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1. Introduction and literature

Transportation is a significant activity of supply chain opera-
tions, and there is ample evidence that the consideration of trans-
portation with inventory replenishment decisions can lower the
total costs. This can bring competitive advantage to companies, spe-
cifically to those with functional products and for which minimiza-
tion of costs is a major priority. Recognizing this benefit, several
studies in single echelon lot sizing literature in the 1980s and the
early 1990s accounted for transportation costs [3,18,25]. This issue
has recently regained attention in supply chain research, due to an
increasing trend in practice to outsource logistical activities
through third party companies. The current study focuses on the
ordering decisions of a company that faces a generalized wholesale
price schedule from a supplier(s) and stepwise freight costs charged
by a third party logistic (3PL) company for inbound replenishment.

As reported by Benton and Park [5], offering quantity discounts
to encourage buyers to order more is a common pricing strategy of
suppliers. Traditionally, the models on quantity discounts either
take the buyer’s point of view or the supplier’s point view. The for-
mer group focus on the buyer’s problem to decide his/her replen-
ishment quantity under a given quantity discount schedule
[1,2,11,26]. Others demonstrate that through a carefully designed
price schedule, a vendor can increase gain [4,17,20,21,29]. In this
latter group of studies, a common assumption is that the vendor
has full information about the buyer’s costs. In a more recent study,
Corbett and de Groote [10] consider a supplier’s optimal quantity
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discount policy under asymmetric information in a single-buyer,
single-supplier, deterministic demand setting. Munson and Rosen-
blatt [22] provide an extensive review of the literature on quantity
discounts until the late 1990s. The current study follows the for-
mer group of studies and is aimed at developing a computational
solution approach to find the optimal order quantity that maxi-
mizes a buyer’s single-period expected profits under an all-units
discount schedule and stepwise freight costs.

All-units discounts and incremental discounts are the two dis-
counting schemes that are most commonly seen in the industry
and investigated in the literature [22]. In fact, these structures are
not only used for wholesale pricing by vendors, but they are also
adopted by common carriers, e.g., see [16,23,25]. Quantity discount
schedules, when they are used for transportation pricing, are re-
garded as belonging within the class of LTL (less-than-truck-load)
transportation pricing. In another form of freight cost structure,
i.e., TL transportation, a fixed amount is charged for each additional
truck/container deployed. Aucamp [3] studies a special case in
which the per-truck cost is constant, independent of the order
quantity. Lee [18] generalizes Aucamp’s [3] work to consider dis-
counted per-truck costs for larger replenishment quantities. Shinn
et al. [24] study the lot sizing and pricing problems jointly for a re-
tailer under conditions of discounted freight costs and permissible
delay in payments. Lee [19] incorporates the transportation cost
structure in Aucamp [3] to the classical dynamic lot size model.

In the current study, assuming the same freight cost structure
as in Aucamp [3], we generalize the replenishment costs further,
by modeling the wholesale price ¢(Q) according to an all-units dis-
count schedule with multiple breakpoints. More specifically, the
sum of procurement and replenishment costs of the buyer for
ordering Q units is given by
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where P and R are the per-truck capacity and per-truck cost, respec-
tively. The cost value R is incurred for each truck, whether it is fully
or partially loaded.

Transportation costs have been previously considered in single
echelon lot sizing problems involving quantity discounts in pur-
chasing price, e.g., see [6,25]. However, freight costs in these studies
are modeled in the form of LTL transportation pricing. A similar
problem to ours has been studied by Hwang et al. [15]. While they
study the replenishment problem under similar cost considerations
to ours, their model is based on the specific assumptions of the clas-
sical economic order quantity (EOQ) model. In the current study,
however, the production/inventory related net profits are modeled
using a general function exhibiting some structural properties. This
allows for a technical representation of various replenishment
problems in different settings, including those with random de-
mand and/or multiple echelons, as discussed in Section 4. Further-
more, we provide additional insights regarding the application
areas of our model and discuss some managerial implications.

It is worth noting that the freight cost structure as in the second
term of Expression (1) has also been used to model integrated
inventory/transportation decisions in multi-stage inventory sys-
tems [8,27,28]. Other studies on the computation of jointly optimal
order quantities in multi-echelon systems under transportation
considerations include Chan et al. [9], Hoque and Goyal [14], and
Ertogral et al. [12].

All of the studies discussed above within the context of quantity
discounts and transportation considerations assume deterministic
demand, with the exception of Toptal and Cetinkaya [28]. In this
paper, the authors study the channel coordination problem of a
buyer-vendor system in the Newsboy setting under the assump-
tion that either the vendor or both the buyer and the vendor face
transportation costs as introduced in Expression (1). In their anal-
ysis, they present the characteristics of the optimal solution max-
imizing a function that includes a concave component reduced by
stepwise fixed increments. Some of our analysis will use the ana-
lytical results provided in Toptal and Cetinkaya [28].

The underlying assumptions regarding the buyer’s inventory pol-
icy and cost components in this study are general, except for the
wholesale price structure and the transportation considerations. In
Section 2, we present a generic mathematical formulation that can
be used to solve a large class of problems under the given assump-
tions. An analysis for this model with the description of the proposed
computational solution approach will follow in Section 3. The appli-
cation of the model to various scenarios within the Newsboy setting
will be discussed in Section 4, and the implications for inventory
management will be explained in Section 5. The paper will be con-
cluded in Section 6 with a summary of the general findings.

2. Notation and problem formulation

Let us consider a retailer who has to make replenishment deci-
sions under an all-units discount schedule. Specifically, the unit
wholesale price, denoted by c(Q) is given by the following
expression:

Co qo < Q <{q,
a4 <Q<qy,
G ¢<Q<gs,
Q)= (2)

Cn-1 qnfl < Q < qm
&G Q=qy,

where gy =0and ¢ >¢; > ... > Cp.

The retailer has to pay for his/her transportation costs, which
amount to (%]R for an order quantity of Q. Here, P and R are the
per-truck capacity and the per-truck cost, respectively. The profit
function of the retailer is then given by

#(Q)=6(Q.cQ) - 3R G)

where G(Q, ;) is a strictly concave function of Q,Vi s.t. 0 <i< n.
The function G(Q,c;) may represent the production/inventory re-
lated net profits of the retailer. Let the unique maximizer of this
function over Q > 0 be denoted by Q. We say Q" is realizable if
q; < QY < q;,, and call the maximum of all the realizable Qs over
0 < i < nthe largest realizable maximizer of G(Q, ¢;)s and refer to it as
Q™). We have the following assumptions:

(A1) The maximizer of G(Q, ¢;) increases as c; decreases. That is,
we have

Q(”) > Q(H*U > > Q(O)_

(A2) For a fixed value of Q, G(Q, ¢;) is decreasing in ¢;. That is, we
have

G(Q,¢0) < G(Q,¢1) < ... < G(Q, Cn).

(A3) The change in the G(Q,c;) value when c; is decreased,
increases with respect to Q. More specifically,

G(Qz,Ci1) — G(Qa,¢i) > G(Qq,¢i1) — G(Qy, i),
where Q; < Q, < Q(i>.

Under the above assumptions, the retailer decides on his/her
replenishment quantity according to the formulation given by
Problem 227 % (discounted price transportation cost),

IGPTE:

max #(Q),
st. Q=0

Let Q" denote the solution of this problem. Note that #(Q) is com-
posed of (n + 1) pieces with the function value on the (i + 1)st piece
given by H'(Q), where

H@-G@.q)- [F|r @)

Assume that Q maximizes H'(Q) over Q > 0. We say QU is realiz-
able if q; < Q¥ < q;,, and call the maximum of all the realizable
Q%s over 0 < i < n the largest realizable maximizer of H'(Q)s and re-
fer to it as Q).

The notation used in the paper is as follows:

Q number of items ordered by the retailer

n number of price breakpoints

q; quantity where the ith breakpoint appears, 0 <i<n

c(Q) unit wholesale price as a function of order quantity

P per-truck capacity

R per-truck cost

A (Q) profit function of the retailer

H'(Q) profit function of the retailer at wholesale price level c;, de-
fined over Q > 0

G(Q,c;) retailer’s profit component defined over Q > 0 for price le-
vel ¢;, not including transportation costs

* maximizer of #(Q)

Q® maximizer of G(Q, ¢;)

Q® maximizer of H'(Q)

o index of the price interval where the largest realizable

maximizer of H'(Q)s appears: r; =max{i:q; <Q® <
Gis1, and 0 < i< n}

) index of the price interval where the largest realizable
maximizer of G(Q,c;)s appears: r, = max{i:q; < Q" <
Gis1, and 0 < i< n}
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The model introduced above is general in the sense that the
G(Q, ¢i) function may represent the expected profits in several pro-
duction/procurement environments. In the next section, by analyz-
ing the properties of the underlying profit functions first,
specifically those of G(Q,c;) and H'(Q), we present an algorithm
to solve Problem 227 €. This solution will then be applied to the
Newsboy setting.

3. Analysis of the problem

In this section, we provide a computational solution approach
to solving Problem 227 % optimally. As seen in Fig. 1, H(Q), the
objective function of this problem, has a piecewise structure. In or-
der to find its maximizer Q*, we will first analyze some structural
properties of the H'(Q) function and the solution to the following
problem, referred to as Problem %27 % (uniform price transporta-
tion cost):

UPTEC:

max H'(Q),
st. Q=0.

A similar optimization problem to #2.7 % is studied by Toptal and
Cetinkaya [28] for Expression (4) with the concave functional form
of G(Q, c;). Properties 1-5, which will be presented below without
their proofs, are based on the analysis in Toptal and Cetinkaya
and are straightforward to verify.

Property 1. Let Q, > Q; > Q. Then H'(Q,) < H'(Q,). That is, H'(Q)
is decreasing after Q.

Property 1 implies that the solution to Problem #2.7 % lies in
the region [0,Q"]. Before presenting further properties of the
H'(Q) function, let us define [ as the smallest number of full truck
loads greater than or equal to Q. That is, [ = [%].

Property 2. let Q; and Q, be such that (k—1)P<Q; <
Q, <kP< Q" where k=1, or I-1)P<Q; <Qy<QY. Then,
H'(Q;) < H\(Q3). In other words, for Q < QY H(Q) is piecewise
increasing.

It follows from Property 2 that the only candidates for QW
within [0,Q"”] are the largest quantities of each piecewise

Property 3. Let us define

7 ={ke{0,1,2,...}: G((k+ 1)P,c;) —
<Q"}.

If 7#0, let m = min{k s.t. k € 7 }. It follows that

G(kP,c;) <R, (k+1)P

o If G((m+1)P,c;) — G(mP,c;) = R, then H'((j + 1)P) < H'(jP),Vj s.t.
j=(m+1)and (j+1)P < QY.

e IfG((m+1)P,c;) — G(mP,c;) <R, then H'((j + 1)P) < H'(jP),Vj s.t.
j=mand (j+1)P< QY.

That is, in the region Q < QY the value of G(Q, ¢;) at integer multiples
of P starts to decrease after (m + 1)P in the first case and after mP in
the second case.

Property 3 characterizes the conditions under which the cost of
an additional truck does not justify the benefits of ordering more. If
these conditions are satisfied, there exists a quantity until which
ordering one more full truck load is always profitable. Therefore,
in solving Problem % 2.7 %, all order sizes that are smaller than this
quantity can be eliminated. Properties 4 and 5 build on Property 3
to provide further characteristics of Q0.

Property 4. If 7 = (), then either (I—-1)P or QY. or both maximize
H'(Q).
Property 5. If 70, then either mP or (m + 1)P, or both maximize
H'(Q).

The above properties of H'(Q) lead to the following solution for
Problem #27°%.
Corollary 1. As a result of Properties 1 to 5, the solution to Problem
UPT E is given by
go_ | are max{Hf(mlﬁ)ﬁ"_((m +1)P)} if 70,

argmax{H'(Q"),H'(I-1)P)} if #

where

7 ={ke{0,1,2,...} : G((k+ 1)P,c;) — G(kP,;) <R, (k+ 1)P < Q"}
and m = min{k s.t. k € #} when 7 #(.

Note that, under both conditions of the corollary, multiple solu-
tions may exist. In the first case, if G((m + 1)P,c;) — G(mP,c;) <R,

interval. then mP is the wunique maximizer. If G((m+1)P,c)—
Profits
A
........ &
S T )
— s & S -
’ Y » O G ) G .
el T :"_:__-—','": : R Y o \
"
Q'(o) ) Qm.
4,=0 FR 5'=0" 4 o

H'(Q)

— H(Q)

Fig. 1. A typical illustration of H(Q) in the case of two breakpoints.
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G(mP,c;) = R, then both mP and (m + 1)P maximize H'(Q). Simi-
larly, in the second case, if G(Q”,c;) — G((I — 1)P,c;) < R, then Q¥
is the unique maximizer. If G(Q"”, ¢;) — G((I — 1)P, ¢;) = R, then both
Q" and (I — 1)P maximize H'(Q).

Observe that the objective function of Problem 927 %, i.e.,
H(Q), is composed of (n + 1) different pieces in the form of H'(Q),
given by different values of ¢;. Based on the above properties of
an H'(Q) function and the solution provided in Corollary 1 to max-
imize it, we next focus on the more complex structure exhibited by
H(Q). The proofs of Properties 6-10, Corollary 3, and Propositions
1, 2 are presented in Appendix.

Property 6. Let Q; and Q; be such that q;,_; < Q; < Qq < q; where
k> (r,+1). It follows that G(Qq,cx_1) < G(Qz,ck_1). That is,
G(Q, cx_q) is decreasing over q;_1 < Q < qy for all k larger thanr, + 1.

Property 6 states that when the stepwise component of Expres-
sion (3) is ignored, the remaining part, i.e., G(Q,c(Q)), is piecewise
decreasing after the price interval, where the largest realizable
maximizer of G(Q, ¢;)s appears.

Corollary 2. We have Q¥ < q,,Vk s.t. k > (r; +1).
Proof. Follows from Property 6 and the definition of r,. O

Property 7. 7 (q,_,) > #(Q) where q,_; < Q < q,,Vks.t. k> 1+ 1.

Property 7 implies that in maximizing #(Q), among all quanti-
ties greater than Q"”, we should only consider the breakpoints
qr2+1v cospe

Property 8. H'(Q") < H*'(Q™"),Vi s.t. 0<i<n-— 1. That is, the
optimal function values at consecutive H'(Q)s are increasing.

Note that Property 8 implies H"(QM) >
H™ 1 (Q™ ) > ... > H*(Q©). Therefore, if the maximizer of H'(Q)
is realizable, then #(Q") > #(Q),VQ < q;.,. This further leads
to the fact that, in maximizing »#(Q), we do not need to consider
quantities smaller than the largest realizable maximizer of H'(Q)s.

Property 9. We have Q) < Q™" Vi st. 0<i<n-—1. In other
words, the maximizers of consecutive H'(Q) functions are
nondecreasing.

Next, Property 9 will be used to prove that there exists at least
one realizable Q, and hence, r; exists.

Property 10. There exists i € {0,1,...,n} such that ¢; < Q¥ < g;,4.

Note that the solution to the classical economic order quantity
model with all-units quantity discounts builds on the fact that
there is at least one realizable EOQ (see Hadley and Whitin [13]).
With a similar proof as that of Property 10, it is easy to show that
the same result holds for the Newsboy Model with all-units quan-
tity discounts. That is, there exists i€ {0,1,...,n} such that
q;<Q" < Gi.1, and hence, r, exists. The following corollary pre-
sents a relationship between r; and r;.

Corollary 3. We have r; <15 and Q™) < Q).

Properties 7, 8, 10 and Corollary 3 provide the main results
leading to the solution algorithm that will be introduced in Corol-
lary 4. The proposition that will be presented next builds mainly
on Corollaries 1 and 3 and will later be used to enhance Corollary
4.

Proposition 1. If r, >r +1, then we have Q¥ <q,,Vk s.t.
ri<k<r,.

Recall from Corollary 1 that, we have Q¥ < Q”,Vis.t. 0 <i<n.
If r; >y + 1, this implies that Q"2 < q,,. Therefore, solving Prob-
lem 927% involves minimizing H'(Q) functions over

q;<Q<gq;, for ie(r;+1,r;], where we already know that
Q% < g;. Combining this result with Properties 7 and 8, we present
an algorithm in the next corollary to solve Problem 227 & based
on the values of ry and r.

Corollary 4. Given the values of rq,15, and Q), the following
algorithm solves Problem 227 % optimally:

1. Set Q" = Q") and compute #(Q").
2. If ry =1, go to Step 4, else proceed with the next step.
3. Fori=r; +1 toi=r, do the following.
(a) Solve Problem %#%.¢ (uniform price bounded interval)
where
UPRBI .

max  H'(Q),
st i <Q <G

Let the optimal solution to the above problem be Q;.
(b)  Compute #(Q;). If #(Q;) > #(Q"), let Q" = Q;.

4. If ra<n, compute (e =argmax{#(q., 1), #(qs,:2):--->
A ()} Af A (Gax) > H(Q7), let Q" = Gugne

It is important to emphasize that since Q™ > Q"™ > ... >~ Q©,
we should start from the lowest price interval first to find the value
of r,. This requires computing the Q¥ value for the corresponding
G(Q,c;) function and checking whether g; < Q" < g;,,. We know
from Corollary 3 that r; < r,. Combining this result with Property
9, we further conclude that once the value of r; is fixed, one should
check the remaining price intervals starting from [q,,,q,,,;) down
to [go,q;) until r; is found. This requires computing the Q@ value
for the corresponding H'(Q) function and checking whether
q; < QY < q;,,. Recall from Corollary 1 that Q® < Q. Therefore,
in finding the largest realizable Q®, if Q¥ < g, holds for some i,
then this implies Q¥ < g;, and hence, Q® can not be realizable. This
observation may shorten the time to find ry.

Notice that Problem #2%.# defined in Corollary 4 is solved
only for the price intervals ranging from r; + 1 to r,. Therefore,
the result presented earlier in Proposition 1 applies here as a
functional characteristic and will be used next to obtain a closed
form expression for the solution of Problem #2%.# in Corollary
4,

Proposition 2. For i s.t. r{ +1 <i<ry, the solution to Problem
w2B7 (ie., Qi) is as follows:

o Ifg; > Q" then Q; =g,
e Ifg;<Q", and _
- Ifgis > Q" then @ = min {[4]P.Q" }.

If gi,; < Q" then Q; = min { [#|P,limg_g_ | }

4. An application to the newsboy problem

In this section, we will consider the ordering decision of a com-
pany that operates under the conditions of the classical Newsboy
Problem and faces an all-units quantity discount schedule and
trucking costs, as in Expression (3). If the quantity ordered at the
beginning of the single-period is more than the demand, excess
items are salvaged at $»/unit. If it is less than the demand, then
there is a $b/unit loss of goodwill cost. The retail price is fixed,
and it is $r/unit. Denoting the random demand amount by X and
its probability density function by f(x), the expected profit of the
newsboy is given by
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0

11,(Q) = (r— v)p— (c(Q)— 2)Q +(r+b—v) /Q q

()

where p is the expected value of demand. Here, the wholesale price
function is given by an all-units discount structure, as in Expression
(2). For fixed price level c;, where 0 < i< n, the expected profit
excluding the truck costs is

e}

GQ,c)=r—-v)u—(ci—v)Q+(r+b—-v) /Q (Q —x)f (x)dx.

(6)

Note that the above expression is strictly concave in Q, with a un-
ique maximizer at Q" that satisfies

@y _T+b—q
FQ") = @)
where F(.) is the distribution function of demand.

It can be easily shown that Expressions (6) and (7) satisfy
assumptions (A1), (A2), and (A3) stated in Section 2. Therefore,
the problem of maximizing I1,(Q) over Q > 0 can be solved using
the algorithm in Corollary 4. Below, we present some examples of
the Newsboy Problem to illustrate the application of the model

introduced in Section 2 and analyzed in Section 3.

Example 1. Consider the Newsboy Problem with the following
parameter settings: r =35,b=0,v = 15,R = 150,P = 100 and

21 0 < Q <650,

20 650<Q <701,

199 701 < Q < 1200,

19 Q> 1200.

Q)=

Demand is exponentially distributed with rate 1 = 0.002.

Solution:
In this example, it turns out that the profit function is given by
T,(Q) = (—¢c(Q) + 15)Q + 10000 — 10000e~%002¢ _ [%1 150.

Here, the strictly concave component of the profit function at price
level ¢; is

G(Q,¢i) = (—¢; + 15)Q + 10000 — 10000e %%,

In order to maximize I7,(Q), we first find r,, starting from the low-
est price. At the lowest price c; =19, we have Q® =804.719,
which is not realizable. At the next lowest price c; = 19.9, we have
Q@ =703.248. Since 701 < Q® <1200,Q® is realizable, and
hence, r,=2. Now, starting from i = 2, we proceed to find the value
of r; by checking whether Q@ is realizable. From Corollary 1, we
have Q@ = 600. Since Q@ < q,, it is not realizable. Similarly, at
i=1, we have Q) = 600. Since Q" < q,, it is also not realizable.
At the next price level (i.e., co = 0), we have Q@ = 500. Therefore,
we need to compare the profits at Q®,Q;,Q;, and q;. Now, using
Proposition 2, let us find the values of Q; and Qj. Note that
Q"W =693.147, and since q, <Q" <gq, it follows that

Q; = min { (41100, Q<”} — QM = 693.147. Similarly, it turns out
that Q; = Q¥ =703.248. Computing the profits at Q©,Q},Q;,

and g5, we have I1,(Q©) = 2571.21,I1,(Q}) = 2984.264, IT,(Q}) =
2904.082, and I1,(q;) = 2492.82. Therefore, Q" = Q] = 693.147.
The above example can also be used to illustrate the magnitude
of savings that can be achieved by considering transportation costs
in inventory replenishment decisions. If transportation costs were
ignored in decision making, the optimal order quantity would be

1200, with a resulting expected profit of 2492.82 money units.

Q- (x)dx— H R

However, when transportation costs are considered, the optimal
order quantity is 693.147, as found in the solution to Example 1.
This corresponds to a 19.7% (2984284-249282 . 100%) savings. Notice
that, even if an all-units discount schedule encourages the buyer to
order more, savings that are inherent in transportation are realized
through a lesser order quantity.

It is important to note that, although the replenishment prob-
lem in this study is posed in the context of a single echelon setting,
the general model and its solution may apply to several other set-
tings, including multi-echelon inventory problems. As an example,
consider the joint replenishment decisions of a buyer and a vendor
in a Newsboy setting, in which the vendor faces an all-units dis-
count schedule, and either the vendor or the buyer has stepwise
freight costs. Specifically, consider the following two scenarios in
which p(Q) is the vendor’s procurement price given by an all-units
quantity discount schedule with multiple breakpoints:

e The buyer's expected profits are as in Expression (5) with
c(Q) = c. The vendor’s profits are given by (c — p(Q))Q.

e The buyer’s expected profits are as in the classical Newboy
Model, and the vendor’s profits are given by (c — p(Q))Q — [%]R.
Under the above two scenarios, the expected total profit func-

tion has a structure that includes a piecewise strictly concave com-

ponent reduced by stepwise freight costs, as in Expression (3). The
next numerical problem exemplifies the first scenario.

Example 2. Consider a buyer-vendor system operating under the
conditions of the Newsboy Problem. The buyer’s unit purchasing
cost, retail price, shortage cost and salvage value are
c=21,r=25,b =13, v = 8, respectively. He/she has the trucking
cost parameters given by R=70,P = 100. The vendor has the
following unit purchase price schedule:

20 0<Q <201,

18 201 < Q <401,

16 401 <Q <601,

14 Q > 601.

Demand is uniformly distributed between 400 and 600.

pQ) =

Solution:
The buyer’s expected profit function I7,(Q) and the vendor’s ex-
pected profit function IT,(Q) are as follows:
_ 3Q° Q
,(Q)=77Q — a0 " 18500 — {m—‘ 70,

m,(Q) = (21 - p(Q))Q.

Let us find the order quantity that maximizes the expected total
profits of the system, which is given by

Q) = 11,(Q) + 1,(Q)

2
- 18500 55170,

= (-P(Q) +98)Q - 75 =

Denoting the vendor’s purchasing price in the ith interval by p;, the

strictly concave component of the profit function at price p; is
3Q°

G(Q.pi) = (=p; + 98)Q — -5 — 18500.

We again start from the lowest price to search for r,. At p; = 14, it
turns out that Q® = 560, which is not realizable. At the next lowest
price p, = 16, we have 401 < Q® =546.57 < 601, and therefore,
r, = 2. Utilizing Corollary 1, we also find Q® as 546.57, and hence,
ry = 2. Corollary 4 implies that we need to compare the expected
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system profits at Q1) =546.57 and at gqs. Since I1(546.57) =
3493.33 and I1(601) = 4403.94, we have Q" = g5 = 601.

Last, but not least, consider a scenario in which the vendor has
capacitated production setups or trucks used inbound replenish-
ment. The unit procurement cost for the vendor, denoted by p, is
constant, and therefore, the vendor’s profits are given by
(c = p)Q — [%]R. The buyer in this system operates under the con-
ditions of the Newsboy Model and uses a common carrier for trans-
portation who charges on the basis of an all-units discount
schedule. Obviously, the solution to the joint replenishment deci-
sion in this scenario can again be found using the approach pre-
sented in our paper.

5. Implications for inventory management

Freight costs constitute a major part of the world’s biggest econ-
omies. For example, according to the 17th Annual State of Logistics
Report [30], U.S. business logistics costs were 9.5% of the nominal
GDP in 2005. Transportation costs, as a significant portion of logis-
tical expenses, accounted for 6% of the nominal GDP. This implies
that significant savings can be achieved through carefully planning
for transportation. To this end, researchers have shown in numer-
ous studies that transportation decisions should be made simulta-
neously with inventory replenishment decisions. Based on this
premise, in the current study, we model and solve the replenish-
ment problem of a company that faces all-units quantity discount
and stepwise freight costs.

Inventory replenishment decisions have been mostly made
without giving consideration to transportation costs. Carter and
Ferrin [7] show that substantial savings can be attained by
increasing the order quantity when an LTL common carrier is
used. This is achieved by taking advantage of the reductions in
freight rate for larger quantities. Our finding is that, in the pres-
ence of TL transportation, savings can sometimes be realized by
decreasing the order quantity. This is specifically important in
the presence of quantity discounts, because such discounts
encourage the buyer to order more. The tendency to order more
under quantity discounts may result in increased transportation
costs and may not justify the use of additional trucks in the case
of TL transportation.

6. Conclusions

This study considers a single echelon replenishment problem
with all-units quantity discounts and generalized transportation
costs. Quantity discounts are widely used in industry by suppliers
to attract more buyers, to increase buyers’ order sizes, and to take
advantage of economies of scale. In fact, quantity discounts are one
of the mechanisms to achieve coordination in supply chains and to
share the extra savings due to coordination. A quantity discount
with multiple breakpoints may prevail under the existence of mul-
tiple buyers with the purpose of price discrimination. In addition,
when several alternative suppliers offer all-units discount sched-
ules with single but different breakpoints, the wholesale price
schedule that is faced by a buyer turns out to have multiple break-
points. Our analysis accounts for both a wholesale price schedule
in the form an all-units quantity discount with multiple break-
points and stepwise freight costs.

The replenishment problem is formulated in terms of a general
model with an objective function that includes a piecewise strictly
concave component reduced by stepwise fixed increments. A com-
putational solution procedure is proposed, based on several prop-
erties of the objective function. The model and its solution are
later applied to the Newsboy Problem, under given cost consider-
ations. As it is also illustrated over some examples, with the gen-

eral analysis in this study, one can find solutions to several
replenishment problems, including those in multi-echelon
settings.

This study can be used as a first step analysis to coordination
problems under the existence of many buyers with stepwise
freight costs. Recall that our premise is that the all-units discount
schedule is already given. A natural extension would be to consider
the vendor’s problem in designing a price schedule that coordi-
nates the system comprising his/her buyers who face transporta-
tion costs and capacities.

Appendix A
A.1. Proof of Property 6

Assume that 3j > (r + 1) s.t. G(Q,¢j_1) is increasing in Q over
g1 < Q < g;. Then, we should have Q""" > g;. Since Q¥ > QU",
it turns out that Q¥ > g;. Thls implies that Q(’) > q;,;, because
otherwise, if we had q; < QY < qM, then QY would be realizable.
Therefore, G(Q, ¢;) has to be increasing over q; < Q < ;.. In a sim-
ilar fashion, G(Q, ¢j;1),G(Q, ¢j42), - .., G(Q, cy,_1) have to be increas-

ing over Qi1 < Q < @jy, qﬁz SQ<Gyss---,Gp1 Q< q,,,
respectively, and, we should have QU Ge1) > q;,,.Q"
Gi3.---,Q" " > @,. Since Q" >Q™ ", this would imply that

Q™ > q,. However, this contradicts with the fact that Q" is the
largest realizable maximizer of G(Q, ¢;)’s.

A.2. Proof of Property 7
Since Q) is the largest realizable maximizer of G(Q, ¢;)s, it fol-

lows from Property 6 that G(Q,cr 1) < G(qy_q,Ck1) where
Qi1 < Q < gy, Vk s.t. k>, + 1. Since [$]R > [%1]R, it turns out

that  G(Q,c1) — [$]R < G(qy_1.Ck-1) — [%]R,  and  hence,
H(Q) < H*(qy1)- For Q € [q,1,q,), we have #(Q) =H*'(Q)
and #(q,,)=H""(q._,). Therefore, #(Q)< #(q,,) where

Qe < Q< q,Vkst.k>r,+1.

A.3. Proof of Property 8

Since G(Q" ¢) < GQW ciqp), it follows that G(Q©, c)—

G(
{ WR< G(QD, ciyq) [QT-‘R and hence, H'(Q®) < H*'(Q"). We
have H*1(Q) > H*1(Q®), therefore, H*' (Q) > H'(Q®).

A.4. Proof of Property 9

Let us assume 37,0 <j < n— 1, such that Q¥ > QU+D. We have
from Corollary 1 that Q¥ < QY. Since QU"V > QY, it follows that
QU*Y > QU+V. This implies that QU+ =kP for some
k€ {0,1,2,...}, and therefore, either one of the following cases
should hold.

Case 1: G((k + 1)P, cjs1) — G(kP, cjs1) < R where (k+ 1)P < QU+,

Since G((k + 1)P,cj) — G(kP, ¢;) < G((k + 1)P,cj11) — G(kP, ¢j1q), it
follows that G((k+ 1)P,c;) — G(kP,c;) < R. Therefore, we should
have Q¥ < kP, which contradicts with Q¥ > QU+,

Case 2: QU+ = [P where | = [QU;”W —1.

Since H*'(IP) » H*'(QU™"), it follows that G(Q'™, cj1)—
G(IP,cj.1) < R. Using the fact that G(Q™", ci.1) > G(QY, ¢jy), we
have G(Q“ ¢is1) — G(IP,cjy1) < R. Now, since QU+) = [P < Q¥ and
0¥ < QY < QY*Y, it turns out that IP < Q¥ < QY*Y, and hence,
= Qﬁ 1. Since G(QY, ¢iy1) — G(IP,¢i11) <R, we also have
G(Q ).¢j) = G(IP,cj) < R. Therefore, G(QY,c;)— (I+1)R < G(IP,c;)
—IR, and hence, H(QY)<H(P). This implies that
QY < IP = QU+Y), which contradicts our assumption.
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A.5. Proof of Property 10
Assume that there exists no realizable Q. Then, Q© >

Since QM > Q©, then QM >gq, because otherwise, if
q, < QW < gq,, then Q would be realizable. Since Q@ > Q(", then
Q@ > g, because otherwise, if g, < Q@ < g;, then Q@ would be
realizable. Continuing in this fashion, we have Q-1 > q,. Since
Q™ > Q®-Y, then Q™ > q,. However, this would make Q™ real-
izable, which is a contradiction.

A.6. Proof of Corollary 3

Corollaries 1 and 2 imply that Q® < q,,Vk > (r, +1). In other
words, Q® values are not realizable Vk > (r; +1). This implies
that r; <1, and Q) < Q™.

A.7. Proof of Proposition 1

Assume that 3k, r; < k < r, such that Q® > g,. Then, we should
have Q® > q,.,, because otherwise, if we had q, < Q® < q.;,
then Q® would be realizable. Since Q*+) > Q®, we have
Q* > q,,. This implies that Q*+) > g,.,. Continuing in this
fashion, we have Q">V > g, _;, which leads to Q<r2 D > q,,. Since
Q) > Q-1 we have Q“z) > q,,. We know that Q 12) jg reallzable
therefore, qr <Q" < dr,+1- Also, we have from Corollary 1 that
Q™ < Q). Hence, we should have q,, <Qm < q,,,1- However,
this contradicts the fact that Q" is the largest realizable maxi-
mizer of H'(Q)s.

A.8. Proof of Proposition 2

For the first case (i.e., g; > Q") the result follows from Property
1. We analyze the second case (i.e., q; < Q") in two subcases.

Subcase I: q;,; > QY.

Observe that in this subcase Q"
[4] = [QT”W or [4] < [Qﬂ holds. If [4] = [QT”W since Q" is the max-
imizer of G(Q,c;) we have Q; =Q @, Note that [ = [QT”W implies
[41P > QY, and hence min { [4p, Q(”} =Q".If [4] < [Q”W utiliz-
ing Properties 2 and 3 under the fact that Q¥ < g;, we conclude
Q; = [%4]P. Similarly, [%4] < (QT(W implies [4]P <Q", and hence
min {[$1P.Q"} = [4]P.

Subcase II: q;,; < Q¥ _

Observe that in this subcase Q" is not realizable, and either
[4] = [%2] or [4] < [%st] holds. If [4] = [%:], Property 2 implies
Q; =limg 4 . Note that when [§]=[%], we have

[P > limg_q_,, and hence min{(ﬁ]P,limQHqT }:limQﬂqf L If

is realizable, and either

[%] < [%4], utilizing Properties 2 and 3 again under the fact
that Q¥ <gq; and ¢, <Q"”, we conclude Q;= [4]P.

1

Similarly, [%] < [%] and hence

min {[41P.limq_q_ } = [41P.

implies [#]P < limQqu_}]v
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