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We analyze the problem of pricing and hedging contingent claims in the multi-period, discrete time, dis-
crete state case using the concept of a ‘‘k gain–loss ratio opportunity”. Pricing results somewhat different
from, but reminiscent of, the arbitrage pricing theorems of mathematical finance are obtained. Our anal-
ysis provides tighter price bounds on the contingent claim in an incomplete market, which may converge
to a unique price for a specific value of a gain–loss preference parameter imposed by the market while the
hedging policies may be different for different sides of the same trade. The results are obtained in the
simpler framework of stochastic linear programming in a multi-period setting, and have the appealing
feature of being very simple to derive and to articulate even for the non-specialist. They also extend to
markets with transaction costs.
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1. Introduction

An important class of pricing theories in financial economics are derived under no-arbitrage conditions. In complete markets, these the-
ories yield unique prices without any assumptions about individual investor’s preferences. In other words, the pricing of assets relies on the
availability and the liquidity of traded assets that span the full set of possible future states. Ross [26,27] proves that the no-arbitrage con-
dition is equivalent to the existence of a linear pricing rule and positive state prices that correctly value all assets. This linear pricing rule is
the risk neutral probability measure in the Cox–Ross option pricing model, for example Harrison and Kreps [13] showed that the linear
pricing operator is an expectation taken with respect to a martingale measure. However, when markets are incomplete state prices and
claim prices are not unique. Since markets are almost never complete due to market imperfections as discussed in Carr et al. [5], and char-
acterizing all possible future states of economy is impossible, alternative incomplete pricing theories have been developed.

In an incomplete financial market with no-arbitrage opportunities, a noticeable feature of the set of risk neutral measures is that the
value of the cheapest portfolio to dominate the pay-off at maturity of a contingent claim coincides with the maximum expected value
of the (discounted) pay-off of the claim with respect to this set. This value, which may be called the writer’s price, allows the writer to
assemble a hedge portfolio that achieves a value at least as large as the pay-off to the claim holder at the maturity date of the claim in
all non-negligible events. The writer’s price is the natural price to be asked by the writer (seller) of a contingent claim and, together with
the bid price obtained by considering the analogous problem from the point of view of the buyer, forms an interval which is sometimes
called the ‘‘no-arbitrage price interval” for the claim in question.

A writer may nevertheless be induced for various reasons to settle for less than the above price to sell a claim with pay-off FT ; see e.g.,
Chapters 7 and 8 of [10] for a discussion and examples showing that the writer’s price may be too high. In such a case, he/she will not be
able to set up a portfolio dominating the claim pay-off almost surely, which implies that he/she will face a positive probability of ‘‘falling
short”, i.e., his/her hedge portfolio will take values VT smaller than those of the claim on a non-negligible event. Thus, the writer will need
to choose his/her hedge portfolio (and selling price) according to some optimality criterion to be decided. The gain–loss pricing criterion of
the present paper inspired by the gain–loss ratio criterion of Bernardo and Ledoit [2] suggests to choose the portfolio which gives the best
value of the difference of expected positive final positions and a parameter k (greater than one) times the expected negative final positions,
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E½ðVT � FTÞþ� � kE½ðVT � FTÞ��, aimed at weighting ‘‘losses” more than ‘‘gains”. This criterion gives rise to a new concept different from the
ordinary arbitrage, the ‘‘k gain–loss ratio opportunity”, i.e., a portfolio which can be set up at no cost but yields a positive value for the
difference between gains and ‘‘k-losses”. In this paper, we show that the price processes in a multiple period, discrete time, finite state
financial market do not admit a k gain–loss ratio opportunity if and only if there exists an equivalent martingale measure with an addi-
tional restriction. As for the maximum and minimum no-arbitrage prices, we determine the maximum and minimum prices which do
not introduce k gain–loss opportunities in the market. Thus, a new price interval (the ‘‘k gain–loss price interval”) is determined, generally
contained in the no-arbitrage interval (thus more significant from an economical point of view since it is more restrictive). These prices
converge to the no-arbitrage bounds in the limit as the gain–loss preference parameter goes to infinity (and hence, the investor essentially
looks for an arbitrage). On the other extreme, our results show that the market may actually arrive at a consensus about the pricing rule,
i.e., as the gain–loss preference parameter goes down to the smallest value not allowing a k gain–loss ratio opportunity, the writer and
buyer’s no-k gain–loss ratio opportunity prices of a contingent claim may converge to a single value, hence potentially providing a unique
price for the contingent claim in an incomplete market. However, in the incomplete market setting, the same pricing rule leads to different
hedging policies for different sides of the same trade. This is an important finding as it will result in different demand and supply schemes
for the replicating assets. An attractive feature of our results is that all derivations and computations are carried out using linear program-
ming models derived from simple stochastic programming formulations, which offer a propitious framework for adding additional vari-
ables and constraints into the models as well as possibility of efficient numerical processing; see the book [3] for a thorough
introduction to stochastic programming.

Our concept of k gain–loss ratio opportunity is akin to the notion of a good deal that was developed in a series of papers by various authors
[6,8,18,28]. For example in Cochrane and Saa-Requejo [8], the absence of arbitrage is replaced by the concept of a good deal, defined as an
investment with a high Sharpe ratio. While they do not use the term ‘‘good-deal”, Bernardo and Ledoit [2] replace the high Sharpe ratio by
the gain–loss ratio. These earlier studies are carried out using duality theory in infinite dimensional spaces in [6,18,28], usually in single-
period models. Working with single-period models is not necessarily a limitation since dynamic models with a fixed terminal date can
be viewed as one-period models with investment choices taking values in suitable spaces. Recent work on risk measures and portfolio opti-
mization, e.g. [10], adopts this approach to formulate single-period problems using function spaces rich enough to be extended to multi-per-
iod or continuous time markets; see Section 8 of Staum [28] for a discussion. In this regard, the contribution of the present paper is to make
explicit which consequences can general single-period results have when applied to multi-period discrete space markets.

We note that a second class of pricing theories relies on the expected utility framework which posits that if preferences satisfy a number
of axioms, then they can be represented by an expected utility function. This framework requires the specification of investor preferences
through usually non-linear utility functions; see Chapter 1 of [16]. This model equates the price of a claim to the expectation of the product
of the future pay-off and the marginal rate of substitution of the representative investor; see e.g. [7,15,20] for related recent work. Recent
papers by Cochrane and Saa-Requejo [8], Bernardo and Ledoit [2], Carr et al. [5], Roorda et al. [25] and Kallsen [20] unify these two classes
of pricing theories and value options in an incomplete market setting. In the present paper, we work with linear programming models, and
avoid the non-linearities encountered with utility functions. Our notion of gain–loss ratio opportunity is also related to prospect theory of
Kahneman and Tversky [19] proposed as an alternative to expected utility framework. In prospect theory, it is presumed based on exper-
imental evidence that gains and losses have asymmetric effects on the agents’ welfare where welfare, or utility, is defined not over total
wealth but over gains and losses; see Grüne and Semmler [12] and Barberis et al. [1] for details on the use of the gain–loss function as a
central part of welfare functions in asset pricing.

The organization of the paper is as follows. In Section 2, we review the stochastic process governing the asset prices and we lay out the
basics of our analysis. Section 3 gives a characterization of the absence of a k gain–loss ratio opportunity in terms of martingale measures.
We consider a related problem in Section 4 where the investor in search of a k gain–loss ratio opportunity would also like to find the k gain–
loss ratio opportunity with the limiting value of the parameter k. Here we re-obtain a duality result which turns out be essentially the dual-
ity result of Bernardo and Ledoit in a multi-period but finite probability state space setting. In Section 5 we analyze the pricing problems of
writers and buyers of contingent claims under the k gain–loss ratio opportunity viewpoint. We extend the results of the paper to markets
with transaction costs in Section 6. We use simple numerical examples to illustrate our results.

2. The stochastic scenario tree, arbitrage and martingales

Throughout this paper we follow the general probabilistic setting of [21,29] where we model the behavior of the stock market by assum-
ing that security prices and other payments are discrete random variables supported on a finite probability space ðX;F; PÞ whose atoms x
are sequences of real-valued vectors (asset values) over the discrete time periods t ¼ 0;1; . . . ; T. For a general reference on mathematical
finance in discrete time, finite state markets the reader is referred to Pliska [23]. A recent reference treating option pricing from the opti-
mization point of view in discrete time, finite state markets is [11]. We assume the market evolves as a discrete, non-recombinant scenario
tree in which the partition of probability atoms x 2 X generated by matching path histories up to time t corresponds one-to-one with
nodes n 2Nt at level t in the tree. The set N0 consists of the root node n ¼ 0, and the leaf nodes n 2NT correspond one-to-one with
the probability atoms x 2 X. In the scenario tree, every node n 2Nt for t ¼ 1; . . . ; T has a unique parent denoted pðnÞ 2Nt�1, and every
node n 2Nt , t ¼ 0;1; . . . ; T � 1 has a non-empty set of child nodes SðnÞ �Ntþ1. The set of all ascendant nodes and all descendant nodes of
a node n are denoted AðnÞ, and DðnÞ, respectively, in both cases including node n itself. We denote the set of all nodes in the tree by N. The
probability distribution P is obtained by attaching positive weights pn to each leaf node n 2NT so that

P
n2NT

pn ¼ 1. For each non-terminal
(intermediate level) node in the tree we have, recursively,
pn ¼
X

m2SðnÞ
pm; 8n 2Nt ; t ¼ T � 1; . . . ; 0: ð1Þ
Hence, each intermediate node has a probability mass equal to the combined mass of the paths passing through it. The ratios
pm=pn;m 2SðnÞ are the conditional probabilities that the child node m is visited given that the parent node n ¼ pðmÞ has been visited. This
setting is chosen as it accommodates multi-period pricing for future different states and time periods at the same time, employing
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realization paths in the valuation process. It is a framework that allows to address the valuation problem with incomplete markets and
heterogeneous beliefs which are very stringent assumptions in the classical valuation theory. In this respect, it improves our understanding
of valuation in a simple, yet complete fashion.

A random variable X is a real-valued function defined on X. It can be lifted to the nodes of a partition Nt of X if each level set
fX�1ðaÞ : a 2 Rg is either the empty set or is a finite union of elements of the partition. In other words, X can be lifted to Nt if it can be
assigned a value on each node of Nt that is consistent with its definition on X [21]. This kind of random variable is said to be measurable
with respect to the information contained in the nodes of Nt . A stochastic process fXtg is a time-indexed collection of random variables
such that each Xt is measurable with respect to Nt . The expected value of Xt is uniquely defined by the sum
EP½Xt � :¼
X

n2Nt

pnXn:
The conditional expectation of Xtþ1 on Nt is a random variable taking values over the nodes n 2Nt , given by the expression
EP½Xtþ1jNt � :¼
X

m2SðnÞ

pm

pn
Xm:
Under the light of the above definitions, the market consists of J þ 1 tradable securities indexed by j ¼ 0;1; . . . ; J with prices at node n
given by the vector Sn ¼ ðS0

n; S
1
n; . . . ; SJ

nÞ. We assume as in [21] that the security indexed by 0 has strictly positive prices at each node of the
scenario tree. Furthermore, the price of the security indexed by 0 grows by a given factor in each time period. This asset corresponds to the
risk-free asset in the classical valuation framework. Choosing this security as the numéraire, and using the discount factors bn ¼ 1=S0

n we
define Zj

n ¼ bnSj
n for j ¼ 0;1; . . . ; J and n 2N, the security prices discounted with respect to the numéraire. Note that Z0

n ¼ 1 for all nodes
n 2N, and bn is a constant, equal to, bt , for all n 2NT , for a fixed t 2 ½0; . . . ; T�.

The amount of security j held by the investor in state (node) n 2Nt is denoted hj
n. Therefore, to each state n 2Nt is associated a vector

hn 2 RJþ1. We refer to the collection of vectors hn for all n 2N as H. The value of the portfolio at state n (discounted with respect to the
numéraire) is
Zn � hn ¼
XJ

j¼0

Zj
nh

j
n:
We will work with the following definition of arbitrage: an arbitrage is a sequence of portfolio holdings that begins with a zero initial
value (note that short sales are allowed), makes self-financing portfolio transactions throughout the planning horizon and achieves a non-
negative terminal value in each state, while in at least one terminal state it achieves a positive value with non-zero probability. The self-
financing transactions condition is expressed as
Zn � hn ¼ Zn � hpðnÞ; n > 0:
The stochastic programming problem used to seek an arbitrage is the following optimization problem (P1):
max
P

n2NT

pnZn � hn

s:t: Z0 � h0 ¼ 0
Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt; t P 1
Zn � hn P 0; 8n 2NT :
If there exists an optimal solution (i.e., a sequence of vectors hn for all n 2N) which achieves a positive optimal value, this solution can
be turned into an arbitrage as demonstrated by Harrison and Pliska [14].

We need the following definitions.

Definition 1. If there exists a probability measure Q ¼ fqngn2NT
(extended to intermediate nodes recursively as in (1)) such that
Zt ¼ EQ ½Ztþ1jNt � ðt 6 T � 1Þ ð2Þ
then the vector process fZtg is called a vector-valued martingale under Q, and Q is called a martingale probability measure for the process. If
one has coordinate-wise Zt P EQ ½Ztþ1jNt�; ðt 6 T � 1Þ (respectively, Zt 6 EQ ½Ztþ1jNt �; ðt 6 T � 1ÞÞ the process is called a super-martingale
(sub-martingale, respectively).

Definition 2. A discrete probability measure Q ¼ fqngn2NT
is equivalent to a (discrete) probability measure P ¼ fpngn2NT

if qn > 0 exactly
when pn > 0.

King proved the following theorem (c.f. Theorem 1 of [21]).

Theorem 1. The discrete state stochastic vector process fZtg is an arbitrage-free market price process if and only if there is at least one probability
measure Q equivalent to P under which fZtg is a martingale.

The above result is the equivalent of Theorem 1 of Harrison and Kreps [13] in our setting.

3. Gain–loss ratio opportunities and martingales

In our context a k gain–loss ratio opportunity is defined as follows. For n 2NT let Zn � hn ¼ xþn � x�n where xþn and x�n are non-negative
numbers, i.e., we express the final portfolio value at terminal state n as the sum of positive and negative positions (xþn denotes the gain
at node n while x�n stands for the loss at node n). Assume that there exist vectors hn for all n 2N such that
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Z0 � h0 ¼ 0;
Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt ; t P 1
and
EP½Xþ� � kEP ½X�� > 0
for k > 1, where Xþ ¼ fxþn gn2NT
, and X� ¼ fx�n gn2NT

. This sequence of portfolio holdings is said to yield a k gain–loss ratio opportunity (for a
fixed value of k). This formulation is similar to Bernardo and Ledoit [2] gain–loss ratio, and the Sharpe ratio restriction of Cochrane and Saa-
Requejo [8]. Yet, it makes the problem easier to tackle within the framework of linear programming. Moreover, the parameter k can be inter-
preted as the gain–loss preference parameter of the individual investor. As k gets bigger, the individual’s aversion to loss is becoming more
and more pronounced, since he/she begins to prefer near-arbitrage positions. As k gets closer to 1, the individual weighs the gains and losses
equally. In the limiting case of k being equal to 1 the pricing operator (equivalent martingale measure) is unique if it exists. In fact, the pricing
operator may become unique at a value of k larger than one, which is what we expect in a typical pricing problem.

Consider now the perspective of an investor who is content with the existence of a k gain–loss ratio opportunity although an arbitrage
opportunity does not exist. Such an investor is interested in the solution of the following stochastic linear programming problem that we
refer to as (SP1):
max
P

n2NT

pnxþn � k
P

n2NT

pnx�n

s:t: Z0 � h0 ¼ 0;
Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt; t P 1;
Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
If there exists an optimal solution (i.e., a sequence of vectors hn for all n 2N) to the above problem that yields a positive optimal value,
the solution is said to give rise to a k gain–loss ratio opportunity (the expected positive terminal wealth outweighing k times the expected
negative final wealth). If there exists a k gain–loss ratio opportunity in SP1, then SP1 is unbounded. We note that by the fundamental the-
orem of linear programming, when it is solvable, SP1 has always a basic optimal solution in which no pair xþn ; x

�
n , for all n 2NT , can be

positive at the same time.
We will say that the discrete state stochastic vector process fZtg does not admit a k gain–loss ratio opportunity (at a fixed value of k) if

the optimal value of the above stochastic linear program is equal to zero. Clearly, if k tends to infinity we essentially recover King’s problem
P1. It is a well-accepted phenomenon that every rational investor is ready to lose if the benefits of the gains outweigh the costs of the losses
[19]. It is also reasonable to assume that the rational investor will try to limit losses. This type of behavior excluded by the no-arbitrage
setting is easily modeled by the Expected Utility approach and in prospect theory. Our formulation allows investors to take reasonable risks
without explicitly specifying a complicated utility function while it converges to the no-arbitrage setting in the limit. It is easy to see that
an arbitrage opportunity is also a k gain–loss ratio opportunity, and that absence of a k gain–loss ratio opportunity (at any level k) implies
absence of arbitrage. It follows from Theorem 1 that if the market price process does not admit a k gain–loss ratio opportunity then there
exists an equivalent measure that makes the price process a martingale.

Definition 3. Given k > 1 a discrete probability measure Q ¼ fqngn2NT
is k-compatible to a (discrete) probability measure P ¼ fpngn2NT

if it
is equivalent to P (Definition 2) and satisfies
max
n2NT

pn=qn 6 k min
n2NT

pn=qn:
Theorem 2. The process fZtg does not admit k gain–loss ratio opportunity (at a fixed level k > 1) if and only if there exists a probability measure
Q k-compatible to P which makes the discrete vector price process fZtg a martingale.

Proof. We prove the necessity part first. We begin by forming the dual problem to SP1. Attaching unrestricted-in-sign dual multiplier y0

with the first constraint, multipliers yn; ðn > 0Þwith the self-financing transaction constraints, and finally multipliers wn; ðn 2NTÞwith the
last set of constraints we form the Lagrangian function:
LðH;Xþ;X�; y;wÞ ¼
X

n2NT

pnxþn � k
X

n2NT

pnx�n þ y0Z0 � h0 þ
XT

t¼1

X
n2Nt

ynZn � ðhn � hpðnÞÞ þ
X

n2NT

wnðZn � hn � xþn þ x�n Þ
that we maximize over the variables H, Xþ, and X� separately. From these separate maximizations we obtain the following:
y0Z0 ¼
X

n2Sð0Þ
ynZn; ð3Þ

ymZm ¼
X

n2SðmÞ
ynZn; 8m 2Nt ; 1 6 t 6 T � 1; ð4Þ

pn 6 yn 6 kpn; 8n 2NT ; ð5Þ
where we got rid of the dual variables wn in the process by observing that maximizations over hn; ðn 2NTÞ yield the equations
ðwn � ynÞZn ¼ 0; 8n 2NT
and since the first component Z0
n ¼ 1 for all states n, we have yn ¼ wn; ðn 2NTÞ. Therefore, we have obtained the dual problem that we refer

to SD1 with an identically zero objective function and the constraints given by (3)–(5).
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Now let us observe that problem SP1 is always feasible (the zero portfolio in all states is feasible) and if there is no k gain–loss ratio
opportunity, the optimal value is equal to zero. Therefore, by linear programming duality, the dual problem is also solvable (in fact, feasible
since the dual is only a feasibility problem). Let us take any feasible solution yn; ðn 2NÞ of the dual system given by (3)–(5). Since the first
component, Z0

n is equal to 1 in each state n, we have that
ym ¼
X

n2SðmÞ
yn; 8m 2Nt; 1 6 t 6 T � 1: ð6Þ
Since yn P pn, it follows that yn is a strictly positive process such that the sum of yn over all states n 2Nt in each time period t sums to
y0. Now, define the process qn ¼ yn=y0, for each n 2N. Obviously, this defines a probability measure Q over the leaf (terminal) nodes
n 2NT . Furthermore, we can rewrite (4) with the newly defined weights qn as
qmZm ¼
X

n2SðmÞ
qnZn; 8m 2Nt ; 1 6 t 6 T � 1
with q0 ¼ 1, and all qn > 0. Therefore, by constructing the probability measure Q we have constructed an equivalent measure which makes
the price process fZtg a martingale according to Definition 1. By definition of the measure qn, we have using the inequalities (5)
pn 6 qny0 6 kpn; 8n 2NT
or equivalently,
pn=qn 6 y0 6 kpn=qn; 8n 2NT ;
which implies that qn; n 2NT constitute a k-compatible martingale measure. This concludes the necessity part.
Suppose Q is a k-compatible martingale measure for the price process fZtg. Therefore, we have
qmZm ¼
X

n2SðmÞ
qnZn; 8m 2Nt ; 1 6 t 6 T � 1;
with q0 ¼ 1, and all qn > 0, while the condition maxn2NT pn=qn 6 kminn2NT pn=qn holds. If the previous inequality holds as an equality, choose
the right-hand (or, the left-hand) of the inequality as a factor y0 and set yn ¼ qny0 for all n 2 X. If the inequality is not tight, any value y0 in the
interval ½maxn2NT pn=qn; kminn2NT pn=qn� will do. It is easily verified that yn, n 2N so defined satisfy the constraints of the dual problem SD1.
Since the dual problem is feasible, the primal SP1 is bounded above (in fact, its optimal value is zero) and no k gain–loss ratio opportunity
exists in the system. h

As a first remark, we can immediately make a statement equivalent to Theorem 2: The price process (or the market) does not have a k
gain–loss ratio opportunity (at fixed level k) if and only if there exists an equivalent measure Q to P such that:
maxn2NT pn=qn

minn2NT pn=qn
6 k ð7Þ
or, equivalently
maxn2NT qn=pn

minn2NT qn=pn
6 k ð8Þ
or,
maxx
dQ
dP ðxÞ

minx
dQ
dP ðxÞ

6 k ð9Þ
using the Radon–Nikodym derivative, and that Q makes the price process a martingale. Clearly, posing the condition as such introduces a
non-linear system of inequalities, whereas our equivalent dual problem SD1 is a linear programming problem. After preparing this manu-
script we noticed that a similar observation for single-period problems was made in a technical note [22] although the language and notation
of this reference is very different from ours.

As a second remark, we note that if we allow k to tend to infinity we find ourselves in King’s framework at which point Theorem 1 is
valid. Therefore, this theorem is obtained as a special case of Theorem 2.

Example 1. Let us now consider a simple single-period numerical example. Let us assume for simplicity that the market consists of a
riskless asset with zero growth rate, and of a stock. The stock price evolves according a trinomial tree as follows. Assume the riskless asset
has price equal to one throughout. At time t ¼ 0, the stock price is 10. Hence Z0 ¼ ð1 10ÞT . At the time t ¼ 1, the stock price can take the
values 20, 15, 7.5 with equal probability. Therefore, at node 1 one has Z1 ¼ ð1 20ÞT ; at node 2 Z2 ¼ ð1 15ÞT and finally at node 3
Z3 ¼ ð1 7:5ÞT . In other words, all b factors are equal to one. It is easy to see that the market described above is arbitrage free because we
can show the existence of an equivalent martingale measure, e.g., q1 ¼ q2 ¼ 1=8 and q3 ¼ 3=4. Now, setting up and solving the problems
SP1 and/or SD1, we observe that for all values of k P 6, no k gain–loss ratio opportunity exists in the market. However, for values of k
strictly between one and six, the primal problem SP1 is unbounded and the dual problem SD1 is infeasible. Therefore, k gain–loss ratio
opportunities exist.

As k gets smaller, eventually the feasible set of the dual problem reduces to a singleton, at which point an interesting pricing result is
observed as we shall see in Section 5. First, we investigate the problem of finding the smallest k not allowing k gain–loss ratio opportunities
in the next section.
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4. Seeking out the highest possible k in a gain–loss ratio opportunity framework

We have assumed thus far that the parameter k was decided by the agent (writer or buyer) before the solution of the stochastic linear
programs of the previous section. However, once a k gain–loss ratio opportunity is found at a certain level of k it is legitimate to ask
whether k gain–loss ratio opportunities at higher levels of k continue to exist. In fact, it is natural to wonder how far up one can push k
before k gain–loss ratio opportunities cease to exist. Therefore, it is relevant, while seeking k gain–loss ratio opportunities, to consider
the following optimization problem LamP1:
sup k

s:t:
P

n2NT

pnxþn � k
P

n2NT

pnx�n > 0;

Z0 � h0 ¼ 0;

Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
Notice that problem LamP1 is a non-convex optimization problem, and as such is potentially very hard. However, it can be posed in a
form suitable for numerical processing as we claim by the next proposition (see Appendix for the proof).

Proposition 1. LamP1 is equivalent to the following problem LamPr under the assumption that a k gain–loss ratio opportunity exists
sup
P

n2NT
pnxþnP

n2NT
pnx�n

s:t: Z0 � h0 ¼ 0;

Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
Notice that as a result of the homogeneity of the equalities and inequalities defining the constraints of problem LamPr, if H; Xþ; X� is
feasible for LamPr, then so is jðH; Xþ; X�Þ for any j > 0, and the objective function value is constant along such rays.

Assumption 1. The price process fZtg is arbitrage free, i.e., there does not exist feasible H;Xþ;X� with EP ½Xþ� > 0 and EP ½X�� ¼ 0,

Under Assumption 1, we can now take one step further and say that problem LamPr is equivalent to problem LamPL which is stated as:P þ
max
n2NT

pnxn

s:t:
P

n2NT

pnx�n ¼ 1;

Z0 � h0 ¼ 0;

Zn � ðhn � hpðnÞÞ ¼ 0; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
This equivalence can be established using the technique described on p. 151 in [4] as follows. Let us take a solution H;Xþ;X� to LamPr,
with n� ¼

P
n2NT

pnx�n . It is easy to see that the point 1
n� ðH;X

þ;X�Þ is feasible in LamPL with equal objective function value. For the converse,
let W ¼ ðH;Xþ;X�Þ be a feasible solution to LamPr, and let N ¼ ð �H;Xþ;X�Þ be a feasible solution to LamPL. It is again immediate to see that
Wþ tN is feasible in LamPr for t P 0. Furthermore, we have
lim
t!1

EP½Xþ þ tXþ�
EP½X� þ tX��

¼ EP ½Xþ�;
which implies that we can find feasible points in LamPr with objective values arbitrarily close to the objective function value at N.
We can now construct the linear programming dual of LamPL using Lagrange duality technique which results in the dual linear program

(HD1) in variables yn; ðn 2NÞ and V:
min V

s:t: ymZm ¼
P

n2SðmÞ
ynZn; 8m 2Nt; 0 6 t 6 T � 1;

pn 6 yn 6 Vpn; 8n 2NT :
Ley YðVÞ denote the set of fyng that are feasible in the above problem for a given V. Notice that, for V1 < V2, one has YðV1Þ# YðV2Þ,
assuming the respective sets to be non-empty. Hence, the optimal value of V is the minimum value such that the associated set YðVÞ is
non-empty.
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The dual can also be re-written as (HD2):
min max
n2NT

yn
pn

s:t: ymZm ¼
P

n2SðmÞ
ynZn; 8m 2Nt; 0 6 t 6 T � 1;

pn 6 yn; 8n 2NT :
Let Y denote the set of feasible solutions to the above problem. We summarize our findings in the proposition below.

Proposition 2. Under Assumption 1 we have

1. Problem LamP1 is equivalent to problem LamPL.
2. When optimal solutions exist, for any optimal solution H�; ðXþÞ�; ðX�Þ�; k� of LamP1, we have that 1

EP ½ðX�Þ�� ðH
�; ðXþÞ�; ðX�Þ�Þ is optimal for

LamPL.
3. When optimal solutions exist, for any optimal solution H�; ðXþÞ�; ðX�Þ� of LamPL and any j > 0, we have that jðH�; ðXþÞ�; ðX�Þ�Þ; EP ½ðXþÞ��

EP ½ðX�Þ�� is
optimal for LamP1.

4. The supremum k� of k is equal to miny2Y maxn2NT

yn
pn

.

The last item of the above proposition is essentially the duality result of Bernardo and Ledoit (c.f. Theorem 1 in p. 151 of [2]) which they
prove for single-period investments but using an infinite-state setup.

By way of illustration, setting up and solving the problem LamPL for the trinomial numerical example of the previous section, one ob-
tains the largest value of k as six, as the optimal value of the problem LamPL. This is the smallest value of k that does not allow a k gain–loss
ratio opportunity. Put in other words, it is the supremum of all values of k allowing a k gain–loss ratio opportunity.

5. Financing of contingent claims and gain–loss ratio opportunities: positions of writers and buyers

Now, let us take the viewpoint of a writer of contingent claim F which is generating pay-offs Fn; ðn > 0Þ to the holder (liabilities of the
writer), depending on the states n of the market (hence the adjective contingent). The following is a legitimate question on the part of the
writer: what is the minimum initial investment needed to replicate the pay-outs Fn using securities available in the market with no risk of
positive expected terminal wealth falling short of k times the expected negative terminal wealth? King [21] posed a similar question in the
context of no-arbitrage pricing, hence for preventing the risk of terminal positions being negative at any state of nature. Here, obviously we
are working with an enlarged feasible set of replicating portfolios, if not empty.

Let us now pose the problem of financing of the writer who opts for the k gain–loss ratio opportunity viewpoint rather than the classical
arbitrage viewpoint. The writer is facing the stochastic linear programming problem WP1
min Z0 � h0

s:t: Zn � ðhn � hpðnÞÞ ¼ �bnFn; 8n 2Nt ; t P 1

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;P
n2NT

pnxþn � k
P

n2NT

pnx�n P 0;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT
as opposed to King’s financing problem
min Z0 � h0

s:t: Zn � ðhn � hpðnÞÞ ¼ �bnFn; 8n 2Nt ; t P 1
Zn � hn P 0; 8n 2NT :
Let us assume that a price of F0 is attached to a contingent claim F. The following definition is useful.

Definition 4. A contingent claim F with price F0 is said to be k-attainable if there exist vectors hn for all n 2N satisfying:
Z0 � h0 6 b0F0;

Zn � ðhn � hpðnÞÞ ¼ �bnFn; 8n 2Nt ; t P 1
and
EP½Xþ� � kEP ½X�� ¼ 0:
Proposition 3. At a fixed level k > 1, assume the discrete vector price process fZtg does not have a k gain–loss ratio opportunity. Then the min-
imum initial investment W0 required to hedge the claim with no risk of expected positive terminal wealth falling short of k times the expected
negative terminal wealth satisfies
W0 ¼
1
b0

max
y2YðkÞ

P
n>0ynbnFn

y0
;

where YðkÞ is the set of all y 2 RjNj satisfying the conditions (3)–(5), i.e., the feasible set of SD1.
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Proof. Let us begin by forming the linear programming dual of problem SP2. Forming the Lagrangian function after attaching multipliers
vn; ðn > 0Þ, wn; ðn 2NTÞ (all unrestricted-in-sign) and V P 0 we obtain
LðH;Xþ;X�; v;w;VÞ ¼ Z0 � h0 þ V k
X

n2NT

pnx�n �
X

n2NT

pnxþn

 !
þ
XT

t¼1

X
n2Nt

vn Zn � ðhn � hpðnÞÞ þ bNFn
� �

þ
X

n2NT

wnðZn � hn � xþn þ x�n Þ
that we maximize over the variables H, Xþ, and X� separately again. This results in the dual problem WD2.1
max
P
n>0

vnbnFn

s:t: Z0 ¼
P

n2Sð0Þ
vnZn;

vmZm ¼
P

n2SðmÞ
vnZn; 8m 2Nt; 1 6 t 6 T � 1;

Vpn 6 vn 6 Vkpn; 8n 2NT ;

V P 0:
We observe that no feasible solution to WD2.1 could have a V-component equal to zero as this would lead to infeasibility in the v-com-
ponent. Therefore, it is easy to see that the dual is equivalent to the linear-fractional programming problem (that we refer to as WD2.2)
using the equivalences V ¼ 1=y0 and vn ¼ yn=y0:
max
P

n>0
ynbnFn

y0

s:t: ymZm ¼
P

n2SðmÞ
ynZn; 8m 2Nt ; 0 6 t 6 T � 1;

pn 6 yn 6 kpn; 8n 2NT :
However, the feasible set of the previous problem is identical to the feasible set YðkÞ of the dual SD1 in Proposition 1. Therefore, if the
price process fZtg does not admit a k gain–loss ratio opportunity, then there exists a feasible solution to the dual SD1, and hence, a feasible
solution to the dual problems WD2.2 and WD2.1. Since WD2.1 is feasible and bounded above, the primal problem WP1 is solvable by linear
programming duality theory. Hence, the result follows. h

Notice that in the previous proof we obtained two equivalent expressions for the dual problem of WP1, namely the dual problem in the
statement of the Proposition 3 or WD2.2, which is a linear-fractional programming problem, and the linear programming problem WD2.1
that is used for numerical computation. For future reference, we refer to the feasible set of WD2.1 as QðkÞ, and to its projection on the set of
v’s as QðkÞ. It is not difficult to verify that QðkÞ is the set of martingale measures k-compatible to P. Since we observed that no optimal (in
fact, feasible) solution to WD2.1 could have a V-component equal to zero as this would lead to infeasibility in the v-component, by the
complementary slackness property of optimal solutions to the primal and the dual problems in linear programming, we should have in
all optimal solutions ðH;Xþ;X�Þ to the primal:
EP½Xþ� � kEP ½X�� ¼ 0:
We immediately have the following.

Corollary 1. At fixed level k > 1, assume the discrete vector price process fZtg does not allow k gain–loss ratio opportunity. Then, contingent
claim F priced at F0 is k-attainable if and only if
b0F0 P max
y2YðkÞ

P
n>0ynbnFn

y0
:

In the light of the above, the minimum acceptable price to the writer of the contingent claim F is given by the expression
Fw
0 ¼

1
b0

max
y2YðkÞ

P
n>0ynbnFn

y0
: ð10Þ
Let us now look at the problem from the viewpoint of a potential buyer. The buyer’s problem is to decide the maximum price he/she
should pay to acquire the claim, with no risk of expected positive terminal wealth falling short of k times the expected negative terminal
wealth. This translates into the problem
max �Z0 � h0

s:t: Zn � ðhn � hpðnÞÞ ¼ bnFn; 8n 2Nt; t P 1;
Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;P
n2NT

pnxþn � k
P

n2NT

pnx�n P 0;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
The interpretation of this problem is the following: find the maximum amount needed for acquiring a portfolio replicating the proceeds
from the contingent claim without the risk of expected negative wealth magnified by a factor k exceeding the expected positive terminal
wealth. By repeating the analysis done for the writer (that we do not reproduce here), we can assert that the maximum acceptable price Fb

0

to the buyer in our framework is given by the following, provided that the price process fZtg does not admit k gain–loss ratio opportunity
(at fixed level k):
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Fb
0 ¼

1
b0

min
y2YðkÞ

P
n>0ynbnFn

y0
: ð11Þ
Therefore, for fixed k > 1 and P, we can conclude that the writer’s minimum acceptable price and the buyer’s maximum acceptable price
in a market without k gain–loss ratio opportunity constitute a k gain–loss price interval given as
1
b0

min
y2YðkÞ

P
n>0ynbnFn

y0
;

1
b0

max
y2YðkÞ

P
n>0ynbnFn

y0

� �
:

We could equally express this interval as
1
b0

min
v;V2QðkÞ

Ev
XT

t¼1

btFt

" #
;

1
b0

max
v;V2QðkÞ

Ev
XT

t¼1

btFt

" #" #
;

where the optimization is over all martingale measures k-compatible to P. This is the interval of prices which do not induce either the buyer
or writer to engage in buying or selling the contingent claim. They can also be thought of as bounds on the price of the contingent claim. Let
us recall that the no-arbitrage pricing interval obtained by King [21] corresponds to
1
b0

min
q2Q

Eq
XT

t¼1

btFt

" #
;

1
b0

max
q2Q

Eq
XT

t¼1

btFt

" #" #
;

where Q is the set of q 2 RjNj satisfying
Z0 ¼
X

n2Sð0Þ
qnZn;

qmZm ¼
X

n2SðmÞ
qnZn; 8m 2Nt; 1 6 t 6 T � 1
and
qn P 0; 8n 2NT :
Clearly, for fixed k we have the inclusion QðkÞ � Q using the positivity of V. Hence, the pricing interval obtained above is a smaller inter-
val in width in comparison to the arbitrage-free pricing interval of [21]. Notice that the two intervals will become indistinguishable as k
tends to infinity. The more interesting question is the behavior of the interval as k is decreased. Before we examine this issue we consider
some numerical examples.

Example 2. Consider the same simple market model of Example 1 in Section 3. We assume a contingent claim on the stock, of the
European Call type with a strike price equal to 9 is available. Therefore, we have the following pay-off structure: F1 ¼ 11; F2 ¼ 6; F3 ¼ 0,
corresponding to nodes 1, 2 and 3, respectively. Computing the no-arbitrage bounds using linear programming, one obtains the interval of
prices ½2:0; 2:2� corresponding to the buyer and to the writer’s problems, respectively. For k ¼ 8, the price interval for no k gain–loss ratio
opportunity is ½2:09; 2:14�. For k ¼ 7, the interval becomes ½2:10; 2:13�. Finally, for k ¼ 6, which is the smallest allowable value for k below
which the above derivations lose their validity, the interval shrinks to a single value of 2:125, since both the buyer and the writer problems
return the same optimal value. Therefore, for two investors that are ready to accept an expected gain prospect that is at least six times as
large as an expected loss prospect, it is possible to agree on a common price for the contingent claim in question. In this particular example,
the problem HD1 for k� ¼ 6 which is the optimal value for k, possesses a single feasible point y ¼ ð2:66;0:33;0:33;2ÞT . Dividing the
components by 2.66 which is the component y0, we obtain the unique equivalent martingale measure ð1=8;1=8;3=4ÞT (which is also k-
compatible) leading to the unique price of the contingent claim.

Interestingly, the hedging policies of the buyer and the writer at level k� ¼ 6 need not be identical. For the writer an optimal hedging
policy is to short 6.75 units of riskless asset at t ¼ 0 and buy 0.887 units of the stock. If node 1 were to be reached, the hedging policy dic-
tates to liquidate the position in both the bond and the stock. In case of node 2, the position in the stock is zeroed out, and a position of
0.562 units in the bond is taken. Finally at node 3, the position in the stock is zeroed out, but a short position of 0.094 units remains in the
riskless asset. For the buyer an optimal hedging policy is to buy 5.625 units of riskless asset at t ¼ 0 and short 0.775 units of the stock. At
time t ¼ 1 if node 1 were to be reached, the hedging policy dictates to pass to a position of 1.125 units in the bond, and to a zero position in
the stock. In case of node 2, all positions are zeroed out. At node 3, the position in the stock is zeroed out while a short position of 0.187
units remains in the riskless asset.

Example 3. Let us now consider a two-period version of the previous example. The market is again described through a trinomial
structure. Let the asset price be as in Examples 1 and 2 for time t ¼ 1. At time t ¼ 2, from node 1 at which the price is 20, the price can
evolve to 22, 21 and 19 with equal probability, thereby giving the asset price values at nodes 4–6. From node 2 at which the price takes
value equal to 15, the price can go to 17 or 14 or 13 with equal probability, resulting in the asset price values at nodes 7–9. Finally, from
node 3, we have as children nodes the node 10, node 11 and node 12, with equally likely asset price realizations equal to 9, 8 and 7,
respectively. Therefore, the trinomial tree contains 9 paths, each with a probability equal to 1=9. The riskless asset is assumed to have value
one throughout. It can be verified that this market is arbitrage free.

Solving for the supremum of k values allowing a k gain–loss ratio opportunity, we obtain 14.5.
Now, let us assume we have a European Call option F on the stock with strike price equal to 14, resulting in pay-off values F4 ¼ 8, F5 ¼ 7,

F6 ¼ 5 and F7 ¼ 3 where the index corresponds to the node number in the tree (all other values Fn are equal to zero). The no-arbitrage
bounds yield the interval ½0:33;1:2� for this contingent claim. The no-k gain–loss ratio opportunity intervals go as follows: for k ¼ 17
one has ½0:86; 1:00�, for k ¼ 16, ½0:9; 0:99�, for k ¼ 15 ½0:94; 0:98�. For the limiting value of k� ¼ 14:5 the bounds again collapse to a single
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price of 0:9718 attained at the same k-compatible martingale measure q4 ¼ q5 ¼ 0:028, q6 ¼ 0:085, q7 ¼ 0:042, q8 ¼ q9 ¼ q10 ¼ 0:028,
q11 ¼ 0:324 and q12 ¼ 0:408.

Two tables, Tables 1 and 2, summarize the optimal hedge policies of the writer and the buyer, respectively, when the single price is
reached. We only report the results for nodes where non-zero portfolio positions are held. The symbols B and S stand for the riskless asset
and the stock, respectively. Again, the hedge policies are quite different, but result in an identical price.

Returning to the issue of the behavior of the price interval when k decreases, consider solving the problem LamPL or its dual HD1 (or
HD2) for computing the smallest k which does not allow gain–loss ratio opportunities, i.e., k� which is the supremum of values of k yielding
a k gain–loss ratio opportunity. If one solves the dual problem HD1 to obtain as optimal solutions V�; y�, and if this solution is the unique
feasible solution to the linear program HD1, i.e., if the set of equations and inequalities defining the constraints of HD1 for the fixed value of
V� admit a unique solution vector y�, then this immediately implies that the no-k gain–loss ratio opportunity pricing bounds at level k ¼ V�,

i.e., the bounds 1
b0

miny2YðkÞ

P
n>0

ynbnFn

y0
, 1

b0
maxy2YðkÞ

P
n>0

ynbnFn

y0
coincide since both problems possess the common single feasible point y�. How-

ever, the following example shows that the bounds do not have to coincide for the smallest k value for which there are no k gain–loss ratio
opportunities in the market.

Example 4. Let us assume that the market consists of a riskless asset with zero growth rate, and two stocks. The stock price evolves
according to a quadrinomial tree with one period as follows. At time t ¼ 0, the stock price is 10 for both of the stocks. Hence
Z0 ¼ ð1 10 10ÞT . At the time t ¼ 1, the first stock’s price can take the values 10, 10, 15, 5 and the second stock’s price can take values 14,
2, 9, 11 with probabilities 0.25, 0.2, 0.5 and 0.05, respectively. Therefore, at node 1 one has Z1 ¼ ð1 10 14ÞT with p1 ¼ 0:25; at node 2
Z2 ¼ ð1 10 2ÞT with p2 ¼ 0:2; at node 3 Z3 ¼ ð1 15 9ÞT with p3 ¼ 0:5 and finally at node 4 Z4 ¼ ð1 5 11ÞT with p4 ¼ 0:05. The pay-
off structure of the contingent claim to be valued is F1 ¼ 10; F2 ¼ 0; F3 ¼ 0; F4 ¼ 0. We find that the minimum k value which does not allow
k gain–loss ratio opportunities in the market is 10. However, for k ¼ 10, the price interval of the option for no k gain–loss ratio opportunity
is ½2:5; 5:26�.

The above example shows that pricing interval does not necessarily reduce to a single point for the smallest k. Then, we pose the ques-
tion for a market in which there is only one bond and one risky asset. Example 5 shows that there is no unique price even under this simple
setting.

Example 5. Let us assume that the market consists of a riskless asset with zero growth rate, and a stock. There are 2 periods and the stock
price evolves irregularly for both periods. At the first period the tree branches into 2 nodes and at the second period the tree branches into 3
nodes for both of the nodes at t ¼ 1, i.e., node 1 branches into nodes 3, 4, 5 and node 2 branches into nodes 6, 7, 8 at period 2. At time t ¼ 0,
the stock price is 8. Hence Z0 ¼ ð1 8ÞT . At the time t ¼ 1, the stock’s price can take the values 5, 10. Therefore, at node 1 one has
Z1 ¼ ð1 5ÞT and at node 2 Z2 ¼ ð1 10ÞT . At time t ¼ 2, the stock’s price can take the values 2, 6, 10 with probabilities 0.2, 0.1 and 0.1,
respectively, given that its price was 5 at time t ¼ 1 and 13, 11, 8 with probabilities 0.05, 0.05 and 0.5, respectively, given that its price was
10 at time t ¼ 1. Therefore, at node 3 one has Z3 ¼ ð1 2ÞT with p3 ¼ 0:2; at node 4 Z4 ¼ ð1 6ÞT with p4 ¼ 0:1; at node 5 Z5 ¼ ð1 10ÞT
with p5 ¼ 0:1; at node 6 Z6 ¼ ð1 13ÞT with p6 ¼ 0:05; at node 7 Z7 ¼ ð1 11ÞT with p7 ¼ 0:05; and at node 8 Z8 ¼ ð1 8ÞT with p8 ¼ 0:5.
The pay-off structure of the claim to be valued is F3 ¼ 3; F8 ¼ 3 and 0 elsewhere. We find that the minimum k value which does not allow k
gain–loss ratio opportunities in the market is 5. However, for k ¼ 5, the price interval of the option for no k gain–loss ratio opportunity is
½1:38; 1:56�.

The natural question at this point is what happens if we work with a simpler setting. The following theorem shows that the martingale
measure is unique for the smallest k when there is only a bond and a risky stock in the market with just one period (no intermediary trad-
ing is allowed) under a minimal structural assumption on the stochastic scenario tree. The proof is given in the Appendix.
Table 1
The writer’s optimal hedge policy for k ¼ 14:5.

Node B S

0 �4:056 0:503
1 �14 1
2 7:13 �0:243
3 �4:563 0:57
8 3:729
9 3:972

10 0:57
12 �0:57

Table 2
The buyer’s optimal hedge policy for k ¼ 14:5.

Node B S

0 �0:915 �0:006
1 �80:465 3:972
2 14 �1
3 �15:324 1:915
4 14:915
5 9:944
9 1

10 1:915
12 �1:915
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Theorem 3. Assume that there is a bond and a risky stock in the market consisting of one period such that for all n 2N1 (the leaf nodes)
Z1

n – Z1
pðnÞ (or Z1

n – Z1
0). Then, at the smallest value k�, YðkÞ is a singleton.

Notice that the analysis of the writer’s and buyer’s hedging problems can be also be done using a simple utility function and the con-
jugate duality framework of convex optimization [24]. The utility function corresponding to no-arbitrage is given as
uwðvÞ ¼ v � IvP0ðvÞ;
where IvP0 is the indicator function of convex analysis which equals zero if v P 0, and þ1 otherwise. Our problems involving the gain–loss
objective function (and/or constraint) could alternatively be modeled using the equally simple piecewise-linear utility function
uðvÞ ¼
v if v P 0
kv if v < 0:

�

Then, all our results could be obtained using the concave conjugate function u� given by
u�ðyÞ ¼ inf
v
ðyv � uðvÞÞ;
which is finite in our case (in fact, zero) provided that 1 6 y 6 k, which are exactly the constraints showing up in our dual problems where
the argument of the u� function is precisely yn=pn. However, the path taken in the present paper through linear programming duality is sim-
pler and more accessible.

In closing this section we point out that Bernardo and Ledoit’s gain–loss ratio results that were obtained in a single-period, non-linear
optimization framework are very similar to the approach described above. We showed that similar results can be obtained in a multi-per-
iod (finite probability), linear optimization setting, which is simpler yet much more intuitive.

6. Proportional transaction costs

The problem of hedging and pricing contingent claims in presence of transaction costs was investigated in e.g. [9,15,17]. In [9], it was
assumed that the cost of trading a stock (excluding the numéraire) is proportional to the price. We assume that the proportional transac-
tion costs for buying and selling a stock are different, and there is no transaction cost for the numéraire. An investor who buys one share of
stock j when the (discounted with respect to the numéraire) stock price is Zj

t pays Zj
tð1þ gÞwhereas upon selling the investor gets Zj

tð1� fÞ,
where g and f are both in ½0;1Þ. Let us now denote the components of Zt corresponding to the indices from 1 to J, as the vector Zt . Similarly,
we refer to the components of Zn corresponding to the indices from 1 to J, as the vector Zn, and as �hn to the portfolio positions corresponding
to all these stocks excluding the numéraire, for node n of the scenario tree. Then, the arbitrage problem which will be referred as TC1 be-
comes the following:
max
P

n2NT

pnZn � hn

s:t: h0
0 þ Z0 � �h0 þ gZ0 � tþ0 þ fZ0 � t�0 ¼ 0;

h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ 0; 8n 2Nt; t P 1;
Zn � hn P 0; 8n 2NT ;
�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt ; t P 1;
tþn ; t

�
n P 0; 8n 2N
where tþn and t�n are vectors in RJ
þ denoting number of shares bought and sold, respectively at node n. The following theorem, which is equiv-

alent to Theorem 4 of [21] states the conditions for no-arbitrage in a market with transaction costs.

Theorem 4. The discrete state stochastic vector process fZtg is an arbitrage-free market price process if and only if there is at least one probability
measure Q equivalent to P, which, extended to intermediate nodes recursively as in (1), makes the process fZtg fulfill the condition
ð1� fÞZt 6 EQ ½ZT jNt� 6 ð1þ gÞZt; 8t 6 T � 1: ð12Þ
The proof is omitted. It is not hard to see that for g ¼ f ¼ 0 one recovers the statement of Theorem 1.

The k gain–loss ratio opportunity seeking investor (at a fixed k) is interested in solving the problem TC2:
max
P

n2NT

pnxþn � k
P

n2NT

pnx�n

s:t: h0
0 þ Z0 � �h0 þ gZ0 � tþ0 þ fZ0 � t�0 ¼ 0;

h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ 0; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;

�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt ; t P 1;

tþn ; t
�
n P 0; 8n 2N;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
The counterpart of Theorem 2 in this case becomes the following.
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Theorem 5. The discrete state stochastic vector process fZtg is a k gain–loss ratio opportunity free market price process at level k if and only if
there is at least one probability measure Q k-compatible to P, which, extended to intermediate nodes recursively as in (1), makes the process fZtg
fulfill condition (12).

The proof is relegated to the Appendix. For g ¼ f ¼ 0 one recovers Theorem 2.
Now, the no-arbitrage price bounds of the previous section are computed by solving
min h0
0 þ Z0 � �h0 þ gZ0 � tþ0 þ fZ0 � t�0

s:t: h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ �bnFn; 8n 2Nt; t P 1;

Zn � hn P 0; 8n 2NT ;

�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt; t P 1;

tþn ; t
�
n P 0; 8n 2N
for the writer, and
max �h0
0 � Z0 � �h0 � gZ0 � tþ0 � fZ0 � t�0

s:t: h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ bnFn; 8n 2Nt; t P 1;

Zn � hn P 0; 8n 2NT ;

�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt ; t P 1;

tþn ; t
�
n P 0; 8n 2N
for the buyer. These bounds are also obtained using the dual expressions:
1
b0

min
q2eQ ðg;fÞ EQ

XT

t¼1

btFt

" #
;

1
b0

max
q2eQ ðg;fÞ EQ

XT

t¼1

btFt

" #" #
;

where eQ ðg; fÞ is the (closure of) set of measures Q equivalent to P such that the process fZtg satisfies condition (12). The proofs are omitted
for these results since they are similar to the proof of our next result.

Now, let us consider the no k gain–loss ratio opportunity bounds obtained from the perspective of the buyer and the writer by going
through the usual problems in the hedging space:
min h0
0 þ Z0 � �h0 þ gZ0 � tþ0 þ fZ0 � t�0

s:t: h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ �bnFn; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;P
n2NT

pnxþn � k
P

n2NT

pnx�n P 0;

�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt; t P 1;

tþn ; t
�
n P 0; 8n 2N;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT
for the writer, and
max �h0
0 � Z0 � �h0 � gZ0 � tþ0 � fZ0 � t�0

s:t: h0
n � h0

pðnÞ þ Zn � ð�hn � �hpðnÞÞ þ gZn � tþn þ fZn � t�n ¼ bnFn; 8n 2Nt; t P 1;

Zn � hn � xþn þ x�n ¼ 0; 8n 2NT ;P
n2NT

pnxþn � k
P

n2NT

pnx�n P 0;

�h0 ¼ tþ0 � t�0 ;
�hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt ; t P 1;

tþn ; t
�
n P 0; 8n 2N;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT
for the buyer. We see that the fourth and the fifth constraints can be used to get rid of variables �h in the formulation of the above problem.
Since �hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt; t P 1 and �h0 ¼ tþ0 � t�0 , it becomes �hn ¼ tþn � t�n þ tþ0 � t�0 ; 8n 2N1. Using the same reasoning we have
�hn ¼

P
m2AðnÞðtþm � t�mÞ; 8n 2N. Then we obtain the following linear program for the writer:
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min h0
0 þ Z0 � ðtþ0 � t�0 Þ þ gZ0 � tþ0 þ fZ0 � t�0

s:t: h0
n � h0

pðnÞ þ Zn � ðtþn � t�n Þ þ gZn � tþn þ fZn � t�n ¼ �bnFn; 8n 2Nt; t P 1;

h0
n þ Zn �

P
m2AðnÞ

ðtþm � t�mÞ � xþn þ x�n ¼ 0; 8n 2NT ;P
n2NT

pnxþn � k
P

n2NT

pnx�n P 0;

tþn ; t
�
n P 0; 8n 2N;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
The dual problem of this program is
max
P
n>0

vnbnFn;

s:t: v0 ¼ 1;
vn ¼

P
m2SðnÞ

vm; 8n 2Nt; 0 6 t 6 T � 1;

ð1þ gÞvnZn �
P

m2DðnÞ\NT

vmZm P 0; 8n 2N;

ð1� fÞvnZn �
P

m2DðnÞ\NT

vmZm 6 0; 8n 2N;

Vpn 6 vn 6 Vkpn; 8n 2NT ;

V P 0:
Denote the feasible set of the above dual problem bt eQðk;g; fÞ, i.e., the set of probability measures vn and positive V such that
ð1� fÞZt 6 Ev ½ZT jNt � 6 ð1þ gÞZt ; 8t 6 T � 1
and Vpn 6 vn 6 Vkpn; 8n 2NT .
By setting y0 ¼ 1=V and yn ¼ vn=V , and simplifying we obtain the following equivalent program:
max
P

n>0
ynbnFn

y0
;

s:t: yn ¼
P

m2CðnÞ
ym; 8n 2Nt ; 0 6 t 6 T � 1;

ð1þ gÞynZn �
P

m2DðnÞ\NT

ymZm P 0; 8n 2N;

ð1� fÞynZn �
P

m2DðnÞ\NT

ymZm 6 0; 8n 2N;

pn 6 yn 6 kpn; 8n 2NT :

ð13Þ
Denote the feasible set of the previous problem ~Yðk;g; fÞ. Going through a similar derivation for the buyer’s case (omitted for brevity)
we have proved the following result.

Proposition 4. The price interval of a contingent claim for no k gain–loss ratio opportunity at level k is
1
b0

min
q;V2eQðk;g;fÞ EQ

XT

t¼1

btFt

" #
;

1
b0

max
q;V2eQðk;g;fÞEQ

XT

t¼1

btFt

" #" #
or, equivalently
1
b0

min
y2eYðk;g;fÞ

P
n>0ynbnFn

y0
;

1
b0

max
y2eYðk;g;fÞ

P
n>0

ynbnFn

y0

24 35:

Obviously, the no k gain–loss ratio opportunity bounds are tighter compared to the no-arbitrage bounds. Notice that eQðk;0;0Þ andeYðk;0;0Þ coincide with QðkÞ and YðkÞ, respectively.

Example 6. Considering the same problem as in Example 2 with g ¼ f ¼ 0:1, the supremum of the values of k allowing a k gain–loss ratio
opportunity opportunity is computed to 3:715 (notice the drop from 6 in the case of no transaction costs). The no-arbitrage interval for the
contingent claim is found to be ½1:2; 3:08�. At k ¼ 4, the no k gain–loss ratio opportunity interval is ½2:83; 2:98�. At k ¼ 3:715 which is the
limiting value, the common bound is equal to 2:97. The unique measure leading to this common price is given as q1 ¼ q2 ¼ 0:175 and
q3 ¼ 0:65.
7. Conclusions

We studied the problem of pricing and hedging contingent claims in incomplete markets in a multi-period linear optimization (dis-
crete time, finite probability space) framework. We developed an extension of the concept of no-arbitrage pricing (k gain–loss ratio
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opportunity) based on expected positive and negative final wealth positions, which allow to obtain arbitrage only in the limit as a
gain–loss preference parameter tends to infinity. We analyzed the resulting optimization problems using linear programming duality.
We showed that the pricing bounds obtained from our analysis are tighter than the no-arbitrage pricing bounds. This result, in
line with the Bernardo and Ledoit [2] single-period results, was also obtained for a multi-period model in the computationally more
tractable linear programming environment. Our results indicated that for a limiting value of risk aversion parameter that can be
computed easily, a unique price for a contingent claim in incomplete markets may be found (although this is not guaranteed) while
different hedging schemes exist for different sides of the same trade. We also extended our results to markets with transaction
costs.
Appendix A

Proof (Proof of Proposition 1). We should first note that the assumption of the existence of a k gain–loss ratio opportunity implies that
LamP1 and LamPr have both non-empty feasible sets. We can see this fact by the problem SP1 and the definition of a k gain–loss ratio
opportunity (see problem SP1 and the paragraph following it) based on SP1. Assume that the optimal value of LamP1 is the finite
number �k and the optimal value of LamPr is greater than �k. Then, problem LamPr must have a feasible solution H;Xþ;X� which has an
objective value k0 that is greater than �k by the definition of a supremum. Then we see that H;Xþ;X�; k0 � � with � < k0 � �k constitute
another feasible solution to LamP1 with the objective value k0 � �. But, this contradicts with the assumption that �k is the optimal value
of LamP1 since k0 � � > �k. Hence, if LamP1 has a finite optimal value, LamPr cannot have an optimal value greater than that.
Conversely, assume that the optimal value of LamPr is the finite number �k and the optimal value of LamP1 is greater than that. Then,
LamP1 must have a feasible solution H;Xþ;X�; k0 which has an objective value k0 that is greater than �k. Then, H;Xþ;X� constitute
another feasible solution to LamPr with the objective value greater than k0 thus greater than �k. Again, this contradicts with our
assumption that �k is the optimal value of LamPr. Hence, if LamPr has a finite optimal value, LamP1 cannot have an optimal value
greater than that. Using these facts we conclude that, if one of the problems has a finite optimal value the other one also has the same
optimal value and if one of them is unbounded, the other one is also unbounded. It proves that they are equivalent when there is a k
gain–loss ratio opportunity.

Proof (Proof of Theorem 3). Let L ¼ jN1j be the number of leaf nodes. Let us view the problem of computing the smallest k such that YðkÞ
has a solution, as a parametric feasibility problem with parameter k. That is, for fixed k P 1 we are interested to determine whether the
restriction AL onto the L-dimensional space composed of yn for all n 2N1 (i.e., RL) of the set A ¼ fyn : y0Z0 ¼

P
n2Sð0ÞynZng; has non-empty

intersection with the L-dimensional box Hk ¼ fyn : pn 6 yn 6 kpn; 8n 2N1:g.
Notice that AL defines an affine set in the L-dimensional space of ‘‘leaf variables”.
If the smallest value k� of k, such that AL \ Hk is not empty, is equal to one, the theorem clearly holds because the set of solutions is

necessarily a singleton in this case. So, we assume k� > 1. Let us fix some k > 1 such that AL \ Hk is non-empty and is not a singleton. There
are two cases to consider.

Case 1 There exist two ‘‘distinct”, meaning all components different, L-vectors, y1 and y2 say, in AL \ Hk. In this case, k can be reduced since
AL \ Hk is a convex set and any convex combination of y1 and y2 is also in the set.

Case 2 There are no ‘‘distinct” L-vectors y1 and y2 say, in AL \ Hk. For this case, we first observe that there must be i 2N1 such that
y1

i ¼ y2
i ;8y1; y2 2 AL \ Hk. Otherwise, we would be able to find a set of vectors fy1; y2; . . . ; yk : 9= i 2N1; ya

i ¼ yb
i ;8a; b 2 f1; . . . ; kgg.

Then, we could take a convex combination of these vectors in AL \ Hk, which is a distinct vector with fy1; y2; . . . ; ykg. This contra-
dicts with the assumption of case 2. Our second observation is there must be i 2N1 such that yi ¼ pi;8y 2 AL \ Hk. Otherwise, we
would find a set of vectors fy1; y2; . . . ; yk : 9= i 2N1; ya

i ¼ pi;8a 2 f1; . . . ; kgg and we could get a convex combination of these vectors
y0 such that 9= i 2N1; y0i ¼ pi. One can see that �y : �yi ¼ 0;8 2N1 is a feasible solution to the equations defining the set A. Then, we
could take a convex combination of y0 and �y which is distinct with y0 and which is in AL \ Hk, contradicting the assumption of case 2.
After these two observations we need to analyze the system of equations defining the set A. For a risky asset and a bond there are
just two equations. The first one is y0 ¼

P
n2Sð0Þyn: The second one is y0Z1

0 ¼
P

n2Sð0ÞynZ1
n: A solution of these two equations satisfiesP

n2Sð0ÞynðZ1
n � Z1

0Þ ¼ 0: Let an ¼ ðZ1
n � Z1

0Þ;8n 2N1. Note that our structural assumption implies that an – 0;8n 2N1. Let us say
thati 2N1 is such that yi ¼ pi;8y 2 AL \ Hk and y be any vector in AL \ Hk. First assume that ai > 0. Consider any j 2N1. If
aj > 0 then yj ¼ pj. Otherwise, we could find � small enough such that when we decrease yj by � and increase yi by aj�=ai resulting
in another solution in AL \ Hk with yi – pi, which is a contradiction. Conversely, if aj < 0 then yj ¼ kpj. Otherwise, we could find �
small enough such that increasing yj by � and increasing yi by �aj�=ai we could get another solution in AL \ Hk with yi – pi which is
again a contradiction. A similar argument follows for the case ai < 0. Therefore there can only be a unique solution for this case
contradicting with the assumption AL \ Hk is not a singleton.
Therefore, Case 2 cannot occur, i.e., we are always in Case 1 i.e., k can be reduced, if AL \ Hk is not a singleton.

A consequence of the above reasoning is that if k cannot be reduced, i.e., k ¼ k�, then AL \ Hk must be a singleton.

Proof (Proof of Theorem 5). We prove the necessity part first. Assume that the market has no k gain–loss ratio opportunity. We see that the
fourth and the fifth constraints can be used to get rid of variables �h in the formulation of TC2. Since �hn � �hpðnÞ ¼ tþn � t�n ; 8n 2Nt; t P 1 and
�h0 ¼ tþ0 � t�0 , it becomes �hn ¼ tþn � t�n þ tþ0 � t�0 ; 8n 2N1. Using the same reasoning we have �hn ¼

P
m2AðnÞðtþm � t�mÞ; 8n 2N. Then TC2

becomes:
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max
P

n2NT

pnxþn � k
P

n2NT

pnx�n ;

s:t: h0
0 þ Z0 � ðtþ0 � t�0 Þ þ gZ0 � tþ0 þ fZ0 � t�0 ¼ 0;

h0
n � h0

pðnÞ þ Zn � ðtþn � t�n Þ þ gZn � tþn þ fZn � t�n ¼ 0; 8n 2Nt; t P 1;

h0
n þ Zn �

P
m2AðnÞ

ðtþm � t�mÞ � xþn þ x�n ¼ 0; 8n 2NT ;

tþn ; t
�
n P 0; 8n 2N;

xþn P 0; 8n 2NT ;

x�n P 0; 8n 2NT :
The dual of this problem is the following feasibility problem:
min 0;
s:t: vn ¼

P
m2SðnÞ

vm; 8n 2Nt ;0 6 t 6 T � 1;

ð1þ gÞvnZn �
P

m2DðnÞ\NT

vmZm P 0; 8n 2N;

ð1� fÞvnZn �
P

m2DðnÞ\NT

vmZm 6 0; 8n 2N;

pn 6 vn 6 kpn; 8n 2NT :
If there is no k gain–loss ratio opportunity, the optimal value of TC2 is equal to zero. Therefore, by linear programming duality, the dual prob-
lem is also solvable (in fact, feasible since the dual is only a feasibility problem). Let us take any feasible solution vn; ðn 2NÞ of the dual
problem. Since vn P pn, it follows that vn is a strictly positive process such that the sum of vn over all states n 2Nt in each time period
t sums to v0. Now, define the process qn ¼ vn=v0, for each n 2N. Obviously, this defines a probability measure Q over the leaf (terminal)
nodes n 2NT and it extends to intermediate nodes recursively as in (1) as an implication of the first constraint in the dual problem. Fur-
thermore, we can rewrite the second and the third constraints of the dual problem with the newly defined weights qn as
ð1þ gÞqnZn �
X

m2DðnÞ\NT

qmZm P 0; 8n 2N;

ð1� fÞqnZn �
X

m2DðnÞ\NT

qmZm 6 0; 8n 2N;
with q0 ¼ 1, and all qn > 0. Therefore, by constructing the probability measure Q we have constructed an equivalent measure which makes
the process fZtg fulfill condition (12). By definition of the measure qn, we have using the last constraint of the dual problem
pn 6 qnv0 6 kpn; 8n 2NT
or equivalently,
pn=qn 6 v0 6 kpn=qn 8n 2NT ;
which implies that qn; n 2NT constitute a measure k-compatible to P. This concludes the necessity part.
Suppose Q is a probability measure k-compatible to P, which extends to intermediate nodes recursively as in (1) and which makes the

process fZtg fulfill condition (12). Therefore, we have
ð1þ gÞqnZn �
X

m2DðnÞ\NT

qmZm P 0; 8n 2N;

ð1� fÞqnZn �
X

m2DðnÞ\NT

qmZm 6 0; 8n 2N;
with q0 ¼ 1, and all qn > 0, while the condition maxn2NT pn=qn 6 kminn2NT pn=qn holds. If the previous inequality holds as an equality, choose
the right-hand (or, the left-hand) of the inequality as a factor v0 and set vn ¼ qnv0 for all n 2N. If the inequality is not tight, any value v0 in
the interval ½maxn2NT pn=qn; kminn2NT pn=qn� can be chosen. It is easily verified that vn, n 2N so defined satisfy the constraints of the dual
problem. Since the dual problem is feasible, the primal TC2 is bounded above (in fact, its optimal value is zero) and no k gain–loss ratio
opportunity exists in the system.
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