been in the system, and leaves the system without becoming a demand realization with prob-
ability q = 1 � p � r. We assume that p + r 6 1, and r < 1. It directly follows that An has Binomial distribution
with parameters kn�1 and q.

We can express E[Kn] and Var[Kn] as follows:
E½Kn� ¼ lM

Xn�1

i¼0

ri;

Var½Kn� ¼ E½Kn�1�rð1� rÞ þ r2
M þ r2Var½Kn�1�.
By taking the limits of these expressions as n!1, we find out that at stationarity
E½K� ¼ lM=ð1� rÞ; ð2Þ
Var½K� ¼ lM r þ r2

M

� �
=ð1� r2Þ. ð3Þ
The probability that an ADI record present in the system will ever become a demand realization in an infinite
horizon is given by
pE ¼
X1
i¼1

pri�1 ¼ p
1� r

6 1. ð4Þ
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We note that (4) defines an upper bound in case of finite horizon, for which case the exact expression can be
obtained by replacing the upper limit of the summation by the remaining number of periods to go. Similarly,
qE :¼ 1 � pE = q/(1 � r) is the probability that an ADI record does not become a demand realization and even-
tually leaves the system. For the special case r = 0, we have qE = q = 1 � p, implying that each ADI record
either becomes a demand realization in one period or leaves the system. In this case, total ADI size available
at the beginning of period n coincides with mn (as in this case no ADI record remains in the system for longer
than one period), and hence kn = mn. Consequently, Kn and Mn are identical random variables when r = 0.

We should note that the time each ADI record remains in the system until it becomes a demand realization
(or before the end of horizon in the finite horizon case) is a defective geometric random variable (unless
p + r = 1), with qE being the probability that mass escapes infinity (indicating that an ADI record does not
become demand realization). Using this observation one can devise a maximum likelihood estimation proce-
dure for estimating r and p from the history of customer records.

In Section 2.2, when we demonstrate how ADI records can be utilized in determining optimal inventory
policies, we will need the distribution of demand over a certain horizon of length s P 1. Let k be the total size
of ADI available at the beginning of period n, and Mn+1,Mn+2, . . . ,Mn+s�1 be random variables denoting
advance demand information collected in periods n,n + 1, . . . ,n + s � 2, respectively. Let Wn(k) be the ran-
dom variable describing total demand over periods n + 1,n + 2, . . . ,n + s, for s P 1:
W nðkÞ ¼
Xs

i¼1

Dnþi.
Since Dn+i, i P 1 depends on k, Wn is also a function of k. Obviously, Dn+1,Dn+2, . . . ,Dn+s are not indepen-
dent random variables, unless r = 0. Let X1 be the random variable denoting the part of initial ADI size k that
becomes a demand realization in periods n,n + 1, . . . ,n + s � 1. Similarly, let Xi be the part of Mn+i�1 that
becomes a demand realization in periods n + i � 1,n + i, . . . ,n + s � 1, for i = 2,3, . . . ,s. Notice that, by inde-
pendence of (k,Mn+1,Mn+2, . . . ,Mn+s�1), (X1,X2, . . . ,Xs) is an independent collection, and
W nðkÞ ¼
Xs

i¼1

Dnþi ¼
Xs

i¼1

X i.
It can easily be verified that X1 has Binomial distribution with parameters k and p(1 + r + r2 + � � � + rs�1).
That is
X 1 � Binomðk; pð1þ r þ r2 þ � � � þ rs�1ÞÞ.

Similarly,
X ijMnþi�1 � BinomðMnþi�1; pð1þ r þ r2 þ � � � þ rs�iÞÞ

for i = 2,3, . . . ,s. Therefore, conditioned on Mn+1, . . . ,Mn+s�1, Wn(k) is distributed as sum of s independent
but non-identical Binomial random variables. As a consequence, Wn(k) does not depend on n, hence we drop
the subscript. Let
ui ¼ p
Xs�i

j¼0

rj ¼ pð1� rs�iþ1Þ=ð1� rÞ
for i = 1,2, . . . ,s. Then, by conditioning Xi on Mn+i�1, i = 2,3, . . . ,s we can show that
E½W ðkÞ� ¼ ku1 þ lM

Xs

i¼2

ui; ð5Þ

Var½W ðkÞ� ¼ ku1ð1� u1Þ þ
Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
M

� �
. ð6Þ
We define Gk(w) as the distribution function of W(k),
GkðwÞ ¼ PrfW ðkÞ 6 wg.
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Evaluating the distribution of W(k) is generally difficult. However, given the first two moments of the ADI
generation model (lM and r2

M ) and customer reliability parameters (p and r) one can use Eqs. (5) and (6)
to find the expected value and variance of W(k).

For the important special case r = 0 (this is a Bernoulli type imperfect ADI model, where each ADI either
becomes a demand realization or leaves the system), we have ui = p for all i = 1,2, . . . ,s and
E½W ðkÞ� ¼ kp þ lMðs� 1Þp; ð7Þ
Var½W ðkÞ� ¼ kpð1� pÞ þ ðs� 1Þ lM pð1� pÞ þ p2r2

M

� �
. ð8Þ
2.2. Development of the dynamic cost model

In our dynamic model, the objective is to minimize the expected total discounted inventory-related costs.
All unmet demand is backlogged. We assume linear holding, backorder, and unit production (or procurement)
costs. We consider a finite horizon model, because it is more likely that the products to collect ADI are those
with short life cycles. We also consider a discounting factor so that the time value of money can be regarded.

Let N be the number of decision epochs in the planning horizon. Let L and l be the supply-lead-time and
demand-lead-time, respectively. Consequently, we assume that the number of periods in the planning horizon
is N + L (the period at which the order placed in period N is received). When the customer demand is realized,
the system commits itself to satisfy the demand after l periods. Let Qn be the quantity ordered at the beginning
of period n, and let xc

n be the net inventory carried during period n. The problem can be illustrated as in Fig. 1
for the whole planning horizon, and as in Fig. 2 for a specific period n.

For each period n the following order of events take place:

• At the beginning of period n, Qn�L arrives.
• Dn�l is met/backordered.
• Dn is realized.
0 L+11 2

Q1 Q2

D2 DL-l+1

.

.

.
. . .. . .

l+2

Initialization:
collection of

demand
information

N+LN+L-1

QN

D
N+L-l

QN-1

DN+L-l-1

N+L-lN
. . .. . .

Fig. 1. Finite horizon problem.

Qn-L received Q n ordered

n

Dn-l realized

n+ln-L n+Ln-l n-1

Qn received

: material

: information

Qn-L ordered

Dn-l due Dn realized D n due

kn

collected

Fig. 2. Illustration for period n.
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• xc
n is updated.

• mn is observed.
• kn is updated.
• Qn is ordered.

We first note that for L 6 l the problem is trivial, as the value of imperfect advance demand information is
zero; because, the system can always match demand by appropriately adjusting the times of orders. Hence we
consider the more interesting case of L > l.

The first demand is assumed to be realized at the beginning of period 2. This demand is the collection of the
individual demands that occurred during period 1 for which advance demand information is collected in the ‘‘ini-
tialization’’ phase (period 0). The last demand is assumed to be realized at the beginning of period N + L � l

which is intended to be received at the beginning of period N + L, that is, the end of the planning horizon.
Since at the beginning of period n, right after ordering Qn, nothing can be done to influence the net inven-

tory until period n + L, inventory related costs associated with period n + L can be accounted in period n as
cQn þ aL hE½xc
nþL�

þ þ bE½xc
nþL�

�� �
; ð9Þ
where c is the unit production (or procurement) cost, h and b are the per period holding and backorder costs,
respectively.

The usual net-inventory recursion can be noted as
xc
nþ1 ¼ xc

n þ Qnþ1�L � Dnþ1�l. ð10Þ
Successive substitution in (10) results in
xc
n ¼

Xn�L

i¼1

Qi �
Xn�l

i¼2

Di ð11Þ
for n P L + 1, assuming that xc
1 is zero, without loss of generality. We do not consider the costs that may be

incurred before period L + 1, as the first ordering possibility arises at the beginning of period 1 (which is re-
ceived at the beginning of period L + 1), and therefore there is no way to influence the costs in periods
1,2, . . . ,L. We also note that by using (11)
xc
nþL ¼ xc

n þ
Xn

i¼n�Lþ1

Qi �
XnþL�l

i¼n�lþ1

Di. ð12Þ
Rearranging the terms, Eq. (12) can also be expressed as
xc
nþL ¼ xc

n þ
Xn�1

i¼n�Lþ1

Qi �
Xn

i¼n�lþ1

Di

 !
þ Qn �

XnþL�l

i¼nþ1

Di. ð13Þ
The term in parenthesis in (13) is the traditional inventory position definition for period n right before order-
ing, with the difference that the demand that has been realized as of period n but not due yet is subtracted from
it. We refer to this term as ‘‘effective inventory position’’ and denote it as xn; that is,
xn ¼ xc
n þ

Xn�1

i¼n�Lþ1

Qi �
Xn

i¼n�lþ1

Di.
The rightmost summation in (13) is the total demand that will be realized between periods n + 1 and n + L � l.
This term is the demand during ‘‘effective lead time’’, where effective lead time, s, is defined as the difference
between the supply-lead-time and the demand-lead-time:
s ¼ L� l.
Hence, (13) can be re-stated as
xc
nþL ¼ xn þ Qn �

Xs

i¼1

Dnþi.
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Let us denote the random variable that describes the total demand during effective lead time as W(k), as intro-
duced in Section 2.1, that is,
W ðkÞ ¼
Xs

i¼1

Dnþi.
Finally, xn + Qn can be viewed as the level that the system raises the effective inventory position up-to. Let us
denote this as yn, that is, yn = xn + Qn. Consequently,
xc
nþL ¼ yn � W ðkÞ. ð14Þ
At the beginning of period n, the system state that is available to decide on Qn is made up of x (effective inventory
position at the beginning of period n), and k (the size of available ADI). We define fn(x,k) as the expected min-
imum cost of operating the system from the beginning of period n until the end of the planning horizon; that is,
fnðx; kÞ ¼ �cxþmin
yPx
fJ nðy; kÞg; ð15Þ
where
J nðy; kÞ ¼Lðy; kÞ þ aE½fnþ1ðy � DðkÞ;Knþ1ðkÞÞ� ð16Þ
for 1 6 n 6 N,
Lðy; kÞ ¼ cy þ aL h
Z y

0

ðy � wÞdGkðwÞ þ b
Z 1

y
ðw� yÞdGkðwÞ

� �
; ð17Þ
and Kn+1(k) = k � D(k) � A(k) + M, as expressed in Eq. (1). We assume that the remaining inventory can be
salvaged with a unit revenue of c and outstanding backorders are satisfied with a unit cost of c at the end of the
planning horizon, that is, fN+1(x,k) = �cx.

3. Characterization of the optimal policy

In this section, we obtain structural results about the finite horizon model introduced in Section 2 and its
optimal solution. As we demonstrated in Section 2, at least one ingredient of W(k), X1, is a discrete random
variable. Therefore, Gk(w) is not continuous. However, for the ease of exposition we assume Gk(w) is contin-
uous and Lðy; kÞ is twice differentiable. Our results also hold for the discrete case. We first note that Lðy; kÞ is
convex in y for all k P 0, since it is the usual newsboy cost function.

Theorem 1. The following properties hold for n = 1,2, . . . ,N.

(i) Jn(y,k) is convex in y, for all k P 0.

(ii) fn(x, k) is convex in x, for all k P 0.

(iii) Let yn(k) be the value of y that minimizes Jn(y,k). Then, the optimal ordering policy at the beginning of

period n is of state-dependent order-up-to type which is defined by
Qn ¼
ynðkÞ � x; if x < ynðkÞ;
0; if x P ynðkÞ.

�

Proof. Proof is provided in Appendix A. h

Theorem 1 reveals that, upon observing the system state (x,k) at the beginning of period n, the optimal policy
is to order an amount that will bring the effective inventory position of the system to yn(k). Sethi and Cheng [18]
(also Song and Zipkin [19], and Chen and Song [2] for other similar cases) have shown the optimality of state-
dependent order-up-to type policies (or state-dependent (s,S) type policies under fixed ordering costs) when there
exists a Markov-modulated demand process. In our case we have a simple and more explicit structure, and it is
not straightforward to show that ours is a special case of the general problem structure. Our Theorem 1 is in line
with Remark 4.5 of Sethi and Cheng [18], which claims that their optimality result can be extended to the case
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where there are countably infinite states describing demand. We note that the demand process in our problem can
be pictured as a Markov-modulated process with countably infinite states describing demand/information struc-
ture, because Mn is defined as an independent and identically distributed (iid) sequence. This allows construction
of a stationary probability transition matrix between information states (ADI sizes) that describe demand during
effective lead time. Nevertheless, Theorem 1 can also be extended to the case where Mn is not iid, that is when the
Markovian structure does not hold. This requires redefining the stationary and independent elements in our
model that depend on the total ADI size only, but the general line of the proof remains the same. In that case
total available ADI size would not be enough for describing demand during lead time, because of the dependence
and non-stationarity of imperfect ADIs. Therefore, the history of imperfect ADIs would need to be collected as
well, and the state-dependent optimal order-up-to point would also be a function of this history.

The following theorem states some monotonicity results.

Theorem 2. The following properties hold.

(i) f 0nðx; kÞP f 0nþ1ðx; kÞ for n = 1,2, . . . ,N, for all x, and k P 0,

(ii) J 0n�1ðy; kÞP J 0nðy; kÞ for n = 2,3, . . . ,N, for all y, and k P 0,

(iii) yn�1(k) 6 yn(k) for n = 2,3, . . . ,N, for all k P 0,

where f 0 and J 0 refer to the derivatives taken with respect to the first arguments of f and J, respectively.

Proof. Proof is provided in Appendix B. h

Theorem 2(iii) simply states that, in any period n � 1, as the system has a number of possible demand states
to occur in the next period, it may position itself at a lower inventory position in period n � 1, in order to be
able to correct its inventory level to a more desirable position in period n.

Note that each of the monotonicity results provided in Theorem 2 are valid when the ADI sizes of the two
consecutive periods of concern are the same. In other words, the order-up-to point of period n can be less than
that of period n � 1 when the size of ADI available at the beginning of period n is less than that of period
n � 1.

An upper bound on order-up-to levels can be deduced directly from Theorem 2 as follows:

Corollary 1. Optimal order-up-to level of the last period in the planning horizon for a given ADI size, k, is an

upper bound for the optimal order-up-to level of any period with the same k.

This level can be derived as follows. We need to have J 0N ðy; kÞ ¼ 0 for y = yN(k). Therefore,
J 0N ðy; kÞ ¼L0ðy; kÞ � ac ¼ 0, and then c + aL(�b + (b + h)Gk(y)) � ac = 0. Consequently,
yNðkÞ ¼ G�1
k

b� cð1� aÞa�L

bþ h

� �
.

If the demand during effective lead time is taken to be approximately normal with mean E[W(k)] and var-
iance Var[W(k)], as computed in Eqs. (5) and (6), respectively, then
yNðkÞ ¼ E½W ðkÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½W ðkÞ�

p
� U�1 b� cð1� aÞa�L

bþ h

� �
. ð18Þ
Note that this level can be calculated for any k; hence it may serve as a parametric upper bound for any value
of the ADI size, k, in any period.

The following theorem characterizes the behavior of the optimal order-up-to point as related to the size of
ADI.

Theorem 3. The following properties hold for n = 1,2, . . . ,N, and for all k and g P 0.

(i) f 0nðx; kÞP f 0nðx; k þ gÞ for all x,
(ii) J 0nðy; kÞP J 0nðy; k þ gÞ for all y,

(iii) yn(k) 6 yn(k + g).
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Proof. Proof is provided in Appendix C. h

The relation stated Theorem 3(iii) is rather intuitive: the order-up-to point increases as the size of ADI
increases. Another property of the optimal order-up-to point as related to the size of ADI is stated in the fol-
lowing theorem.

Theorem 4. The following properties hold for n = 1,2, . . . ,N, for g1 P 0, g2 P 0 such that g1 + g2 6 g, and for

all k.

(i) J 0nðy � g; kÞ 6 J 0nðy � g1; k þ g2Þ for all y,

(ii) yn(k) + g P yn(k + g2) + g1.

Proof. Proof is provided in Appendix D. h

Theorem 4(ii) states that the marginal increase of the optimal order-up-to point cannot be greater than the
marginal increase of information size that generates it. In specific, an additional unit of ADI will never cause
the order-up-to level to increase more than one unit.

Note that efficient algorithms to compute optimal order-up-to levels can be devised by making use of the
above properties. We provide one possible algorithm assuming discrete demand in Appendix E.

The form of the optimal policy and the qualitative results that we provide here are closely related to those
that are obtained for submodular functions [12] and for other non-stationary demand models [24]. Although
we are interested in finite horizon results, our results can be extended to infinite horizon, and a suitable policy
iteration algorithm (see, for example, [13]) can be used (as an extension to the one provided in Appendix E) to
obtain the state dependent inventory policy.
4. Source segmentation

In this section we discuss an extension to our model. We refer to the internet retailing example in our dis-
cussion for illustrative purposes, but we note that our results hold for the general problem, as long as it is pos-
sible to identify categorical differences between the distinct sources that generate imperfect ADI.

In the general internet customer framework, the least information that can be obtained by each connection
to a product’s website is the Internet Protocol (IP) address. The information about the number of visits and
the previous orders given from that IP address alone can be evaluated to differentiate between those customers
who tend to realize orders after providing an ADI and those who do not. The region or location of the con-
nection may be of use, as well. For example, if the manufacturer supplies only the domestic market, then for-
eign connections can be disregarded.

There is also other information that can be gathered from potential customers, such as gender, age, profes-
sion, education, etc. While these pieces of information can be gathered through means like questionnaires,
more reliable and practical information can be obtained via means like membership status, for which the cus-
tomers provide information in the beginning. Upon availability of such information, ADI sources can be seg-
mented accordingly, each having their respective customer reliability levels (that is, the probability of an ADI
turning into a realized demand for each segment). A factorial design can be implemented to explore the main
and interaction effects of the factors (such as age, education, etc.) on the reliability level, depending on the level
of detail for such a segmentation. While it is possible to denote each factor separately on ADI, we consider
s = 1,2, . . . ,S different segments, combining all levels of all factors. For example, if gender and five different
age groups are of concern, then we have S = 10 in our model, each s standing for a different combination of
the levels of these two factors.

The motivation behind segmentation, in case it is possible, is to make better use of imperfect ADI. A piece
of information that belongs to a specific segment would otherwise be treated as information from any other
segment. In case there are known differences between the reliability levels and/or information sojourn rates of
segments, then segmentation can result in decreased system costs.
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We let each segment have a reliability level of ps, and information sojourn rate of rs, resulting in us
i , where
us
i ¼ ps

Xs�i

j¼0

ðrsÞj ¼ psð1� ðrsÞs�iþ1Þ=ð1� ðrsÞÞ
for i = 1,2, . . . ,s and s = 1,2, . . . ,S. Advance information on demand is collected separately for each segment,
which we denote by ks. Similarly, the random variable denoting the size of an (unobserved) ADI for each per-
iod for segment s is Ms, with expectation ls

M and variance ðrs
MÞ

2. Once ADI is collected for all segments, we
have a vector k = (k1,k2, . . . ,kS) constituting all the available ADI.

Let us consider the demand during effective lead time, that is, W(k), at the beginning of period n. The argu-
ments to be raised are similar to those in Section 2, hence will be skipped. If we assume independence between
segments (and between each individual ADI, as before), then we can evaluate the expected value and the var-
iance of Ws(ks), that is the demand originating from segment s = 1,2, . . . ,S during effective lead time, as
E½W sðksÞ� ¼ ksus
1 þ ls

M

Xs

i¼2

us
i ;

Var½W sðksÞ� ¼ ksus
1ð1� us

1Þ þ
Xs

i¼2

ls
M us

i ð1� us
i Þ þ ðus

i Þ
2ðrs

MÞ
2

n o
;

and consequently the expected value and the variance of the total demand during effective lead time as
E½W ðkÞ� ¼
XS

s¼1

ksus
1 þ ls

M

Xs

i¼2

us
i

" #
; ð19Þ

Var½W ðkÞ� ¼
XS

s¼1

ksus
1ð1� us

1Þ þ
Xs

i¼2

ls
M us

i ð1� us
i Þ þ ðus

i Þ
2ðrs

MÞ
2

n o" #
. ð20Þ
The results that are obtained for the single source model can be adjusted to the source segmentation case by
substituting the expected demand during effective lead time obtained in (19) and the variance of demand dur-
ing effective lead time obtained in (20), when necessary. For example, the approximate upper bound derived in
(18) turns out to be
yNðkÞ ¼ E½W ðkÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½W ðkÞ�

p
� U�1 b� cð1� aÞa�L

bþ h

� �
. ð21Þ
We note that segmenting ADI sources and employing statistical tools for estimating corresponding reliability
levels may impose difficulties if the amount of raw data to analyze is very large. In that case, it may be useful to
apply an appropriate data mining technique.

5. Value of information

In this section our objective is to explore the value of information aspect of ADI, customer reliability level,
and information sojourn rate. We first obtain explicit approximate expressions for the myopic (single decision
epoch) problem in Section 5.1 and then we extend our analysis to the general (multi decision epoch) problem
in Section 5.2.

5.1. Value of information in the myopic problem

Our exposition is based on the myopic (single decision epoch) problem. The myopic problem and its solu-
tion is presented in Appendix F. We first obtain the expected total relevant cost (TRC) term when ADI is uti-
lized (ADI-case), and then compare it with the case where ADI is not utilized (NoADI-case). We make the
comparison for a = 1.

The distribution of demand during the effective lead time is the convolution of a binomial distribution and
(s � 1) distributions that depend on the distribution of M. For the analysis in this section, we apply normal
approximation to both cases that are mentioned above.
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In order to make a meaningful comparison, the expected value and the variance of M are assumed to be
known. The analysis can be conducted either for the first period with E[K] = lM, or assuming that the system
is at stationarity so that E[K] = lM/(1 � r). We assume a stationary system in what follows, which can easily
be adapted to the case of the first period. Throughout this section we assume that p > 0. If p = 0, no matter
what advance information there is on demand, the actual demand would be zero, and hence the value of infor-
mation would trivially be zero.
5.1.1. Advance demand information is utilized

Here we consider the case in which the amount ordered, y*, is based on the imperfect ADI size. Hence, we
evaluate the expected cost term through conditioning on the ADI size, that is, E[TRC(y*)] = E[E[TRC(y*) jk]].
From (34),
E½TRCðy�Þjk� ¼ ðbþ sÞE½W ðkÞ � y��þ þ sðy� � E½W ðkÞ�Þ þ y�c.
We note that the cost penalty due to the unsold items is accounted through a unit salvage cost, s, which is
negative if salvage value exists. Here we replace h in the multi-period model with s to take into account the
end-of-horizon effect. Making use of E[W(k)] and Var[W(k)] terms derived in (7) and (8), and employing
the normal approximation, we obtain
E½TRCðy�Þjk� ¼ ðbþ sÞ
Z 1

y�
ðw� y�ÞdGkðwÞ þ s y� � ku1 þ lM

Xs

i¼2

ui

 ! !
þ y�c

¼ ðbþ sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku1ð1� u1Þ þ

Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
Mð Þ

s

� Ru
y� � ku1 þ lM

Ps
i¼2ui

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku1ð1� u1Þ þ

Ps
i¼2 lM uið1� uiÞ þ u2

i r
2
Mð Þ

p
 !

þ y�ðcþ sÞ � s ku1 þ lM

Xs

i¼2

ui

 !
;

ð22Þ
where
RuðrÞ ¼
Z 1

r
ðt � rÞ 1ffiffiffiffiffiffi

2p
p expð�t2=2Þdt
is the unit normal loss function.
Substituting y* derived in Appendix F (33), that is,
y� ¼ ku1 þ lM

Xs

i¼2

ui þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku1ð1� u1Þ þ

Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
Mð Þ

s
U�1 b� c

bþ s

� �
into (22) yields
E½TRCðy�Þjk� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku1ð1� u1Þ þ

Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
Mð Þ

s

� ðbþ sÞRu U�1 b� c
bþ s

� �� �
þ ðcþ sÞU�1 b� c

bþ s

� �
 �
þ c ku1 þ lM

Xs

i¼2

ui

 !
. ð23Þ
Let us define an auxiliary constant, b, for simplification
b ¼ ðbþ sÞRu U�1 b� c
bþ s

� �� �
þ ðcþ sÞU�1 b� c

bþ s

� �
 �
.
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Also let
c ¼
Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
M

� �
.

Then
E½TRCðy�Þ� ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku1ð1� u1Þ þ c

ph i� 
bþ c E½K�u1 þ lM

Xs

i¼2

ui

 !
.

Let us refer to this term as E[TRCADI].

5.1.2. Advance demand information is not utilized

In this case, the decision on how much to order is made without making use of the ADI size, k. The myopic
problem results discussed in Appendix F still hold in general, except for the mean and the variance of the
demand during effective lead time replacing E[W(k)] and Var[W(k)] as follows:
E½W � ¼ E½K�u1 þ lM

Xs

i¼2

ui; ð24Þ

Var½W � ¼ E½K�u1ð1� u1Þ þ
Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
M

� �
þ u2

1Var½K�

¼ E½K�u1ð1� u1Þ þ cþ u2
1Var½K�; ð25Þ
where E[K] and Var[K] are as expressed in (2) and (3), respectively. Following similar steps as in the ADI-case,
and defining the order-up-to level in the NoADI-case as ~y�, we obtain the expected total relevant costs as
E½TRCð~y�Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½W �

p
bþ cE½W �.
Substituting (24) and (25) in the above equation results in
E½TRCð~y�Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½K�u1ð1� u1Þ þ cþ u2

1Var½K�
q� �

bþ c E½K�u1 þ lM

Xs

i¼2

ui

 !
. ð26Þ
Let us refer to this term as E[TRCNO-ADI].
The difference between these two expected cost terms, which is the reduction in expected relevant costs

obtained by employing ADI, is the value of imperfect ADI for the myopic problem. Let us refer to this dif-
ference as D, that is,
D ¼ E½TRCNO-ADI� � E½TRCADI�.

Then,
D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½K�u1ð1� u1Þ þ cþ u2

1Var½K�
q

� E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku1ð1� u1Þ þ c

ph i� �
b. ð27Þ
We show in Appendix G that D > 0; hence, E[TRCNO-ADI] > E[TRCADI] and consequently there is a posi-
tive value of ADI.

In the special case of r = 0, (27) simplifies into
D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s p2r2

M þ pð1� pÞlM½ �ð Þ
q

� E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þ � p2r2

M þ pð1� pÞlM½ �
q
 �� �

b. ð28Þ
Note that, if p = 0, this would result in D = 0 for any r, as expected. If r2
M ¼ 0 and r = 0, then

ffiffiffiffiffiffi
lM
p ¼ E

ffiffiffiffiffi
M
p

,
and consequently D = 0. This is because there is no uncertainty about M since r2

M ¼ 0 and therefore there is no
uncertainty about K, since r = 0. However, if r > 0, then D > 0 even for r2

M ¼ 0, since Var[K] > 0. That is, the
stochasticity involved in the information carried from previous periods makes imperfect ADI still valuable
even if the information arriving each period is deterministic. This result would not hold in the first period,
since no information is carried from past then. In the other extreme, if p = 1 then the advance demand
becomes actual demand; that is, the advance information on demand is indeed perfect. In this case r = 0 since
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p + r 6 1. Consequently, D ¼ rM
ffiffiffi
s
p
�

ffiffiffiffiffiffiffiffiffiffiffi
s� 1
p� �

b. Hence, the more variance M has, the more the value of
advance demand information attains, for any fixed effective lead time and a set of cost parameters. The intu-
ition behind this result is clear: Increased uncertainty makes information more valuable. Note that the vari-
ance of total demand over the effective lead time and r2

M have identical variability structures. In other words,
the above discussion holds for the variance over the effective lead time demand as well; that is, the larger var-
iance associated with the demand, the larger the value of ADI attains.

Another result that arises from the examination of (27) is that, when r = 0 the value of imperfect ADI
decreases as the effective lead time (s) increases. The reason for this is the decreasing contribution (in propor-
tion) of ADI in effective lead time demand as s increases, since ADI has impact on a single period when r = 0.
In other words, the value of imperfect ADI increases as the proportion of effective lead time on which ADI is
available increases.

While D is an important measure to test the sensitivity of the impact of ADI with respect to changes in the
parameters, we define another measure to explore the relative sensitivity of ADI:
Df ¼
D

E½TRCADI�
¼

E½TRCNO- ADI� � E½TRCADI�
E½TRCADI�

; ð29Þ
Df is the fractional penalty of not utilizing ADI. We first consider the special case of p = 1, that is, ADI is
perfect. Then,
Df ¼
ffiffiffi
s
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þ

p� �
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� 1Þ
p� �

bþ sc lM
rM

�  . ð30Þ
Eq. (30) reveals that, for any fixed effective lead time and set of cost parameters, Df increases as the coefficient
of variation for M, rM/lM, increases. In specific, when s = 1,
Df ¼
b
c

rM

lM

� �
;

that is, the impact is linear with respect to the coefficient of variation.
Now let us consider the case of imperfect information, that is, 0 < p < 1. We first state some analytical

results on Df when r = 0 and c = 0, and then present our experimental findings.

Proposition 1. The following properties hold for the fractional penalty of not utilizing ADI, Df, when r = 0 and

c = 0.

(i) For any given positive lM and r2
M , Df is an increasing function of p.

(ii) For any given positive lM and 0 < p < 1, Df is an increasing function of r2
M .

Proof. Proof is provided in Appendix H. h

In the empirical tests we conducted, we verified that Proposition 1 holds for the case of positive r and c as
well.

Figs. 3 and 4 depict the percent penalty of not utilizing imperfect ADI, that is, 100Df versus p for different
levels of r when s = 2 and s = 5, respectively. These figures are the results of the empirical tests in which
E[TRCADI] is computed by Monte Carlo simulation, and E[TRCNO-ADI] and Df are calculated using Eqs.
(26) and (29), respectively, where lM = 200, r2

M ¼ 502, the cost parameters being b = 10, s = 2, c = 1, for
p 2 (0.1, . . . , 0.9) and r 2 (0.1, . . . , 0.4). E[TRCADI] is computed as follows:

• An ADI size, k, is generated from a normal distribution with parameters E[K] and Var[K], a possible neg-
ative realization being truncated to zero. E[K] and Var[K] are calculated by using Eqs. (2) and (3), where lM

and r2
M are as above.

• Using Eq. (23), E[TRC(y* jk)] is calculated, the cost parameters being the same.
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Fig. 3. Percent penalty of not utilizing imperfect ADI versus p for s = 2.
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Fig. 4. Percent penalty of not utilizing imperfect ADI versus p for s = 5.
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The average of 10,000 such realizations is taken as E[TRCADI].
Fig. 5 depicts the percent penalty of not utilizing imperfect ADI versus the coefficient of variation of M for

different levels of s. In Fig. 5 we fix p = 0.3, r = 0.2, lM = 200 and vary s in our Monte Carlo simulation.
The results that can be deduced from the empirical tests are in accordance with the analytical findings we

had: The percent penalty of not utilizing imperfect ADI increases as p increases and the coefficient of variation
increases, the rest of the parameters being fixed. In other words, imperfect ADI becomes most beneficial under

• increased customer reliability level, hence decreased level of imperfectness of ADI, and
• increased variability in ADI sizes, hence increased variability in demand.

Figs. 3–5 also exhibit that Df decreases as s increases, since the impact of ADI diminishes as the effective
lead time increases, for a wide range of p and r. Nevertheless, we note that an increase in s does not necessarily
result in decreased Df. As a matter of fact, we observed that for very low p and very high r values, it may turn
out that Df is higher for s = 2 and s = 5 than that with s = 1. This is because the high value of r makes the very
unreliable information relatively more valuable for an effective lead time more than one period, since the
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‘‘direct’’ effect of r on the demand during the effective lead time (that is, other than changing the mean and
variance of K) is seen only from the second period on of the effective lead time. However, as p increases
and r decreases from the ‘‘extreme’’ values, Df increases as s decreases, because the information decreases
the uncertainty of demand during effective lead time in an increasing proportion as s decreases, due to the
dominating effect of the customer reliability level.

The effect of information sojourn rate on the fractional penalty of not utilizing imperfect ADI is more com-
plicated and it may change both quantitatively and qualitatively for different parameter settings. Figs. 3 and 4
demonstrate that Df increases as r increases for a given p, that is the value of information increases as the
sojourn rate of the information increases for a fixed customer reliability level. This is due to the increased like-
lihood of the information being materialized as demand during the effective lead time for s > 1. However, this
result does not necessarily hold for all parameter settings, especially when s = 1. In line with the discussion
above, r does not have an effect on the demand during the effective lead time for a given k when s = 1. Nev-
ertheless, it increases the mean and the variance of K. It turns out that Df actually decreases as r increases for a
given p when s = 1. We observe this only for Df, and we observe some non-monotonic behavior in the value of
information (D) as r increases. The decrease in Df as r increases can be seen also by an approximate analysis of
Df for the special case of c = 0 and lM ¼ r2

M . Using Taylor’s approximation for
ffiffiffiffi
K
p

around E[K] for the first
three terms and taking expectations, we obtain
E½
ffiffiffiffi
K
p
� �

ffiffiffiffiffiffiffiffiffiffi
E½K�

p
� 1

8
ðE½K�Þ�3=2Var½K�.
Substituting E[K] and Var[K] from (2) and (3), respectively, results in
Df �
8lM

ð8lM � 1þ rÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p � 1;
which is a term that decreases in r.

5.2. Value of information in the general problem

We solve the N-period problem following our dynamic model presented in Section 2.2, the properties of the
optimal policy presented in Section 3, and the algorithm presented in Appendix E. We assume Poisson



Table 2
Expected minimum costs in the ADI-case when s = 5

r = 0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6

p = 0.1 37.97 40.17 42.73 45.82 49.65 54.56 61.22
p = 0.2 55.52 58.74 62.56 67.12 72.72 79.77 89.08
p = 0.3 69.79 73.89 78.70 84.38 91.27 99.71 110.53
p = 0.4 82.37 87.22 92.81 99.43 107.25 116.62 127.97
p = 0.5 93.85 99.31 105.64 112.97 121.50 131.40
p = 0.6 104.47 110.52 117.47 125.41 134.33
p = 0.7 114.48 121.06 128.52 137.09
p = 0.8 123.98 131.02 139.01
p = 0.9 133.04 140.44
p = 1 141.67
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distribution for M. As in Section 5.1, the distribution of M is assumed to be known both in the ADI-case and
in the NoADI-case, which results in the distribution of the demand being the same in both cases, in order to
make a meaningful comparison. We consider the system at stationarity. Consequently, the distribution of K is
Poisson with mean E[K] = lM/(1 � r). The distribution of the demand during the effective lead time in the
ADI-case, W(k), is the convolution of Binomial(k,u1) and Poisson lM

Ps
i¼2ui

� �
. The distribution of the demand

during effective lead time observed by the decision maker in the NoADI-case is Poisson with mean
E½K�u1 þ lM

Ps
i¼2ui. We let N = 5, lM = 10, b = 10, h = 2, c = 1, and a = 0.99, for p 2 (0.1, . . . , 1) and

r 2 (0.1, . . . , 0.6). Table 2 exhibits the expected total costs of the system in the ADI-case when s = 5. We also
demonstrate the optimal order-up-to levels at the beginning of period 1 when p = 0.3, r = 0.2, and s = 2 in
Fig. 6. Notice that the order-up-to level may stay the same even though the size of the available ADI increases.
We note that the optimal order-up-to level of the NoADI-case under the same parameters is 10.

Figs. 7 and 8 exhibit 100Df versus p for different levels of r when s = 2 and s = 5, respectively. These figures
confirm the general findings that are discussed in Section 5.1, hence will not be repeated here. Also in line with
the previous discussions, the value of information does not necessarily increase as r increases for a given p.
This is observed for s = 1 (not displayed here) and for low values of p when s = 2. We note that precision
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difficulties and the assumption of discrete demand may add on top of the complex interactions to result in a
non-monotonic behavior in r, especially when s, p, and lM are small.

6. Conclusions and future research

In this paper we have developed a model that incorporates imperfect ADI with inventory policies. We pre-
sented a fairly general probability structure for modelling imperfect advance demand information. Under our
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system settings, we have shown that the optimal ordering policy is of state-dependent order-up-to type, where
the optimal order level is an increasing function of the ADI size. The optimal order-up-to levels are shown to
be non-decreasing in time, for a given ADI size. Employing this idea, we generated an upper bound for the
order-up-to level of any period (which is tight for the last period), depending on the ADI size. We have
obtained some other useful structural properties of the optimal policy. Making use of these properties and
assuming discrete demand, we provided an algorithm for computing the optimal order-up-to levels. We also
outlined a natural way of extending the model under the availability of different segments of information
sources.

Another contribution of this work is the derivation of the value of ADI for the myopic problem. Although
the expression that is developed is valid for the myopic problem, it gives us clear ideas about the value of ADI
in general. Combined with the analytical findings, the empirical tests we conducted both for the myopic prob-
lem and for the general problem demonstrate that imperfect ADI becomes most beneficial under decreased
level of imperfectness of ADI and increased variability in demand. Our tests also demonstrated that while
imperfect ADI is in general more valuable for increased information sojourn rate and shorter effective lead
time, this does not necessarily hold for all possible values of the problem parameters.

An important extension to this study would be updating customer reliability parameters, p and r, in time.
We currently assume them to be fixed; however, either due to incorrect estimation or time dependence, p and r

may need to be updated. In the business-to-business environments such as VMI and CPFR that are mentioned
in the introduction, the updates are needed until a desired level of maturity in the partnership develops. This
updating scheme can be performed in various ways. A possible way is to use Bayesian updates. In related lit-
erature this method is used by some authors in order to forecast the demand distribution more accurately in
inventory models with unknown demand. See, for example, Azoury [1]. Other possible updating schemes may
be time-series models as in Lovejoy [16], forecast evolution methods as in Güllü [9], or developing new ana-
lytical models to incorporate the information flow as in Gavirneni et al. [8].

Incorporation of ‘‘regular’’ demand (which does not provide advance information) into the structure han-
dled in this study is also possible. If the regular demand is of equal priority with the other stream of demand
on which imperfect ADI is collectible, then it is rather straightforward to extend the analysis in this study as
long as the distribution of the total demand during effective lead time can be correctly assessed. Nevertheless,
the problem becomes more interesting if these two demand classes have different priorities. Tan et al. [20] show
that dynamic rationing policies as a function of imperfect ADI size need to be applied in that case; that is,
some lower-priority demand might deliberately be backlogged or lost while carrying inventory, with an expec-
tation of future demand from higher-priority customer class, based on the imperfect ADI.

Further interesting research could be the ‘‘configured demand’’ case in a multi-item environment, that is,
the customers providing ADI on some configuration of the commodities. Consider the case of PC sales, for
example. A customer might provide ADI on a specific setting of a PC (e.g. certain memory, hard-drive, mon-
itor, CD-rom drive, etc.). This ADI could be considered as an ADI on each of the components in its bill of
materials, some—or all—of which can be used to satisfy demands for some other PC settings, in case this ADI
is not materialized. Then, a special postponement strategy as a function of ADI on components could be
developed, resulting in reduced effective lead times and relevant costs.
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Appendix A. Proof of Theorem 1

For the proof we use induction. We first show that Theorem 1 holds for n = N:
J N ðy; kÞ ¼Lðy; kÞ þ aE½fNþ1ðy � DðkÞ;KNþ1ðkÞÞ� ¼Lðy; kÞ þ aE½�cðy � DðkÞÞ� ¼Lðy; kÞ þ acðkp � yÞ.
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Part (i) follows since Lðy; kÞ is convex in y for all k P 0, and ac(kp � y) is linear—hence convex—in y. Part
(iii) directly follows from convexity. As for (ii), we note that
fN ðx; kÞ ¼ �cxþ
J NðyNðkÞ; kÞ; if x < yN ðkÞ;
J Nðx; kÞ; if x P yNðkÞ.

�

But then, because of convexity of JN and �cx, fN(x,k) is convex in x, which proves (ii).
Now let us assume that these results hold for period n + 1, where 1 6 n + 1 < N. Our aim is to show that

they hold for period n as well. We first note that fn+1(x,k) is convex in x for all values of k, due to the induction
hypothesis. Now consider E[fn+1(x,k)]. Since expectations can be written as the limits of Riemann–Stieltjes
sums, and the positive-weighted sum of convex functions are convex (see, e.g. Heyman and Sobel [12]), then
E[fn+1(x,k)] is convex too. Therefore, J nðy; kÞ ¼Lðy; kÞ þ aE½fnþ1ðy � DðkÞ;Knþ1ðkÞÞ� is convex, since Lðy; kÞ
is convex as well, which proves (i). Part (iii) directly follows from (i) again. And finally, writing fn as
fnðx; kÞ ¼ �cxþ
J nðynðkÞ; kÞ; if x < ynðkÞ;
J nðx; kÞ; if x P ynðkÞ

�

results in (ii), and this completes the proof.

Appendix B. Proof of Theorem 2

For the proof we use induction. Let us start with n = N. We have fN+1(x,k) = �cx, f 0Nþ1ðx; kÞ ¼ �c.
fN ðx; kÞ ¼ �cxþ
J NðyNðkÞ; kÞ; if x 6 yN ðkÞ;
J Nðx; kÞ; if x > yN ðkÞ;

�

f 0N ðx; kÞ ¼ �cþ
0; if x 6 yN ðkÞ;
J 0Nðx; kÞ; if x > yN ðkÞ.

�

But,
J N ðy; kÞ ¼Lðy; kÞ þ aE½fNþ1ðy � DðkÞ;KNþ1ðkÞÞ� ¼Lðy; kÞ þ acðkp � yÞ;
J 0N ðy; kÞ ¼L0ðy; kÞ � ac.
So,
f 0N ðx; kÞ ¼ �cþ
0; if x 6 yN ðkÞ;
L0ðx; kÞ � ac; if x > yN ðkÞ.

�

Note that L0ðx; kÞ � ac ¼ J 0N ðx; kÞP 0 when x > yN(k). Consequently, f 0N ðx; kÞP f 0Nþ1ðx; kÞ, as stated in (i).
We have J 0N�1ðy; kÞ ¼L0ðy; kÞ þ aE½f 0N ðy � DðkÞ;KN ðkÞÞ�. But, as shown above, f 0N ðx; kÞP �c for all x and

k. Therefore, E½f 0N ðy � DðkÞ;KN ðkÞÞ�P �c, and hence, J 0N�1ðy; kÞP L0ðy; kÞ � ac ¼ J 0Nðy; kÞ. This proves (ii),
which directly results in (iii).

Now let us assume that the induction hypotheses hold for period n (2 < n < N) as follows:
f 0nðx; kÞP f 0nþ1ðx; kÞ;
J 0n�1ðy; kÞP J 0nðy; kÞ;
yn�1ðkÞ 6 ynðkÞ.
As a result of the third item of this induction assumption, there can be three cases for the effective inventory
position:

• x 6 yn�1(k) 6 yn(k)
In this case, f 0n�1ðx; kÞ ¼ �c ¼ f 0nðx; kÞ.

• yn�1(k) < x 6 yn(k)
Here, we have f 0n�1ðx; kÞ ¼ �cþ J 0n�1ðx; kÞ, and f 0nðx; kÞ ¼ �c. But since J 0nðx; kÞ is nonnegative in this region,
we obtain f 0n�1ðx; kÞP f 0nðx; kÞ.
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• yn�1(k) 6 yn(k) < x

Now, f 0n�1ðx; kÞ ¼ �cþ J 0n�1ðx; kÞ, and f 0nðx; kÞ ¼ �cþ J 0nðx; kÞ. But due to the induction assumption,
J 0n�1ðx; kÞP J 0nðx; kÞ, and hence f 0n�1ðx; kÞP f 0nðx; kÞ.

Consequently, (i) holds. We also have J 0n�2ðy; kÞ ¼L0ðy; kÞ þ aE½f 0n�1ðy � DðkÞ;Kn�1ðkÞÞ�, and
J 0n�1ðy; kÞ ¼L0ðy; kÞ þ aE½f 0nðy � DðkÞ;KnðkÞÞ�. But, due to (i), f 0n�1ðy � DðkÞ;Kn�1ðkÞÞP f 0nðy � DðkÞ;KnðkÞÞ
for all possible values of y � D(k) and Kn�1(k) = Kn(k); and then, as discussed in the proof of Theorem 1,
E½f 0n�1ðy � DðkÞ;Kn�1ðkÞÞ�P E½f 0nðy � DðkÞ;KnðkÞÞ�, which results in J 0n�2ðy; kÞP J 0n�1ðy; kÞ. This proves (ii);
and (iii) directly follows from (ii), which completes the proof.

Appendix C. Proof of Theorem 3

For the proof we use induction. We start with n = N. f 0Nþ1ðx; kÞ ¼ f 0Nþ1ðx; k þ gÞ ¼ �c, which suffices for (i).
As for (ii), we have J 0N ðy; kÞ ¼L0ðy; kÞ � ac, and J 0N ðy; k þ gÞ ¼L0ðy; k þ gÞ � ac. We note that
Gk(y) P Gk+g(y) for all y, because X1 has Binomial distribution, and X2,X3, . . .Xs are independent of k and
g. Since L0ðy; kÞ ¼ cþ aLð�bþ ðhþ bÞGkðyÞÞ and L0ðy; k þ gÞ ¼ cþ aLð�bþ ðhþ bÞGkþgðyÞÞ, we result in
L0ðy; kÞP L0ðy; k þ gÞ, and hence J 0N ðy; kÞP J 0N ðy; k þ gÞ, as desired. Part (iii) directly follows from (ii).
Now let us assume that the induction hypotheses hold for period n (2 6 n < N) as follows:
f 0nþ1ðx; kÞP f 0nþ1ðx; k þ gÞ;
J 0nðy; kÞP J 0nðy; k þ gÞ;
ynðkÞ 6 ynðk þ gÞ.
We note that
f 0nðx; kÞ ¼ �cþ
0; if x 6 ynðkÞ;
J 0nðx; kÞ; if x > ynðkÞ

�

and
f 0nðx; k þ gÞ ¼ �cþ
0; if x 6 ynðk þ gÞ;
J 0nðx; k þ gÞ; if x > ynðk þ gÞ.

�

From the third item of the induction assumption, there can be three cases for the effective inventory position:

• x 6 yn(k) 6 yn(k + g)
In this case, f 0nðx; kÞ ¼ �c ¼ f 0nðx; k þ gÞ.

• yn(k) < x 6 yn(k + g)
Now we have f 0nðx; kÞ ¼ �cþ J 0nðx; kÞ, and f 0nðx; k þ gÞ ¼ �c. But since J 0nðx; kÞ is nonnegative in this region,
we obtain f 0nðx; kÞP f 0nðx; k þ gÞ.

• yn(k) 6 yn(k + g) < x

Here, we have f 0nðx; kÞ ¼ �cþ J 0nðx; kÞ, and f 0nðx; k þ gÞ ¼ �cþ J 0nðx; k þ gÞ. But due to the second induction
assumption, J 0nðx; kÞP J 0nðx; k þ gÞ, and hence f 0nðx; kÞP f 0nðx; k þ gÞ.

Consequently, (i) holds. As for (ii), J 0n�1ðy; kÞ ¼L0ðy; kÞ þ aE½f 0nðy � DðkÞ;KnðkÞÞ�, and J 0n�1ðy; k þ gÞ ¼
L0ðy; k þ gÞ þ aE½f 0nðy � Dðk þ gÞ;Knðk þ gÞÞ�, so it suffices to show that E½f 0nðy � DðkÞ;KnðkÞÞ�P
E½f 0nðy � Dðk þ gÞ;Knðk þ gÞÞ�, since it is already shown that L0ðy; kÞP L0ðy; k þ gÞ. We first note that
D(k + g) is stochastically larger (denoted Pst) than D(k), because X1 has Binomial distribution. (The reader
can refer to Ross [17] for a coverage of stochastic dominance relations.) Then, since fn(x,k) is convex in x

and therefore f 0nðx; kÞ is non-decreasing in x, we have E½f 0nðy � DðkÞ;KnðkÞÞ�P E½f 0nðy � Dðk þ gÞ;KnðkÞÞ�.
Moreover, since D(k) + A(k) has Binomial distribution (with parameters k and p + r) Kn(k + g) Pst Kn(k),
which results in E½f 0nðy � Dðk þ gÞ;KnðkÞÞ�P E½f 0nðy � Dðk þ gÞ;Knðk þ gÞÞ� due to (i). Consequently,
E½f 0nðy � DðkÞ;KnðkÞÞ�P E½f 0nðy � Dðk þ gÞ;Knðk þ gÞÞ� as desired. This proves (ii); and (iii) directly follows
from (ii), which completes the proof.
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Appendix D. Proof of Theorem 4

For the proof we use induction. First n = N. Note that J 0N ðy � g; kÞ ¼L0ðy � g; kÞ � ac and
J 0N ðy � g1; k þ g2Þ ¼ L0ðy � g1; k þ g2Þ � ac. Also,
L0ðy � g; kÞ ¼ cþ aLð�bþ ðhþ bÞGkðy � gÞÞ;
L0ðy � g1; k þ g2Þ ¼ cþ aLð�bþ ðhþ bÞGkþg2

ðy � g1ÞÞ.
Let H1(k) and H1(k + g2) be two Binomial random variables with parameters (k,p) and (k + g2,p), respec-
tively. By our construction H1(k) + gPst H1(k + g2) + g1. Therefore Gkðy � gÞ 6 Gkþg2

ðy � g1Þ for all y, and
hence J 0N ðy � g; kÞ 6 J 0N ðy � g1; k þ g2Þ for all y, which immediately gives yN(k) + g P yN(k + g2) + g1.

Suppose that the claim holds for n + 1. Note that
f 0nþ1ðx� g; kÞ ¼ �cþ
0; if x� g 6 ynþ1ðkÞ;
J 0nþ1ðx� g; kÞ; if x� g > ynþ1ðkÞ;

�

and
f 0nþ1ðx� g1; k þ g2Þ ¼ �cþ
0; if x� g1 6 ynþ1ðk þ g2Þ;
J 0nþ1ðx� g1; k þ g2Þ; if x� g1 > ynþ1ðk þ g2Þ.

�

Now, for x < yn+1(k + g2) + g1 6 yn+1(k) + g, f 0nþ1ðx� g; kÞ ¼ �c ¼ f 0nþ1ðx� g1; k þ g2Þ. For yn+1(k + g2) +
g1 6 x 6 yn+1(k) + g, f 0nþ1ðx� g; kÞ ¼ �c. On the other hand,
f 0nþ1ðx� g1; k þ g2Þ ¼ �cþ J 0nþ1ðx� g1; k þ g2ÞP �c
since in this region x � g1 P yn+1(k + g2). For x > yn+1(k) + g
f 0nþ1ðx� g1; k þ g2Þ ¼ �cþ J 0nþ1ðx� g1; k þ g2ÞP �cþ J 0nþ1ðx� g; kÞ ¼ f 0nþ1ðx� g; kÞ;
by the induction hypothesis. Therefore, for all x we have f 0nþ1ðx� g1; k þ g2ÞP f 0nþ1ðx� g; kÞ.
Now we complete the induction. For all y we have
J 0nðy � g; kÞ ¼L0ðy � g; kÞ þ aE½f 0nþ1ðy � g� DðkÞ;Knþ1ðkÞÞ�;
J 0nðy � g1; k þ g2Þ ¼L0ðy � g1; k þ g2Þ þ aE½f 0nþ1ðy � g1 � Dðk þ g2Þ;Knþ1ðk þ g2ÞÞ�.
First note that D(k + g2) = D(k) + D(g2), where D(g2) is the additional (due to g2) number of customers real-
ized as demand in period n, and D(k) and D(g2) are independent. Moreover, we can write Kn+1(k + g2) as
Kn+1(k + g2) = Kn+1(k) + B(g2) where B(g2) is the additional number of customers (due to g2) who stay in
the system for one more period. K(k) and B(g2) are also independent. Last we observe that for any realization
of these random variables g1 + D(g2) + B(g2) 6 g since D(g2) + B(g2) 6 g2. Therefore
f 0nþ1ðy � g� DðkÞ;Knþ1ðkÞÞ 6 f 0nþ1ðy � g1 � Dðk þ g2Þ;Knþ1ðk þ g2ÞÞ
and hence J 0nðy � g; kÞ 6 J 0nðy � g1; k þ g2Þ, which immediately yields yn(k) + g P yn(k + g2) + g1. In particu-
lar, by letting g1 = 0 and g2 = g we obtain
ynðkÞ þ g P ynðk þ gÞ.
Appendix E. An algorithm for computing optimal order-up-to points

Do the following for n = N to 1

1. Do the following for all possible values of k, starting from the smallest
(a) Calculate Fðy; kÞ ¼ E½fnþ1ðy � DðkÞ;Knþ1ðkÞ�, for all possible values of y (using fN+1(x,k) = �cx for

n = N). Here, expectation is taken over D(k) and Kn+1(k), using Eq. (1). Note that D(k) and Kn+1(k)
are correlated.

(b) Find yn(k), which is the minimizer of J nðy; kÞ ¼Lðy; kÞ þ aFðy; kÞ, using
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i. convexity of Jn (from Theorem 1(i)),

ii. yn(k) 6 yn+1(k) (from Theorem 2(iii)),

iii. yn(k) 6 yn(k + 1) (from Theorem 3(iii)),

iv. yn(k + 1) 6 yn(k) + 1 (from Theorem 4(ii)),
where Lðy; kÞ is defined in Eq. (17). Note that a full search for computing yn(k) is necessary only once (for
the smallest possible k value when n = N). Due to the properties stated above, the following suffices after
that: For each increment of k for a given n, it suffices to compare yn(k) with yn(k) + 1, and for each backwards
increment of n for the first possible value of k, the search for yn(k) is bounded up with yn+1(k).
2. Calculate fn(x,k) for all possible values of x and k, using Eq. (15).

The computations above are performed for values of x, y, and k within prespecified precision bounds.
Appendix F. Myopic problem

In the myopic problem, there is one decision epoch (the beginning of period 1) and we have the initial ADI
of size k, on the demand to be realized during the effective lead time. In accordance with the assumptions sta-
ted in Section 2, the last demand is realized at the beginning of period s + 1 and the costs that may be incurred
before period L + 1 are not considered. Whatever is left at the end of the planning horizon will be salvaged
with a unit cost of s (which is negative if salvage value exists), and unmet demand will be penalized with a unit
cost of b. We also have a unit procurement (or production) cost, c. Under these settings, the problem is a spe-
cial case of the newsboy problem. Hence, the optimal order-up-to point y* can be found as
y� ¼ inf y : PrfW ðkÞP yg 6 cþ s
bþ s

� �
. ð31Þ
If the distribution of W(k) is approximated by normal distribution, then
y� ¼ E½W ðkÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½W ðkÞ�

p
U�1 b� c

bþ s

� �
; ð32Þ
with E[W(k)] and Var[W(k)] are as derived in (7) and (8), respectively. Consequently,
y� ¼ ku1 þ lM

Xs

i¼2

ui þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku1ð1� u1Þ þ

Xs

i¼2

lM uið1� uiÞ þ u2
i r

2
Mð Þ

s
U�1 b� c

bþ s

� �
. ð33Þ
The expected total relevant cost term, conditioned on the ADI size, can be evaluated as follows:
E½TRCjk� ¼ bE½W ðkÞ � y�þ þ sE½y � W ðkÞ�þ þ yc

¼ bE½W ðkÞ � y�þ þ sðE½y � W ðkÞ� þ E½W ðkÞ � y�þÞ þ yc

¼ ðbþ sÞE½W ðkÞ � y�þ þ sðy � E½W ðkÞ�Þ þ yc. ð34Þ
Appendix G. Proof of D > 0

D ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½K�u1ð1� u1Þ þ cþ u2

1Var½K�
p

� E½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku1ð1� u1Þ þ c

p
�Þb. Let D1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½K�u1ð1� u1Þ þ cþ u2

1Var½K�
p

�E½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku1ð1� u1Þ þ c

p
�Þ, so that D = D1b. From Jensen’s inequality, it follows that ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½K�u1ð1� u1Þ þ c

p
P

E½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku1ð1� u1Þ þ c

p
�Þ, and since u2

1Var½K� > 0 we obtain D1 > 0. We next show that b > 0. This proof is based
on a similar one by Güllü [10].
b ¼ ðbþ sÞGu U�1 b� c
bþ s

� �� �
þ ðcþ sÞU�1 b� c

bþ s

� �
.
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Let /(r) denote the pdf of standard normal distribution. Then, since / 0(r) = �r/(r), we have
Z 1

u
r/ðrÞdr ¼ /ðuÞ.
Therefore, Gu(z) = /(z) � z(1 � U(z)) "z.

So,
Gu U�1 b� c
bþ s

� �� �
¼ / U�1 b� c

bþ s

� �� �
� U�1 b� c

bþ s

� �
1� U U�1 b� c

bþ s

� �� �
 �

¼ / U�1 b� c
bþ s

� �� �
� U�1 b� c

bþ s

� �
sþ c
bþ s


 �
.

Hence,
b ¼ ðbþ sÞ / U�1 b� c
bþ s

� �� �
� U�1 b� c

bþ s

� �
sþ c
bþ s

� �� �
þ ðsþ cÞU�1 b� c

bþ s

� �

¼ ðbþ sÞ/ U�1 b� c
bþ s

� �� �
> 0; and consequently, D > 0.
Appendix H. Proof of Proposition 1

Proof of (i)
Df ¼
ffiffiffiffiffi
sc
p

E½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p
�
� 1;
where c ¼ p2r2
M þ pð1� pÞlM . In order to show that Df increases as p increases, it suffices to show that oDf

op > 0
for all 0 < p < 1. We consider the cases of s = 1 and s > 1 separately.

Case 1. s = 1:

Df ¼
ffiffi
c
p

E½
ffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffi
pð1�pÞ
p � 1. Then, we need to show that
oDf

op
¼

1
2

c0ffiffi
c
p E½

ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
� 1

2
ð1�2pÞffiffiffiffiffiffiffiffiffiffi

pð1�pÞ
p E½

ffiffiffiffiffi
M
p
� ffiffifficp

E½
ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p� �2
> 0. ð35Þ
Let us assume that (35) does not hold. Then,
1

2

c0ffiffiffi
c
p E½

ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
6

1

2

ð1� 2pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p E½
ffiffiffiffiffi
M
p
� ffiffifficp ;
since
ðE½
ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
Þ2 > 0.
Simplification yields c 0p(1 � p) 6 c(1 � 2p). Substituting c and c 0, we obtain
ð2pr2
M þ ð1� 2pÞlMÞðpð1� pÞÞ 6 ðp2r2

M þ pð1� pÞlMÞð1� 2pÞ.

Simplifying the above inequality results in r2

M 6 0, which contradicts to r2
M > 0. Hence, (35) must hold.

Case 2. s > 1:

We need to show that
oDf

op
¼

1
2

sc0ffiffiffi
sc
p E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p� �
� E 1

2
Mð1�2pÞþðs�1Þc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mpð1�pÞþðs�1Þc
p


 � ffiffiffiffiffi
sc
p

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p� �� �2
> 0;
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which is equivalent to showing that
E
1

2

sc0ffiffiffiffiffi
sc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p
� 1

2

Mð1� 2pÞ þ ðs� 1Þc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p ffiffiffiffiffi
sc
p

" #
> 0; ð36Þ
because E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p� �� �2
> 0 and expectation is a linear operator. (Note that c and c 0 are con-

stant for a given set of lM, r2
M , and p.)

In order to show (36), we will show that
1

2

sc0ffiffiffiffiffi
sc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p
� 1

2

Mð1� 2pÞ þ ðs� 1Þc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p ffiffiffiffiffi
sc
p

> 0 ð37Þ
for all M > 0, since the expectation term in (36) is a positive-weighted Riemann–Stieltjes sum of the term in
(37) for all values of M. When M = 0 (and remembering that s > 1), oDf

op equals zero, which is intuitive, because
there would be no impact of a change in p when ADI size is zero. But since r2

M > 0, we have Pr{M = 0} < 1,
and the argument that ‘‘showing (37) for all M > 0 is sufficient for showing (36)’’ holds.

For a given M > 0, let us assume that (37) does not hold. Then,
1

2

sc0ffiffiffiffiffi
sc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p
6

1

2

Mð1� 2pÞ þ ðs� 1Þc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p ffiffiffiffiffi
sc
p

.

Simplification yields c 0p(1 � p) 6 c(1 � 2p) as in case 1, resulting in r2
M 6 0, which contradicts with r2

M > 0.
Hence, (37) must hold for all M > 0, which completes the proof of (i).

Proof of (ii)
Similarly, we need to show that oDf

or2
M
> 0 for all r2

M > 0. We follow the same arguments as in the proof of (i).
For the case s = 1,
oDf

or2
M

¼
1
2

p2ffiffi
c
p E½

ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
ðE½

ffiffiffiffiffi
M
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
Þ2

. ð38Þ
Assuming that (38) is less than or equal to zero results in p2
6 0, which contradicts to p > 0. For the case s > 1,
oDf

or2
M

¼
1
2

sp2ffiffiffi
sc
p E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p� �
� E 1

2
ðs�1Þp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mpð1�pÞþðs�1Þc
p


 � ffiffiffiffiffi
sc
p

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p� �� �2
.

It suffices to show that
1

2

sp2ffiffiffiffiffi
sc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p
� 1

2

ðs� 1Þp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1� pÞ þ ðs� 1Þc

p ffiffiffiffiffi
sc
p

> 0 ð39Þ
for all M > 0. Assuming that (39) does not hold results in Mp(1 � p) 6 0, and this contradiction completes the
proof.
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