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We consider dynamic pricing of perishable assets in the presence of price-sensitive
renewal demand processes. Unlike the existing works in the literature, we explicitly
incorporate non-negligible price change costs which reflects the revenue management
practice more realistically. These costs are also known as menu costs in the economic

Keywords: literature. The objective is to maximize the discounted expected profit for an initial
Perishable assets inventory of Q items by determining the selling prices dynamically. We employ a
Menu costs

dynamic programming approach and formulate a model that captures the price-
demand relationship. We establish some theoretical results on the properties of the
problem at hand. Specifically, we establish the sufficient conditions under which the
within-period profit is concave in the selling price and in the remaining shelf life and,
furthermore, show the structure of the myopically and asymptotically optimal pricing
policy. In a numerical study, we investigate the impact of various system parameters
and, in particular, the existence of menu costs, on pricing decisions. We observe that
ignoring menu costs may be significantly misleading for the implementation of revenue
management. We also propose four implementable policy heuristics and examine their
performances. Our findings support some results previously obtained in settings with

Dynamic pricing
Revenue management

continuous pricing and negligible price change costs; and, contradict some others.

© 2009 Published by Elsevier B.V.

1. Introduction

Successful management of assets within a supply chain
entails two fundamental decisions: determination of
stocking levels to satisfy given demand levels and
determination of price levels to achieve desired demand
levels. The first problem is a passive response optimizing
within the system whereas the second problem actively
manages the operating environment. In this paper, we
focus on the latter and revisit the dynamic pricing
problem for perishable assets in a stylistic fashion to
address some issues observed at a retailer.

Perishable assets can be an inventory of items which
have a constant usable shelf life, or a set of airline seats for
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a flight of a particular date, or a number of hotel rooms to
be sold for a Christmas vacation. The dynamic pricing
problem associated with such assets is the determination
of selling prices to optimize a monetary objective such as
maximizing expected profit or maximizing expected
revenue. Our work has been motivated by the practices
of a retailer whose operational setting exhibit certain
features not fully addressed previously in the revenue
management literature. First, the retailer faces random
demand within the selling season which is typically of
unit size per customer arrival, but the inter-arrival time of
customers is non-Markovian. Second, price changes are
possible but costly within the selling season. Third, the
retailer has to jointly determine the initial stocking levels
and the pricing decisions within the season.
Non-Markovian demand has received almost no atten-
tion in the revenue management literature despite its
commonplace and importance in practice. The Markovian
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assumption holds for demand processes with relatively
low coefficients of variation. However, in cases where high
demand variances are observed (as in high fashion goods
or automobiles), non-exponential inter-demand arrival
time distributions are more appropriate. The main
difficulty with non-Markovian demand in revenue man-
agement appears to be modeling the price-sensitivity of
the demand process. On one hand, it is not easy to model
the demand process parameters as functions of price and,
on the other, it is not clear how one can adequately modify
the hazard rates if price changes are allowed between
demand arrivals.

Price change costs have largely been assumed negli-
gible in the revenue management literature. This may be
appropriate in certain settings, especially when the seller
takes a passive role in stimulating the demand. However,
when a seller takes an active role in promoting the
demand via advertisement and/or announcement of new
prices, the costs involved may not be negligible despite
advances in technology. Such costs associated with price
changes are also known in the economics literature as
“menu costs” with reference to the particular physical
costs of printing new menus at a restaurant or changing
labels at a store every time the prices are changed. The
existence of positive price change costs is known to create
stickiness in the prices and have direct effects on
economic output and welfare. (See Blanchard and Fischer
(1989) for a discussion of menu costs and their implica-
tions for macroeconomic decisions.) Despite their com-
monness and importance, the impact of menu costs has
not been explicitly investigated previously. It may be
intuitive that positive price change costs would result in
lower expected profits, but how they affect individual
pricing decisions over a particular demand realization
path is not clear a priori. Furthermore, it is interesting to
see how frequently price changes occur in an optimal
setting and the impact of change costs on this frequency.

In this paper, we revisit the dynamic pricing problem
for perishable assets in a stylistic fashion to address the
above issues. Typically, the dynamic pricing problem has
focused on merely the determination of the prices over
time but the determination of the size of assets (or, initial
inventory of items) is considered outside the scope of the
pricing decision. However, as we discuss below, some
works have considered such joint decisions as well; in our
numerical work, we also optimize jointly the initial stock
and the pricing decisions for certain settings.

The earliest work known to us on pricing a perishable
item with a fixed shelf life is Eilon and Mallya (1966).
Cohen (1977) considered joint pricing and ordering
policies in a special model with exponential decay and
deterministic demand rate. Later, Kang and Kim (1983)
and Aggarwal and Jaggi (1989) reformulated and extended
this model.

Gallego and van Ryzin (1994) provided one of the more
recent and seminal studies on revenue management with
multiple prices and unlimited price changes for Poisson
demand processes. In their work, the optimal pricing
policy was obtained in closed form for Poisson demand
processes. For general demand functions, they analyzed a
deterministic version of the problem and obtained an

upper bound on the revenue. With this upper bound, they
were able to develop a single price policy that is
asymptotically optimal when either remaining shelf life
or inventory volume is large. However, these approxima-
tions were criticized by Feng and Xiao (2000a) stating that
a large sales volume and a long remaining lifetime usually
smooth out the fluctuations in sales over the season. They
suggested that this situation is less likely when the
remaining time interval and remaining inventory become
small. They also implied that only a particular family of
demand functions (exponential) was investigated and the
results were not tested for small time intervals. For
general demand functions, Feng and Gallego (1995)
obtained the optimal revenue maximizing policy with
two prices and a single switch in a finite horizon yield
management setting. They dealt with the optimal timing
of the single price change from a given initial price. Feng
and Xiao (1999) incorporated a risk factor into the two-
price model. Feng and Gallego (1996) extended the model
by assuming time-dependent or Markovian demand and
fares. Feng and Xiao (2000b) modified Feng and Gallego
(1995)'s model for airline fares setting considering two
prices and a single switch assuming predetermined prices
and price sensitive demand following Poisson process. In
all of the above models, price reversal was not allowed
and pricing was either of markup or markdown form only.
Feng and Xiao (2000a) extended the work of Gallego and
van Ryzin (1994), by assuming one price to be offered at a
time among a list of predetermined values and with
reversible change in prices. Demand was taken as Poisson
process and strictly decreasing in price. The optimal prices
maximizing the revenues were computed based on the
length of remaining sales time and inventory.
Subrahmanyan and Shoemaker (1996) developed a
dynamic programming (DP) model for a periodic review
inventory system with uncertain demand and solved it
numerically using backward recursion. They incorporated
learning and updating of demand by observing the system
through previous periods and creating posterior demand
distribution via Bayes Rule. They discounted the max-
imum expected profit so as to find the stocking, reordering
quantities and pricing for items with a short sales season
such as fashion goods. Federgruen and Heching (1999)
analyzed a similar system for periodic review model in
which stockouts were fully backlogged. Rajan et al. (1992)
analyzed the dynamic pricing and ordering decisions for a
monopolistic retailer with continuous deterioration. The
perishing was formulated using a time dependent wastage
rate and value drop. They investigated linear and non-
linear demand cases and established propositions on the
optimal price changes and optimal cycle length. They
assumed that the seller knows the parameters of the
demand distributions with certainty and no learning or
revision of the demand distributions takes place during
the horizon. They also compared dynamic pricing with
fixed price policies and reported that the difference
between profits depends on the extent optimal dynamic
prices vary over the cycle. Zhao and Zheng (2000)
generalized the basic model of Gallego and van Ryzin
(1994) to include the customer reservations price dis-
tributions. They obtained the structural properties of the



680 E. Berk et al. / Int. ]. Production Economics 121 (2009) 678-699

optimal policies and established conditions on the
inventory- and time-monotonicity of the optimal prices.
For settings with multiple products or firms, we can cite
the recent works by Maglaras and Meissner (2006) who
considered dynamic pricing and capacity allocation
strategies and by Diai et al. (2005) who studied pricing
decisions for competing actors in a theoretic approach. For
a broader review of the theory and practice of revenue
management, we refer the reader to Talluri and van Ryzin
(2004).

In all of the works cited, price change costs were
assumed to be negligible. To the best of our knowledge,
Netessine (2006) is the only work where a restricted
number of price changes was considered. This restriction
alludes to a positive change cost but such costs were not
explicitly modeled. Moreover, Netessine (2006) assumed a
deterministic demand environment. Hence, we are una-
ware of any works that consider explicitly positive menu
costs in the presence of random demand arrivals. In our
work, we attempt to fill this gap.

Our work contributes to revenue management in a
number of ways. The first novelty in our work is that we
consider non-negligible price change costs and include
them directly in our model in astochastic setting.
The second fundamental difference between our work
and the existing models is the nature of the demand
process. We allow for the demand process to be described
by renewal processes. As such, our models are applicable
to not only Poisson demand but also to non-Markovian
demand processes. This generalization enables one to
model demand behaviors in settings where demand
distributions per time period may be dependent. Thirdly,
we make pricing decisions at demand arrival epochs. This,
as we shall see below, significantly changes the properties
of the revenue management model. Finally, we consider
joint optimization of initial stock and dynamic pricing as
modeled herein. The methodology we employ is DP.
However, we formulate our DP models over periods with
random durations, where demand occurrences constitute
pricing decision epochs. Based on our model, analytically,
we establish the conditions for the within-period ex-
pected profit to be concave in selling price, provide the
myopically and asymptotically optimal policy structures,
and show that the within-period and optimal expected
profit functions are concave in the remaining shelf life
under certain conditions. We also propose four imple-
mentable heuristics and examine their performances. In a
numerical study, we (i) supplement our theoretical
findings with illustrative examples, and present results
on (ii) the impact of the fixed price change cost and
various system parameters on the pricing and expected
profit profiles over the horizon, (iii) the sensitivity of the
optimal starting price and initial stock to various system
parameters, and (iv) the performance comparisons of the
heuristics.

The rest of the paper is organized as follows. In Section
2, the basic assumptions are presented and the problem is
formulated. Section 3 provides some theoretical results. In
Section 4, we introduce the heuristics and present the
results of our numerical study. We conclude with a short
summary and some possible future work.

2. Basic assumptions and the model

We consider a perishable asset inventory of Q items.
The items are withdrawn from stock either by unit
demands or perishing and there is no replenishment
opportunity during the horizon of the problem. All items
in stock have the same usable shelf life 7, which also
constitutes the horizon of the pricing problem. The initial
ordering and purchasing costs are considered sunk.
Without loss of generality, we assume that the items left
over (unsold) at the end of the horizon have zero salvage
value and incur a unit perishing cost of m, which may
include disposal costs. Each unit in stock held per unit
time incurs a holding cost of h and each unit sold brings in
a revenue equal to the selling price. All cash flows are
continuously discounted at a constant rate r. Therefore,
the discounted revenue for an item sold at price p after
being held x time units in inventory is given by pe~"™. For
the same unit, the discounted inventory holding cost is
given by h fg e~"dt, which equals h(1 — e~™)/r. For an item
that perishes at some time x, the discounted perishing
cost becomes 7e~"*. The assumption of constant discount
rate can easily be relaxed with time-dependent rates;
however, for problems of realistic horizon lengths,
discount rates are typically time-invariant. The demand
is assumed to be price sensitive and the arrival times of
unit demands constitute a renewal process for a fixed
selling price. We consider a general model for the
price-arrival time relationship and discuss two special
cases commonly encountered in literature. The pricing
objective is to maximize the expected discounted profit by
determining the selling prices dynamically over the
horizon for a given initial stocking level Q. Without loss
of generality, we assume that the beginning of the horizon
coincides with a (fictitious) demand arrival.

When the demand process is non-Markovian, the
selection of pricing decision epochs becomes important
from a modeling perspective. With non-Markovian de-
mands, standard periods of constant length introduce
memory and generate correlated demand distributions
within periods. Furthermore, if price changes are allowed
to be made between two consecutive demand arrivals, it is
not clear, in general, how one can adjust the demand
arrival time probability distribution for the remaining
times. To overcome such difficulties, we choose the
instances of demand arrivals as the pricing decision
epochs. Hence, inter-demand times are independent but
may not be identical random variables.

We assume that there may be a non-zero, fixed cost
associated with a price change. Let p and y be the new and
the previously set prices, respectively. Then, the price
change cost is C if y#p, and zero, otherwise. Such costs are
well-known in the economics literature as menu costs,
and correspond to costs incurred to inform the market of
the new prices, such as, expenses of advertising and
announcement, printing of price tags, catalogs, menus,
etc. Herein, we refer to these costs, interchangeably, as
menu or advertisement costs. We do not specify a priori
any directional restrictions on pricing decisions. Thus,
price reversals over the horizon are possible in our initial
formulations. The so-called bi-directional pricing
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decisions may indeed be optimal since they allow for the
greatest flexibility. However, in practice, decision-makers
sometimes restrict price changes to a particular
direction—markups or markdowns—only. Although
suboptimal from a purely analytical perspective, such
uni-directional pricing policies may be based on customer
relations or related managerial concerns.

The pricing problem at hand is formulated using a DP
approach. A “period” in our formulation corresponds to
the time between two consecutive demand occurrences or
the expiry of all items on hand, whichever occurs first.
As such, it is of random length governed by the demand
arrival process and the remaining shelf life of the items.
The number of items on hand, say n, and the remaining
shelf life, say 7, immediately after a demand arrival
constitute the stage. The transition from stage (t,,n) to
(thn —Xx,n — 1) occurs with a demand arrival after x time
units have elapsed since the beginning of the current
period and the transition to stage (0,n) implies that n
items on hand have perished at their expiry date (with no
demand arriving for 7, time units). Clearly, the selling
prices will be determined on the basis of the units on
hand and the remaining shelf life at the beginning of a
period.

Let I'n(tn,p) denote the within-period expected dis-
counted profit obtained starting with n items and
remaining shelf life of 7, when the selling price is set at
p for the period. Furthermore, let @,(t,,y,p) denote the
expected discounted profit when there are n items on
hand, the remaining shelf life is 7, y is the price
immediately after the last demand arrival, and the selling
price is set at p for the current period and optimal pricing
policy is employed for the remainder of the horizon; the
corresponding optimal expected discounted profit is
denoted by k}(t,,y) for convenience. We will denote the
cumulative distribution function (c.d.f.) of the general
inter-demand time by G,(x) and the complementary c.d.f.
by Gu(x), when price p = u is used. Throughout 1 p, is the
indicator function being equal to unity if y#p and zero,
otherwise. Then, we have:

eer

T'(tn.p) = / " pe ™ dGy(x) — / " i} —E dGy)
0 0
1—e"™ -1ty \
-n thrne ") Gp(Tn), @)
where T,<tforalln=1,...,Q, and
Kp(Tn,y) = mpax{@n(rn,y,p)}
= myax{ — Clpzy) + n(tn.p)
Tn
+/0 Ki_1(th —x,p)e™™ de(x)}. (2)

Clearly, x;(0,y)=—n= for all y and xj(x,y)=0 for all
x<t and y; and we set 7o = 7 initially.

Without loss of generality, we assume that, as the
problem horizon begins, the “past” price is set at zero.
Therefore, the optimal profit for an initial inventory of Q
items for a problem horizon of length t is given by
K5 (1, 0). Correspondingly, the optimal starting price would

be p* for given initial stock Q and shelf life 7. (Note that we
suppress the indices of state on price for brevity.)

The formulation above allows for various forms of
price-dependent demand inter-arrival times. Poisson
arrivals with price-dependent rate A(p), which has con-
stant price elasticity, is a common and general example,
where Gp(x) = e"*P*. Another example would be the
Weibull distributed inter-demand times; with Gy(x) =
e~®" In both of these examples, the scale parameter
A(p) can be any non-negative function decreasing in price.
A frequently used example is A(p) = b — ap, where a>0
and b are constants. In settings where the retailer also
makes the stocking decision, we have the joint optimiza-
tion problem J*(7) = maxqky(t,0) — v(Q), where v(Q)
denotes the net present value of the cost of acquiring
Q items.

3. Structural results

We begin with the result on the concavity of the
within-period expected profit with respect to the selling
price. (Most of the proofs are based on standard
optimization techniques, and are either omitted or briefly
sketched herein.)

Proposition 1 (Price-concavity). I'n(tn,p) is concave in p if
Gp(x) is monotonically non-decreasing and strictly convex
in p.

The conditions on G,(x) are satisfied for a number of
inter-demand distributions under some mild conditions.
For a Poisson demand process with rate A(p) = b — ap(>0),
where Gp(x) = e~*PX, the above result holds for all positive
a and b. For Weibull distributed inter-arrival times with
parameters A(p) and f(>1), where G,(x) = e the
above result holds if A(p) is decreasing and strictly concave
in p and f is an even integer. This property of I'n(tn,p)
enables us to specify the structure of the optimal pricing
policy for n = 1. It directly follows that the optimal pricing
policy for a single item consists of a three-parameter
(p*, P, py) policy which we state below.

Corollary 1 (Policy structures I). Suppose Gp(x) is mono-
tonically non-decreasing and strictly convex in p. For n>0
and any tp, let p*(tp, n) be the maximizer of I'n(tn, p); I'5(Tn)
denote the corresponding maximum; p;(tn,n) and py(Tn, n)
be the prices such that I'y(tn, pi(Tn, M) = 'n(Tn, py(Tn,N)) =
I'n(tp, p*(tn,n)) — C. For n=1 and any 1., it is optimal to
raise the selling price to p*(t1, 1) if the previous price was set
either (at or) below p;(tq,1) or (at or) above py(ty,1);
otherwise, it is optimal to keep the price in place.

The optimal policy above consists of three regions:
where the price is raised to a maximizer, where no price
change is optimal and where the price is reduced to a
maximizer. In Fig. 1, we plot the region of no price change
(between p;(t1,1) and py(tq, 1)) for n =1 as an example.
Note that the lower and upper price change limits,
pi(t1,1) and py(tq, 1), appear to be non-decreasing in t1;
also note that the difference between the two limits
appears to be decreasing in 7;. We have not been able to
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Fig. 1. Limits of no price change region between p;(t4, 1) and py(t;,1) for
n=1 (Poisson demands with A(p)=b—ap, a=0.01, b=3, n=5,
r=0.01, and C = 3).

demonstrate that the above three-parameter policy is
optimal for n> 1. However, it is the optimal myopic policy.

Corollary 2 (Policy structures IT). Suppose Gp(x) is mono-
tonically non-decreasing and strictly convex in p. For n>0
and any t,, let p*(tn, n) be the maximizer of I'n(ty, p); 'y (Tn)
denote the corresponding maximum; p;(tp,n) and py(ts,n)
be the prices such that I'y(ty, pi(tn, n)) = ['n(Th, py(Ta, N)) =
I'n(tn, p*(tn,n)) — C. For n>1 and any t,, it is myopically
optimal to raise the selling price to p*(ty,n) if the previous
price was set either (at or) below p;(tn,n) or (at or) above
pu(ta, n); otherwise, it is optimal to keep the price in place.

In our numerical results, we observed that there is a
single (p;(tn, n), py(Tn, n)) pair for all T, and n. The behavior
for these two limits observed for n = 1 also holds in our
experiments for all n.

Next we consider some properties of the problem with
respect to the remaining shelf life, 7,,. To this end, we state
below a boundedness condition for the inter-demand
arrival distribution.

Condition 1 (Hazard rate boundedness). The hazard rate
of the inter-demand arrival distribution Gp(x) satisfies the
following boundedness condition: gp(rn)/Cp(rn)>n(h —7r)/
(p + nm).

This condition is always satisfied if = > h/r, which has an
intuitive interpretation: if the cost of perishing for a unit is
more expensive than holding the unit in stock forever,
then, the expected discounted profit is increasing in the
shelf life for all demand distributions. Otherwise, the
result may not always hold. For Poisson demand pro-
cesses, it holds if prices are selected within a certain range
to guarantee the arrival rate to be greater than a particular

value. For Weibull inter-demand times, the condition gets
more stringent and less likely to hold: L)t~
>n(h — nr)/(p + nn).

Condition 2 (Shape condition). The shape of the inter-
demand arrival probability density function g,(x)
satisfies the following boundedness condition:
L g, (X)er,/ — 8p(Tn)>n(h — 7r)/(p + n70).

If the inter-demandarrival distribution has its hazard
rate and shape bounded as defined in the above condi-
tions, the within-period expected profit has some mono-
tonicity and concavity properties with respect to the
remaining shelf life. We state these below.

Proposition 2 (Shelf life monotonicity and concavity within
period). (a) Suppose only Condition 1 holds. Then, I'y(Ty,p)
is strictly increasing in t, for a given p for all T,<t and
n=1,2,...,Q. (b) Suppose both Conditions 1 and 2 hold.
Then, I'y(ty, p) is concave in T, for a given p for all T, <t and
n=1,2,...,Q.

Note that the conditions above are sufficiency condi-
tions for the within-period profit to be concave in the
shelf life. This result is consistent with the numerical
observations we had above on the behavior of the limits of
the “no price change”-region for n = 1 over 74, although
the above conditions were not necessarily satisfied in that
particular instance. It has been shown previously that the
expected discounted profit (or revenue) is non-decreasing
and concave in horizon length under continuous pricing
(Gallego and van Ryzin, 1994; Zhao and Zheng, 2000).
Below, we show that this property holds in our setting
under some (restrictive) conditions.

Proposition 3 (Horizon length sensitivity). Suppose both
Conditions 1 and 2 hold. Then, for m =0, Kj(tp,p) is
monotonically non-decreasing in t, for all p,tp,<t and
n=1,2,...,Q.

Proof. The construction of the proof is based on the
definition of a derivative and is sketched briefly below. Let
p*(x,n,y) denote the maximizer of @(x,y,p).

o i KT+ 6,Y) — 165(Th, )
EK,[(TnJ) = (l>123) 5

—lim @7t + 0.y, p* (T + 6,11.Y)) = On(T, Y, P*(Tn, 1Y)
T -0 B

>lim
00

On(Tn + 6,Y,P*(Tn, 1, Y)) — On(Tn, ¥, P*(T, 1, ¥))
5

=% @n(fn’ysp)|p=p*(r,,.n.y)>0~
The first inequality follows from the fact that y*(t,n, p)
may not be optimal. Taking the limit, we get the first
inequality that 0/0tnic;(Tn,P)=  8/0TnKn(Tn, Y)ly—y (o np)-
To establish the last inequality, we proceed inductively.
From Proposition 2, we have I',(t,, p) is concave in 7, for
all n and p. Clearly, this holds for n = 1; and implies that, if
K3j(t1,p) is non-decreasing in 7y, then so is x3(t2,p).
Suppose i (ty, p) is non-decreasing in t, for n> 1, then the
last inequality holds. The result follows inductively. O

Hence, in the pricing problem where price decision
epochs are restricted to coincide with demand arrivals,
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one cannot always guarantee monotone behavior and/or
concavity with respect to the shelf lives of items. Although
the monotonicity result above is subject to certain
conditions, we have observed that the expected dis-
counted profit is monotone and non-decreasing for the
cases we examined via numerical analysis (e.g., Fig. 6 (b)).

4. Numerical study

In the experiments reported herein, we assume that
demands are generated according to a Poisson process
with a price-sensitive rate A(p) = b — ap. We considered
a=0.01,0.05,0.10, b = 3,4, = = 5,10,20, C =0,5,10, 25,
r=0.01,0.1,0.25,0.5. We set h = 1 and varied T between
0 and 10. We have taken acquisition costs to be linear,
v(Q) = ¢,Q where ¢, = 0,0.3/a. The optimal pricing policy
obtained from the DP formulation provides a list of prices
as demands occur over time for every state of the system
given by (n,t,,y) as defined before. In the absence of a
known optimal policy class, in order to obtain the optimal
dynamic pricing solutions, we used exhaustive search
over the permissible price range with increments of 0.01
and 1. Preliminary studies indicate that the goodness of

a
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the solution does not depend much on the size of the
search increment; but, the solution time is significantly
dependent on it. (The same search routine was used for
the heuristics, which are discussed later, except for
Heuristics I and IV, for which the golden section search
method was employed.) Problem horizon length was
discretized by increments of 0.01 time units.

4.1. Sensitivity analysis

It is interesting to see how the prices and the
corresponding values of the expected profit-to-go function
evolve over the problem horizon. However, it is impos-
sible to list all the pricing decisions for all possible
demand realization instances. Hence, in order to examine
the resulting price and profit-to-go profiles, we instead
highlight three demand realization sample paths among
all possible sequences considered in the solution: arrivals
occurring early in the horizon, arrivals grouped in the
middle of the horizon and, lastly, arrivals coming later in
the horizon. The pricing profiles of interest are the optimal
prices chosen for that state (i.e., the number on hand and
the remaining shelf life) after each demand occurs and a
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Fig. 2. Optimal pricing trajectories for early-middle-late arrival patterns (a = 0.01,b = 3, 7 = 15, r = 0.1): (a) no menu cost, C = 0; (b) positive menu cost,
C =5 and bidirectional price change allowed; (c) positive menu cost, C = 5 and markups only.
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unit is sold. Each pricing and profit-to-go profile gives an
indication of the responsiveness of the problem to
changes in its state. The price profile directly illustrates
the price ranges considered to manage the demand, as
well. We present some examples below for different
system and cost parameters to gain insights about the
pricing dynamics of the problem.

In Fig. 2 (a), we illustrate a case with no price change
cost. This case constitutes a benchmark for two reasons.
First, it enables the maximum profit due to complete
freedom of price changes, and hence, it provides an upper
bound on the objective function. Second, it is the cost
structure that has been previously considered in the
literature. With zero menu costs and continuous review,
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Fig. 3. Impact of 7 on price profiles for early-middle-late arrival patterns (a = 0.01, b = 3, r = 0.1): (a) zero menu costs, C = 0; (b) positive menu costs,
C =5, and bidirectional price changes allowed; (c) positive menu costs, C = 10, and bidirectional price changes allowed.
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from Gallego and van Ryzin (1994), we know that prices
exhibit the following monotone behavior: for any given
remaining lifetime, prices are decreasing in the number
on hand. Our numerical experiment differs from their
setting in that we restrict price change decisions to
coincide with demand arrival epochs. The overall behavior
of pricing decisions in our results supports their finding.
As arrivals occur, the pricing tends to get more aggressive.

685

Yet, the remaining time in the horizon also plays an
important role. This is most apparent in the middle
realization. Here, there is aggressive pricing as demands
occur in rapid succession but prices are reduced drasti-
cally as one approaches the end of the horizon to lessen
the costs of perishing.

In Fig. 2 (b), we present the corresponding price
profiles when a positive price change cost (menu or
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Fig. 4. Impact of r on price profiles for early-middle-late arrival patterns (a = 0.01, b = 3, = = 15): (a) zero menu costs, C = 0; (b) positive menu costs,
C =5, and bidirectional price changes allowed; (c) positive menu costs, C = 10, and bidirectional price changes allowed.
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advertising cost) is introduced. When changes are costly,
there is much less nervousness in pricing, as
expected, even for a modest value of menu costs.
As the price change cost increases, the number of price
change decisions quickly diminishes over the horizon.
Since price changes are costly, they are reserved for
actions that may bring in the most contribution to
compensate for the fixed menu costs. As fewer price
changes become desirable, so do upward price move-
ments. In the profiles shown, all price movements are in
one direction (upwards) over the horizon although we

allow for bi-directional movements. The timing of these
price changes also exhibits a lag compared to the case of
no menu costs;price change decisions are postponed to
reduce their cost impact through discounting.

In Fig. 2 (c), we give the corresponding profiles when
we deliberately restrict the price movement to one
direction—markups only. Comparing with the bidirec-
tional case, we do not see discernible difference for the
sample paths when arrivals group in the middle and later
in the horizon. But when demands come early in the
horizon, pricing is more aggressive. This again can be

1400 70 50
——r=0.1
—o—rfO.25
1200 60 —=—r=05 45
1000 50 40
g g g 35
& 800 £ 40 5
= = T 30
£ 600 E 30 £
S g g 25
400 20 20
200 f—c=v 10 15
——C=5
——C=10
0 0 10
109 87 6 543210 109 87 6 543210 109 876 543210
Remaining shelf life Remaining shelf life Remaining shelf life
1400 50 *f=8;5 40
——r=
1200 45 —r=05 35
40
1000 30
b= g 35 =
o [ 5]
s 800 3 30 s 25
© © T
£ 600 £ 25 E 20
o o o
© O 20 )
400 15
15
200 10 10
0 5 5
109 87 6 543210 109 87 6 543210 M09 87 6 543210
Remaining shelf life Remaining shelf life Remaining shelf life
1400 50 30
1200 40 20
30 10
1000
g g 20 g 0
o o o
5 800 8 10 S -10
[o] © ©
£ 600 £ o0 £ 20
o o Q.
o © -10 O -30
400
-20 -40
200 - ri%
820 -30 =50 | ——n=15
——C=10 ——n=20
0 -40 -60

109876543210
Remaining shelf life

109876543210
Remaining shelf life

109 87 6 543210
Remaining shelf life

Fig. 5. Impact of system parameters on expected profit-to-go function values for early-middle-late arrival patterns. (Left: a = 0.01,b = 3, 7 = 10, r = 0.10;

center: a =0.10, b =3, 7 =10, C = 10; right: a = 0.10, b =3, r = 0.25, C = 5).
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explained through the lessened impact of perishing
toward the end of the horizon.

When we considered only markdowns, we saw that, in
all three arrival patterns, a single price (150) was selected
throughout! This behavior is consistent with the above
observations. As demands occur (and, by definition, the
remaining shelf life gets smaller), higher prices are
desired; if they are not permissible, then a trade off is
achieved between losing some early sales but gaining
later in the horizon with higher prices.

In Figs. 3-5, we (i) give further examples to highlight
the impacts of the unit perishing cost r, and the discount
rate r, with and without price change costs on the
dynamic price profiles, and (ii) plot the profit-to-go
function for certain scenarios to illustrate its sensitivity
with respect to various system parameters. Fig. 3 shows
that the impact of 7 is not significant on the optimal price
profile when price changes are not costly. When price
changes are costly, differentiation emerges. The introduc-

Table 1
Sensitivity results w.r.t. system parameters for 1 and 5 items.

tion of positive price change costs results in a decrease in
the number of price changes over the horizon, as
expected. For the arrival pattern with late arrivals, we
see the price profile is that of a single price. However, the
impact of higher unit perishing costs is not discernible on
the profit-to-go function values when price change cost is
zero. The insensitivity of the profit-to-go is consistent
with one’s expectation that optimal pricing would
attempt to reduce perishing to minimize costs.

As the menu cost is introduced, however, there may be
some cases where the sensitivity of the expected profit-
to-go function is significant (e.g., Fig. 5). The impact of the
discount rate is quite large on the actual pricing decisions,
as expected (see Fig. 4). It is interesting to note that the
direction of the pricing decisions is similar in the portions
of problem horizon where demand groupings occur
regardless of the discount rate. The introduction of
positive price change costs results in a decrease in the
number of price changes over the horizon in this case as

b a T 1 Item 5 Items
n=>5 n=10 =20 n=>5 =10 n =20
p* K* p* K* p* K* p* K* p* K* p* K*

0.5 172.52 76.65 170.84 7414 167.51 69.20 146.73 87.77 14432 67.65 139.51 27.58
2.5 22064 173.43  220.10 172.90 219.04 171.85 155.91 453.80 154.38 447.01 151.38 433.75
0.01 5.0 24058 197.97  240.36 197.82  239.94 197.51 181.78 667.80 181.26 665.91 180.24 662.25
7.5 24837 20437 24828 20432 248.09 204.22 197.18 743.18 196.99 742.56 196.63 741.37
10.0 251.60 206.19 251.56  206.17 25149  206.15 204.11 769.19 204.05 768.98  203.92 768.58

0.5 33.09 13.07 31.46 10.69 28.35 6.21 0 - 0 - 0 -
2.5 43.44 33.49 42.95 33.01 42.04 32.14 29.40 79.59 27.99 73.53 25.44 62.71
3  0.05 5.0 47.56 38.38 47.37 38.25 47.01 38.00 35.06 123.76 34.62 122.19 33.85 119.40
7.5 49.10 39.58 49.02 39.54 48.87 39.47 38.17 138.31 38.02 137.83 37.77 136.96
10.0 49.70 39.90 49.67 39.89 49.61 39.87 39.46 142.98 39.41 142.83 39.33 142.55

0.5 15.68 5.17 14.12 2.93 0 - 0 - 0 - 0 -
25 21.32 16.03 20.87 15.61 20.10 14.89 13.64 33.21 12.38 27.92 10.30 19.34
0.10 5.0 23.45 18.47 23.28 18.36 22.99 18.16 16.77 56.06 16.41 54.78 15.85 52.71
7.5 24.21 19.02 2414 18.99 24.02 18.94 18.33 63.00 18.22 62.63 18.04 62.02
10.0 24.48 19.16 24.46 19.15 2442 19.13 18.91 65.04 18.88 64.94 18.82 64.75
0.5 239.61 126.86  238.10 124.74  235.12 120.54 195.64 175.39 193.25 156.46 188.46 118.78
2.5 30798 254.82 307.57 25443 306.75 253.67 220.78 769.95 219.62 765.20 217.34 755.92
0.01 5.0 33220 282.22 332.05 28212 331.75  281.92 262.18 1038.36  261.86 1037.23  261.24  1035.01
7.5 340.77 28846  340.71 28843  340.59 288.38 280.24 1115.60 280.14 1115.28  279.96 1114.64
10.0 343.87 28996 343.85 289.96 343.81 289.94 286.73 1137.85  286.70 1137.76  286.65 1137.57

0.5 46.65 23.43 45.19 21.40 42.39 17.55 37.11 18.25 0 - 0 -
2.5 61.04 49.95 60.65 49.59 59.93 48.93 42.70 144.94 41.64 140.66 39.71 132.91
4 0.05 5.0 65.97 55.37 65.83 55.28 65.56 55.11 51.37 199.17 51.10 198.19 50.61 196.42
7.5 67.65 56.54 67.59 56.52 67.49 56.48 54.92 213.91 54.84 213.64 54.69 213.15
10.0 68.22 56.80 68.20 56.80 68.17 56.79 56.10 217.88 56.08 217.81 56.04 217.67

0.5 22.55 10.54 21.15 8.62 18.54 5.15 0 - 0 - 0 -
25 30.18 24.36 29.83 24.04 29.20 23.48 20.49 67.07 19.54 63.28 17.96 56.97
0.10 5.0 32.70 27.04 32.57 26.97 32.35 26.83 25.05 94.46 24.82 93.64 2445 92.26
7.5 33.51 27.58 33.47 27.56 33.39 27.53 26.77 101.40 26.71 101.19 26.60 100.82
10.0 33.77 27.69 33.76 27.69 33.74 27.68 27.30 103.13 27.28 103.08 27.25 102.98

Dynamic pricing with no menu costs (r = 0.1).
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Fig. 6. Optimal starting prices and expected discounted profit versus remaining shelf life (a = 0.01, b=3, 7 =5,r =0.10, C = 0).

well. The expected profit-to-go function is also sensitive to
the discount rate (e.g., Fig. 5). Both @ and r impact the
profit-to-go function in a way to exacerbate the inherent
trends; that is, a decrease or an increase is exaggerated as
either 7 or r increases. Overall, we should point out the
highly non-linear behavior of the expected profit-to-go
function with respect to remaining shelf life at every
demand arrival instance. This is due to the changes in both
the remaining shelf lives and the number of units on hand
at each decision epoch. The sudden changes are most
commonly observed for the late arrival pattern and for
high values of r and C. Although the overall behavior of
K*(t,0) with respect to T was numerically observed to be
smooth and non-decreasing, the profit-to-go functions at
each demand instance are not smooth and not monotone.

Having examined the components, we now turn to the
entire optimization problem. In Table 1, we display some
instances to illustrate the overall sensitivity of the optimal
starting price and the expected discounted profit to
various system parameters. (See also Fig. 6.)

The optimal starting price is increasing in 7, the base
demand level b, and is decreasing in price sensitivity a,
unit perishing cost 7 and initial stock size, Q. The optimal
expected discounted profit is increasing in 7, the base
demand level b and initial stock size Q, and is decreasing
in price sensitivity a and unit perishing cost 7. The results
are intuitive and support the theoretical properties
discussed above.

When we consider joint optimization of initial stock
and pricing, for every horizon length, there is an optimal
initial stocking level, Q*, that maximizes the expected
discounted profit; Q* = arg maxqky (T, 0). This level is
important for a retailer that needs to allocate shelf space
for individual products. In Table 2, we present, for
different system parameters, the optimal initial stocking
levels, the optimal expected discounted profits and the
corresponding optimal starting prices.

The optimal initial stock at a given remaining lifetime
is non-increasing in the slope of the demand rate a when

everything else is fixed. Particularly, when the demand
rate decreases, the optimal initial stock decreases if the
remaining lifetime is long enough so that a demand is
likely to occur. This result is similar for the base demand
rate, b. Also, Q" is non-decreasing in the remaining
lifetime. For any stocking level, the optimal starting price
and the expected discounted profit is increasing in the
remaining lifetime. The latter is an important numerical
observation because it holds only under specific condi-
tions as discussed above. Similar observations hold for
positive acquisition and price change costs, as well.

4.2. Proposed policy heuristics

From a practitioner’s perspective, easily implementa-
ble heuristics may be as desirable as the optimal solution,
if not more so given that the optimal pricing policy can be
found only through exhaustive numerical search. Hence,
we propose four implementable policy heuristics and
examine their performances with respect to the optimal
solution. Each heuristic is based on an approximation
of the optimization problem given in Eq. (2) and uses
the optimal pricing for the corresponding approximate
problem.

Constant pricing policies have been used as a bench-
mark although they are clearly suboptimal vis a vis an
unrestricted policy, (e.g. Rajan et al., 1992; Gallego and van
Ryzin, 1994; Federgruen and Heching, 1999; Feng and
Xiao, 2000a). In the case of Markovian demands, the fixed
price heuristic has been shown to be asymptotically
optimal for undiscounted revenue maximization with
zero unit holding costs when the number of items to sell
is large and the remaining shelf life is accordingly long.
A similar result holds in the case of non-Markovian
demands as stated below.

Proposition 4 (Asymptotically optimal single price heuris-
tic). For r = h =0, a single price (constant pricing) policy
heuristic is asymptotically optimal as t,— oo for all n.
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Table 2
Optimal starting price, initial stock and expected profit.
b a T n=>5 n =10 m =20
Q' p* o Q* p* K* Q" p* K
0.5 3 147.84 96.90 2 150.45 89.90 2 146.09 77.50
25 7 147.82 470.13 7 145.93 457.28 6 145.54 438.26
0.01 5.0 11 147.48 840.17 11 146.12 829.02 10 146.35 809.68
7.5 15 146.34 1123.95 15 145.33 1114.49 14 145.59 1098.20
10.0 19 145.04 1339.50 18 145.84 1331.86 18 144.50 1319.06
0.5 2 28.68 13.63 1 31.46 10.69 1 28.35 6.21
2.5 5 29.40 79.59 5 27.99 73.53 4 28.09 66.16
3 0.05 5.0 9 28.70 141.67 8 29.06 137.26 7 29.50 130.15
7.5 11 29.61 185.35 11 29.12 182.20 10 29.59 177.03
10.0 14 29.12 214.59 14 28.81 212.36 13 29.23 209.31
0.5 1 15.68 5.17 1 1412 2.93 1 0 -
2.5 4 14.77 33.97 4 13.74 30.51 3 14.17 26.38
0.10 5.0 7 14.69 60.08 7 14.15 57.48 6 14.54 54.25
7.5 9 14.93 76.16 9 14.67 74.77 9 14.30 72.59
10.0 11 14.76 85.24 11 14.63 84.48 11 14.44 83.29
0.5 3 198.82 181.06 3 196.51 171.43 2 202.40 154.68
2.5 9 194.63 859.31 9 192.73 843.67 8 192.24 818.66
0.01 5.0 15 190.61 1541.34 15 189.16 1526.25 14 188.78 1501.17
7.5 21 186.43 2072.38 20 186.94 2059.96 19 187.18 2038.07
10.0 26 183.90 2484.05 25 184.59 2473.96 25 183.05 2456.00
0.5 2 39.97 29.26 2 37.96 24.00 1 42.39 17.55
2.5 7 38.59 152.82 6 39.03 144.89 6 36.69 133.73
4 0.05 5.0 12 37.93 272.59 11 38.30 265.95 10 38.64 255.86
7.5 16 37.81 359.30 16 37.23 35445 15 37.46 347.25
10.0 20 37.36 420.15 20 37.00 416.90 19 37.33 412.02
0.5 2 18.92 11.63 1 21.15 8.62 1 18.54 515
25 6 19.15 68.31 5 19.54 63.28 5 17.96 56.97
0.10 5.0 10 19.27 120.49 10 18.68 116.75 9 18.94 111.79
7.5 14 18.85 154.85 13 19.24 152.51 13 18.81 149.29
10.0 17 18.78 175.77 16 19.15 174.51 16 18.94 172.72
Dynamic pricing with no acquisition and menu costs (r = 0.1).
Proof follows from the fact that, with r=h=0, as - e e 1—e ™
A g . In(tn,p) = pe ™ dG™(x) — h——— dG™(x)
T — oo, the optimization problem with n items on hand 0 4 0 r 4
reduces to Kj(oc0,y) = maxy — Clyxp) + P + K5 (c0, p); B h] —e T + e E(n)(r ) (5)
and, that starting with n = 1 and by induction, the optimal r p Q)

pricing decision is found to be a fixed price independent
of n.

In the presence of non-zero discount rate and unit
holding cost, such an asymptotic result does not hold.
Nevertheless, the optimal constant pricing policy can be a
reasonable and easily implementable heuristic policy.
Hence, we propose the single price policy as Heuristic L.
Under this heuristic, only a single price is used throughout
the horizon, and the following optimization problem is
solved:

K (Tq, 0) = max, O} (ts,0,p), (3)
where

I 2 '
@n(Tna Oap) = _Cl(p#o) + ZFH(TQap)v (4)

n=1

and G;,”)(x) denotes the nth convolution of G,(x). Heuristic
is appealing in its simplicity and is amenable to obtaining
analytical solutions for certain demand distributions.
(See Yildirim, 2001.)

The second heuristic we propose, Heuristic II, is a
myopic (single-period-look-ahead) policy, under which
we use the pricing policy maximizing the within-period
profit I'n(tn, p) in any period n. That is, Heuristic Il uses the
optimal prices obtained for the following optimization
problem:

K (Tn,y) = max, O} (tn,y. p). (6)
where
OnP.1n.Y) = —Cliysp) + Ln(Tn. D). (7)
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Note that @;’(T,,, y,p) is constructed by setting the
expected profit-to-go function in Eq. (2) equal to zero
from period n — 1 through period 1.

By design, Heuristic II ignores the rest of the horizon
beyond the current period, say, n; thus, it effectively
assumes that the remaining n— 1 items have no con-
tribution. It is an easily computable heuristic, and as such
it is appealing; but it may suffer from extreme myopia. We
propose two modifications of it by taking into considera-
tion the remaining horizon.

Heuristic Il is a modification of the myopic policy
which uses the optimal prices obtained for the following
optimization problem:

and &},_;(tn — X, p) is the optimal profit function as defined
in Eq. (2) with menu costs set to zero (C = 0) from period
n — 1 to the end of the horizon. The rationale behind this
heuristic is to consider the best possible profit-to-go
values beyond the current period. It assumes that
the remaining n — 1 items make the maximum possible
contribution given the market characteristics (i.e., price
sensitivity and demand uncertainty).

Lastly, we propose Heuristic IV—a modification of
Heuristic —which uses the optimal single price policy
computed successively for each segment of the remaining
horizon from period n to the end. Under this heuristic, at
every period n with remaining shelf life t,, for 1<n<Q,
the optimal single price is obtained by solving the

. i - Lo ]
Kgl (tn,y) = max,OM (t0,y,p), (8) following optimization problem:
v+ v
where Ky (Tn,y) = maxp©y (tn,y,D), (10)
u where
Oy (tn,¥,p) = — Clyp) + I'n(Tn, p)
o v -
+ /0 Ry_1(tn — X, p)e™™ dGp(x) (9) 0y (10, ¥,0) = —Clysp + Y Tj(Tn, p), (11)
j=1
Table 3
Optimal starting price, initial stock and expected profit.
b a T T=>5 =10 =20
Q b o+ Q b - Q b .
0.5 1 173 48.13 1 171 45.51 1 168 40.34
2.5 5 162 350.15 5 160 341.43 4 168 329.43
0.01 5 8 165 739.23 8 164 730.39 8 161 713.28
7.5 12 161 1120.56 12 160 1109.58 1 164 1089.79
10 15 162 1487.43 15 161 1476.86 15 160 1456.75
0.5 1 33 7.27 1 31 4.78 1 28 0.10
2.5 4 33 59.80 4 32 54.59 3 33 48.69
3 0.05 5 7 34 123.45 7 33 117.63 6 34 109.70
7.5 10 34 180.50 9 35 174.78 9 34 166.64
10 12 35 230.98 12 34 226.13 11 35 218.25
0.5 1 16 2.21 0 - 0 0 - 0
2.5 3 17 25.14 3 16 22.36 2 17 18.21
0.10 5 6 17 51.03 5 18 47.71 5 17 43.71
7.5 8 18 71.76 8 17 68.79 7 18 65.04
10 10 18 87.71 10 18 85.21 9 18 82.45
0.5 2 215 114.02 2 213 108.28 2 209 96.90
2.5 7 209 722.07 6 216 710.63 6 212 693.34
0.01 5 12 207 1498.94 12 206 1485.08 11 209 1459.69
7.5 17 204 2264.72 17 203 2249.70 16 205 2221.27
10 20 210 2996.44 20 209 2984.59 20 208 2961.88
0.5 1 47 17.83 1 45 15.70 1 42 11.68
2.5 6 43 128.83 5 44 121.73 5 42 111.24
4 0.05 5 10 44 262.57 10 43 254.44 9 43 241.29
7.5 15 42 387.44 14 43 378.96 13 43 365.44
10 19 42 502.17 18 43 494,01 18 42 481.56
0.5 1 23 7.68 1 21 5.68 1 18 2.06
2.5 5 22 57.29 5 21 52.16 4 21 46.22
0.10 5 9 22 114.08 8 23 108.53 8 22 101.35
7.5 13 22 162.62 12 22 157.63 1 23 150.73
10 16 22 203.28 15 23 199.17 15 22 193.48

Dynamic pricing (r = 0.01, ¢, = 0.3/a, C = 10).
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and

F(rn,p) / pe*”‘dGU)(x) / h dGU)(x)

_ <h£+ *”ﬂ)c (Tn). (12)

=

The rationale behind this heuristic is to consider a
reasonable lower bound on the possible profit-to-go
values beyond the current period. It assumes that the
remaining n — 1 items make some reasonable contribu-
tion. Heuristic I may also be viewed as a special case of
this heuristic.

Due to their design, we would expect Heuristic III to
perform better than Heuristic II, and Heuristic IV better
than Heuristic I. This is confirmed by our numerical study
as discussed below. The optimal pricing policies for all of
the proposed heuristics are, under certain conditions, of
the three-region type introduced in Section 3. We state
this result formally below.

Corollary 3 (Optimal pricing for the policy heuristics).
Suppose the conditions in Corollary 1 hold for Gg”(x) where

Table 4
Optimal starting price, initial stock and expected profit.

691

1<n<Q; and, furthermore, d/dpGp(x) is convex in p when
i = III (i.e., for Heuristic IIl). Then, for i =1, 11, III, IV:

(a) @;(rn,y,p) is C-concave in p;

(b) For n>0, any t, and i=1, II, I, IV, let p*(t,,n)
be the  maximizer of @;(fn,y,p) and
o W(Th,Y, p*"(‘rn,n y)) denote the corresponding
maximum; pL('cn,n) and pU(rn,n) be the prices such
that O} (tn, Y, pi(Tn, )= 0Ok (T, Y, Ply(Tn, M) = O} (T,
y,p*(tn, n,y)—C. It is optimal to raise the selling
price to p*'(tn, n,y) if the previous price was set either
(at or) below pi(ty,n) or (at or) above pi(ty,n);
otherwise, it is optimal to keep the price in place.

The results for Heuristic II immediately follow from
Corollary 2. For the other heuristics, they follow from the
supposed convexity properties of G,(x) and d/dpGp(x) and
their proof is similar to that of Corollary 2.

Next, we compare the performances of the dynamic
pricing policy and the proposed heuristics. With each
policy heuristic, we obtained its optimal pricing decisions

b a T n=>5 =10 n =20
Q* p* K* 0" p* K Q* p* K*

0.5 1 172.67 4813 1 170.95 45.51 1 167.54 40.34
2.5 5 164.01 347.77 4 172.58 339.25 4 169.94 327.71
0.01 5.0 8 170.09 729.91 8 168.85 720.67 8 166.45 702.78
7.5 12 167.47 1099.56 12 166.29 1087.76 11 169.78 1067.58
10.0 15 169.69 1452.80 15 168.68 1440.93 15 166.73 1418.08
0.5 1 33.08 7.27 1 31.42 4.78 1 28.23 0.10
2.5 4 33.37 59.57 4 32.14 54.33 3 33.38 48.57
8 0.05 5.0 7 34.08 122.64 7 33.14 116.76 6 33.74 109.10
7.5 10 34.23 178.54 9 34.97 173.24 9 33.79 164.60
10.0 12 35.37 227.80 12 34.78 222.51 11 35.12 214.42

0.5 1 15.66 2.21 0 - 0 0 - 0
25 3 17.40 2512 3 16.50 22.35 2 17.38 18.21
0.10 5.0 6 17.23 50.78 5 17.77 47.56 5 16.83 43.52
7.5 8 17.84 71.32 8 17.35 68.37 7 17.58 64.66
10.0 10 18.13 86.99 9 18.50 84.79 9 17.96 81.56
0.5 2 214.92 113.65 2 212.96 107.90 2 209.04 96.51
2.5 7 213.87 710.86 6 221.67 700.96 6 218.79 683.14
0.01 5.0 12 216.56 1460.11 12 215.14 1445.29 11 219.34 1420.99
7.5 17 216.97 2183.69 16 220.87 2167.56 16 218.63 2139.20
10.0 20 225.37 287211 20 224.39 2857.52 20 222.48 2829.23
0.5 1 46.67 17.83 1 45.18 15.70 1 42.31 11.68
2.5 6 4311 127.42 5 44.54 120.78 5 42.43 110.19
4 0.05 5.0 10 44.64 257.78 10 43.65 249.24 9 44.03 236.52
7.5 14 45.21 376.17 14 44.41 367.40 13 44.62 353.75
10.0 18 45.45 482.77 17 45.98 474.08 17 44.88 460.47
0.5 1 22.54 7.68 1 21.11 5.68 1 18.44 2.06
25 5 22.07 56.80 4 22.87 51.75 4 21.38 45.92
0.10 5.0 9 22.46 112.49 8 22.86 107.26 8 21.75 99.85
7.5 12 23.30 159.40 12 22.74 154.47 11 22.82 147.40
10.0 15 23.74 197.94 15 23.31 193.62 14 23.38 187.27

Heuristic I (r = 0.01, ¢, = 0.3/a, C = 10).
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at any system state given by (n,t,,y) as defined before.
Using these prices, we then evaluated the corresponding
expected discounted profit in the presence of menu costs;
and, searched for the best system profit over the initial
stocking level Q, with given acquisition costs. We denote
this value by rq-(z, pj.) for Heuristic i, (i = I, I, II, IV). We
define Ax* to be the relative optimal discounted expected
profit improvement as follows:

d i
_ Kq:(T,p) — Kqr(T, )
= =

KQ* (‘E,pQ*)

Ax* x 100, (13)

where superscript d refers to dynamic pricing and i refers
to Heuristic i. i=1, II, Ill, IV. Note that we allow for
different optimal initial stocking levels in our comparisons
in the presence of non-negligible acquisition costs
(Q)=>0).

In Tables 3-7, we present illustrative examples of the
optimal stocking levels, starting prices and the corre-
sponding expected profits under dynamic pricing and the
proposed heuristics. The best initial stocking levels, Q*
under all four heuristics are never larger than the optimal;

Table 5
Optimal starting price, initial stock and expected profit.

Heuristic II results in significantly lower levels of initial
stock. The impact of menu cost and discount rate on Q" is
not discernable. The best starting prices, p* are, typically,
lower under Heuristics I, I and IV, and are higher under
Heuristic II than the prices under the dynamic pricing
policy. Heuristic IV results in the optimal starting prices
for many of the experiments. The deviation from the
optimal starting price decreases (respectively, increases)
for heuristics I, II, III (respectively, IV) as menu cost and
discount rate increase. The results on p* and Q* comple-
ment each other: as the pricing decision gets more
myopic, the system tends to compensate for this aggres-
sive behavior by holding less stock hedging against excess
unsold stocks.

Tables 8-19 provide comparisons of the heuristics with
respect to optimal solutions in terms of Ax*. The one-
period-look-ahead policy, Heuristic II, has the worst
performance among the tested heuristic policies. As
expected, it worsens with lower discount rates and
improves with higher menu costs. Its overall performance
tends to improve as price sensitivity a increases and base
demand rate b decreases. Ax* is initially increasing but

Table 6
Optimal starting price, initial stock and expected profit.

b a T m=5 =10 =20 b a T n=>5 =10 =20
Qo p oK Qo p oK Qo p oKt Q* p x* 0" p* K Q* pt oKt
0.5 1 173 4813 1 171 45,51 1 168 4034 05 1 173 4813 1 171 45.51 1 168 4034
2.5 3 221 285.16 3 219 283.70 3 216 278.66 2.5 5 157 349.35 5 155 340.54 4 161 328.29
0.01 5.0 5 243 501.58 5 242 501.48 5 239 504.94 0.01 5.0 8 161 737.22 8 160 728.51 8 157 711.35
7.5 6 254 662.27 6 253 667.67 6 251 675.91 7.5 12 158 1117.52 12 156 1106.13 11 160 1086.54
10.0 8 258 812.04 8 258 811.04 8 256 829.95 10.0 15 159 1482.44 15 158 1472.00 15 156 1451.66
05 1 33 7.27 1 31 4.78 1 28 0.10 05 1 33 7.27 1 31 4.78 1 28 0.10
25 3 42 5275 3 41 4953 3 38 45.66 25 4 31 59.10 4 30 54.00 3 31 48.04
3005 50 5 46 91.70 5 45 9022 4 45 85.09 3005 50 7 32 12222 7 31 116.28 6 32 108.85
75 6 47 131.33 7 46 12637 6 46 123.84 75 9 33 176.32 9 33 172.81 9 32 164.58
100 10 45 176.27 7 47 166.37 8 46 16241 100 11 34 22414 12 32 220.26 11 33 213.65
05 1 16 2.21 0o - 0 0o - 0 05 1 16 2.21 0o - 0 0o - 0
25 3 20 2327 3 19 20.65 2 19 17.64 25 3 16 2473 3 15 21.90 2 17 18.21
010 50 5 21 4531 5 21 3998 4 21 37.21 010 50 6 16 50.22 5 17 4743 5 16 4334
75 7 21 64.71 7 21 5929 6 21 56.94 75 8 16 68.94 7 17 6730 7 17 64.75
100 9 20 85.20 9 20 81.56 7 21 75.78 100 9 17 83.71 9 17 82.82 9 17 81.05
0.5 2 238 111.33 2 235 105.82 2 229 9489 0.5 2 209 113.88 2 207 108.13 2 202 96.69
2.5 4 309 538.95 4 307 538.36 4 304 533.97 2.5 7 203 720.87 6 210 709.37 6 207 692.09
0.01 5.0 7 336 897.58 7 335 900.78 7 332 913.37 0.01 5.0 12 202 1495.60 12 200 1481.64 11 204 1456.69
7.5 8 349 1167.26 8 348 1179.91 8 346 1200.07 7.5 17 198 2257.38 17 196 224190 16 200 2214.79
10.0 10 354 1406.64 9 354 1422.88 10 352 1448.54 10.0 20 204 2985.48 20 203 2973.64 20 201 2950.86
05 1 47 17.83 1 45 15.70 1 42 11.68 05 1 47 17.83 1 45 15.70 1 42 11.68
25 4 60 99.27 4 58 99.11 4 56 92.73 25 6 40 127.63 5 42 12094 5 39 109.74
4 005 50 5 65 164.88 5 64 16747 5 63 166.22 4 005 50 10 41 258.87 10 40 250.69 9 41 238.23
75 9 65 23431 8 65 236.52 7 65 23221 7.5 14 41 37936 14 40 37091 13 41 358.58
10.0 13 63 324.51 13 63 311.79 11 64 304.37 100 19 39 488.18 18 40 481.88 18 39 469.25
05 1 23 7.68 1 21 5.68 1 18 2.06 05 1 23 7.68 1 21 5.68 1 18 2.06
25 3 29 4641 3 28 44386 3 27 4081 25 5 21 57.00 4 21 51.17 4 20 45.77
010 50 7 30 8532 6 30 8258 5 30 7717 010 50 8 22 111.64 9 20 106.80 7 22 99.67
75 9 30 127.42 9 30 118.25 8 30 114.40 7.5 12 21 15734 12 21 15455 11 21 146.64
10.0 11 29 175.67 11 29 169.70 11 29 159.82 10.0 14 22 193.37 14 22 19179 14 21 183.63

Heuristic II (r = 0.01, ¢, = 0.3/a, C = 10).

Heuristic 1l (r = 0.01, ¢, = 0.3/a, C = 10).
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Table 7
Optimal starting price, initial stock and expected profit.
b a T n=>5 n =10 n =20
o p* K Q p* e Q* p* o
0.5 1 173 48.13 1 171 45.51 1 168 40.34
2.5 5 164 350.02 5 162 341.27 4 170 329.31
0.01 5.0 8 169 737.32 8 168 728.27 8 166 710.86
7.5 12 167 1115.57 12 165 1104.44 1 169 1085.06
10.0 15 169 1479.99 15 168 1469.40 15 166 1448.95
0.5 1 33 7.27 1 31 4.78 1 28 0.10
2.5 4 33 59.80 4 32 54.59 3 33 48.69
3 0.05 5.0 7 34 123.45 7 33 117.63 6 34 109.70
7.5 10 34 180.49 9 35 174.78 9 34 166.61
10.0 12 35 230.86 12 35 225.66 11 35 218.09
0.5 1 16 2.21 0 - 0 0 - 0
2.5 3 17 25.14 3 16 22.36 2 17 18.21
0.10 5.0 6 17 51.03 5 18 47.71 5 17 43.71
7.5 8 18 71.76 8 17 68.79 7 18 65.04
10.0 10 18 87.71 10 18 85.21 9 18 82.45
0.5 2 215 114.02 2 213 108.28 2 209 96.90
2.5 7 212 721.24 6 220 709.44 6 218 691.82
0.01 5.0 12 214 1493.28 12 213 1478.90 11 217 1452.98
7.5 17 213 2253.35 17 212 2237.84 16 216 2208.68
10.0 20 222 2978.09 20 221 2965.50 20 219 2942.75
0.5 1 47 17.83 1 45 15.70 1 42 11.68
2.5 6 43 128.83 5 44 121.73 5 42 111.24
4 0.05 5.0 10 44 262.44 10 43 254.25 9 44 240.94
7.5 15 43 386.45 14 44 377.71 13 44 364.40
10.0 19 44 499.43 18 44 491.78 17 44 479.27
0.5 1 23 7.68 1 21 5.68 1 18 2.06
2.5 5 22 57.29 5 21 52.16 4 21 46.22
0.10 5.0 9 22 114.08 8 23 108.53 8 22 101.35
7.5 13 22 162.60 12 23 157.51 11 23 150.68
10.0 16 23 203.12 15 23 199.10 15 22 193.23
Heuristic IV (r = 0.01, ¢, = 0.3/a, C = 10).
Table 8
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic I (r = 0.01, ¢, = 0.3/a, C = 5).
a T b=3 b=4
n=>5 n=10 =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.32 0.35 0.40
2.5 0.89 0.86 0.84 1.70 1.58 1.71
0.01 5.0 1.53 1.61 1.79 2.75 2.85 2.89
7.5 2.12 2.23 242 3.74 3.83 3.93
10.0 2.60 2.73 2.99 4.36 4.48 4.72
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.38 0.48 0.25 1.21 0.94 1.22
0.05 5.0 0.88 1.09 1.11 2.27 2.58 2.79
7.5 1.69 1.65 240 3.40 3.69 410
10.0 2.16 2.54 2.95 4.43 4.74 5.26
0.5 0.00 - - 0.00 0.00 0.00
2.5 0.08 0.04 0.00 0.86 0.79 0.65
0.10 5.0 0.49 0.31 0.82 1.78 1.72 2.45
7.5 0.64 0.87 1.42 2.72 3.11 3.66
10.0 111 1.03 1.88 3.75 3.99 4.81




694

Table 9

Relative profit improvement, (Ax*), of dynamic pricing over Heuristic II (r = 0.01, ¢,
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a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 2.36 2.27 2.07
25 17.64 16.19 14.81 24.32 23.02 21.66
0.01 5.0 30.64 29.82 27.80 38.50 37.70 35.90
7.5 39.05 38.04 36.22 46.94 46.11 4454
10.0 43.71 43.31 41.34 51.58 50.98 49.65
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 11.79 9.27 6.22 22.83 18.32 15.43
0.05 5.0 25.46 22.15 21.01 34.49 31.87 29.79
7.5 26.96 25.96 24.05 37.32 35.72 34.88
10.0 23.73 25.87 2412 34.15 35.34 35.01
0.5 0.00 - - 0.00 0.00 0.00
2.5 7.44 7.65 313 18.99 14.00 11.38
0.10 5.0 11.21 15.91 13.79 25.24 22.98 22.63
7.5 9.86 13.51 11.48 22.01 24.07 22.82
10.0 3.16 4.67 8.07 14.55 15.34 17.23
Table 10
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic IIl (r = 0.01, ¢, = 0.3/a, C = 5).
a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.12 0.14 0.22
25 0.13 0.13 0.14 0.10 0.08 0.08
0.01 5.0 0.12 0.11 0.12 0.10 0.11 0.10
7.5 0.12 0.15 0.19 0.16 0.17 0.14
10.0 0.17 0.18 0.21 0.17 0.18 0.19
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 1.14 1.03 1.33 0.74 0.51 0.93
0.05 5.0 0.84 0.95 0.85 0.86 0.86 0.81
7.5 1.88 1.03 1.27 1.16 117 1.13
10.0 2.04 1.67 1.64 1.55 1.35 1.43
0.5 0.00 - - 0.00 0.00 0.00
2.5 1.63 2.06 0.00 0.51 1.90 0.97
0.10 5.0 1.59 0.59 1.23 2.36 1.67 2.31
7.5 3.87 242 1.07 2.90 214 2.90
10.0 4.77 3.28 2.29 4.00 3.22 4.26
Table 11
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic IV (r = 0.01, ¢, = 0.3/a, C = 5).
a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.00 0.00 0.00
25 0.14 0.13 0.15 0.23 0.26 0.32
0.01 5.0 0.33 0.34 0.38 0.41 0.43 0.43
7.5 0.44 045 0.45 0.52 0.53 0.56
10.0 0.51 0.52 0.56 0.62 0.63 0.67
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.02 0.00 0.03
0.05 5.0 0.03 0.08 0.05 0.30 0.35 0.33
7.5 0.28 0.22 0.26 0.53 0.52 0.50
10.0 0.35 0.44 033 0.76 0.66 0.72
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Table 11 (continued )
a T b=3 b=4
n=>5 n=10 m =20 n=>5 n =10 n =20
0.5 0.00 - - 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00 0.00 0.00
0.10 5.0 0.00 0.00 0.00 0.03 0.24 0.03
7.5 0.00 0.00 0.09 0.18 0.37 0.25
10.0 0.00 0.00 0.07 0.54 0.32 0.44
Table 12
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic I (r = 0.01, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 =10 =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.32 0.35 0.40
2.5 0.68 0.64 0.52 1.55 1.36 1.47
0.01 5.0 1.26 1.33 1.47 2.59 2.68 2.65
7.5 1.87 1.97 2.04 3.58 3.65 3.69
10.0 2.33 243 2.65 415 4.26 4.48
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.38 0.48 0.25 1.09 0.78 0.94
0.05 5.0 0.66 0.74 0.55 1.82 2.04 1.98
7.5 1.09 0.88 1.22 2.91 3.05 3.20
10.0 1.38 1.60 1.75 3.86 4.03 4.38
0.5 0.00 - - 0.00 0.00 0.00
2.5 0.08 0.04 0.00 0.86 0.79 0.65
0.10 5.0 0.49 0.31 0.43 1.39 117 1.48
7.5 0.61 0.61 0.58 1.98 2.00 2.21
10.0 0.82 0.49 1.08 2.63 2.79 3.21
Table 13
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic II (r = 0.01, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 =10 =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 2.36 2.27 2.07
2.5 18.56 16.91 15.41 25.36 24.24 22.99
0.01 5.0 32.15 31.34 29.21 40.12 39.34 37.43
7.5 40.90 39.83 37.98 48.46 47.55 4597
10.0 45.41 45.08 43.03 53.06 52.33 51.09
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 11.79 9.27 6.22 22.94 18.58 16.64
0.05 5.0 25.72 23.30 22.43 37.21 34.18 31.11
7.5 27.24 27.70 25.68 39.52 37.59 36.46
10.0 23.69 26.43 25.59 35.38 36.89 36.79
0.5 0.00 - - 0.00 0.00 0.00
2.5 7.44 7.65 3.13 18.99 14.00 11.70
0.10 5.0 11.21 16.20 14.87 25.21 2391 23.86
7.5 9.82 13.81 12.45 21.65 24.98 24.10
10.0 2.86 4.28 8.09 13.58 14.80 17.40




696

Table 14

Relative profit improvement, (Ax*), of dynamic pricing over Heuristic IIl (r = 0.01, ¢, = 0.3/a, C = 10).
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a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.12 0.14 0.22
25 0.23 0.26 0.35 0.17 0.18 0.18
0.01 5.0 0.27 0.26 0.27 0.22 0.23 0.21
7.5 0.27 0.31 0.30 0.32 0.35 0.29
10.0 0.34 0.33 0.35 0.37 0.37 0.37
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 117 1.08 1.33 0.93 0.65 1.35
0.05 5.0 1.00 1.15 0.77 1.41 1.47 1.27
7.5 232 1.13 1.24 2.09 212 1.88
10.0 2.96 2.60 211 2.79 2.46 2.56
0.5 0.00 - - 0.00 0.00 0.00
2.5 1.63 2.06 0.00 0.51 1.90 0.97
0.10 5.0 1.59 0.59 0.85 214 1.59 1.66
7.5 3.93 217 0.45 3.25 1.95 2.71
10.0 4.56 2.80 1.70 4.88 3.71 5.09
Table 15
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic IV (r = 0.01, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 =10 =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.04 0.05 0.04 0.11 0.17 0.22
0.01 5.0 0.26 0.29 0.34 0.38 0.42 0.46
7.5 0.45 0.46 043 0.50 0.53 0.57
10.0 0.50 0.51 0.54 0.61 0.64 0.65
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00 0.00 0.00
0.05 5.0 0.00 0.00 0.00 0.05 0.07 0.15
7.5 0.01 0.00 0.02 0.26 0.33 0.28
10.0 0.05 0.21 0.07 0.55 0.45 0.48
0.5 0.00 - - 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00
0.10 5.0 0.00 0.00 0.00 0.00 0.00 0.00
7.5 0.00 0.00 0.00 0.01 0.08 0.03
10.0 0.00 0.00 0.00 0.08 0.04 0.13
Table 16
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic I (r = 0.1, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.34 0.36 0.42
2.5 0.43 0.46 0.51 1.32 1.37 1.47
0.01 5.0 1.26 1.25 1.21 242 2.48 2.59
7.5 1.62 1.66 1.76 3.20 3.26 3.37
10.0 211 215 212 3.95 3.97 4.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.44 0.25 0.25 1.04 0.84 0.97
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Table 16 (continued )
a T b=3 b=4
n=>5 n=10 m =20 n=>5 n =10 n =20
0.05 5.0 0.49 0.52 0.57 1.77 1.52 1.78
7.5 0.70 0.64 0.77 2.34 2.48 2.34
10.0 0.80 0.85 0.90 2.96 2.97 3.00
0.5 0.00 - - 0.00 0.00 0.00
2.5 013 0.05 0.00 0.88 0.57 0.61
0.10 5.0 0.40 0.24 0.47 1.18 1.16 1.09
7.5 0.56 0.59 0.36 1.50 1.67 1.43
10.0 0.46 0.37 0.66 1.78 1.80 1.75
Table 17
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic Il (r = 0.1, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 n=10 m =20 n=>5 n =10 n =20
0.5 0.00 0.00 0.00 2.41 2.30 2.09
2.5 16.48 15.52 13.95 23.83 22.93 21.60
0.01 5.0 28.74 27.86 26.49 36.28 35.64 34.74
7.5 33.85 32.99 32.09 41.73 41.59 40.75
10.0 35.40 35.37 34.37 43.47 43.39 4322
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 11.22 9.26 8.95 19.57 18.47 16.15
0.05 5.0 20.61 19.62 17.10 30.31 29.96 28.99
7.5 20.31 21.21 19.99 3143 31.90 30.51
10.0 17.06 17.74 19.64 26.38 27.14 27.88
0.5 0.00 - - 0.00 0.00 0.00
2.5 7.77 7.24 2.61 13.28 10.77 11.00
0.10 5.0 11.45 9.54 13.02 20.74 20.78 22.45
7.5 6.96 8.39 11.74 14.55 16.66 19.37
10.0 2.47 3.22 5.27 9.74 11.18 13.13
Table 18
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic III (r = 0.1, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 n=10 n =20 n=>5 n =10 n =20
0.5 0.00 0.00 0.00 0.12 0.18 0.22
2.5 0.36 0.34 0.30 0.22 0.20 0.20
0.01 5.0 0.31 0.30 0.39 0.29 0.28 0.28
7.5 0.45 0.48 0.47 0.41 0.37 0.39
10.0 0.63 0.57 0.59 0.51 0.53 0.47
0.5 0.00 0.00 0.00 0.00 0.00 0.00
2.5 1.09 0.93 0.45 0.85 0.59 0.70
0.05 5.0 1.31 1.81 0.64 1.04 1.08 1.04
7.5 1.95 1.75 2.44 2.26 1.98 1.82
10.0 2.72 237 233 2.84 2.61 2.47
0.5 0.00 - - 0.00 0.00 0.00
2.5 1.52 0.05 0.00 1.81 0.85 1.06
0.10 5.0 1.21 2.59 0.87 2.40 134 0.61
7.5 3.84 4.00 1.97 3.20 2.57 1.48
10.0 2.75 5.08 4.31 4.07 3.56 3.52
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Table 19
Relative profit improvement, (Ax*), of dynamic pricing over Heuristic IV (r = 0.1, ¢, = 0.3/a, C = 10).
a T b=3 b=4
n=>5 =10 n =20 n=>5 =10 =20
0.5 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.01 0.04 0.14 0.12 0.16
0.01 5.0 0.23 0.25 0.28 0.38 0.40 0.43
7.5 043 0.42 043 0.57 0.57 0.59
10.0 0.57 0.59 0.60 0.75 0.74 0.75
0.5 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00
0.05 5.0 0.00 0.00 0.00 0.03 0.02 0.11
7.5 0.00 0.00 0.00 0.12 0.23 0.13
10.0 0.00 0.00 0.02 0.35 0.31 0.33
0.5 0.00 - - 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00 0.00 0.00
0.10 5.0 0.00 0.00 0.00 0.00 0.00 0.00
7.5 0.00 0.00 0.00 0.00 0.00 0.00
10.0 0.00 0.00 0.00 0.00 0.00 0.00

then decreasing in 7 and t. The overall behavior can be
explained through the impact of perishing; as it lessens,
the myopic heuristic starts performing well. Incorporating
future sales’ contribution significantly improves the
performance of the heuristics.

The single-price policy, Heuristic I, performs better
than the myopic policy. Its performance with respect to
the optimal improves with increasing menu cost, price
sensitivity and discount rate, and with decreasing base
demand rate and unit perishing cost. Only, in a few cases,
when the shelf life is very small, both policies yield the
same optimal discounted expected profit. Across all
instances tested, the relative improvement achieved by
dynamic pricing over Heuristic I is found to vary between
0% and 5.57% for a discount rate of r = 0.1, whereas, it is
between 0% and 7.52% for a smaller discount rate of
r = 0.01. This finding is interesting in that Zhao and Zheng
(2000) also observed a similar range of improvement for
the case of continuous pricing with zero price change
costs. Thus, our results support their finding in the setting
where pricing decisions are restricted to demand arrival
instances.

Heuristic Il dominates Heuristic I significantly for high
price sensitivity and for low base demand rate and unit
perishing cost. This behavior is confounded as the
discount rate increases. Its overall performance with
respect to the optimal worsens as 7 increases.

Heuristic IV has the best performance among the
tested heuristics. With low discount rates, it gives the
optimal solution in most cases. As expected, its perfor-
mance with respect to the optimal improves with
increasing menu cost. Although its behavior is not
monotone, we can make the following general observa-
tion: heuristic IV's performance deteriorates somewhat
with increasing shelf life, unit perishing cost and base
demand rate; it improves with higher price sensitivity.
The relatively poor performance for small a can be
explained through the lessened impact of a pricing

decision made early in the horizon on the revenues
generated later. Heuristic IV performs surprisingly well
given its simple construction. It is also amenable to exact
computation of the optimal price; and, hence, is easily
implementable.

5. Conclusion

In this study, we consider dynamic pricing of perish-
able items in an inventory system with a fixed shelf life
and price-dependent stochastic demand. Price is allowed
to change in both directions, i.e. both markup or mark-
down is possible at any demand point. As a novel feature,
in our model, we assume that there are positive fixed
price change costs. Revenues are collected and costs
are incurred as the items are sold. Costs involved are the
holding and perishing costs. All the cash flows are
discounted at a discount rate r. We assume that unsold
items have negligible salvage value, purchasing and
ordering costs are sunk costs. The objective is to maximize
the discounted expected profit by determining the selling
prices dynamically. The pricing decisions are given at the
instances at which demands occur and inventory is
depleted. We formulate the problem as a DP problem
and also consider joint determination of initial stock as
well as optimal pricing.

We obtain some structural properties of the objective
function with respect to the selling price and the horizon
length, which are of theoretical interest and of practical
use in the numerical solution of the DP formulations.

In a numerical study, we examine the sensitivity of the
price decisions to various system parameters and compare
the benefits of dynamic pricing policies versus four
implementable policy heuristics. A single-period-look-ahead
heuristic resulted in the worst performance. Incorporation of
future sales’ contribution significantly improves the perfor-
mance of a heuristic. The fixed price heuristic is found to
result in deviations between 0% and 5.57% for a discount
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rate of r = 0.1, and between 0% and 7.52% for a smaller
discount rate of r =0.01. A modified single price policy
which uses the optimal fixed price computed dynamically
for the remaining periods of the horizon after each demand
occurrence performs extremely well. Across all instances
tested, its deviation was never above 1%, and it resulted in
the optimal solution in most cases.

A number of extensions of our work are possible. The
introduction of learning and updating of demand process
over time may be an interesting and worthwhile exten-
sion. Another important research area for future studies
may include different demand rate structures other than
the linear case employed in our numerical study.
A demand rate which is a function of both the remaining
shelf life and the current price may be included in the
setting we proposed.
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