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Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Min-
imum Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost
such that each path starting from a specified root node has no more than p hops (edges). In this paper, we
develop new formulations for HMST. The formulations are based on Miller–Tucker–Zemlin (MTZ) subtour
elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topology-
enforcing constraints. We also compare the proposed models with the MTZ-based models in the litera-
ture with respect to linear programming relaxation bounds and solution times. The results indicate that
the new models give considerably better bounds and solution times than their counterparts in the liter-
ature and that the new set of constraints is competitive with liftings to MTZ constraints, some of which
are based on well-known, strong liftings of Desrochers and Laporte (1991).

� 2011 Elsevier B.V. All rights reserved.
1. Introduction sets of constraints to strengthen the MTZ subtour elimination con-
Minimum spanning tree problems arise quite naturally in trans-
portation and communication network design when it is necessary
to provide a minimum-cost connectivity among a number of geo-
graphically dispersed locations or system components. Various
examples of minimum-cost tree networks are given by Ahuja
et al. (1993) from network design in transportation, telecommuni-
cation, data storage, and cluster analysis. We consider in this paper
the Hop Constrained Minimum Spanning Tree (HMST) problem,
studied earlier by Gouveia (1995), which involves designing
a minimum-cost spanning tree such that each path in the tree from
a specified root node to every other node has no more than p hops
(edges).

Gouveia (1995) has given several formulations of the HMST
problem based on the well-known Miller–Tucker–Zemlin (MTZ)
subtour elimination constraints (Miller et al., 1960) and has pro-
vided various liftings to MTZ constraints, some of which are based
on the strong liftings of Desrochers and Laporte (1991). Linear pro-
gramming (LP) bounds and Lagrangean relaxation bounds based on
subgradient optimization have been offered. Reported computa-
tional results in that paper on complete graphs with up to 40 nodes
indicate that lower bounds resulting from LP or Lagrangean relax-
ations are weak.

In this paper, we propose new formulations of the HMST prob-
lem to improve LP bounds and solution times. We propose new
ll rights reserved.

x: +90 312 2664054.
straints as well as hop-related topology-enforcing constraints. Our
computational tests indicate that the formulations we propose give
considerably better LP bounds and solution times than previous
formulations studied earlier by Gouveia (1995).

Hop constraints arise in designing local access networks where
a central processing unit (computer) communicates with many
terminals at geographically dispersed locations that are connected
to it via multidrop transmission lines. A tree structure leads to a
better utilization of line capacities due to shared usage. Such net-
works generally enjoy low message traffic. Congestion is either
rare or nonexistent. While transmission time in any one link is neg-
ligible due to low traffic, traversal of many links during transmis-
sion leads to non-negligible delays that are kept under control by
restricting the number of hops traversed during transmission.
Hop constraints are also relevant for networks with links that are
prone to possible failure. Requiring that all messages be success-
fully transmitted with a certain threshold probability can be ex-
pressed as a hop constraint assuming that link failures are
independent identically distributed random variables. Woolston
and Albin (1988) show, for example, that spanning tree designs
with an upper bound on the number of hops perform better with
respect to successful message transmission than those without
such bounds. LeBlanc et al. (1999), Balakrishnan and Altinkemer
(1992), and Gouveia et al. (2003) discuss applications of hop con-
straints in more general network design problems. Dahl (1998)
also defines applications in transportation, statistics, and plant
location for the case with at most two hops per path.

To define the HMST problem, let G = (V,E) be an undirected
connected network with node set V = {r,1, . . .,n}, edge set E, and
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positive edge costs ce (e 2 E). Node r represents the central process-
ing unit and is referred to as the root node.A spanning tree of G is a
connected sub-graph of G that has no cycles and spans all nodes.
Given a positive integer p, a spanning tree is a hop-constrained
spanning tree or a feasible tree if the unique path from the root node
to any other node has no more than p hops. The HMST problem is
the problem of finding a feasible tree whose total cost is minimum.
If p P n, all spanning trees are feasible and hop constraints can be
ignored. If p = 1, either there is no feasible tree or there is exactly
one feasible tree which is the star tree with the root node at its
center. We assume 2 6 p 6 n � 1 from now on.

While the unconstrained minimum cost spanning tree problem
is solvable in low order polynomial time by the algorithms of
Kruskal (1956) and Prim (1957), the HMST problem is NP-Hard
(Gouveia, 1995; Dahl, 1998). Manyem and Stallmann (1996) show
that the HMST problem is not in the class APX (the class of prob-
lems for which it is possible to have a polynomial time heuristic
with a guaranteed approximation bound). Dahl (1998) studies
the HMST problem for p = 2 and compares the polyhedra of the
models with directed and undirected arcs. Alfandari and Paschos
(1999) show that the case with p = 2 cannot be approximated by
polynomial time approximation schemes unless P = NP.

A version of the HMST problem that limits the number of nodes
rather than edges on each path is introduced at a rudimentary level
by Gavish (1985). Gouveia (1995) formulates the HMST problem
using the MTZ subtour elimination constraints and studies the LP
and Lagrangean relaxation bounds. An alternative formulation is
offered by Gouveia (1996) based on directed or undirected multi-
commodity flows (MCF). Even though the LP bounds of MCF formu-
lations are considerably better than those of MTZ formulations,
MCF formulations lead to very large integer programming models
whose LP relaxations require excessive solution times and core
storage as the network size and p get larger (Dahl et al., 2006).
Additional improvements are obtained for small values of p using
a hop-indexed formulation (Gouveia, 1998). MTZ formulations
are much more compact in the numbers of variables and con-
straints than MCF based formulations. There are problem in-
stances, for example, where an MTZ formulation finds an integer
feasible solution in seconds whereas an MCF formulation cannot
even solve the LP relaxation in days (Dahl et al., 2006). Computa-
tional results also indicate that it may take a considerable amount
of time to arrive at an optimal integer solution even if the gap be-
tween the LP and integer optimal values is quite small. Due to sig-
nificant differences in model sizes and in solution times between
MTZ and MCF formulations, we focus in this study on the former.

Other related works on the HMST problem include lower
bounding schemes based on Lagrangean relaxation (Gouveia,
1998). Reported computational results indicate that Lagrangean
based bounds are much better than LP bounds of the MCF formu-
lation for small values of p and that it is very time-consuming to
obtain bounds that are close to the theoretically possible best
bounds. To overcome this inefficiency, Gouveia and Requejo
(2001) give a Lagrangean-based bounding scheme using a hop-
indexed formulation. Even though this approach gives better
bounds than the aforementioned ones, it is dependent on the value
of p and performs poorly as p increases.

Dahl et al. (2004) introduce a new formulation for the HMST
problem using only natural design variables and an exponential
number of constraints composed of the so-called jump inequalities
that are shown to be facet-defining. Their proposed formulation
uses fewer variables but has weaker LP bounds than MCF formula-
tions. Due to the exponential number of constraints, the authors
propose a Lagrangean-based bounding scheme. Computational re-
sults indicate that the LP bounds are better as p increases than
those reported in previous studies. Dahl et al. (2006) summarize
the aforementioned approaches. Kerivin and Mahjoub (2005) give
a survey of several network design problems with hop constraints
and methods to solve them. More general telecommunication net-
work design problems are also considered using MCF formulations
(Balakrishnan and Altinkemer, 1992) or hop-indexed formulations
(Pirkul and Soni, 2003; Gouveia et al., 2003).

The models described in the aforementioned papers view the
HMST problem as defined in the original graph (although some of
these models view the underlying hop-constrained shortest path
problem as defined in an appropriate layered graph). Gouveia et al.
(2010) propose a modeling approach that views the whole problem
as defined in a single layered graph. They show that the HMST prob-
lem is equivalent to a Steiner tree problem (Hwang et al., 1992;
Maculan, 1987) in an adequate layered graph. They prove that the
LP bounds obtained by the directed cut Steiner tree formulation on
a layered graph with an exponential number of constraints is better
than the best known ones in the literature. Computational results
with a branch-and-cut algorithm show that the proposed method
is significantly better than previously known methods.

Gouveia et al. (2008) study a distance-constrained version of
the HMST problem where edges have different transmission delays
and the bound p on the number of hops is replaced by a bound on
the sum of edge delays along any path from the root node. The
authors present a column generation scheme, a Lagrangian relaxa-
tion procedure combined with subgradient optimization, and a
shortest path (compact) reformulation which views the underlying
subproblem as defined on an extended layered graph. Computa-
tional results show that the layered-graph path formulation is bet-
ter than the other two approaches.

A closely related problem is the Diameter-Constrained MST prob-
lem where the aim is to find a minimum-cost spanning tree such
that the unique path between any pair of nodes has no more than
p hops. Some notable contributions on this problem are Achuthan
et al. (1994), Gouveia and Magnanti (2003), Gruber and Raidl
(2005), Santos et al. (2004), and Gouveia et al. (2010).

Our focus in the paper is on new MTZ based formulations that
give better LP bounds and better solution times than the previous
MTZ based formulations with or without liftings. The remainder of
the paper is organized as follows. Section 2 reviews the existing
MTZ based models of the HMST problem studied in Gouveia
(1995). Section 3 gives our proposed formulations. Section 4 gives
a description of the test problems. Section 5 compares new and
existing models on the basis of LP bounds. Section 6 compares
existing and new models on the basis of solution times. Section 7
concludes the paper.
2. Existing MTZ based formulations of the HMST problem

In this section, we give the formulations of the HMST problem
studied by Gouveia (1995). We find it convenient to view the con-
straints of the minimum spanning tree problems with additional
requirements on the structure of the tree in two subsets, tree-defin-
ing and topology-enforcing. This distinction is made earlier by
Akgun and Tansel (2010) in the context of the Minimum-Degree
Constrained Minimum Spanning Tree problem and provides a more
structured way of assessing effects of different sets of constraints
on LP bounds and solution times. The tree-defining portion of the
constraints consists of those that ensure that a spanning tree is ob-
tained from a given edge weighted graph. The topology-enforcing
portion of the constraints consists of those that ensure that the
resulting spanning tree satisfies the additional structural require-
ments imposed on the topology of the tree. For example, hop con-
straints or degree constraints belong to the topology-enforcing set.
Tree-defining constraints do not depend on the particular topolog-
ical requirements of the problem under study and thus can be
viewed as a core part of any spanning tree problem regardless of
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additional requirements that may be present on the topology of the
tree. The topology enforcing set is problem-specific and, in the con-
text of the HMST problem, it refers to the set of constraints that are
related to the hop requirement. Supplemental constraints may also
be present in the formulation to improve LP bounds or CPU times.
Supplemental constraints may be included in the tree-defining or
topology-enforcing sets as appropriate.

Tree-defining constraints may be based on packing, cut-sets,
single/multi-commodity flows, or MTZ subtour elimination con-
straints (Magnanti and Wolsey, 1995). MTZ constraints are attrac-
tive due to their compactness, but they are well-known for
producing weak LP bounds. Orman and Williams (1999) compare
the strengths of several formulations of the well known Travelling
Salesman Problem (TSP), including the ones with MTZ and flow con-
straints, on the basis of their LP bounds. The reader is referred to
Nemhauser and Wolsey (1988), Gutin and punnen (2002), and
Applegate et al. (2007) for additional information on the TSP.
Orman and Williams (1999) find out that the LP polytope of the
TSP resulting from MTZ constraints contains some of the seven
existing formulations of the TSP. This has led to various studies
to augment the MTZ constraints and strengthen the LP bounds of
the TSP formulation (Desrochers and Laporte, 1991; Gouveia and
Pires, 1999; Sherali and Driscoll, 2002). The formulations and lift-
ings proposed in the context of the TSP can also be used in other
problems where subtours are not allowed. Gouveia (1995) uses
the MTZ constraints to formulate the HMST problem and offers lift-
ings of his own as well as liftings adapted from Desrochers and La-
porte (1991).

The HMST problem is defined on a directed network G0 = (V,A)
obtained from the undirected graph G = (V,E) by replacing each
undirected edge {i, j} 2 E by two directed arcs (i, j) and (j, i) with
symmetric costs cij = cji. A feasible solution to the HMST problem
defines a subgraph of G0 = (V,A) that spans all nodes in V, is con-
nected, has no cycles, and has exactly one incoming arc at each
node except the root node. The root node has no incoming arc.
There is no restriction on the number of outgoing arcs at any node.
Such a subgraph is referred to as an arborescence (Ahuja et al.,
1993). An arborescence is a spanning tree if arc directions are ig-
nored. Each path in an arboresence originating at the root node
is a directed path consisting of arcs that have the same direction
(away from the root node).

Two sets of decision variables are used in the formulation of the
HMST problem based on the MTZ constraints: (1) binary design
variables xij that take on the value of 1 if arc (i, j) is in the design
and 0, otherwise, and (2) non-negative node-labeling variables ui

that increase monotonically along nodes of any path originating
at the root node.

We summarize in what follows the models and liftings offered by
Gouveia (1995). We use the acronym a/b to label the models where
‘‘a’’ refers the tree-defining part and ‘‘b’’ refers to the topology-
enforcing part. For the models of Gouveia (1995), ‘‘a’’ may stand
for ‘‘Basic MTZ Constraints (BMTZ)’’ while ‘‘b’’ may stand for ‘‘Basic
Topology Enforcing Constraints (BTEF)’’ or ‘‘Extension i of the
BTEF constraints (EiBTEF) for i = 1, . . .,8.’’ Accordingly, BMTZ/BTEF
which we refer to as the Basic Model, represents the model with Ba-
sic MTZ Constraints and BTEF Constraints while BMTZ/EiBTEF rep-
resents the model with Basic MTZ Constraints and Extension i of
BTEF Constraints. We refer to the model BMTZ/EiBTEF as the Exten-
sion i of the Basic Model.

The first MTZ based model of the HMST problem that we give
below is the Basic Model or BMTZ/BTEF. The basic MTZ con-
straints in BMTZ/BTEF are the constraints (1)–(5) and the basic
topology enforcing constraints are the hop constraints (6). Con-
straints (7) and (8) are nonnegativity and binary restrictions
and are not viewed as part of tree-defining or topology-enforcing
sets.
BMTZ/BTEF: Basic Model
Basic MTZ Constraints/Basic Topology Enforcing Constraints

z� ¼min
x;u

X

ði;jÞ2A

cijxij ð1Þ

s:t:
X

i

xij ¼ 1 j 2 ðV � rÞ; ð2Þ

ui � uj þ nxij 6 n� 1 ði; jÞ 2 A; j – r; ð3Þ
ui ¼ 0 i ¼ r; ð4Þ
ui P 1 i 2 ðV � rÞ; ð5Þ
ui 6 p i 2 ðV � rÞ; ð6Þ
ui P 0 8i; ð7Þ
xij 2 f0;1g i 2 V ; j 2 ðV � i� rÞ: ð8Þ

A few remarks on the MTZ constraints are in order. The MTZ
constraints are proposed initially by Miller et al. (1960) in the con-
text of the TSP and consists of the constraints (3)–(5) and the addi-
tional constraints ui 6 n � 1 for i – r.The node labels ui in the
context of the TSP formulation refers to the rank order of node i
in any feasible TSP tour with root node r receiving the label ur = 0
and with node i receiving the label ui = k if it is the k th node in
the tour. Note that (3) requires uj = ui + 1 whenever node j is visited
immediately after node i (that is, whenever xij = 1). The whole
range of node labels is used and node labels are uniquely assigned
in the context of the TSP. The uniqueness of node labels is not re-
quired and the whole range of node labels need not be used in
the context of the HMST problem. This permits to have more free-
dom of choice in the assignment of labels, a fact we exploit in the
next section to improve our formulations. For example, a feasible
solution where the same label is not assigned to all nodes with
the same number of hops from the root is possible. Observe that
constraints (3) prevent sub-tours by assigning labels in such a
way that each directed arc included in the arborescence is directed
from a node with a lower label into a node with a higher label. This
ensures that node labels on any path form a monotonically increas-
ing sequence, preventing thereby formation of cycles. Constraint
(4) assigns a label of 0 to the root node. Constraints (5) and (6) de-
fine lower and upper bounds on labels that can be assigned to non-
root nodes, respectively. Specifically, in the assignment of labels to
nodes, there are three possible cases for an edge {i, j}: either xij = 1,
or xji = 1, or both xij and xji = 0. If xij = 1, then uj P ui + 1. Similarly, if
xji = 1, then ui P uj + 1. If both xij = 0 and xji = 0, then ui � uj 6 n � 1
and uj � ui 6 n � 1. In this respect, any assignment of labels satis-
fying the aforementioned conditions gives a feasible solution.

Note that the upper bounds on the labels defined by constraints
(6) eliminate all paths with more than parcs. Constraints (5) are
actually not required for the model to work properly and not used
in the models studied in Gouveia (1995) as those constraints are not
a part of original MTZ constraints (Miller et al., 1960) but added la-
ter. We prefer to include them to be in compliance with the recent
approach in the literature and the proposed models. Constraints (2)
require that the number of incoming arcs to any non-root node be
equal to 1, which, together with constraints (3), establish that the
resulting tree is an arboresence. Objective function (1) minimizes
the total cost of the arcs in the solution.

In any feasible solution to BMTZ/BTEF, constraints (6) en-
sure that the node labels satisfy the relation ui � uj 6 p � 1
for any pair of nodes i and j. Thus, constraints (3) can be mod-
ified to obtain a new set of topology-enforcing constraints,
namely, constraints (9), to replace constraints (3) and (6). This
gives the following extended formulation which we refer to as
Extension 1 of the Basic Model (abbreviated as BMTZ/E1BTEF).
Miller et al. (1960) used constraints (9) in the context of a
vehicle routing problem to restrict the number of nodes visited
in each tour.



266 _I. Akgün, B.Ç. Tansel / European Journal of Operational Research 212 (2011) 263–276
BMTZ/E1BTEF: Extension 1 of the Basic Model
(1), (2), (4), (5), (7), (8), and

ui � uj þ pxij 6 p� 1 ði; jÞ 2 A; j – r: ð9Þ

Following Desrochers and Laporte (1991), constraints (9) can be
lifted to obtain constraints (10) that require the values of variables
ui and uj to differ exactly by 1 if edge {i, j} is in the solution, i.e.,
whenever xij = 1 or xji = 1. Formulation BMTZ/E2BTEF, Extension 2
of the Basic Model, is obtained by replacing constraints (9) with
constraints (10).

BMTZ/E2BTEF: Extension 2 of the Basic Model
(1), (2), (4), (5), (7), (8), and

ðp� 2Þxji þ ui � uj þ pxij 6 p� 1 ði; jÞ 2 A; j – r: ð10Þ

A new set of liftings to constraints (9) can be obtained by pro-
viding additional information on the values of the variables ui

and uj. Note that xij = 0 when
P

k–i;rxkj ¼ 1 due to constraints (2)
and hence node j cannot be adjacent to node r when this occurs.
Thus, the difference between the values of ui and uj is at most
p � 2. This result and the fact that xij + xji 6 1 can be combined to
obtain liftings (11) valid for p P 3. Formulation BMTZ/E3BTEF,
Extension 3 of the Basic Model, is obtained by replacing constraints
(9) with constraints (11) in the topology-enforcing set.

BMTZ/E3BTEF: Extension 3 of the Basic Model
(1), (2), (4), (5), (7), (8), and

X

k¼1;k–i

xkj þ ðp� 3Þxji þ ui � uj þ pxij 6 p� 1 ði; jÞ

2 A; j – r; p P 3: ð11Þ

The model BMTZ/E4BTEF,Extension 4 of the Basic Model, enables
us to evaluate the combined effects of liftings (10) and (11) in the
topology enforcing part and is defined as follows.

BMTZ/E4BTEF: Extension 4 of the Basic Model
(1), (2), (4), (5), (7), (8), (10), and (11).
The following liftings for constraints (5) and (6) strengthen the

LP bounds.

uj 6 p� ðp� 1Þxij i ¼ r; j 2 ðV � rÞ; ð12Þ
uj P 2� xij i ¼ r; j 2 ðV � rÞ: ð13Þ

Constraints (12) and (13) require that the value of uj be equal to
1 if node j is incident to the root node and greater than 2 if not. The
following four models are proposed by Gouveia (1995) to see the
effects of liftings (12) and (13).

BMTZ/E5BTEF: Extension 5 of the Basic Model
(1), (2), (4), (5), (7), (8), (9), (12), and (13).
BMTZ/E6BTEF: Extension 6 of the Basic Model
(1), (2), (4), (5), (7), (8), (10), (12), and (13).
BMTZ/E7BTEF: Extension 7 of the Basic Model
(1), (2), (4), (5), (7), (8), (11), (12), and (13).
BMTZ/E8BTEF: Extension 8 of the Basic Model
(1), (2), (4), (5), (7), (8), (10), (11), (12), and (13).
Notice that the model BMTZ/EiBTEF for i = 1,2,3,4 and the

model BMTZ/EjBTEF with j = i + 4 are exactly the same except for
constraints (12) and (13). Thus, the models BMTZ/EjBTEF for
j = 5,6,7,8 allow us to assess the effects of constraints (12) and
(13) over the corresponding models BMTZ/EiBTEF for i = 1,2,
3,4.
3. New formulations for the HMST problem

The basic topology-enforcing constraints (6) establish the hop
requirement by imposing the upper bound p on the node labels
ui. The extensions discussed in the previous section of the basic
model are obtained by liftings that make adjustments on the val-
ues of the node labels. In this sense, only one topological aspect
of the problem is exploited by existing formulations. Even
though not directly stated in its definition, the HMST problem
has additional exploitable aspects in the topological structure
of feasible trees. In what follows, we first improve the basic
topology-enforcing constraints by distinguishing leaf nodes
(nodes of degree one) from central nodes (nodes of degree great-
er than one) in feasible trees and taking advantage of implied
degree requirements as well as other structural implications that
are valid for trees. Later, we give an improved version of the ba-
sic MTZ constraints. The Improved MTZ Constraints and the
Improved Topology Enforcing Constraints will be referred to
as ‘‘IMTZ’’ and ‘‘ITEF,’’ respectively. We obtain the new formula-
tions by combining basic or improved MTZ constraints with im-
proved topology-enforcing constraints or extensions of improved
topology-enforcing constraints that incorporate liftings. This pro-
duces ten new formulations of the HMST problem. The models
are referred to as BMTZ/ITEF, IMTZ/ITEF, and IMTZ/EiITEF for
i = 1, . . .,8 in accordance with the naming convention adopted
for the models of Gouveia (1995). Here, BMTZ/ITEF stands for
the model with Basic MTZ Constraints and ITEF Constraints,
IMTZ/ITEF stands for the model with Improved MTZ Con-
straints and ITEF Constraints, and IMTZ/EiITEF stands for the
model with Improved MTZ Constraints and Extension i of Im-
proved Topology Enforcing Constraints. The models IMTZ/
EiITEF for i = 1, . . .,8 are obtained by incorporating the liftings
(with necessary adaptations as necessary) that are discussed in
the previous section and referred to as Extension i of the model
IMTZ/ITEF.

We first give the improved version of the topology-enforcing
constraints.
3.1. Improved Topology-Enforcing Constraints (ITEF)

In a feasible solution to the HMST problem, a node is either a
leaf node or a central node. Leaf-nodes have degrees of one while
central nodes have degrees of more than one. If the root node is a
leaf-node, it has one outgoing arc but no entering arcs. Any non-
root node that is a leaf- node has one incoming arc but no
outgoing arcs. If the root node is a central node, it has two or
more outgoing arcs but no incoming arc while a non-root node
that is a central node has one incoming arc and at least one out-
going arc. Thus, the number of arcs incident to a node can be re-
stricted as dependent on the type of the node. Moreover, whether
or not an arc may exist between two nodes may be established as
dependent on the type of the nodes. If both nodes are leaf nodes,
then no arc may exist between them. Additionally, only a single
arc in one direction can be permitted between any two nodes.
We now give the improved topology-enforcing constraints based
on the foregoing.

Let wic and wil be a pair of binary variables associated with node
i with wic = 1 (wil = 1) if node i is a central (leaf) node and wic = 0
(wil = 0) if not.

ITEF: Improved Topology-Enforcing Constraints
In addition to hop-enforcing constraint ð6Þ ð14Þ

wic þwil ¼ 1 i 2 V ; ð15Þ
X

j

xij P 1 i ¼ r; ð16Þ

X

j–r

xij P 1þwic i ¼ r; ð17Þ
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X

j–r

xij 6 ðn� 1Þ � ðn� 2Þwil i ¼ r; ð18Þ
X

j

xji þ
X

j–r

xij P 1þwic i 2 ðV � rÞ; ð19Þ
X

j

xji þ
X

j–r

xij 6 ðn� 1Þ � ðn� 2Þwil i 2 ðV � rÞ; ð20Þ
X

j–r

xij P 1�wil i 2 ðV � rÞ; ð21Þ

xij 6 wic ði; jÞ 2 A; i – r; j – r; ð22Þ
xij þwil þwjl 6 2 ði; jÞ 2 A; j – r; ð23Þ
xij � 0 ði; jÞ 2 A; j ¼ r; ð24Þ
xij þ xji 6 1 ði; jÞ 2 A; i < j; ð25Þ
X

j–i

xij ¼ n� 1; ð26Þ

wic;wil 2 f0;1g i 2 V : ð27Þ

Constraints (15) require that each node be either a leaf node or a
central node. Constraints (16)–(18) define lower and upper bounds
on the number of outgoing arcs from the root node. Constraint (16)
establishes that the number of outgoing arcs at the root node r is at
least one. This constraint is redundant but helps to improve solu-
tion times. Constraints (17) and (18) require that the number of
outgoing arcs at the root node be exactly one if r is a leaf node
and be in the range [2,n � 1] if r is a central node.

Constraints (19)–(21) set upper and lower limits on the degrees
of non-root nodes. The left sides of (19) and (20) give the total
number of arcs incident at each non-root node. The right sides take
on different values depending on if the node is a central node or a
leaf node. Constraints (19) and (20) jointly ensure that the total
number of arcs incident at a non-root node is exacly 1 if it is a leaf
node. This and constraints (2) imply that there is exactly 1 incom-
ing arc and no outgoing arc at such a node. If a non-root node is a
central node, however, constraints (19) and (20) ensure that the to-
tal number of arcs incident at that node is in the range [2,n � 1].
This and constraints (2) imply that there is exactly 1 incoming
arc and at least 1 outgoing arc at such a node. Constraints (21) re-
quire that the number of outgoing arcs at a non-root node is
greater than 1 (0) when the node is a central (leaf) node, which
is something already implied by constraints (2), (19), and (20).
Even though constraints (21) are implied by other constraints, they
are included in the formulation because the computational studies
that we have carried out indicate that their presence improves the
solution times.

Constraints (22) require that a non-root node be a central node
if there is an outgoing arc from it. Constraints (23) prevent arcs
between pairs of leaf nodes. Constraints (24) do not allow any arcs
incoming to the root node. Constraints (25) state that a pair of
arcs of opposite directions between a pair of nodes is not possible.
Constraints (26) require that the total number of arcs is n � 1,
which is a known fact for a tree (e.g., Ahuja et al., 1993). Con-
straints (27) give the zero/one restrictions on the variables wic

and wil.
We remark that constraints (15)–(26) address topological

requirements other than the hop requirement. Accordingly, con-
straints (15)–(26) provide a valid topology-enforcing formulation
only when combined with a set of constraints that imposes the
hop requirement, as noted in (14). When MTZ constraints are used
as sub-tour elimination constraints, any of the constraints (6) and
(9)–(11) can be used for this purpose. We note that any other set of
hop-enforcing constraints, determined on the basis of the type of
sub-tour elimination constraints used (such as flow-based con-
straints), can also be used with modifications as necessary. In this
regard, constraints (15)–(26) are not particular to a formulation in
which only MTZ constraints are used.
The distinction between central nodes and leaf nodes is used
earlier in Akgun and Tansel (2010) in the context of the Mini-
mum-Degree Constrained MST Problem (MDCMST) where the pur-
pose is to find a minimum spanning tree such that each non-leaf
node has at least d nodes incident to it and in Akgun and Tansel
(2009) in the context of the Degree-Constrained MST Problem
(DCMST) where the degree constraint is on the upper bound rather
than on the lower bound. The need to make that distinction is ex-
plicit in MDCMST from the problem itself while it is not in DCMST
and in HMST. In this regard, using the distinction in DCMST and
HMST is new, which is motivated by the successful results obtained
for MDCMST. As stated in this paper and in the other two studies,
some constraints based on the aforementioned distinction are va-
lid for all spanning tree problems with restrictions and hence some
constraints are common in all three studies. However, the underly-
ing discussions for the three problems are different and hence
there occurs a need to adapt some of the constraints to the prob-
lem structure. For example, constraints (17)–(21), a part of the
topology-enforcing constraints, are different or expressed differ-
ently in all three studies to better utilize the problem structure.
The same applies to the MTZ-based constraints (28)–(31) (Sec-
tion 3.2) that also depend on this distinction. The computational
results show that the proposed models for all problems take
advantage of the constraints based on this distinction and produce
improved LP bounds and solution times. Specifically, the models
developed for MDCMST and DCMST, for which MTZ-based con-
straints are used the first time, are better than the flow-based mod-
els with respect to solution times while they are not better than
but competitive with the flow-based models. The models devel-
oped for HMST in this paper are better than previous MTZ-based
models in the literature with respect to both LP bounds and solu-
tion times.
3.2. Improved MTZ constraints (IMTZ)

We now give an improved set of MTZ constraints that take
advantage of the distinction between central and leaf nodes as well
as the greater degrees of freedom in choosing node labels in span-
ning trees than in TSP tours.

In a feasible solution of the HMST problem, each node is either a
central node or a leaf node. Because a non-root leaf node has one
incoming arc whose origin is necessarily a central node, then the
monotonicity of node labels can be maintained by requiring that
the labels of all non-root leaf nodes be greater than the highest
possible label that can be assigned to central nodes. This condition
is easily fulfilled if we assign the label value p to each non-root leaf
node while permitting central nodes to take label values of at most
p � 1. If all nodes other than the root node are leaf nodes, then the
root node receives the node label of 0 and all other nodes receive
node labels of p. If there is a non-root central node, then its label
will be between 1 and p � 1. Thus, in finding feasible solutions
for the HMST problem, looking only for solutions in which the label
values of non-root leaf nodes are restricted to p and the label val-
ues of central nodes are restricted to values less than or equal to
p � 1 is sufficient. This can be achieved by adding the following
constraints:

ui P pwil i 2 ðV � rÞ; ð28Þ
ui 6 p�wic i 2 ðV � rÞ: ð29Þ

Constraints (28) together with an appropriate hop constraint re-
quire that the labels of all non-root leaf nodes equal p. Constraints
(29) restrict the labels of central nodes to be at most p � 1. We take
constraints (2)–(5) together with constraints (28) and (29) as the
improved set of MTZ constraints and abbreviate it as IMTZ.
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Notice that because constraints (10) and (11) require ui and uj to
differ exactly by one if edge {i, j} is in the solution, using constraints
(28) with constraints (10) and (11) may cause infeasibility. Hence,
constraints (28) can only be used in conjunction with constraints
(6) and (9).

Consider a solution in which the root r is a central node and a
leaf node i is directly connected to the root. Constraints (12)
require node i to take on a label value of 1 while constraints (28)
require node i to take on a label value of p. To correct this inconsis-
tency and be consistent with constraints (28), we modify con-
straints (12) and (13) as follows:

uj 6 p� ðp� 1Þxij þ ðp� 1Þwjl i ¼ r; j 2 ðV � rÞ; ð30Þ
uj P 2� xij þ ðp� 2Þwjl i ¼ r; j 2 ðV � rÞ: ð31Þ

Constraints (30) require that the value of uj be equal to one if
node j is a central node and xrj = 1 and that the value of uj be less
than or equal to p if node j is a leaf node and xrj = 1. Constraints
(31) ensure that the value of uj is greater than or equal to 2 if node
j is a central node and xrj = 0 and that the value of uj is greater than
or equal to p if node j is a leaf node and xrj = 0. In all other cases,
constraints (30) and (31) become redundant.
3.3. New formulations for the HMST problem

We give now the new formulations for the HMST problem ob-
tained by combining the constraint sets BMTZ, IMTZ, and ITEF with
liftings offered by Gouveia (1995). Recall that constraints (28) can
only be coupled with constraints (6) and (9).

BMTZ/ITEF: Model with Basic MTZ Constraints/Improved Topology
Enforcing Constraints
(1)–(8) and (15)–(27)

IMTZ/ITEF: Model with Improved MTZ Constraints/Improved
Topology Enforcing Constraints
(1)–(5), (9), (7), (8) and (15)–(29).

IMTZ/E1ITEF: Extension 1 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (9), and (1)–(8), (8), (10)–(29).
IMTZ/E2ITEF: Extension 2 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (10), (15)–(27), and (29).
IMTZ/E3ITEF: Extension 3 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (11), (15)–(27), and (29).
IMTZ/E4ITEF: Extension 4 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (10), (11), (15)–(27), and (29).
IMTZ/E5ITEF: Extension 5 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (9), and (15)–(31).
IMTZ/E6ITEF: Extension 6 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (10), (15)–(27), and (29)–(31).
IMTZ/E7ITEF: Extension 7 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (11), (15)–(27), and (29)–(31).
IMTZ/E8ITEF: Extension 8 of IMTZ/ITEF
(1), (2), (4), (5), (7), (8), (10), (11), (15)–(27), and (29)–(31).
BMTZ/ITEF is defined to see the effects of the new MTZ con-

straints (28) and (29) that are included in IMTZ/ITEF but not in
BMTZ/ITEF. The new model IMTZ/ITEF corresponds to the basic
model BMTZ/BTEF of Gouveia (1995) while the new model IMTZ/
EiITEF corresponds to the model BMTZ/EiBTEF of Gouveia (1995)
for i = 1, . . .,8.

We also propose the following relaxed model, Rel-M, which
gives the best performance of all existing and new models in terms
of solution times. Regarding the LP bounds, Rel-M generally gives
better than or as good LP bounds as the existing models BMTZ/
BTEF, and BMTZ/EiBTEF, i = 1, . . .,8, while it generally gives worse
LP bounds than the proposed models IMTZ/ITEF, and IMTZ/EiITEF,
i = 1, . . .,8. The primary reason for considering Rel-M is its
significant success in computation times.
Rel-M is obtained from the model IMTZ/ITEF by omitting con-
straints (19) and (21) from it while adding constraints (31) and
(32) to it.

Rel-M: Relaxed Model for the HMST problem
In addition to (1)–(8), (15)–(18), (20), (22)–(29), and (31)

X

j–r

xij P wil � 1 i 2 ðV � rÞ: ð32Þ

The exclusion of constraints (19) and (21) from Rel-M permits
the variables wic and wil to take on values of 1 and 0, respectively,
when a non-root node i is in fact a leaf node. Even though this does
not agree with the intended meaning attached to these variables,
such solutions nevertheless defıne feasible trees. We take a more
liberal interpretation of the auxiliary variables wic and wil in Rel-
M and interpret them as node labels that generally distinguish cen-
tral nodes from leaf nodes but sometimes with incorrect values.

Note that the left sides of constraints (21) and (32) are the same
and specify the total number of outgoing arcs at a non-root node
while the right sides of (21) and (32) are the negatives of each
other (1 � wil and wil � 1). Accordingly, we may think of (32) as a
replacement for (21). We do not, however, recommend the use of
(32) in place of (21) in the proposed models other than Rel-M as
its use in these models generally worsens the solution times while
its use in Rel-M improves the solution times.
4. Test problems

Computational tests are performed using specially-structured
test problems from the literature (e.g., Dahl et al., 2006). Test prob-
lems consist of three 20-node, three 40-node, and three 60-node,
complete networks with 210, 820, and 1830 edges, respectively.
For each network size, two Euclidean instances, TC and TE, and
one random instance, TR, are considered. Euclidean instances differ
from each other based on the location of the root node. In TC in-
stances, the root node is located in the center of the grid while in
TE instances the root node is located at a corner of the grid.
In the following, a test instance(s) is referred to with the type of
the instance and the number of the nodes in the network, e.g., TE
20 refers to TE instance with 20 nodes. For each instance, the
hop parameter p is set to 3, 4, and 5.

The size of each instance is reduced by applying an arc-
elimination test used in the literature (e.g., Gouveia, 1996; Dahl
et al., 2006). The test is based on the fact that if cij > crj, then no
optimal solution uses arc (i, j) and if cij = crj (i – r), then there is
an optimal solution that does not include arc (i, j). Thus, arc (i, j)
can be eliminated whenever cij P crj. The number of arcs remaining
after the elimination test in 20-node, 40-node, and 60-node net-
works for TC, TE, and TR instances are 38%, 82%, and 52%, 33%,
75%, and 51%, and 31%, 74%, and 58% of the original numbers,
respectively. The results show that the best (worst) results are ob-
tained with TC (TE) instances implying that TE instances will be
much more difficult to solve than the other two types of instances.

Computational tests are performed on a PC with a 3.0 GHz Intel
Core 2 Duo processor and 3 GB of RAM by using ILOG CPLEX 9.0.
The models are run until optimality is attained or for 10 hours
(36,000 CPU seconds) at maximum and by using default settings
of CPLEX (e.g., moving the best bound strategy for branching is
used, cuts are allowed) except that file storage is set to 3, which al-
lows tree file to be stored on the hard disk when it reaches the de-
fault limit in order not to run out of memory (ILOG CPLEX, 2003).

In the tables presenting computational studies, LP relaxation
bounds, run times, optimal objective function values (when avail-
able), and best feasible objective function values together with rel-
ative optimality gaps are given. The relative optimality gap is
defined as jBP � BFj/(10�10 + jBPj) where BP is the objective
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function value of the best integer solution and BF is the best
remaining objective function value of any unexplored node (ILOG
CPLEX, 2003).

The bold and underlined values in each row of the tables indi-
cate the best and worst results (with respect to solution time if
optimality is attained and optimality gap otherwise), respectively,
for the corresponding problem. All non-bracketed values in the
[BP-Gap%] columns are the optimal objective function values. A
‘‘[ ]’’ in a [BP-Gap%] column indicates that the model could not
be solved optimally within 36,000 seconds. In this case, the first
and second figures separated by a dash in a bracket are the values
of BP and the relative optimality gap, respectively.
5. LP bounds

We take up the discussion regarding the LP relaxation bounds in
three parts. In the first and second parts, we discuss the relative
standing of the existing models and proposed models among
themselves, respectively. In the third part, we discuss the relative
standing of the existing and new models with respect to each
other. In this discussion, PL is used to represent the optimal objec-
tive function value of the LP relaxation of a linear integer program-
ming problem P.

Table 1 gives the LP bounds for the existing models studied in
Gouveia (1995). The results show that BMTZ/BTEFL = BMTZ/
E1BTEFL for all instances, i.e., replacing constraints (3) and (6) with
constraints (9) does not improve the LP bounds. This is partially in
compliance with the results in Gouveia (1995) where there are in-
stances for which BMTZ/BTEFL < BMTZ/E1BTEFL. Gouveia (1995)
proves that BMTZ/BTEFL 6 BMTZ/E1BTEFL. When liftings (10)
and (11) are used instead of constraints (9) separately, they pro-
vide relatively good improvements in the LP bounds of BMTZ/BTEF
(BMTZ/E1BTEF). The improvements change from 3.3% to 15.45%
with an average of 8.3% and from 3.85% to 15.45% with an average
of 8.4% for constraints (10) and (11), respectively. So, BMTZ/
E1BTEFL < BMTZ/E2BTEFL and BMTZ/E1BTEFL < BMTZ/E3BTEFL

for all instances. However, Gouveia (1995) reports instances where
the strict inequality holds at equality. Liftings (10) and (11) do not
dominate each other because there are instances for which BMTZ/
E2BTEFL < BMTZ/E3BTEFL (e.g., Problems 1–3) and BMTZ/
E3BTEFL < BMTZ/E2BTEFL (e.g., Problems 9–12). When constraints
(10) and (11) are used together, a slight improvement over both
BMTZ/E2BTEFL and BMTZ/E3BTEFL is attained for Problems 7, 8,
10, and 16–18. For other instances, BMTZ/E4BTEF = Max {BMTZ/
E2BTEFL, BMTZ/E3BTEFL}. Thus, BMTZ/E2BTEFL 6 BMTZ/E4BTEFL

and BMTZ/E3BTEFL 6 BMTZ/E4BTEFL. The models BMTZ/EjBTEF
for j = 5,6,7,8 obtained by adding liftings (12) and (13) toBMTZ/
EiBTEF for i = j � 4, respectively, give the same or slightly better
LP bounds than their corresponding ones. Specifically, BMTZ/
E1BTEFL 6 BMTZ/E5BTEFL, BMTZ/E2BTEFL 6 BMTZ/E6BTEFL,
BMTZ/E3BTEFL 6 BMTZ/E7BTEFL, and BMTZ/E4BTEFL 6 BMTZ/
E8BTEFL. The foregoing comments regarding the relative standing
of the models BMTZ/EiBTEF for i = 1,2,3,4 remain valid for the
corresponding models BMTZ/EjBTEF for j = 5,6,7,8. Of all the
models, BMTZ/E8BTEFLPBMTZ/EiBTEFL, i = 1, . . .,7, andBMTZ/
E8BTEFL P BMTZ/BTEFL. However, the differences between the
LP bounds of BMTZ/E8BTEF and those of the other existing models
are marginal except for BMTZ/BTEF, BMTZ/E1BTEF and BMTZ/
E5BTEF. Fig. 1 shows the relative standing of the models
graphically.

Table 2 gives LP bounds for the proposed models. The results
show that, even though marginal, the improved version of MTZ
constraints is marginally stronger than the basic version of MTZ
constraints, as expected. That is, BMTZ/ITEFL 6 IMTZ/ITEFL. Similar
to the case of BMTZ/BTEF and BMTZ/E1BTEF, IMTZ/ITEFL = IMTZ/
E1ITEFL for all cases. That is, using constraints (9) in place of con-
straints (3) and (6) in the basic model IMTZ/ITEF does not improve
the LP bounds for the given instances. When liftings (10) are used
instead of constraints (3) and (6), there are cases for which IMTZ/
E1ITEFL = IMTZ/E2ITEFL (Problems 6, 9, 10–12, and 18), cases for
which IMTZ/E1ITEFL < IMTZ/E2ITEFL (Problems 1–2, 4–5, and 13–
17), and cases for which IMTZ/E1ITEFL > IMTZ/E2ITEFL (Problems
3, 7, and 8). This is contrary to the expectation that using con-
straints (10) will improve the LP bounds. IMTZ/E1ITEFL > IMTZ/
E2ITEFL results from the fact that constraints (10) in IMTZ/E2ITEF
cannot compensate for the decrease in the LP bounds caused by not
including constraints (28) in IMTZ/E2ITEF. (Remember that con-
straints (10) and (11) cannot be used with constraints (28) and
hence constraints (28) are included in IMTZ/E1ITEF while they
are not included in IMTZ/E2ITEF). The results show that IMTZ/
E1ITEFL6IMTZ/E3ITEFL indicating that using constraints (11) im-
proves the LP bounds and that constraints (11) can compensate
for the lack of constraints (28). In compliance with the ongoing dis-
cussion, IMTZ/E2ITEFL 6 IMTZ/E3ITEFL = IMTZ/E4ITEFL. Thus, con-
straints (11) dominate constraints (10) for the given instances and
using constraints (10) and (11) simultaneously in IMTZ/E4ITEF
does not improve upon the LP bounds of IMTZ/E3ITEF with con-
straints (11). Note that these two results are not observed for the
models of Gouveia (1995). Liftings (30) and (31), the new versions
of constraints (12) and (13), are added to IMTZ/EiITEF for
i = 1,2,3,4, to obtain IMTZ/EjITEF for j = i + 4, respectively. Their ef-
fect on the LP bounds is similar to the one that constraints (12) and
(13) have on the LP bounds of the models of Gouveia (1995). Spe-
cifically, IMTZ/E1ITEFL 6 IMTZ/E5ITEFL, IMTZ/E2ITEFL 6 IMTZ/
E6ITEFL, IMTZ/E3ITEFL6 IMTZ/E7ITEFL, and IMTZ/E4ITEFL6

IMTZ/E8ITEFL. However, the improvements in the LP bounds are
marginal. The relative standing of the models IMTZ/EjITEF
for j = 5,6,7,8 is IMTZ/E5ITEFL 6 IMTZ/E6ITEFL6IMTZ/E7ITEFL =
IMTZ/E8ITEFL. Note that constraints (10) together with constraints
(30) and (31) can now compensate for the decrease in the LP
bounds resulting from the lack of constraints (28). Of all the mod-
els, IMTZ/E7ITEF and IMTZ/E8ITEF give the best (and the same) LP
bounds. Another important observation in Table 2 is that adding
the liftings offered by Gouveia (1995) only slightly increases the
LP bounds of IMTZ/ITEF. The differences between the best LP
bounds (of IMTZ/E8ITEF) and those of IMTZ/ITEF change from 0%
to 2.47% with an average of 0.54%. Finally, even though marginal,
Rel-ML6IMTZ/EiITEFL for i = 3, . . .,8 for all instances. Rel-M is not
dominated by BMTZ/ITEF, IMTZ/ITEF, IMTZ/E1ITEF, and IMTZ/
E2ITEF. There are instances for which the LP bounds of Rel-M
are the same as, better than, and worse than those of BMTZ/ITEF,
IMTZ/ITEF, IMTZ/E1ITEF, and IMTZ/E2ITEF. Fig. 2 shows the rela-
tive standing of the new models graphically.

We now compare the relative standing of the proposed models
and the existing models. The comparison is made between the
existing model BMTZ/BTEF (BMTZ/EiBTEF for i = 1, . . .,8) and the
corresponding, proposed model IMTZ/ITEF (IMTZ/EiITEF for
i = 1, . . .,8). The corresponding columns in Tables 1 and 2 show that
BMTZ/BTEFL6IMTZ/ITEFL and BMTZ/EiBTEFL6IMTZ/EiITEFL for
i = 1, . . .,8 for all cases. The strict inequality holds for the basic
models IMTZ/ITEF and BMTZ/BTEF as well as for the extended
models IMTZ/EiITEF and BMTZ/EiBTEF with i = 1,5. The differ-
ences between the LP bounds of these pairs of new and existing
models change from 3.64% (Problem 1 for IMTZ/ITEF and BMTZ/
BTEF pair) to 22% (Problem 6 for all three pairs). For other models
in which constraints (10) and (11) are used, the differences be-
tween the LP bounds are smaller. An increase of at most 7% is at-
tained for Problem 4 between all pairs of new and existing
models. The highest increases are attained for TE 20 instances
(from 6% to 7%). Clearly, constraints (10) and (11) contribute signif-
icantly to the improvement of LP bounds of the models in Gouveia



Table 1
LP relaxation bounds for the models offered by Gouveia (1995). The bold and underlined values in each row indicate the best and worst results, respectively, for the corresponding
problem.

Pr. id. Pr. type p BMTZ/
BTEF

BMTZ/
E1BTEF

BMTZ/
E2BTEF

BMTZ/
E3BTEF

BMTZ/
E4BTEF

BMTZ/
E5BTEF

BMTZ/
E6BTEF

BMTZ/
E7BTEF

BMTZ/
E8BTEF

1 TC 20 3 294.67 294.67 304.38 306.00 306.00 294.67 305.56 306.00 306.00

2 4 290.00 290.00 302.75 303.71 303.71 290.00 303.50 303.71 303.71

3 5 289.20 289.20 302.00 302.75 302.75 289.20 302.67 302.75 302.75

4 TE 20 3 258.67 258.67 284.00 284.00 284.00 261.33 284.00 284.00 284.00

5 4 248.00 248.00 284.00 284.00 284.00 248.00 284.00 284.00 284.00

6 5 246.00 246.00 284.00 284.00 284.00 246.00 284.00 284.00 284.00

7 TR 20 3 128.67 128.67 138.14 139.50 140.17 128.67 139.62 139.50 140.17

8 4 124.50 124.50 137.00 137.06 138.14 124.50 138.00 137.06 138.14

9 5 122.40 122.40 137.00 136.23 137.00 122.40 137.00 136.23 137.00

10 TC 40 3 446.00 446.00 472.00 469.17 472.50 446.00 472.50 469.17 472.50

11 4 437.00 437.00 472.00 470.00 472.00 437.00 472.00 470.00 472.00

12 5 435.20 435.20 472.00 470.57 472.00 435.20 472.00 470.57 472.00

13 TE 40 3 458.67 458.67 481.78 485.06 485.06 461.00 484.58 485.06 485.54

14 4 456.00 456.00 481.00 481.78 481.78 456.00 481.65 481.78 481.78

15 5 455.60 455.60 480.36 481.00 481.00 455.60 480.91 481.00 481.00

16 TR 40 3 117.33 117.33 127.07 127.75 129.17 118.11 128.62 127.75 129.17

17 4 114.50 114.50 126.50 126.03 127.07 114.50 127.06 126.03 127.07

18 5 113.40 113.40 126.00 125.73 126.50 113.40 126.50 125.73 126.50

Fig. 1. The relative standing of the models studied in Gouveia (1995) with respect to LP bounds.
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(1995). The contribution of liftings (30) and (31) to LP bounds is
miniscule when used with the proposed models.

To better assess the contribution of the new models, we now
compare BMTZ/E8BTEF (the existing model with the best LP
bounds) and IMTZ/ITEF (the new model with the worst LP bounds).
The results show that BMTZ/E8BTEFL > IMTZ/ITEFL for 9 instances
(Problems 1–3, 7–8, 10, and 16–18), BMTZ/E8BTEFL < IMTZ/ITEFL

for 6 instances (Problems 4–6 and 13–15), and BMTZ/E8BTEFL=
IMTZ/ITEFL for 3 instances (Problems 9 and 11–12). The increases
in the LP bounds change from 0.3% (0.5 units for Problem 18) to 2%
(2.49 units for Problem 16) for the cases with BMTZ/E8BTE-
FL > IMTZ/ITEFL while the increases in the LP bounds change from
0.38% (1.86 units for Problem 13) to 6.4% (18.36 units for Problem
4) for the cases with BMTZ/E8BTEFL < IMTZ/ITEFL. This comparison
reveals an important finding: The proposed basic model IMTZ/ITEF
provides as good or better LP bounds in most cases as the strongest
existing model BMTZ/E8BTEF while it provides marginally worse
bounds in some cases. That is, our computational tests provide
good empirical evidence that the model IMTZ/ITEF is at least as
competitive as the strongest existing model BMTZ/E8BTEF. Note
that IMTZ/ITEF does not include any of the liftings considered in
Gouveia (1995) while BMTZ/E8BTEF includes all of the liftings
(10)–(13).

We finally note that the relaxed model Rel-M, which is the best
one in terms of solution times, is also in competition in LP bounds
with the strongest existing model BMTZ/E8BTEF. Rel-M produces
the same or better LP bounds than BMTZ/E8BTEF for 8 instances
with the highest difference being 6% (17 units) for TE 20 instances.
Rel-M supplies marginally worse bounds than BMTZ/E8BTEF for
10 instances with the highest difference being 0.89% (1.15 units)
for Problem 16.
6. Solution times and optimality gaps

Tables 3 and 4 give solution times, optimal objective function
values (if optimal solution is attained), and the best feasible objec-
tive function values together with relative optimality gaps (if opti-
mal solution is not available) for the models offered by Gouveia
(1995) and the proposed models in this paper, respectively.



Table 2
LP relaxation bounds for the new models. The bold and underlined values in each row indicate the best and worst results, respectively, for the corresponding problem.

Pr.
id.

Pr.
type

p BMTZ/
ITEF

IMTZ/
ITEF

IMTZ/
E1ITEF

IMTZ/
E2ITEF

IMTZ/
E3ITEF

IMTZ/
E4ITEF

IMTZ/
E5ITEF

IMTZ/
E6ITEF

IMTZ/
E7ITEF

IMTZ/
E8ITEF

Rel-M

1 TC 20 3 304.06 305.39 305.39 305.71 307.00 307.00 306.00 307.00 307.00 307.00 306.00

2 4 302.57 302.57 302.57 302.75 303.71 303.71 303.00 303.50 303.71 303.71 303.00

3 5 302.07 302.07 302.07 302.00 302.75 302.75 302.40 302.67 302.75 302.75 302.40

4 TE 20 3 302.33 302.36 302.36 302.60 303.29 303.29 302.67 303.11 303.67 303.67 301.00
5 4 301.50 301.50 301.50 301.67 301.80 301.80 301.50 301.67 301.80 301.80 301.00
6 5 301.00 301.00 301.00 301.00 301.00 301.00 301.00 301.00 301.00 301.00 301.00

7 TR 20 3 137.89 138.52 138.52 138.33 140.70 140.70 139.62 140.00 140.70 140.70 139.62

8 4 137.00 137.27 137.27 137.00 138.14 138.14 137.89 138.14 138.33 138.33 137.89

9 5 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00

10 TC 40 3 472.00 472.00 472.00 472.00 472.50 472.50 472.50 472.67 472.67 472.67 472.50

11 4 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00
12 5 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00 472.00

13 TE 40 3 487.33 487.40 487.40 487.83 488.75 488.75 488.67 489.42 489.86 489.86 484.10
14 4 486.63 486.65 486.65 487.02 487.78 487.78 487.06 487.69 487.83 487.83 481.06
15 5 486.20 486.20 486.20 486.35 487.00 487.00 486.53 486.93 487.02 487.02 480.53

16 TR 40 3 126.67 126.68 126.68 127.16 129.33 129.33 128.02 129.24 129.80 129.80 128.02

17 4 126.25 126.25 126.25 126.50 127.07 127.07 126.50 127.15 127.16 127.16 126.50

18 5 126.00 126.00 126.00 126.00 126.50 126.50 126.20 126.50 126.50 126.50 126.20

Fig. 2. The relative standing of the new models with respect to LP bounds.
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The results show that all TC 20 and TR 20 instances are all
solved in less than 1 second by all existing and new models. All
TE 20 instances can be solved by the proposed models. The best
solution time of 74.89 seconds is obtained by IMTZ/E7ITEF while
the worst average solution time of 1106 seconds is obtained by
IMTZ/E2ITEF (IMTZ/ITEF). Average solution times of 86.3 seconds
and 116.87 seconds, which can be considered good, are obtained
by IMTZ/E6ITEF and Rel-M, respectively. The average solution
times of the other new models change from 127.57 seconds
(IMTZ/E5ITEF) to 905.33 seconds (IMTZ/E3ITEF).

The existing models cannot solve all TE 20 instances (BMTZ/
E1BTEF cannot solve Problems 4 and 5 and BMTZ/E2BTEF cannot
solve Problem 4). The average solution times of existing models
other than BMTZ/E1BTEF and BMTZ/E2BTEF change from 90 sec-
onds (BMTZ/E7BTEF) to 7446 seconds (BMTZ/BTEF). With average
solution times of 150 seconds and 253 seconds, BMTZ/E6BTEF and
BMTZ/E8ITEF also produce good solution times.

TR 40 instances can be solved by all new models. The average
solution times change from 6.5 seconds (Rel-M) to 5525 seconds
IMTZ/ITEF (IMTZ/E1ITEF). The average solution times for Rel-M
and IMTZ/EiITEF for i = 5,6,7,8 are 6.5, 16.38, 32.13, 33.58, and
48.23 seconds, respectively. Note that these are the models with
constraints (30) and (31), which are the adapted versions of con-
straints (12) and (13) in the existing models. Of the models with-
out constraints (30) and (31), i.e., IMTZ/EiITEF for i = 1,2,3,4 and
IMTZ/ITEF, IMTZ/E4ITEF produces the best average solution time
of 845 seconds (compared to the worst solution time of 48.23 sec-
onds). All TR 40 instances cannot be solved by the existing models
(BMTZ/E1BTEF and BMTZ/E2ITEF cannot solve Problem 16). The
average solution times of the remaining models change from
10.12 seconds (BMTZ/E7BTEF) to 1488 seconds (BMTZ/BTEF). As
in the case of the new models with constraints (30) and (31), using
constraints (12) and (13) significantly improves the solution times.
The average solution times of BMTZ/EiBTEF for i = 5,6,7,8 are un-
der 22 seconds.

Regarding TC 40 instances, the new models with constraints
(30) and (31), i.e., Rel-M and IMTZ/EiITEF for i = 5,6,7,8 can solve
all instances. Of these models, Rel-M and IMTZ/E8ITEF produce the
best and worst average solution times of 803 seconds and
10,391 seconds, respectively. That the second best average solution
time for these models is 3561 seconds (IMTZ/E7ITEF) indicates
that Rel-M significantly dominates the other models. Of the mod-



Table 3
Solution times and integrality gaps for the models offered by Gouveia (1995). All non-bracketed values in the [BP-Gap%] column are the optimal objective function values. A ‘‘[ ]’’
in the [BP-Gap%] column indicates that the model could not be solved in 36,000 CPU seconds. The first and second figures separated by a dash in a bracket are the values of BP and
the relative optimality gap, respectively. The bold and underlined values in each row indicate the best and worst results (with respect to solution time if optimality is attained and
optimality gap otherwise), respectively, for the corresponding problem.

Pr. id. Pr. type p BMTZ/BTEF BMTZ/E1BTEF BMTZ/E2BTEF BMTZ/E3BTEF BMTZ/E4BTEF

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

1 TC 20 3 340 0.28 340 4.27 340 3.01 340 0.45 340 0.45

2 4 318 0.05 318 0.36 318 0.14 318 0.14 318 0.16

3 5 312 0.02 312 0.08 312 0.09 312 0.05 312 0.06

4 TE 20 3 449 11132 [449–11.73] 36,000 [458–11.35] 36,000 449 1946 449 1402

5 4 385 2741 [385–3.33] 36,000 385 11697 385 931 385 2558

6 5 366 8466 366 16401 366 2572 366 1100 366 2454

7 TR 20 3 168 0.03 168 0.25 168 0.25 168 0.06 168 0.09
8 4 146 0.02 146 0.05 146 0.06 146 0.03 146 0.03
9 5 137 0.02 137 0.00 137 0.01 137 0.01 137 0.02

10 TC 40 3 [609–6.83] 36,000 [623–14.77] 36,000 [621–14.92] 36,000 [609–3.81] 36,000 [609–5.73] 36,000
11 4 [552–4.49] 36,000 [551–7.62] 36,000 [556–7.73] 36,000 [548–1.10] 36,000 [548–4.19] 36,000
12 5 [522–1.29] 36,000 [522–3.37] 36,000 [522–3.46] 36,000 522 20765 [522–3.19] 36,000

13 TE 40 3 [708–23.21] 36,000 [714–25.73] 36,000 [716–25.61] 36,000 [713–20.62] 36,000 [713–20.75] 36,000

14 4 [628–17.46] 36,000 [635–20.01] 36,000 [638–17.30] 36,000 [635–16.03] 36,000 [659–19.5] 36,000

15 5 [597–14.02] 36,000 [594–14.26] 36,000 [595–13.81] 36,000 [597–12.67] 36,000 [594–12.4] 36,000

16 TR 40 3 176 4357 [176–11.24] 36,000 [176–10.32] 36,000 176 1848 176 1665

17 4 149 95.88 149 2781 149 3582 149 420 149 790

18 5 139 13.56 139 13.56 139 79.66 139 31.47 139 41.77

Pr. id. Pr. type p BMTZ/E5BTEF BMTZ/E6BTEF BMTZ/E7BTEF BMTZ/E8BTEF

[BP-Gap%] Time (seconds) [BP-Gap%] Time (seconds) [BP-Gap%] Time (seconds) [BP-Gap%] Time (seconds)

1 TC 20 3 340 0.13 340 0.08 340 0.11 340 0.33
2 4 318 0.08 318 0.02 318 0.03 318 0.16
3 5 312 0.08 312 0.02 312 0.02 312 0.05

4 TE 20 3 449 49.39 449 47.75 449 42.58 449 152.53
5 4 385 253.24 385 59.53 385 53.11 385 250.38
6 5 366 1752.91 366 343 366 172.91 366 356.08

7 TR 20 3 168 0.06 168 0.09 168 0.03 168 0.06
8 4 146 0.03 146 0.02 146 0.02 146 0.02
9 5 137 0.02 137 0.02 137 0.00 137 0.00

10 TC 40 3 609 17802 609 13112 609 5905.14 609 10337.70
11 4 [548–0.91] 36,000 548 10420 548 3817.08 548 7920.50
12 5 522 5581.59 522 3353 522 3125.38 522 4676.28

13 TE 40 3 [712–14.52] 36,000 [708–14.68] 36,000 [712–16.21] 36,000 [708–16.01] 36,000
14 4 [627–14.28] 36,000 [631–14.84] 36,000 [628–14.20] 36,000 [628–14.02] 36,000
15 5 [594–12.50] 36,000 [597–12.23] 36,000 [594–11.43] 36,000 [594–11.81] 36,000

16 TR 40 3 176 11.04 176 17.44 176 6.73 176 11.44
17 4 149 28.20 149 22.86 149 16.80 149 29.64
18 5 139 9.89 139 2.98 139 6.84 139 22.44
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els without constraints (30) and (31), IMTZ/EiITEF for i = 2,3,4 can
solve only one instance (Problem 12) with the best solution time
being 14,443 seconds.

Of the existing models, the models with constraints (12) and
(13) except BMTZ/E5BTEF, i.e., BMTZ/EiBTEF for i = 6,7,8, can
solve all TC 40 instances. BMTZ/E5BTEF cannot solve Problem 11.
Of these models, BMTZ/E7BTEF and BMTZ/E6BTEF produce the
best and worst solution times of 4283 seconds and 8962 seconds,
respectively. Of the models without constraints (12) and (13),
BMTZ/E3BTEF can solve only one instance while the others cannot
solve any instance.

Regarding TE 40 instances, none can be solved by any of the
existing and new models within the allotted time. The average
optimality gaps change from 15.17% (IMTZ/E3ITEF) to 18.33%
(IMTZ/ITEF and IMTZ/E1ITEF) for the new models without con-
straints (30) and (31) and from 12.73% (IMTZ/E5ITEF) to 14.61%
(IMTZ/E6ITEF) for the new models with constraints (30) and
(31). Rel-M and IMTZ/E7ITEF have average optimality gaps of
13.11% and 12.87%, respectively. The average optimality gaps
change from 16.44% (BMTZ/E3BTEF) to 20% (BMTZ/E1BTEF) for
the existing models without constraints (12) and (13) and from
13.77% (BMTZ/E8ITEF) and 13.95% (BMTZ/E6BTEF and BMTZ/
E7BTEF) with constraints (12) and (13).

The overall results show that the proposed models give better
solution times than the corresponding existing ones given by
Gouveia (1995). For the test instances with the same size and
hop value, the worst and best solution times are obtained for TE in-
stances and TR instances, respectively. The models with con-
straints (12) and (13) in the existing ones and with constraints
(30) and (31) in the new ones have better solution times than
the ones without them even though they only slightly improve
the LP bounds.

To see how much Rel-M is better than other models with re-
spect to solution times, the solution times for TE 20, TC 40, and
TR 40 instances, for which the optimal solutions are obtained
and the solution times make a difference, are selected for compar-



Table 4
Solution times and integrality gaps for the new models. Please see the caption in Table 3.

Pr. id. Pr. type p Rel-M IMTZ/ITEF IMTZ/E1ITEF IMTZ/E2ITEF IMTZ/E3ITEF

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

1 TC 20 3 340 0.15 340 1.09 340 0.80 340 0.38 340 0.34

2 4 318 0.11 318 0.20 318 0.11 318 0.09 318 0.11

3 5 312 0.04 312 0.08 312 0.06 312 0.07 312 0.03

4 TE 20 3 449 139 449 1891 449 1357.94 449 1936 449 1204

5 4 385 149 385 832 385 580.02 385 1055 385 1062
6 5 366 62.6 366 593 366 445.41 366 327 366 450

7 TR 20 3 168 0.06 168 0.08 168 0.08 168 0.14 168 0.06
8 4 146 0.05 146 0.05 146 0.05 146 0.08 146 0.03

9 5 137 0.01 137 0.02 137 0.02 137 0.05 137 0.06

10 TC 40 3 609 196 [609–7.46] 36,000 [609–7.40] 36,000 [609–6.47] 36,000 [609–2.98] 36,000
11 4 548 721 [551–4.95] 36,000 [551–4.93] 36,000 [548–3.87] 36,000 [551–3.84] 36,000
12 5 522 1492 [522–0.61] 36,000 [522–0.59] 36,000 522 14443 522 23278

13 TE 40 3 [713–13.18] 36,000 [713–21.49] 36,000 [713–21.48] 36,000 [718–23.10] 36,000 [708–18.92] 36,000

14 4 [627–13.39] 36,000 [645–18.48] 36,000 [645–18.47] 36,000 [628–16.12] 36,000 [631–14.60] 36,000

15 5 [594–12.76] 36,000 [599–15.03] 36,000 [599–15.00] 36,000 [599–14.97] 36,000 [597–11.98] 36,000

16 TR 40 3 176 2.01 176 15837 176 15837 176 4049 176 3522

17 4 149 11.76 149 712 149 712 149 754 149 344
18 5 139 5.86 139 27.44 139 27.44 139 46.25 139 47.36

19 TC 60 3 [866–6.64] 36,000
20 4 [792–9.39] 36,000
21 5 [734–6.84] 36,000

22 TE 60 3 [1569–26.25] 36,000
23 4 [1353–23.77] 36,000
24 5 [1258–21.25] 36,000

25 TR 60 3 274 1233
26 4 207 2895
27 5 189 567

IMTZ/E4ITEF IMTZ/E5ITEF IMTZ/E6ITEF IMTZ/E7ITEF IMTZ/E8ITEF

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

[BP-Gap%] Time
(seconds)

1 TC 20 3 340 0.45 340 0.13 340 0.09 340 0.14 340 0.14
2 4 318 0.11 318 0.05 318 0.05 318 0.06 318 0.06
3 5 312 0.08 312 0.05 312 0.03 312 0.03 312 0.06

4 TE 20 3 449 2550 449 37.03 449 22.74 449 30.16 449 81.34
5 4 385 301 385 215.81 385 128.03 385 90.38 385 229
6 5 366 448 366 129.86 366 108.13 366 104.13 366 332

7 TR 20 3 168 0.16 168 0.02 168 0.03 168 0.03 168 0.03

8 4 146 0.03 146 0.02 146 0.02 146 0.02 146 0.01
9 5 137 0.02 137 0.02 137 0.02 137 0.02 137 0.02

10 TC 40 3 [611–6.32] 36,000 609 614.34 609 3533 609 9070 609 6028
11 4 [548–3.76] 36,000 548 6043 548 1884 548 17954 548 10411
12 5 522 17725 522 10693 522 5266 522 4150 522 4555

13 TE 40 3 [725–21.68] 36,000 [708–11.89] 36,000 [708–16.08] 36,000 [712–13.20] 36,000 [708–14.60] 36,000
14 4 [628–16.11] 36,000 [627–14.14] 36,000 [627–15.05] 36,000 [627–13.46] 36,000 [627–14.09] 36,000
15 5 [594–11.65] 36,000 [594–12.16] 36,000 [597–12.70] 36,000 [599–11.94] 36,000 [599–11.97] 36,000

16 TR 40 3 176 1638 176 2.67 176 32.88 176 28.42 176 23.91
17 4 149 857 149 33.05 149 43.95 149 39.00 149 64.70

18 5 139 39.23 139 13.42 139 19.56 139 33.33 139 56.08
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ison. Of the models proposed by Gouveia (1995), BMTZ/E7BTEF
gives the best results with average solution times of 89.53,
4282.53, and 10.12 seconds for TE 20, TC 40, and TR 40 instances,
respectively. The average solution time for all 9 instances is
1460.73 seconds. Of the new models, Rel-M gives the best results
with average solution times of 117.15, 803.53, and 6.54 seconds for
TE 20, TC 40, and TR 40 instances, respectively. The average solu-
tion time for all 9 instances is 309.07 seconds. IMTZ/E6ITEF gives
the second best results with solution times of 86.3, 3561.5, and
32.13 seconds for TE 20, TC 40, and TR 40 instances, respectively.
The average solution time for all 9 instances is 1226.63 seconds.
Clearly, Rel-M gives significantly better solution times on the aver-
age than all other models.

For further evaluation of Rel-M, TC 60, TE 60, and TR 60 in-
stances are also solved. The results in Table 4 show that all TR
60 instances can be solved to optimality with solution times
changing from 567 seconds (Problem 27) to 2895 seconds (Prob-
lem 26). None of the TC 60 and TE 60 instances can be solved to
optimality. The optimality gaps change from 6.64% (Problem 19)
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to 9.39% (Problem 20) for TC instances and from 21.25% (Problem
24) to 26.25% (Problem 22) for TE instances.

Recall that we use constraints (32) in Rel-M instead of constraints
(21). When we solve Problems 10, 11, and 12 with constraints (21)
instead of constraints (32), we get solution times of 694, 8596, and
10,330 seconds, respectively. Rel-M with constraints (32) gives the
solution times of 196, 721, and 1492 seconds for the same problems
(Table 4), respectively. This indicates that the use of constraints (32)
in Rel-M instead of constraints (21) cuts down the solution times by
about three to twelve times in the given instances.
7. Tests for different hop values and network sizes

To see the effect of hop values on the LP bounds, objective func-
tion values, and solution times, the models with the best solution
times, Rel-M, IMTZ/E6ITEF, and BMTZ/E7BTEF, are solved for
different hop values changing from 4 to 40 by using the TE 40 in-
stance. The results are given in Table 5.

The results show that the LP bounds and the optimal objective
function values stabilize after p = 8 and p = 18, respectively, for all
three models. IMTZ/E6ITEF has better LP bounds than the other
Table 5
LP bounds, solution times, and integrality gaps for TE 40 instance with different hop valu

Pr. id. Pr. type p Rel-M IMTZ/E6IT

LP bound [BP-Gap%] Time (seconds) LP bound

1 TE 40 4 481.06 [627–13.39] 36,000 487.69
2 6 480.17 [569–10.64] 36,000 486.33
3 8 480.00 [537–6.83] 36,000 486.00
4 10 480.00 [520–3.81] 36,000 486.00
5 12 480.00 [514–2.53] 36,000 486.00
6 14 480.00 506 12756 486.00
7 16 480.00 498 164.18 486.00
8 18 480.00 496 51.37 486.00
9 20 480.00 496 48.75 486.00
10 22 480.00 496 71.35 486.00
11 24 480.00 496 158.45 486.00
12 26 480.00 496 95.82 486.00
13 28 480.00 496 53.82 486.00
14 30 480.00 496 98.51 486.00
15 32 480.00 496 142.76 486.00
16 34 480.00 496 101.82 486.00
17 36 480.00 496 120.46 486.00
18 38 480.00 496 136.80 486.00
19 40 480.00 496 74.83 486.00

Fig. 3. The effect of hop values on the LP boun
two models for all values of p. Although BMTZ/E7BTEF has better
LP bounds than Rel-M for p = 4 and p = 6, they have the same LP
bounds for p P 8. The optimal solutions cannot be obtained until
a certain value of p in the allotted time. However, the optimal solu-
tions are obtained in a very short time after that certain value of p.
Specifically, Rel-M can find optimal solutions for p P 14 while
IMTZ/E6ITEF and BMTZ/E7BTEF can find optimal solutions for
p P 16. Fig. 3 shows how the LP bounds and optimal objective
function values change depending on the hop values. The solution
times of Rel-M, IMTZ/E6ITEF, and BMTZ/E7BTEF for p P 16 change
from 49 to 164 seconds with an average of 101 seconds, from 123
to 575 seconds with an average of 235 seconds, and from 58 to
307 seconds with an average of 182 seconds, respectively.

To see how the models behave depending on the number of
nodes in the network, TC instances with the number of nodes
changing from 20 to 40 with p = 4 are created and solved by using
Rel-M, IMTZ/E6ITEF, and BMTZ/E7BTEF. The results are given in
Table 6. The results show that the models behave similarly in the
sense that the correlation coefficients for the LP bounds and solu-
tion times of the models are almost 1 for all pairs of models as
shown in Fig. 4. That is, if a problem is hard (easy) to solve for a
es. Please see the caption in Table 3.

EF BMTZ/E7BTEF

[BP-Gap%] Time (seconds) LP bound [BP-Gap%] Time (seconds)

[627–15.05] 36,000 481.78 [628–14.2] 36,000
[568–10.36] 36,000 480.36 [568–10.4] 36,000
[542–7.66] 36,000 480.00 [537–6.35] 36,000
[520–4.10] 36,000 480.00 [520–3.55] 36,000
[514–2.83] 36,000 480.00 [514–2.89] 36,000
[506–1.33] 36,000 480.00 [506–0.64] 36,000
498 349.97 480.00 498 307.29
496 123.33 480.00 496 96.78
496 134.02 480.00 496 178.86
496 128.68 480.00 496 135.82
496 253.78 480.00 496 286.48
496 204.67 480.00 496 188.61
496 248.28 480.00 496 83.16
496 168.53 480.00 496 221.37
496 173.41 480.00 496 239.26
496 226.25 480.00 496 208.53
496 219.92 480.00 496 303.19
496 253.53 480.00 496 58.41
496 575.21 480.00 496 61.81

ds and optimal objective function values.



Table 6
LP bounds, solution times, and integrality gaps for variable network sizes with p = 4. Please see the caption in Table 3.

Pr. id. Pr. type jnj Rel-M IMTZ/E6ITEF BMTZ/E7BTEF

LP bound [BP-Gap%] Time (seconds) LP bound [BP-Gap%] Time (seconds) LP bound [BP-Gap%] Time (seconds)

1 TC 20 304.36 359 3.28 304.70 359 10.79 304.67 359 4.85
2 22 317.18 334 0.12 317.29 334 0.30 317.27 334 0.22
3 24 300.00 344 6.33 303.00 344 8.60 299.80 344 7.04
4 26 338.75 386 0.53 339.33 386 2.39 338.37 386 1.72
5 28 340.00 397 1.20 340.00 397 3.01 340.00 397 1.04
6 30 349.75 408 18.10 350.27 408 63.49 350.40 408 15.18
7 32 341.92 432 2786 342.11 432 4352.00 338.32 432 2034.00
8 34 350.74 385 28.05 351.95 385 86.03 350.27 385 22.39
9 36 377.00 450 77.53 378.21 450 751.00 377.75 450 188.15
10 38 386.94 [475–3.72] 36,000 387.54 [475–4.91] 36,000 384.69 [475–3.26] 36,000
11 40 450.25 526 2712 450.33 526 12692 450.40 526 6281

Fig. 4. The relationship of the models with respect to LP bounds and solution times.
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model, that model is also hard (easy) to solve for other models. A
similar result is observed for the hop values (Table 5).
8. Conclusion

The computational results that we get in this paper indicate
that the new models we propose in the paper give considerably
better bounds and solution times than their counterparts in the lit-
erature and that the new sets of constraints that we propose to im-
prove the existing formulations are competitive with earlier
proposed liftings to Miller–Tucker–Zemlin constraints in Gouveia
(1995), some of which are based on the well-known, strong liftings
of Desrochers and Laporte (1991). Our computational tests indicate
that the best solution times result from the new formulations that
do not include the earlier liftings offered in Gouveia (1995). The
use of these liftings in conjunction with the set of constraints pro-
posed in this paper tends to make the solution times worse.
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