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a b s t r a c t

We consider jointly replenishing n ex-ante identical firms that operate under an EOQ like setting using a
non-cooperative game under asymmetric information. In this game, each firm, upon being privately
informed about its demand rate (or inventory cost rate), submits a private contribution to an intermedi-
ary that specifies how much it is willing to pay for its replenishment per unit of time and the interme-
diary determines the maximum feasible frequency for the joint orders that would finance the fixed
replenishment cost. We show that a Bayesian Nash equilibrium exists and characterize the equilibrium
in this game. We also show that the contributions are monotone increasing in each firm’s type. We finally
conduct a numerical study to compare the equilibrium to solutions obtained under independent and
cooperative ordering, and under full information. The results show that while information asymmetry
eliminates free-riding in the contributions game, the resulting aggregate contributions are not as high
as under full information, leading to higher aggregate costs.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A fundamental trade-off in operations is between cycle stocks
and setup costs associated with production, transportation or pro-
curement. Mathematical models examining this trade-off have
been developed since 1913 starting with the classical Economic Or-
der Quantity (EOQ) model (Harris, 1913). In the EOQ model, a firm
faces a constant and deterministic demand rate, pays a fixed setup
cost for each replenishment order and incurs a holding cost for
each unit of inventory it keeps per unit of time. The problem is
to find the order quantity that the firm should use in each replen-
ishment so that its setup costs and inventory holding costs are
minimized. Since then, there has been a vast amount of literature
on lot sizing that relaxes certain restrictive assumptions of the
EOQ model. The interested reader is referred to Jans and Degraeve
(2008) for a recent review of research in this area.

A major cost saving opportunity in this setting is joint replen-
ishment, i.e., consolidating orders for different items (or locations).
By carefully coordinating the replenishment of multiple items, one
can exploit the economies of scale of ordering jointly and reduce
setup costs, cycle inventories or both. Finding a joint replenish-
ment policy to minimize aggregate costs is known as the joint
replenishment problem in the literature. There is also large body
of research in this area: see Khouja and Goyal (2008) for a recent
review.
ll rights reserved.

: +90 312 2664054.
Although joint replenishment may be a significant means to re-
duce costs, when it involves a group of items or locations that are
not controlled centrally, it is not always apparent how to split
these savings among the parties fairly. A fair allocation is necessary
to induce different decentralized entities to engage in cooperation.
Recently, cooperative game theory models are developed to inves-
tigate whether a fair allocation of total savings (or total costs) is
possible and if so, how. In the first of these models, Meca et al.
(2004) show that it is possible to coordinate the system (obtain
minimum total cost) when the players only share their order fre-
quencies prior to joint replenishment. They propose an allocation
mechanism which distributes the total setup cost among the
jointly replenished locations in proportion to the square of their or-
der frequencies and show that this allocation is in the core of the
game, i.e., the firms cannot decrease their costs further by defect-
ing from the grand coalition of firms. In Meca et al. (2004), there
are only major setup costs, i.e., setup costs are independent of
which items are included in the order. When there are also minor
setup costs associated with each item, it is not always optimal to
order every item with every replenishment. In fact, the structure
of the policy that minimizes the total costs is not known. For this
problem, Hartman and Dror (2007) show that the game with a spe-
cific group of items has a core, whenever these items need to be or-
dered together on the same schedule to minimize total costs. For
the same problem, Dror et al. (2012) investigate how sensitive
the stability of coordinated ordering (or the existence of a core)
is to the changes in the cost parameters and conduct a computa-
tional study to show that a core allocation can be obtained without
excessive computation. In particular, the Lauderback allocation
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(each firm’s allocation is in proportion to a weighted average of its
stand-alone cost and marginal cost) is in the core for 98.8% of the
games they study. Elomri et al. (2012) consider the problem of
coalition formation when the joint replenishment game is not
superadditive and propose an exact fractional programming based
solution to find the efficient coalitions. Anily and Haviv (2007) lim-
it their attention to the near optimal power-of-two policies for this
problem, and show the existence and example of a core allocation
of total costs. These results are extended to the case of more
general setup cost structures in Zhang (2009). In a related paper,
Viswanathan and Piplani (2001) study a problem of a vendor which
coordinates the replenishment of multiple retailers by requiring
them to order at multiples of a common replenishment period
and offering a price discount to entice the retailers to accept this
strategy. Minner (2007) uses bargaining models to study the
collaboration between two firms that have a common interest to
jointly replenish material requirements. Van den Heuvel et al.
(2007) consider a problem in which multiple retailers have to
satisfy their periodic, non-stationary and known demand over a
finite horizon. The authors study the cooperative game that arises
from cost savings obtained by jointly replenishing the retailers.
Recent reviews of cooperative games for joint replenishment and
other inventory problems can be seen in Nagarajan and Sos̆ić
(2008) and Fiestras-Janeiro et al. (2011).

While cooperative analysis of joint replenishment problems
received a reasonable amount of attention in the literature, there
is limited research that use non-cooperative game theory to study
such problems. In fact, Bauso et al. (2008), Meca et al. (2003) and
Körpeoğlu et al. (2012) are the only three papers that adopt a
non-cooperative approach. Bauso et al. (2008) study a finite hori-
zon, periodic problem in which multiple firms need to determine
their order quantities in each period to satisfy their demand. The
replenishment order cost is shared among multiple firms that
order in the same period. It is shown that this game admits a set
of pure-strategy Nash equilibria, one of which is Pareto optimal.
The authors propose a consensus protocol with which firms
converge to one of the Nash equilibria, but not necessarily a Pareto
optimal one.

Meca et al. (2003) study a non-cooperative reporting game
where stand-alone order frequencies of the firms are common
knowledge but not verifiable. Each firm reports an order frequency
(that may be different from its true order frequency) and the joint
order frequency is determined to minimize the total joint costs
based on these reports. Each firm incurs holding cost individually
and pays a share of the joint replenishment cost in proportion to
the squares of reported order frequencies. It is shown that while
this rule leads to core allocations under cooperative formulations,
it results in significant misreporting and inefficiency in a non-
cooperative framework.

Körpeoğlu et al. (2012) use a more direct approach. They con-
sider n firms with arbitrary demand and inventory holding cost
rates. These are assumed to be common knowledge. There is a
fixed replenishment cost which can be incurred individually by
each firm or incurred jointly among firms that would participate
in joint replenishment. Each firm decides whether to participate
in joint replenishment or to replenish independently and each
participating firm reports the level of his contribution to an inter-
mediary. The intermediary then selects the smallest joint cycle
time that can be financed with these contributions. Körpeoğlu
et al. (2012) find that in any equilibrium of the game, the firms
with the lowest stand-alone cycle time share the replenishment
cost and the others pay only the minimum contribution.

An important assumption used in all papers that study non-
cooperative joint replenishment games is that all relevant informa-
tion is common knowledge. However, as in many other contexts,
information asymmetries exist in many practical supply chain
settings due to lack of communication or incentives for hiding
information. It is often crucial to model these asymmetries in order
to better understand the strategic behavior among competing
firms or design mechanisms that would lead to more favorable
outcomes for them. Recently, we have seen studies in supply chain
management literature that model information asymmetries.
Important examples include Corbett (2001) and Burnetas et al.
(2007).

Previous research on the joint replenishment problem high-
lights the importance of modeling private information in this
particular setting. As mentioned above, in the equilibrium found
in Körpeoğlu et al. (2012), firms with the lowest stand-alone cycle
time pay for all of the replenishment cost except the minimum
contributions that will be paid by the rest of the firms. Thus, if a
firm knows that there is another firm with a lower stand-alone
cycle time (or higher adjusted demand rate which is equal to
inventory holding cost rate multiplied by the demand rate), it
tends to ride free and pays the minimum contribution. In an
asymmetric information game, however, we should get larger con-
tributions from the firms with higher stand-alone cycle times,
since the other firms’ information is not available to them. Conse-
quently, an important question is whether removing the possibility
of free-riding through introducing information asymmetry would
lead to a more efficient mechanism in terms of aggregate costs
incurred by all firms.

In this paper, we consider the problem of jointly replenishing n
firms that operate under an EOQ like setting using a non-coopera-
tive game in which firms are privately informed about their param-
eters (demand rates and/or inventory holding cost rates). The game
we model is an asymmetric information counterpart of the game
suggested in Körpeoğlu et al. (2012). Each firm, upon being
privately informed about its parameters, submits a private contri-
bution to an intermediary that specifies how much it is willing to
contribute to replenishment costs per unit of time. The intermedi-
ary then determines the frequency for the joint orders that would
finance the setup cost. Since each firm’s inventory holding cost
depends on the joint frequency which in turn depends on contribu-
tions from all firms, this is non-cooperative game in which each
firm’s strategy is its contribution. Our solution concept for this
game is Bayesian Nash equilibrium. A Bayesian Nash equilibrium
is a Nash equilibrium where each player, given its type (parame-
ter), selects a best response against the average best responses of
the competing players. We prove that a pure-strategy Bayesian
Nash equilibrium exists and show that the equilibria can be char-
acterized by a system of integral equations. We also conduct a
numerical study to analyze the impact of competition and informa-
tion asymmetry on equilibrium behavior and outcomes by com-
paring the equilibrium we obtain to centralized and independent
ordering and to a non-cooperative game under full information.
The results show that joint replenishment continues to lead to sig-
nificant improvements over independent ordering, despite the fact
that firms compete under information asymmetry. The results also
show that while information asymmetry eliminates free-riding in the
game, the full information game leads to more efficient outcomes.

The rest of this paper is organized as follows. In Section 2, we
provide our model and results for the asymmetric information
game. In Section 3, we provide the results of our numerical study
and the managerial insights derived from this study. Section 4 con-
cludes the paper along with avenues for future research.
2. Model

We consider a stylized EOQ environment with a set of firms
N = {1, . . . ,n}(jNj = n). Each firm j is facing a constant deterministic
demand with rate bj per unit of time. Inventory holding cost rate
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is cj per unit of time. Major ordering cost is fixed at j per order
regardless of order size and we assume minor ordering costs are
zero. We define aj = cjbj, which will be convenient in all the settings
that we consider below. We will refer to aj as adjusted demand rate
for firm j. We assume that each firm’s adjusted demand rate is its
private information. We also assume that aj’s are independent
draws from a common continuous prior distribution F with sup-
port A ¼ ½a; �a�with 0 < a < �a < þ1. Note that this captures having
uncertainty on demand rate or inventory holding cost rate (given
that the other is same across firms) or on both demand rate and
inventory holding cost rate.

In the game we propose, first, each firm learns its adjusted de-
mand rate (type). Then, firms submit their private contributions
that specify their payment rate for the replenishment service.
Based on these contributions, the intermediary then determines
the minimum cycle length of the joint replenishment such that
would finance the fixed cost j. Finally, firms incur their costs
according to this cycle length. Since firms do not reveal their type
during the game, we have an asymmetric information game in
which each firm’s strategy is its contribution, which is a function
of its adjusted demand rate.

Let rj: A ? H be the contribution function where H ¼ ½0;�r� and
rj(aj) is the contribution that firm j makes if its type is aj. We
assume an upper bound �r ¼

ffiffiffiffiffiffiffiffiffi
2j�a
p

on the action space since a
contribution higher than this value leads to a total cost higher than
the stand-alone total cost regardless of the adjusted demand
rate realizations. Moreover, we exclude negative contributions.
Then, for a given a = (a1, . . . ,an) the intermediary will set the cycle
length to

tðaÞ ¼ jP
k2NrkðakÞ

: ð1Þ

Consider a firm j with type aj. Denote r�j(a�j) as the vector of
contributions of the firms except that of firm j under realization
a�j = (a1, . . . ,aj�1,aj, . . . ,an). The payoff for firm j under this realiza-
tion can be written as

/jðrj; r�j;aj;a�jÞ ¼
1
2

ajtðaj;a�jÞ þ rj; ð2Þ

and the expected payoff for this firm is

Ujðrj; r�j;ajÞ ¼
Z

An�1
/ðrj; r�j;aj;a�jÞf n�1ða�jÞda�j

¼ 1
2
jaj

Z
An�1

1
rj þ

P
k2N;k–jrkðakÞ

f n�1ða�jÞda�j þ rj ð3Þ

where An�1 is the (n � 1)st Cartesian power of the interval A and
f n�1ða�jÞ ¼

Q
k2N;k–jf ðakÞ.

Firm j’s best response as a function of its type aj and other firms’
contributions r�j is denoted by q and is given by

qðr�j;ajÞ ¼ arg min
rj

Ujðrj; r�j;ajÞ subject to rj P 0: ð4Þ

The first and second derivative of the payoff function (3) are
given as follows

@Ujðrj; r�j;ajÞ
@rj

¼ �1
2
jaj

Z
An�1

1

rj þ
P

k2N;k–jrkðakÞ
� �2 f n�1ða�jÞda�j þ 1; ð5Þ

@2Ujðrj; r�j;ajÞ
@r2

j

¼ jaj

Z
An�1

1

rj þ
P

k2N;k–jrkðakÞ
� �3 f n�1ða�jÞda�j: ð6Þ

Since contributions are non-negative, the integrand in (6) is a
non-negative function leading to the convexity of the payoff
function in rj. Therefore, the problem (4) is a convex optimization
problem with a single constraint. The problem has a corner
solution and firm j’s best response is to contribute zero if the first
derivative of the objective function given in (5) is non-negative at
rj = 0 and an interior solution (characterized by the first order con-
dition), otherwise. Therefore, the best response function can be ex-
pressed as follows:

qjðr�j;ajÞ ¼
0; if

R
An�1

1P
k2N;k–j

rkðakÞ
� �2 f n�1ða�jÞda�j 6

2
jaj
;

q̂ðr�j;ajÞ; otherwise;

8><
>: ð7Þ

where q̂ðr�j;ajÞ is the solution toZ
An�1

1

ðq̂ðr�j;ajÞ þ
P

k2N;k–jrkðakÞÞ2
f n�1ða�jÞda�j ¼

2
jaj

:

The characterization in (7) states that a firm j with type aj will
choose to ride free (rj = 0) if the second moment of the joint cycle
time among the other n � 1 firms is smaller than the square of
stand-alone cycle time for firm j. Alternatively, (7) states that given
the contribution strategies of others, there will be a threshold value
for firm j’s adjusted demand rate below which the firm will contrib-
ute zero. This threshold is given by

âðr�jÞ ¼
2

j
R

An�1
1P

k2N;k–j
rkðakÞ

� �2 f n�1ða�jÞda�j
: ð8Þ

Convexity of the objective function also ensures that each firm has a
unique best response to other firms’ contributions given its type.

We next show that each firm’s best response function is
increasing in its type (all proofs are provided in Appendix).

Lemma 1. Each firm j’s best response to other firms’ contributions is
increasing in its type aj.

A pure-strategy Bayesian Nash equilibrium is a set of functions
r� ¼ r�1; r

�
2; . . . ; r�n

� �
such that qj r��j;aj

� �
¼ r�j ðajÞ for all aj and for all

j 2 N. We establish the existence of a pure-strategy Bayesian Nash
equilibrium in the next theorem.

Theorem 1. A pure-strategy Bayesian Nash equilibrium exists for the
joint replenishment game under asymmetric information.

In order to characterize the Bayesian Nash equilibria, we need
the following lemma which states that there is at least one firm
which contributes a positive amount regardless of its type.

Lemma 2. In any equilibrium, there exists at least one firm j such that

r�j ðajÞ > 0; forall aj 2 A:
Using Lemma 2, we can provide a simple characterization of the

Bayesian Nash equilibria in the following theorem.
Theorem 2. Any collection of functions r�1ða1Þ; r�2ða2Þ; . . . ; r�nðanÞ
� �

that satisfy (9) is a Bayesian Nash equilibrium.Z
An�1

1

ðr�1ða1Þ þ r�2ða2Þ þ . . .þ r�nðanÞÞ2
f n�1ða�jÞda�j

¼ 2
jaj

; for all j 2 N: ð9Þ

Theorem 2 states that finding an equilibrium requires solving n
integral equations simultaneously. Obtaining a closed form solu-
tion for the system (9) is not possible. However, we can provide
the following properties for the equilibrium contribution functions.

First, if we multiply both sides of (9) by j2 f(aj) and integrate
both sides over the interval A, we get

E
j

ðr�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞÞ

� �2
" #

¼ E
2j
aj

	 

:
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Using (1), one can see that the left hand side is the second moment
of the equilibrium cycle length. The right hand side, on the other
hand is the second moment of the stand-alone cycle length. This
shows that second moment of cycle length is ‘‘invariant’’ – it is pre-
served when one moves from stand-alone (independent) replenish-
ment to non-cooperative joint replenishment.

In addition, using the monotonicity of the best-response func-
tions provided in Lemma 1, we can also say the following regarding
the equilibrium contribution functions.

Corollary 1. In all equilibria, the contribution function for each firm is
monotone increasing in its type.

The characterization in (9) of Theorem 2 allows multiple equi-
libria with different contribution functions for each player. How-
ever, if we restrict ourselves to symmetric equilibria, we have
the following result.

Corollary 2. The symmetric Bayesian Nash equilibrium satisfies the
following

Z
An�1

1

r�ðajÞ þ
P

k2N;k–jr�ðakÞ
� �2 f n�1ða�jÞda�j ¼

2
jaj

for all aj:

ð10Þ
Now consider the symmetric equilibrium r⁄. For a given realiza-

tion a = (a1, . . . ,an), the cycle length that is set by the intermediary
is given as

TaðaÞ ¼ jP
k2Nr�ðakÞ

:

This leads to an aggregate total cost expression as follows

CaðaÞ ¼ 1
2

j
P

k2NakP
k2Nr�ðakÞ

þ
X
k2N

r�ðakÞ:

Therefore expected replenishment cost, and expected aggregate
total cost rate can be written as

E½Ra� ¼ n
Z

A
r�ðaÞf ðaÞda;

E½Ca� ¼ 1
2
j
Z

An

P
k2NakP

k2Nr�ðakÞ
f nðaÞdaþ E½Ra�:
2.1. Possible extensions

It is important to note the implications of relaxing certain
assumptions on our model and results. First, we assume that the
adjusted demand rates are independent draws from the same dis-
tribution. In general, each player’s adjusted demand rate may be
drawn from a different distribution. Furthermore, each player’s ad-
justed demand rate estimate for another player may be different.
Let, Fj

k be the distribution of player j’s estimate of player k with a
support Aj

k. One can verify that the existence result provided in
Theorem 1 still holds for this case. One can also show that the equi-
librium can now be characterized asZ

A�j

1

r�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞ
� �2 f�jða�jÞda�j ¼

2
jaj

;

for all j 2 N;

where A�j ¼
Q

k2N;k–jA
j
k; f

j
k ¼ dFj

k and f�jða�jÞ ¼
Q

k2N;k–jf
j
kðakÞ. While

this extension does not create any theoretical difficulties, comput-
ing the equilibrium will be challenging as one needs to solve a sys-
tem of n integral equations. In our numerical analysis in Section 3,
we assume a common distribution which allows us to focus on the
symmetric equilibrium that requires solving only one integral
equation.

Second, we assume that the setup cost j is known with cer-
tainty by all parties. Having an uncertainty or information asym-
metry on j will require a firm to take this into account when
minimizing its expected payoff in (3). We also assume that each
firm knows its own adjusted demand rate prior to submitting its
contribution. In a more general model, a firm may have uncertainty
regarding its own demand rate as well (although the uncertainty it
faces will be obviously smaller than what the other firms are ex-
posed to regarding its adjusted demand rate). Again this uncer-
tainty has to be considered in the objective function of the firm
in (3). While our existence result should hold in these cases, we
leave these extensions to a future study.

Finally, we assume that working with an intermediary does not
lead to any coordination costs such as cost of exchanging informa-
tion and incorporating that information to the joint decisions, as
well as costs incurred by the firm due to delays (Clemons et al.,
1993). In the absence of these costs and minor setup costs, firms
will prefer participating to joint replenishment over independent
ordering, and therefore we do not model opting out from joint
replenishment in this study (please see Körpeoğlu et al. (2012)
for such a game). Once the contributions game is played, the max-
imum coordination cost that each player is willing to pay will be
the difference between a firm’s cost in joint replenishment equilib-
rium and its stand-alone cost. In other cases, we need a formal
game in which these costs are represented as a part of each player’s
payoff (especially when the coordination cost is a function of the
number of participants in joint replenishment). We also leave this
important extension to a future study.

2.2. Benchmark models

We now briefly review the three benchmark models used for
comparison: independent (decentralized) replenishment, joint
(centralized) replenishment and competitive replenishment under
full information.

INDEPENDENT (DECENTRALIZED) REPLENISHMENT

When the replenishment of the items is controlled by firms
operating independently, firm j’s total cost rate (Cj) is the sum of
its replenishment cost rate (Rj) and holding cost rate (Hj) and can
be written as a function of the cycle time t as follows

CjðtÞ ¼ RjðtÞ þ HjðtÞ ¼
j
t
þ t

2
aj: ð11Þ

We assume that each firm learns its adjusted demand rate (type)
prior to determining its cycle length. Therefore, the function in
(11) can be minimized with the realized value of aj. This leads to

firm j’s optimal cycle time Td
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j=aj

p
. Resulting replenishment

cost rate is Rd
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj=2

p
. Holding cost rate for firm j is also

Hd
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj=2

p
. Thus firm j’s total cost per unit of time is

Cd
j ¼

ffiffiffiffiffiffiffiffiffiffiffi
2jaj

p
. The aggregate total cost rates for n firms under indepen-

dent replenishment are Cd ¼
P

k2N

ffiffiffiffiffiffiffiffiffiffiffi
2jak
p

, and Rd ¼ Hd ¼P
k2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jak=2

p
.

JOINT (CENTRALIZED) REPLENISHMENT

In joint replenishment, replenishment decisions are taken cen-
trally to minimize the aggregate total cost. When there are no min-
or setup costs (setup costs specific to each firm), all firms will be
replenished in each cycle leading to a common cycle time (see
Meca et al. (2004) for a proof). The aggregate cost for n firms as a
function of the common cycle time t can be written as

CcðtÞ ¼ RcðtÞ þ HcðtÞ ¼ j
t
þ t

2

X
k2N

ak: ð12Þ

Once again, we assume that the values of ak are known before the
joint cycle time decision is taken. Therefore, the optimal cycle time
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can be found by minimizing (12) as Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j=

P
k2Nak

p
. Then, the

optimal cost rates are Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j
P

k2Nak

p
, and Rc = Hc = Cc/2.

COMPETITIVE REPLENISHMENT UNDER FULL INFORMATION

Under full information, firms reveal their adjusted demand
rates (types) prior to submitting their private contributions. There-
fore, each firm uses its type information, as well as others’ when
deciding its contribution. The resulting game is simply the one-
stage game described in Körpeoğlu et al. (2012) with minimum
contribution d = 0. Let a1,a2, . . . ,an be the types of the firms
1, . . . ,n. Let (n) be the firm with the highest adjusted demand rate,
i.e., a(n) = maxj2Naj. Also let L = {j 2 Njaj = a(n)}. Körpeoğlu et al.
(2012) show that the equilibrium contributions satisfy the follow-
ing properties:

r�k ¼ 0; 8k 2 N n L; and
X
k2L

r�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðnÞ=2

q
: ð13Þ

That is, firms whose adjusted demand rates are lower than the high-
est adjusted demand rate do not contribute for the joint replenish-
ment and ride free. Firms with the highest adjusted demand rate, on
the other hand, contribute a total of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðnÞ=2

p
. The equilibrium is

unique if there is only one firm with the highest adjusted demand
rate (L is a singleton), otherwise there are multiple equilibria. How-
ever, in all equilibria, aggregate contributions, aggregate costs and

the joint cycle time are unique. Joint cycle time is Tf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j=aðnÞ

p
Aggregate replenishment cost is Rf ¼

P
k2Nr�k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðnÞ=2

p
and aggre-

gate total cost is Cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=2aðnÞ

p
aðnÞ þ

P
k2Nak

� �
.

The above characterization states that the equilibrium is deter-
mined only by the largest adjusted demand rate. Since adjusted de-
mand rates are independent and identically distributed random
variables, this corresponds to the largest order statistic. Using this
fact, we can obtain the following expressions for the expected
aggregate replenishment cost, and expected aggregate total cost:

E½Rf � ¼ n
Z

A

ffiffiffiffiffiffiffi
ja
2

r
f ðaÞ½FðaÞ�n�1 da; ð14Þ

E½Cf � ¼ n!

Z �a

a

Z an

a
� � �
Z a2

a

X
k2N

ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=2an

p
f nðaÞdaþ E½Rf �: ð15Þ

The expression in (14) is due to the fact that largest order statistic
a(n) has a probability density function equal to n f(a)[F(a)]n�1. The
expression in (15) is due to the fact that a(1), a(2), . . . , a(n) have a
joint density n!fn(a).
3. Numerical study

We conduct a computational study to understand the impact of
competition and information asymmetry on equilibrium behavior
and total costs. In doing this, we compare the asymmetric informa-
tion game to centralized replenishment, independent replenish-
ment and competitive replenishment under full information. To
set up the experiment, the only two variables we need are the
replenishment fixed cost j and the probability distribution of ad-
justed demand rates aj. The choice of the fixed cost j is immaterial
as it appears only as a multiple in cost expressions and cancels out
in comparisons. We use a modified PERT distribution (Vose, 2008)
to model the uncertainty in adjusted demand rates. The modified
PERT distribution is a 4-parameter distribution and is frequently
used to model expert data. Expert opinion is used to specify the
minimum (a), maximum (b), most-likely (m) values and a fourth
parameter (k) controls the shape. The modified PERT distribution
is given as follows:

f ðxÞ ¼ ðx� aÞg1�1ðb� xÞg2�1

Bðg1;g2Þðb� aÞg1þg2�1 ;
where B(g1,g2) is the beta function, and

g1 ¼ 1þ k
m� a
b� a

� �
; g2 ¼ 1þ k

b�m
b� a

� �
:

The mean (l) and variance (r2) are

l ¼ aþ kmþ b
kþ 2

; r2 ¼ ðl� aÞðb� lÞ
kþ 3

:

We pick the modified PERT distribution since it is defined over a fi-
nite interval and we can easily control the skewness and mode with
two dedicated parameters. In order to demonstrate the flexibility of
the modified PERT distribution, we plot the density for various val-
ues of m and k for (a,b) = (1,5) in Fig. 1. Observe that when k = 0, the
distribution reduces to uniform distribution.

We start our computational study with understanding the equi-
librium behavior in the non-cooperative asymmetric information
game. For this purpose, we assume that the adjusted demand rates
are independently and identically distributed with modified PERT
distribution with parameters a = 1, b = 5 and various values of k
and m. The fixed cost j is equal to 10. We consider only the sym-
metric equilibrium. In order to compute the equilibrium given in
Eq. (10) numerically, we discretize the distribution of a at forty
equally spaced points in the interval (a,b).

Fig. 2 shows the contribution of a single firm as a function of its
adjusted demand rate when there are 1, 2, 3, or 4 firms with the 1-
firm case corresponding to independent ordering. First, note that
the contributions are ordered in the number of firms that partici-
pate in joint replenishment. Firms reduce their contributions as
there are more firms in joint replenishment. As expected, the
reduction is more significant when there are fewer firms. Second,
as shown in Corollary 1, in equilibrium, a firm’s contribution in-
creases as its adjusted demand rate increases regardless of the
number of firms participating in joint replenishment. One can also
see that as the distribution shifts to the right (The most-likely va-
lue goes from 2 to 4), contributions for joint replenishments de-
crease, since the firm anticipates that other firms will have larger
adjusted demand rates and contribute less. In some cases, a firm
with a low adjusted demand rate may choose to contribute close
to zero (but not zero), especially when there are more firms in joint
replenishment (the bottom two plots when m = 3 and m = 4).

Fig. 3 shows the impact of asymmetric information on equilib-
rium under the same settings when there are two firms. The solid
lines in Fig. 3 represent the expected contribution by a firm as a
function of its own adjusted demand rate, given that it knows
the adjusted demand rates of other firms in the joint replenish-
ment program (full information). The dotted lines show the equi-
librium contributions under asymmetric information. For lower
values of adjusted demand rate, a firm that is not informed about
its rivals’ adjusted demand rates contributes more than what it
would contribute on the average under full information. However,
the full information contribution surpasses asymmetric informa-
tion for higher levels of adjusted demand rate. As the distribution
shifts to the right, contributions under both games decrease. How-
ever, contributions under full information are affected more, leading
to a larger region over which asymmetric information contributions
are larger than expected full information contributions.

Fig. 4 shows the impact of asymmetric information on equilib-
rium for three firms. Having three firms instead of two reduces
contributions in both games. The shape of the contribution func-
tion for the asymmetric information game, however, does not
change significantly. On the other hand, expected full information
contributions are flatter when the adjusted demand rate is low.
Overall, contributions decrease more in the asymmetric informa-
tion game as the number of firms increase from two to three. This
leads to a larger region over which full information contributions
are larger.
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Fig. 1. The density function of modified PERT distribution (a = 1,b = 5).
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Fig. 2. Equilibrium contribution as a function of adjusted demand rate with 1, 2, 3 and 4 firms under asymmetric information (a = 1,b = 5).
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In order to better understand the effects of competition and
information asymmetry on cycle times, aggregate contributions
and aggregate total costs, we carried out a more detailed study
in Table 1. We use a = 1 and consider two different values for b:
5 and 9. For b = 5, the most-likely value m takes on three values
2, 3 and 4. For b = 9, we consider the values 3, 5, and 7 for m.
The shape parameter k takes on three different values 0, 1, and 4.

We consider cases with 2, 3, and 4 players. In order to provide a
benchmark, we also show the results for cooperative joint replen-
ishment and independent ordering. Since cooperative joint replen-
ishment leads to lowest aggregate total costs, we use its expected
aggregate total costs in (Column 8) as our baseline. Columns 9, 10,
and 11 show the percentage deviation from the base case, of inde-
pendent ordering, non-cooperative joint replenishment under
asymmetric information and non-cooperative joint replenishment
under full information, respectively. In these columns, we provide
a policy’s ex-ante performance against centralized ordering, i.e., if
Cy is the expected cost under policy y, we report
DCy ¼ 100� E½Cy ��E½Cc �

E½Cc � , where Cc is expected cost under centralized
ordering. In the last column of Table 1, we report the percentage
gap between aggregate total costs of full and asymmetric informa-
tion games given by DCa

f ¼ 100� ðE½Ca� � E½Cf �Þ=E½Cf �.
We first note that the performance of independent ordering is
not very sensitive to the distribution parameters for a given n.
The aggregate total costs under independent ordering are, on the
average, 40.22%, 71.26%, and 97.49% higher than centralized order-
ing for n = 2, 3, and 4, respectively. Note that this performance is
very close to 100�

ffiffiffi
n
p
� 1

� �
which is equal to the percentage in-

crease in aggregate total costs as one moves from centralized
ordering to decentralized ordering when the firms are identical
and their adjusted demands are deterministic (one can show this
by observing that Cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2nja
p

and Cd ¼ n
ffiffiffiffiffiffiffiffiffi
2ja
p

if aj is known
and fixed at a for all j 2 N).

Contributions under full information lead to significantly more
efficient outcomes. The aggregate total costs, on the average, are
only 3.61%, 9.40%, and 15.53% higher than centralized ordering
for n = 2, 3, and 4, respectively. In the full information game, the
efficiency is more sensitive to probability distribution of the ad-
justed demand rate. Note that the variability gets larger as k goes
from 4 to 1 and then to 0. The variability is also larger when the
range goes from (1,5) to (1,9). In both of these cases, the efficiency
of competitive full information game improves. Finally, as the dis-
tribution shifts to the left, the full information game also becomes
more efficient.
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While the asymmetric information game eliminates free-riding
and ensures that firms contribute to joint replenishment, it also
leads to firms with higher adjusted demand rates contribute less
(see Figs. 3 and 4). The net effect is that aggregate contributions
in the asymmetric information game are smaller than aggregate
contributions in the full information game. Consequently, aggre-
gate total costs are always larger in the asymmetric information
game. The aggregate total costs, on the average, are 5.71%,
14.05%, and 22.18% higher than centralized ordering for n = 2, 3,
and 4, respectively. The performance of the asymmetric informa-
tion game is quite insensitive to demand distribution. However,
the effects of uncertainty and skewness can still be observed and
are same as what we see in the full information game. As variabil-
ity goes up and the distribution shifts to the left, the efficiency of



Table 1
Performance comparisons.

n a b k m l r2
E½Cc � DCd DCf DCa DCa

f

2 1 5 0 – 3.00 1.33 10.847 39.92 3.32 5.63 2.24
1 2 2.67 0.97 10.237 40.14 3.41 5.71 2.23
1 3 3.00 1.00 10.875 40.32 3.58 5.74 2.09
1 4 3.33 0.97 11.480 40.51 3.80 5.79 1.91
4 2 2.33 0.51 9.604 40.60 3.78 5.85 1.99
4 3 3.00 0.57 10.910 40.81 4.07 5.90 1.76
4 4 3.67 0.51 12.081 41.04 4.46 5.96 1.44

1 9 0 – 5.00 5.33 13.935 39.07 2.97 5.33 2.30
1 3 4.33 3.89 12.985 39.36 3.00 5.45 2.38
1 5 5.00 4.00 13.990 39.72 3.25 5.53 2.21
1 7 5.67 3.89 14.931 40.07 3.53 5.62 2.02
4 3 3.67 2.03 11.994 40.03 3.35 5.67 2.25
4 5 5.00 2.29 14.058 40.51 3.77 5.79 1.95
4 7 6.33 2.03 15.863 40.90 4.26 5.90 1.58

Average ? 40.22 3.61 5.71 2.02
3 1 5 0 – 3.00 1.33 13.330 70.78 8.67 13.73 4.66

1 2 2.67 0.97 12.576 71.12 8.80 14.04 4.81
1 3 3.00 1.00 13.352 71.42 9.34 14.15 4.40
1 4 3.33 0.97 14.087 71.74 9.97 14.32 3.95
4 2 2.33 0.51 11.786 71.85 9.72 14.56 4.41
4 3 3.00 0.57 13.380 72.22 10.56 14.74 3.79
4 4 3.67 0.51 14.808 72.59 11.62 14.99 3.03

1 9 0 – 5.00 5.33 17.157 69.46 7.78 12.80 4.66
1 3 4.33 3.89 15.981 69.87 7.78 13.16 4.99
1 5 5.00 4.00 17.199 70.47 8.49 13.43 4.55
1 7 5.67 3.89 18.339 71.05 9.27 13.76 4.10
4 3 3.67 2.03 14.737 70.93 8.62 13.90 4.86
4 5 5.00 2.29 17.252 71.73 9.82 14.35 4.12
4 7 6.33 2.03 19.451 72.36 11.12 14.78 3.29

Average ? 71.26 9.40 14.05 4.26
4 1 5 0 – 3.00 1.33 15.418 96.87 14.44 21.49 6.17

1 2 2.67 0.97 14.544 97.30 14.50 22.05 6.59
1 3 3.00 1.00 15.437 97.69 15.46 22.30 5.93
1 4 3.33 0.97 16.283 98.11 16.54 22.66 5.25
4 2 2.33 0.51 13.622 98.24 15.87 23.07 6.21
4 3 3.00 0.57 15.461 98.72 17.32 23.46 5.24
4 4 3.67 0.51 17.106 99.21 19.08 23.98 4.12

1 9 0 – 5.00 5.33 19.860 95.18 13.05 19.96 6.11
1 3 4.33 3.89 18.496 95.69 12.91 20.52 6.74
1 5 5.00 4.00 19.896 96.49 14.14 21.09 6.10
1 7 5.67 3.89 21.206 97.24 15.45 21.72 5.43
4 3 3.67 2.03 17.045 97.05 14.15 21.83 6.73
4 5 5.00 2.29 19.941 98.10 16.17 22.73 5.65
4 7 6.33 2.03 22.472 98.91 18.32 23.59 4.45

Average ? 97.49 15.53 22.18 5.77
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the asymmetric information game gets better. However, in com-
parison to the full information game, the gap is smaller when the
variability is smaller and the distribution is right-skewed. Also
the performance of asymmetric information compared to full
information gets worse as the number of firms increase. This hap-
pens because total contributions decrease more for the asymmetric
information game as more retailers participate in joint replenish-
ment (See Figs. 3 and 4).

We should note that the gaps reported here between the cen-
tralized ordering and the asymmetric information game may be
considered significant in practice. One may find it attractive to cen-
tralize the joint replenishment decision and allocate the efficient
costs to the firms, especially given that stable allocations can be
computed easily, at least in practice (Dror et al., 2012). However,
any such cooperative solution requires information on all adjusted
demand rates, which the firms may not want to disclose to the
intermediary or each other for various reasons.
4. Conclusion

In this paper, we consider a joint replenishment problem in
which n ex-ante identical firms submits their contributions to an
intermediary which sets a joint cycle time that would finance the
fixed cost of replenishment. The demand rates and inventory hold-
ing cost rates are firms’ private information. We show that an equi-
librium for this asymmetric information game exists and
characterize the equilibrium. We show that while information
asymmetry eliminates free-riding in the contributions game, it also
leads to contributing less for those firms who have higher demand
rates and/or inventory holding cost rates. The net effect of informa-
tion asymmetry is lower aggregate contributions and higher aggre-
gate costs for the system.

One can consider a number of extensions to better capture the
details of more realistic settings. First, one can consider more com-
plex mechanisms that govern participation in joint replenishment.
For example, one can investigate alternative mechanisms in which
firms contribute sequentially rather than simultaneously or firms’
contributions are stated as a function of joint cycle time. Second,
one can better model the joint replenishment environment. For
example, the replenishment cost (a fixed cost in our setting) may
be a function of the volume or may involve minor costs. Finally,
one may consider settings in which the a retailer may be facing
uncertain and non-stationary demand.
Appendix A

A.1. Proof of Lemma 1

Consider the best response function for firm j at aj and aj + � for
a given � > 0. First assume that aj > âða�jÞ and the best responses
at aj and aj + � are interior solutions to problem in (4). In this case,
firm j’s best responses can be found by the following two
equations:Z

An�1

f n�1ða�jÞ

qðr�j;ajÞ þ
P

k2N;k–jrkðakÞ
� �2 da�j ¼

2
jaj

; ð16Þ

Z
An�1

f n�1ða�jÞ

qðr�j;aj þ �Þ þ
P

k2N;k–jrkðakÞ
� �2 da�j ¼

2
jðaj þ �Þ

: ð17Þ

Taking the difference between (16) and (17) and rearranging,
we getZ

An�1

ðqðr�j;aj þ �Þ þqðr�j;ajÞ þ 2
P

k2N;k–jrkðakÞÞf n�1ða�jÞ

qðr�j;aj þ �Þ þ
P

k2N;k–jrkðakÞ
� �2

qðr�j;ajÞ þ
P

k2N;k–jrkðakÞ
� �2 da�j

¼ 2�
jajðaj þ �Þðqðr�j;aj þ �Þ �qðr�j;ajÞÞ

: ð18Þ

The integrand in the left hand side of (18) is strictly positive. There-
fore, the definite integral should also be positive, leading to
q(r�j,aj + �) > q(r�j,aj).

On the other hand, if aj 6 âða�jÞ and firm j’s best response is to
contribute zero at aj, then the firm will contribute either zero or a
positive amount at aj + �. h
A.2. Proof of Theorem 1

In order to prove the existence we invoke the following propo-
sition by Meirowitz (2003):

Proposition 1. A Bayesian game has a pure-strategy Bayesian Nash
equilibrium if for each j 2 N

1. A and H are nonempty, convex and compact subsets of Euclid-
ean space.

2. uj(r,a) = �/j(r,a) is continuous.
3. For every a and measurable function fn�1(a�j)
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Z
An�1

ujðrj; r�j;aj;a�jÞf n�1ða�jÞda�j ¼ �Ujðrj; r�j;ajÞ
is strictly quasi-concave in rj.
4. For every ej > 0 there exists some constant mj such that for any

given r�j then
sup
ðaj ;a0jÞ2A:jaj�a0

j
j<mj

n ojqðr�j;ajÞ � qðr�j;a0jÞj < ej:
5. fn�1(a�j) is continuous.

Now, A and H are both closed, bounded and consist of single
intervals by assumption. Thus, they are nonempty, convex and
compact. Thus, condition 1 is satisfied. Since the function / given
in Eq. (2) is continuous, condition 2 is also satisfied. Similarly,
the belief function fn�1(a�j) is continuous since it is the multiplica-
tion of continuous probability density functions f(a) by assumption
so condition 5 is satisfied. Since the derivative of U provided in (6)
is strictly positive, U is convex. Therefore condition 3 is also
satisfied.

The only remaining condition is condition 4, which states that
the slope of the best response function is uniformly bounded. In
order to prove the assertion, we take two different types aj and
a0j for firm j. First, assume that the best responses at aj and a0j both
satisfy the first order conditions (i.e., they are different from
zero).

2
jaj
� 2

ja0j
¼
Z

An�1

1

qðr�j;ajÞ þ
P

i–jriðaiÞ
� �2 f n�1ða�jÞda�j

�
Z

An�1

1

qðr�j;a0jÞ þ
P

i–jriðaiÞ
� �2 f n�1ða�jÞda�j

¼
Z

An�1

1

qðr�j;ajÞ þ
P

i–jriðaiÞ
� �2 �

1

qðr�j;a0jÞ þ
P

i–jriðaiÞ
� �2 f n�1ða�jÞ

0
B@

1
CAda�j

¼
Z

An�1
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i–jriðaiÞ
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P

i–jriðaiÞ
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� �

�
Z
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P

i–jriðaiÞ
� � f n�1ða�jÞda�j

1
CA:

Using the first order conditions and rjðajÞ 6 �r for all j 2 N, we can
writeZ

An�1

1

ðqðr�j;ajÞ þ
X
i–j

riðaiÞÞ2ðqðr�j;aj0Þ þ
X
i–j

riðaiÞÞ
f n�1ða�jÞda�j

P
Z

An�1

1

n�rðqðr�j;ajÞ þ
X
i–j

riðaiÞÞ2
f n�1ða�jÞa�j ¼

2
n�rjaj

:

A similar result can be obtained for a0j. Taking the absolute values on
both sides, we have

2
jaj
� 2

ja0j

�����
�����P q

�
r�j;a0jÞ � qðr�j;ajÞ

��� ��� 2
n�rjaj

þ 2
n�rja0j

 !
:

Rearranging the terms and using aj P a > 0 and a0j P a > 0, we
obtain:
a0j � aj

��� ��� P qðr�j;a0jÞ � qðr�j;ajÞ
��� ��� a0j þ aj

n�r

� �

P r�j a0j
� �

� r�j ðajÞ
��� ���ð2a=n�rÞ:

Now, assume that ej > 0 and let mj ¼ eð2a=n�rÞ. Then ja0j � ajj < mj im-
plies jqðr�j;a0jÞ � qðr�j;ajÞjð2a=n�rÞ < mj or r�j ða0jÞ � r�j ðajÞ

��� ��� < ej.
The fact that the best response function has a uniformly

bounded slope can also be shown more easily if we have q(r�j,
aj) = 0 and/or qðr�j;a0jÞ ¼ 0. h

A.3. Proof of Lemma 2

Assume that for all k – j, there exists Bk � A such that Bk – ; and
r�kðakÞ ¼ 0 for ak 2 Bk. Let B ¼

Q
k–jBk . Given its type and other

firms’ equilibrium contributions, firm j’s best response is to select
a contribution rj P 0 that minimizes

Uj rj; r��j;aj

� �
¼ 1

2
jaj

Z
B

1
rj

f n�1ða�jÞda�j þ
1
2

jaj

Z
An�1nB

� 1
rj þ

P
k2N;k–jr

�
kðakÞ

f n�1ða�jÞda�j þ rj:

Clearly, firm j’s best response is to select rj that is strictly positive for
any given aj. This leads to an equilibrium contribution function that
satisfies r�j ðajÞ > 0 for all aj. h

A.4. Proof of Theorem 2

Let j be the firm which satisfies r⁄(aj) > 0 for all aj 2 A. Note that
r�j ðajÞ is firm j’s best response to other firms’ equilibrium contribu-
tions. Since r�j ðajÞ > 0 for all aj, we have the following from (7)Z

An�1

1

ðr�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞÞ2
f n�1ða�jÞda�j

¼ 2
jaj

for all aj: ð19Þ

Multiplying both sides of Eq. (19) by f(aj) and integrating over A we
getZ

An

1

r�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞ
� �2 f nðaÞda ¼ E

2
jaj

	 

: ð20Þ

Now consider another firm k such thatZ
An�1

1

r�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞ
� �2 f n�1ða�kÞda�k þ fkðakÞ ¼

2
jak

ð21Þ

where fk(ak) is zero when r�kðakÞ > 0 and fk(ak) is possibly a positive
quantity when r�kðakÞ ¼ 0. Multiplying each term of Eq. (21) by f(ak)
and integrating over A, we getZ

An

1

r�1ða1Þ þ r�2ða2Þ þ � � � þ r�nðanÞ
� �2 f nðaÞdaþ E½fkðakÞ�

¼ E
2

jak

	 

: ð22Þ

Using (20) and (22) we get

E½fkðakÞ� ¼ E
2

jak

	 

� E

2
jaj

	 

: ð23Þ

Since aj and ak are identically distributed, the right hand side of (23)
is zero leading to E½fkðakÞ� ¼ 0. Note however that fk(ak) can only
take on non-negative values. Therefore, we should have fk(ak) = 0
for all ak leading to Eq. (19) being valid not only for firm j but for
all other firms. h
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