
Int. J. Production Economics 135 (2012) 726–740
Contents lists available at SciVerse ScienceDirect
Int. J. Production Economics
0925-52

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/ijpe
Multiple part-type scheduling in flexible robotic cells
G. Didem Batur, Oya Ekin Karasan, M. Selim Akturk n

Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
a r t i c l e i n f o

Article history:

Received 19 April 2010

Accepted 26 September 2011
Available online 29 October 2011

Keywords:

Flexible manufacturing systems

Robotic cell

CNC

Multiple part-type production
73/$ - see front matter & 2011 Elsevier B.V. A

016/j.ijpe.2011.10.006

esponding author. Tel.: þ90 312 290 1360; fa

ail address: akturk@bilkent.edu.tr (M.S. Aktur
a b s t r a c t

This paper considers the scheduling problem arising in two-machine manufacturing cells which

repeatedly produce a set of multiple part-types, and where transportation of the parts between the

machines is performed by a robot. The cycle time of the cell depends on the robot move sequence as

well as the processing times of the parts on the machines. For highly flexible CNC machines, the

processing times can be adjusted. To this end, this study tries to find the robot move sequence as well

as the processing times of the parts on each machine that jointly minimize the cycle time. The problem

of determining the best cycle in a 2-machine cell is first modeled as a traveling salesman problem.

Then, an efficient 2-stage heuristic algorithm is constructed and compared with the most common

heuristic approach of longest processing time (LPT).

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The use of computer controlled machines and automated
material handling devices is essential for the required level of
automation in manufacturing industries. A manufacturing cell
consisting of a number of CNC machines and a material handling
robot is called a robotic cell. The implementation of more
complex robotic cells necessitates more sophisticated models
and algorithms for their optimization. Many studies in the robotic
cell literature try to answer this need. A systematic and pioneer-
ing study of the problem of finding optimal sequences of parts
and robot moves was started by Sethi et al. (1992) with the
objective of maximizing the throughput, or in other words
minimizing the cycle time. For the problem of ‘one part type
with two machines’ they proved that the optimal solution is a
1-unit cycle. Most of the studies about scheduling in robotic cells
assume that each part being processed passes through the same
sequence of locations from the input buffer (I), through machines
M1, . . . ,Mm and finally into the output buffer (O) known as a flow-
line robotic cell as discussed in Brauner and Finke (2001).
Dawande et al. (2005) showed that cyclic schedules which repeat
a fixed sequence of robot moves indefinitely are the only ones
that need to be considered in order to maximize the long-term
average throughput. Hall et al. (1997) considered the scheduling
of operations in a manufacturing cell that repetitively produces a
family of similar parts on two or three machines served by a
robot. For multiple part-type problems in a two-machine cell,
they provided an efficient algorithm of complexity Oðn4Þ (where n
ll rights reserved.

x: þ90 312 266 4054.

k).
defines the number of parts considered) that simultaneously
solves the robot move and part sequencing problems.

Robotic cells can process lots that contain different types of
parts. Generally, parts of different types have different processing
times for a given machine. The term minimal part set (MPS)
defines the set of parts containing the same relative proportions
of the part types as the relative proportions of the demand. The
problem is to find the robot move sequence and the part input
sequence for the MPS that jointly minimize the cycle time or the
average steady-state cycle time, in a flow-line robotic cell. Sethi
et al. (1992) and Kise et al. (1993) considered the multiple part-
type problem with the objective of minimizing the makespan and
used the known Gilmore and Gomory (1964) algorithm through-
out their solution procedures. Aneja and Kamoun (1999) modeled
the problem of minimizing the long run average time as a special
case of traveling salesman problem (TSP) and provided an algo-
rithm of complexity Oðn log nÞ. Similar applications can be found
in scheduling cranes in a shipyard or hoists in electroplating
plants. Wen et al. (2010) developed an exact approach that
models the problem as a multi-commodity flow problem with
side constraints on a network, and also proposed different
heuristics to minimize the makespan. Paul et al. (2007) proposed
a heuristic approach for a multi-item single-hoist scheduling
problem where each operation has a given time window. The
literature on the parallel identical machines with a common
server is also related to our study. Setup operations considered
in these studies are similar to the robot operations in our study.
Abdekhodaee et al. (2006) and Hall et al. (2000) considered
parallel machines for which each job requires a setup to be
carried out, immediately prior to its processing, by a single server,
with the processing executed unattended. They provide heuristic
algorithms for different cases of the problem.

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2011.10.006
mailto:akturk@bilkent.edu.tr
dx.doi.org/10.1016/j.ijpe.2011.10.006

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 727
CNC machines possess operational flexibility and process
flexibility by definition. Akturk et al. (2005) defined process
flexibility as the ability to handle a mixture of operations. On
the other hand, operational flexibility is defined as the ability to
interchange the ordering of several operations for each part type.
These two types of flexibilities enable the allocation of any
operation to any one of the two machines. As the allocations of
the operations change, the processing times on the machines also
change accordingly. Akturk et al. (2005) considered the two
machine, identical parts robotic cell scheduling problem with
operational flexibility. With this definition of the problem, each
part has a number of operations to be processed and the problem
is to allocate these operations to the machines and is to find the
corresponding robot move cycle that jointly minimize the cycle
time. The main result of the paper is that the optimal robot move
cycle is no longer necessarily a 1-unit cycle as in the setting of
Sethi et al. (1992), but a 2-unit robot move cycle may also be
optimal for some parameter inputs. They also provided the
regions of optimality for each robot move cycle.

Throughout this study we focus on flexible robotic manufac-
turing cells consisting of CNC machines and producing multiple
part types. We consider an in-line robotic cell with no buffers,
consisting of two identical machines which are capable of
processing all the parts. Two primary problems need to be solved,
namely, the scheduling of parts and the sequencing of robot
moves for robotic cells. An important difference of this study from
the existing literature is that we do not assume the processing
times on each machine to be constant. Thus, allocation becomes
our third problem to be solved. Throughout the solution proce-
dure, we focus on cyclic schedules trying to minimize the average
steady-state cycle time.

In the following section, the notation and basic assumptions
pertinent to this study will be introduced. Section 3 presents the
proposed mathematical model. In Section 4, the heuristic algo-
rithms developed to solve the problem under study will be
detailed. In Section 5 the proposed algorithms will be compared
with each other as well as with the classical longest processing
time (LPT) algorithm which is well respected in the existing
robotic cell scheduling literature. Section 6 summarizes the
contributions and provides the concluding remarks of this study.
2. Notation and assumptions

In multiple part scheduling problem, the classical approach is
to focus on cycles which produce the minimal part set (MPS)
repetitively. In general, the cell processes k different part-types. In
one MPS, ri parts of type i are produced, where i¼1,y,k. The total
number of completed parts in a cycle is n¼ r1þ � � � þrk. An MPS

cycle is a cycle during which the MPS parts enter the system at
input, get processed, leave the system at output, and the system
returns to the same initial state. Each part is assumed to have a
known processing time. By taking the advantage of the flexibility
property, we may choose either to perform all the processing of a
part completely on any one of the machines or to share the total
time among the two machines. Finding the MPS cycle with the
minimum cycle time involves the joint consideration of the
following decisions: choosing a robot move sequence, determin-
ing a part sequence, and allocating the processes on machines.

There are some assumptions of our study that are also
common in the literature. We assume all data to be deterministic.
Parts are always available at the input buffer and there is always
an empty place at the output buffer. We allow no buffer storage to
exist between the machines; thus, each part is either on a
machine or is being handled by the robot. Neither the robot nor
the machines can be in possession of more than one part at any
time. The robot and the CNC machines never experience break-
down and never require maintenance. Setup times are assumed to
be negligible. No preemption is allowed in the processing of any
part. The total processing time is composed of unit times.

Throughout this study each part in the MPS is treated inde-
pendently since two identical parts belonging to the same part-
type might have different allocations. The following parameters
will be used:

n total number of parts to be produced in the MPS.
Pj processing times of part-types to be produced, j¼1,y,n.
E load/unload times of machines by the robot. Consistent

with the literature we assume that loading/unloading
times for all machines are the same.

d time taken by the robot to travel between two con-
secutive machines. The robot travel time is assumed to
be additive. That is, traveling from machine s to machine
m is equal to 9s�m9d. We take I, the input buffer, to be
machine M0 and O, the output buffer, to be machine M3.

Against this background, the objective is to minimize the long
run average cycle time required for the repetitive production of
one or more minimal part sets. While solving this problem, we
determine the allocated processing times of parts on the
machines together with the waiting and blocked times of
machines for the parts. The accompanying notation will be
formally defined in the forthcoming sections.

Allocation and flexibility concepts are currently recognized in
the literature only for the single part type production. The
following example is aimed to shed light on our assumptions of
process and operational flexibility for the case of multiple part-
type production.

Example 1. Assume that we have three parts to be completed
with corresponding processing times: P1 ¼ 87, P2 ¼ 84, and
P3 ¼ 57. E and d are 1 and 2 time units, respectively. If we assume
that all the processes of a job need to be completed on any one of
the two machines as in the case of a parallel machines system, the
sequence given by the Gantt-chart in Fig. 1 arises as the optimal
one with value 173. Note that the optimality of this solution
under this restrictive assumption can be justified by the mathe-
matical formulation that will appear in the next section. In Fig. 1,
R represents the movements of the robot and the labels 1 and
2 are used to define the first and second machines, respectively. In
the initial state of the system, machine 1 is empty and machine
2 is already loaded with part 2.

One potential allocation scenario is to share the processing time

of only one of the jobs. Fig. 2 depicts the solution when the first

part has 57 units of its processing time allocated to the first

machine and 30 units of it allocated to the second machine.

Comparing Figs. 1 and 2, one can see that the blocked time that

occurred for the first machine (which is equal to the waiting time

for the robot) in the first case has been avoided by this arrange-

ment. As will be explained in Section 4 our solution procedure has

been constructed in a way to manage these blocked times. The

robot movements observed for the allocation scenario are also

detailed on a different example in Appendix B for the interested

reader. The result for this example is a smaller cycle time value of

142 units, an improvement of 17% over the no allocation case.

When allocation is performed, even though the robot might
have to make extra travel and load/unload movements, since the
waiting times decrease and the machine capacities are used
more effectively, a smaller cycle time could be realized as
observed in Example 1 by changing processing time allocations

Fig. 2. Example 1 with allocation.

Fig. 1. Example 1 without allocation.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740728
for one part; without decreasing the processing times of parts,
without changing the machining conditions, and without using a
faster robot.
3. Mathematical model

Our aim in this study is to find a solution that gives both the
processing times on machines and the order that these parts are
going to be processed. The solution that we are looking for should
define the movements of the robot exactly; giving the part to be
carried/loaded/unloaded together with the associated machine.
This problem can be modeled as a TSP in which the distance
matrix consists of decision variables as well as parameters. A
basic definition used in this formulation is the following one:

Definition 1. Node ik identifies the epoch that part i is on station
k. The input buffer is denoted as station 1, first and second
machines are denoted as stations 2 and 3 respectively, and the
output buffer is denoted as station 4. During an MPS cycle, the
machines may need to be visited twice, one for loading and one
for unloading of the same part since the robot may perform some
other activities rather than to wait in front of the machine during
the time that the part is being processed. Therefore, stations 5 and
6 are also created as the copies of stations 2 and 3, respectively, in
order to account for any potential cyclic solution.

Movements of the robot can be defined as traversals between
the nodes. Two types of movements are possible; in the first one a
part is carried from a station to another, whereas in the second
one, the robot leaves a part on a station and goes to the other one
to pick up a new part.

For the formulation, we have an arc set A and a node set N,
which are represented as follows:

N¼ fik : k¼ 1, . . . ,6, i¼ 1, . . . ,ng,

A¼ fðik,jlÞ : ik,jlAN and the movement from node ik, where

part i is at station k, to node jl, where part j is at station l,

is possibleg:

In order to formulate the problem as a TSP, in addition to the
ones given in Section 2, we shall need the following parameters
and variables:

Parameters:

Costik ,jl
total time needed for the movement prescribed by the
robot activity from where part i is at station k to where
part j is at station l.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 729
Waitik ,jl
1, if there exists a potential waiting time for the move-
ment of the robot from node ik to node jl; and 0,
otherwise.

Decision variables:

yik ,jl
1, if robot goes from node ik to node jl; and 0, otherwise.

Pik processing time of part i on station k, k¼ 2;3,5;6.
startik time when processing of part i starts on station k.
compik

time when robot completes the activity related to node
ik.

wik robot waiting time for part i in front of the station k.
zik 1, if start time of processing of part i on station k is

considered before its completion time within a cycle;
and 0, otherwise.

m2ik the part loaded on machine 2 when robot is at node ik.
m3ik the part loaded on machine 3 when robot is at node ik.
C cycle time value.

Variables m2ik and m3ik will take values from the set
f0;1, . . . ,ng. When the variable equals to 0, it means that the
machine is empty at that moment; whereas its equivalence to any
value between 1 and n means that the machine is loaded with
that particular part at node ik.

We need to force the feasibility conditions which indicate that
a machine that is already loaded cannot be loaded again and a
machine that is already empty cannot be unloaded. Some move-
ments are unreasonable; for example, a part cannot be taken from
the input buffer and left to the output buffer without any
processing, cannot be taken from the output buffer, or cannot
be left on the input buffer. All the possible movements are
determined due to these situations and some movements are
forbidden within the cycle.

Costik ,jl
values represent the total time spent in going from

node ik to node jl. For example, a movement from node i1 to node
i2 corresponds to the situation that the robot takes a part from the
input buffer ðEÞ, carries it to the second station (the first machine)
ðdÞ, and loads the part ðEÞ; makes a total cost of 2Eþd. For our
problem, related Costik ,jl

values are shown in Table 1. The first set
of four columns corresponds to the states on which i¼ j and the
second set corresponds to the states on which ia j. Moreover, the
movements with costs included by X’s cannot be performed.

Waiting time is one of the main ingredients in the cycle time
calculation. It occurs when the robot is ready to unload but when
the processing of the loaded part has not been completed yet. It is
represented as follows:

wjk
¼maxf0,Pjk�vjk

g, j¼ 1, . . . ,n, k¼ 1, . . . ,6, ð1Þ

where j is the part loaded on station k and vjk is the total activity
time of the robot in between just after loading the machine
corresponding to station k by part j and arriving in front of the
same machine to unload it.

Waitik ,jl
values are used to see for which movements the robot

may need to wait for part i in front of station k. Clearly, for the
movements of different parts (i.e. ia j) no waiting time will be
observed and waiting is possible for part i among the movements
for which the corresponding costs are underlined in Table 1; so
Table 1
Costs of movements performed.

ðj1Þ ðj2Þ=ðj5Þ ðj3Þ=ðj6Þ ðj4Þ ðj1Þ ðj2Þ=ðj5Þ ðj3Þ=ðj6Þ ðj4Þ

ði1Þ X 2Eþd 2Eþ2d X X X X X

ði2Þ=ði5Þ X X 2Eþd 2Eþ2d d X d X

ði3Þ=ði6Þ X 2Eþd X 2Eþd 2d d X X

ði4Þ 3d X X X 3d 2d d X
Waitik ,jl
equals to 1 for these movements. For example, when we

choose to go from node i2 to node i3, we will take part i from
machine 2 and load it to machine 3, for which we may need to
wait until the processing of the part on machine 2 is completed.

After defining the parameters and variables of the model, we
are now ready to proceed with our model. We will start by forcing
the y variables to take on proper values. We need to ensure that
when there is an incoming arc to a node, there must also be an
outgoing arc from it. This fact is guaranteed by the following
equation:
X

jl:ðjl ,ikÞAA

yjl ,ik
¼

X

jl :ðik ,jlÞAA

yik ,jl
, 8ikAN: ð2Þ

In our model, we allow some nodes not to be visited. Thus, the
assignment constraints of a TSP should be adapted as follows:
X

jl:ðjl ,ikÞAA

yjl ,ik
r1, 8ikAN,

X

ik :ðjl ,ikÞAA

yjl ,ik
r1, 8jlAN: ð3Þ

All the parts need to be processed in the system. This requires
all the parts to be taken from the input buffer and left to the
output buffer exactly once as is defined by Eq. (4)
X

jl:ði1 ,jlÞAA

yi1 ,jl
¼ 1, 8i, and

X

jl:ðjl ,i4ÞAA

yjl ,i4
¼ 1, 8i: ð4Þ

Without loss of generality, the system is assumed to start when
the robot is in front of the input buffer and ready to take part 1,
i.e., at node 11.

We use the following Miller–Tucker–Zemlin type constraints
in order to calculate the completion times of nodes (Miller et al.,
1960)

compjl
Zcompik

þcostik ,jl
� yik ,jl
�Mð1�yik ,jl

Þ

þWaitik ,jl
�wik 8ðik,jlÞAA : jla11: ð5Þ

This equation ensures that when an arc from node ik to node jl is
used, the completion time of node jl is at least the sum of the
completion time of node ik, the cost, and the waiting time values
corresponding to this movement. When such a movement is not
part of the solution, the constraint simply becomes redundant
with a large enough chosen big M value.

The following, processing time related equations enable the
completion of all the processing. Moreover, they force that the
processing times at stations and their duplicates are identical

Pi2þPi3 ¼ Pi, where Pi2 ¼ Pi5 and Pi3 ¼ Pi6 ,8i: ð6Þ

The following constraints establish the relation between the
machines and the processing times:

Pik rPi

X

jl:ðik ,jlÞAA or ðik0 ,jlÞAA

ðyik ,jl
þyik0 ,jl

Þ, ikAN s:t: k¼ f2;3g: ð7Þ

In particular, when node ik is visited, a processing with a value of
at most the total processing time of part i can be performed on
station k. Moreover, if station k or its duplicate station k0 is not
visited by part i, the right hand side of constraint 7 will be zero
and no processing will be performed on station k.

We define ‘start’ and ‘comp’ variables as the beginning of the
processing on a station and the time that the related movement is
performed on a node, respectively. The beginning time of a part
equals to the time that it is loaded on the related station. This
value can be represented by either startik or startik0

for part i

according to the choice of whether it is loaded on station k or on
its duplicate station k0, respectively. Since these two stations are
the copies of each other, we explicitly force that
startik ¼ startik0

8ikAN s:t: kAf2;3g

startik Zcompil
�Mð1�yil ,ik

Þ, 8ðil,ikÞAA : kAf2;3g, la4,lak,lak0,

startik
Zcompil

�Mð1�yil ,ik0
Þ, 8ðil,ik

0
ÞAA : kAf2;3g,la4,lak,lak0: ð8Þ

Fig. 3. Choices on load/unload sequence.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740730
Constraint set (8) shows that if there is an arc from node il to node ik
or ik

0, meaning that if part i is carried from station l to k or k0;
processing of part i on machine corresponding to station k or k0 starts
at the time when the part is left on the machine which is equal to the
time when the movement is performed. Since we cannot take any
part from the output buffer, l cannot be equal to station 4.

In order to calculate waiting times properly, we resort to the
use of another variable associated to each node, namely zik , in
order to distinguish whether the loading or unloading of a part is
performed sooner in a given cycle. Fig. 3 represents the two
possible situations. Fig. 3a corresponds to the case when the
system starts with part i not loaded on any machine whereas in
Fig. 3b station k is already loaded by part i.

We force the depicted relationships by the following con-
straints:

compik
ZstartikþPi�Mð1�zik Þ, 8ikAN,

startik Zcompik
þ4Eþ6d�Mzik , 8ikAN: ð9Þ

In these constraints zik ¼ 1 corresponds to compik
ZstartikþPi,

which is the case depicted in Fig. 3a, whereas zik ¼ 0 corresponds
to startik Zcompik

þ4Eþ6d, which is represented in Fig. 3b. In this
case, an already loaded part is to be unloaded and then loaded
again. At least a time value of 4Eþ6d which represents the total
robot movement between the unload and load of a machine has
to realize. For both constraints (8) and (9), M is a big enough
number to properly make the constraints redundant whenever
needed.

Waiting times realize when a part’s processing is not com-
pleted by the time the robot arrives to unload it. They are
properly assigned by the following constraints:

wik ZPik�ðcompik
�startik Þ�Mð1�zik Þ, 8ikAN,

wik ZPik�ðC�startikþcompik
Þ�Mzik , 8ikAN: ð10Þ

In particular, waiting time will be equal to maxf0,Pik�

ðcompik
�startik Þg if zik ¼ 1 and to maxf0,Pik�ðC�startik þcompik

Þg

otherwise. These results can also be traced from Fig. 3. For
example, in the second case, the total time passage from startik

to compik
equals to the sum of C�startik and compik

. Therefore, we
compare this value with the total processing time.

Another set of constraints is constructed in order to define the
relation between the movements and the parts loaded on the
stations. Considering the movement ðik,jlÞ, there are two cases
that can be observed, namely:

Case1. Robot activity is related to different parts, i.e. ia j.
This situation refers to the activity that the robot loads part i

on station k and travels to station l for part j. Such a movement
does not cause any part carriage. Therefore, no difference in terms
of the loaded parts is observed for the machines.

Case2. Robot activity is performed for the same part, i.e. i¼ j.
This situation refers to the activity that the robot takes a part
from station k and travels to station l to load it. In order for such a
movement to exist, the following conditions should be satisfied:
�
 The machine corresponding to station l, which is the one to be
loaded, needs to be empty at node ik, for la4 since there are
always an empty space in the output buffer by assumption.

�
 The machine corresponding to station k which is the one to be

unloaded becomes empty at node jl, for ka1 since there is
always some parts in the input buffer by assumption.

�
 This type of a movement results with no difference in terms of

the loaded parts for the machines corresponding to the
stations other than k, k0, l, and l0.

Since stations 1 and 4 correspond to input and output buffers,
respectively; we check these relations only for stations 2, 5 and 3,
6 which correspond to the first and second machines, respec-
tively. Now we are ready to list the constraints that are used to
force these cases:

Case1. If a movement from node ik to jl exists and such a
movement does not cause any difference in terms of the loaded
parts on machines, then m2ik ¼m2jl

and m3ik ¼m3jl
should be

satisfied. These results are obtained by the following constraints:

�m2ikþm2jl
rnð1�yik ,jl

Þ,

m2ik�m2jl
rnð1�yik ,jl

Þ, ð11Þ

�m3ikþm3jl
rnð1�yik ,jl

Þ,

m3ik�m3jl
rnð1�yik ,jl

Þ: ð12Þ

Case2. If a part (part i) is carried from station k to station l;
�
 Machine corresponding to the station l needs to be empty at
the previous station k. Moreover, the machine corresponding
to the station k will become empty at the station l. Such
requirements are forced via the following constraints:

m2ik rnð1�yik ,il
Þ and m3il rnð1�yik ,il

Þ,

if kAf3;6g and lAf2;5g, ð13Þ

m3ik rnð1�yik ,il
Þ and m2il rnð1�yik ,il

Þ,

if kAf2;5g and lAf3;6g: ð14Þ

Finally, the cycle time value C should be as large as the
completion time of the last node, i.e.

CZcompik
þyik ,11

� costik ,11
8ðik,11ÞAA: ð15Þ

Against all this, our optimization problem has the following
integer linear programming formulation:

min C

Subject to ð2Þ2ð15Þ all variables integers:

Fig. 4. TSP representation of Example 1 without allocation.

Fig. 5. TSP representation of Example 1 with allocation.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 731
At this point, we would like to remark on some properties of
this model. In its current form, the above formulation allows
allocation. We could simply forbid the transportation of the parts
between the machines by the inclusion of the following con-
straint set in the above model:

yi2 ,i3þyi2 ,i6þyi3 ,i2þyi3 ,i5 ¼ 0, 8i: ð16Þ

Furthermore, using the same logic and methodology, we can
easily adapt this model to the m-machine case.

The above formulation is solved with the data of Example 1. The
optimal solutions without allocation and with allocation are given
by Figs. 4 and 5, respectively. One may follow these tours with their
accompanying Gantt-charts in Figs. 1 and 2, respectively. Node 11 is
the starting point for both of the examples. The values written on
the arcs represent the waiting and travel time values between the
nodes, respectively. The optimal y values carry all the necessary
information pertaining to the assignments and sequences.
In particular, in Fig. 4, the system starts when the first machine is
empty and the second one is loaded by part 2. At time 4, the robot
loads the first machine by part 1 and goes to the second machine at
time 6. As can be seen from Fig. 1, the processing of part 2 is
completed at this moment and the robot waits until time 53.
At time 57, the part is unloaded and the robot goes to the input buffer
at time 63. Part 3 is taken from the input buffer and loaded on the
second machine at time 69. The robot now goes to the first machine
to unload part 1 and waits until time 91, until the processing is
completed. Further steps can also be observed in the same manner.

Comparing Figs. 4 and 5, we can see that some additional nodes
are included in the latter one necessitated by allocation. As can be
seen from Fig. 2, part 1 is processed on both of the machines. Since
there needs to be a transfer from machine 2 to machine 1, which
corresponds to a movement from station 6 to station 5; all of the
nodes 13, 16, 15 and 12 are used in the tour of Fig. 5.

TSP is a well known NP-Hard problem. The formulation above
differs from a classical TSP formulation in that some nodes could
be unvisited and costs depend on waiting times which are
variables. As such, it is more general than the classical TSP
formulation and requires a great amount of computational effort
even if the number of machines in the cell is small. This is
expected since the problem considered in this paper generalizes
the classical problem of parallel machine scheduling with the
objective of minimizing makespan which has been shown to be
NP-complete even in the simplest 2-machine case (see for
example Hall et al., 2000; Lenstra et al., 1977). Consequently,
we focused our attention on heuristic approaches and composed
the algorithms introduced in Section 4.
4. Heuristic solution methodology

We propose a two-stage algorithm in which the second stage
works as an improvement phase on the first one. Throughout the
solution procedure we consider machines instead of stations and
use m instead of k, where m¼1 corresponds to k¼2,5 and m¼2
corresponds to k¼3,6.

In the first stage, we find a solution without any allocation, as
is the case in a parallel machine system. The aim is to minimize
blocked times. In contrast to a waiting time, a blocked time occurs
when processing is completed before the robot arrives at the
machine. It is represented as follows:

bjm
¼maxf0,vjm

�Pjg, j¼ 1, . . . ,n, m¼ 1;2, ð17Þ

Fig. 6. Gantt-chart of LPT approach for Example 2.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740732
where j is the part loaded on machine m and vjm is the total
activity time of the robot in between just after loading machine m

by part j and arriving in front of the machine to unload it.
Considering Eqs. (1) and (17) together, it can be seen that there

is a strong relation between waiting and blocked times. In
particular, wjm

� bjm ¼ 0, where j is the part loaded on machine m.
In the second stage of our algorithm, we search for improve-

ments by considering allocation alternatives. With the methodol-
ogy to be prescribed in Section 4.2, we choose a part that can be
processed on both of the machines. It will be apparent later that it
is enough to only consider one such part. At the end of this stage,
we have a new solution for which we know the parts to be
processed on each of the machines, their sequences, and related
processing time values.

In parallel machine systems, LPT approach is commonly used
(Blazewicz et al., 2001). This rule sorts the jobs in the order of
decreasing processing times. Whenever a machine becomes free,
the job with the largest processing time which is ready at the time
starts processing. This rule schedules the longest jobs first so that
no one large job will ‘stick out’ at the end of the schedule and
dramatically lengthen the completion time of the last job. The
time complexity of LPT is known to be Oðn log nÞ (Blazewicz et al.,
2001). In order to describe the LPT approach, we use the following
example with no allocation.

Example 2. Assume that we have six parts to be completed with
corresponding processing times: P1 ¼ 97, P2 ¼ 123, P3 ¼ 4,
P4 ¼ 18, P5 ¼ 20, and P6 ¼ 26. E and d are both four units of time.
The related Gantt-chart is given by Fig. 6.

In this example, the system starts by processing the longest
part and continues with the next longest one at each step until no
more parts are left. It is possible to use either 1-MPS or more
MPS’s in order to reach to a steady state which defines a cyclic
solution. LPT helps to provide equal work-loads for machines.
Since our problem environment is also a special case of parallel
machine systems, we will compare our results with the ones
obtained by using the LPT rule.
4.1. Stage 1: construction algorithm

In Stage 1, we initially ignore the possibility of allocation for all
the parts to be produced. The main aim is to minimize blocked
times, by which we will be able to obtain a good assignment as
well as a sequence. The importance of blocked time values arises
from the importance of equal work-loads on machines; when we
minimize blocked times on machines, it is more likely to obtain a
fair assignment. We also checked the solutions obtained when
waiting time values are considered as the first priority and
noticed that better solutions are obtained for almost all examples
when minimizing the blocked times is the first priority. We
consider the waiting times only as tie-breakers. One of the main
assumptions of this stage is that we consider only non-delay
schedules. In a non-delay schedule, the machine to load is always
the one that is just unloaded. The exception is during the
placement of the first two parts since we start to solve the
problem when the system is empty.

We use the following additional notation throughout the
proposed algorithms:

tnow current time of the system following the activities of
the robot.

S set of parts available in the input buffer.
S1, S2 sets of parts assigned to machines 1 and 2 respectively.
m selected machine, where m¼0,1,2,3.
pos current position of the robot, where pos¼0,1,2,3.
sjm

starting time of the processing of part j on machine m,
where j¼ 1, . . . ,n and m¼1,2.

Fm completion time of the currently loaded part on
machine m, where m¼1,2.

These definitions are strongly related to the ones given in
Section 3. We use tnow following the robot activities which were
defined by compik

values previously, and keeping the result
cumulatively. sjm

corresponds to startjk
values where m corre-

sponding to machines is used instead of k corresponding to
stations. Fm is simply the sum of the start time and the processing
time of the currently loaded part on machine m.

Pseudo-codes of the two algorithms, where the first one
describes Stage 1 applied for the first set of parts and the second
one, the part selection procedure, are given by Algorithms 1 and 2.

Algorithm 1. First MPS solution.
1:
 Input: S¼ f1, . . . ,ng, E, d, P1, . . . ,Pn.

2:
 Output: S1, S2, wj1

, wj2 , bj1
, bj2

.

3:
 S1 ¼ |, S2 ¼ |,

4:
 wj1

¼ 0, wj2
¼ 0,
5:
 bj1
¼ 0, bj2

¼ 0,
6:
 tnow ¼ 0, pos¼ 0, F1 ¼ 0, F2 ¼ 0,

7:
 while Sa| do

8:
 if S1 ¼ |

9:
 m¼1, S

10:
 S1 ¼ S1 f1g, S¼ S�f1g,

11:
 tnow ¼ tnowþ2Eþd,

12:
 pos¼ 1,

13:
 s11

¼ tnow, F1 ¼ s11
þP1,
14:
 current1 ¼ 1,

15:
 end if

16:
 if S2 ¼ | then

17:
 m¼2,

18:
 tnow ¼ tnowþposd,

19:
 else

20:
 if F1rF2 then

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 733
21:
 m¼1,

22:
 else

23:
 m¼2,

24:
 end if

25:
 tnow ¼ tnowþ9pos�m9d,
26:
 wcurrentmm
¼ max f0,Fm�tnowg,
27:
 tnow ¼ tnowþwcurrentmm
þEþð3�mÞdþEþ3d,
28:
 end if

29:
 PartSelect,

30:
 best ’ Part returned by PartSelect,

31:
 tnow ¼ tnowþ2Eþmd,

32:
 Sm ¼ Sm

S
fbestg, S¼ S�fbestg,
33:
 pos¼m,

34:
 sbestm

¼ tnow, Fm ¼ sbestm
þPbest ,
35:
 currentm ¼ best
36:
 end while
As it is given in line (3) of Algorithm 1, initially both machines
are empty and all the parts in an MPS are ready to be processed. At
this initial state, the robot is in front of the input buffer; line (6).
Since the first machine is empty as in line (8), the first part
(according to the order in the input buffer) is taken from the input
buffer and loaded on this machine. This movement is not restrictive
since the solution obtained when we solve the problem assigning
the first part on the second machine instead of the first is simply
the mirror image of the one that is attained. The next machine
selected is going to be the second one, since it is empty in line (16).

At this point, which refers to lines (29) and (30) of Algorithm 1,
the part to be loaded is determined by Algorithm 2 according to
the possible blocked and waiting times caused by the remaining
parts. The word ‘possible’ indicates that at any decision point,
blocked and waiting time values of each part left in the input
buffer are calculated as if it is the one that is going to be loaded
next, for which related steps are described by Algorithm 2 as is
mentioned in lines (6)–(18). Comparing these values we first
check blocked times and pick the one causing smallest blocked
time value, lines (19)–(22). In the event of equivalence of blocked
times, we compare waiting times in lines (23)–(29). If waiting
times are also the same, we pick any one of the parts randomly.
Throughout the algorithm, B and W are the respective blocked
and waiting times corresponding to the best part choice (j) at
hand. Initially, they are set to very large numbers.

Returning back to Algorithm 1, after loading the selected part
on machine 2, we check if all the parts are assigned or not. If not,
this means that we are still in the while loop and go back to line
(7) for the assignments of the remaining part(s). Since both
machines are not empty we move to line (19) and from now on
the decision of the machine to unload is taken according to the
times that the loaded parts are to be completed as in lines (20)–(24).
After unloading the selected machine, we determine the part to
load on it according to Algorithm 2 again. Machine and part selections
and load/unload steps are repeated as long as there are parts in
the input buffer. When all the parts in set S are assigned and
sequenced by Algorithm 1, the algorithm either calculates the cycle
time value repeating the assignments and sequences obtained
so far, or loads a new set and goes on the part selection steps for
this new set.

Algorithm 2. PartSelect.
1:
 B ¼M, W ¼M,

2:
 for iAS do

3:
 tnow ¼ tnowþ2Eþmd,

4:
 pos¼m,

5:
 sim ¼ tnow, Fm ¼ simþPi,
6:
 if FmrFð3�mÞ then
7:
 wim ¼maxf0,Pi�tnowg,
8:
 tnow ¼ tnowþwimþ4Eþ6dþd,
9:
 bi91�m9
¼maxf0,tnow�Fð3�mÞg
10:
 B¼ bim , W ¼wim ,
11:
 else

12:
 tnow ¼ tnowþd,

13:
 pos¼ ð3�mÞ,

14:
 bi91�m9

¼maxf0,tnow�Fð3�mÞg,
15:
 tnow ¼ tnowþmaxf0,Fð3�mÞ�tnowgþ4Eþ6dþd,
16:
 bim ¼maxf0,tnow�Fmg
17:
 B¼ bi91�m9
þbim , W ¼wim ,
18:
 end if

19:
 if BoB then

20:
 B ¼ B,

21:
 W ¼W ,

22:
 j¼ i,

23:
 else if B¼ B then

24:
 if ðWoW Þ then

25:
 B ¼ B,

26:
 W ¼W ,

27:
 j¼ i,

28:
 end if

29:
 end if

30:
 end for

31:
 return j
Since we try to reach to a steady-state cyclic solution, end-up
conditions for the algorithm are either to reach to a state that the
first part is assigned to the same machine while other machine’s
state is also the same as the previous or to repeat the algorithm
for a given number of MPS’s. ‘Given number of MPS’s’ means that
we load input buffer with the same MPS for a few times and run
the algorithm trying to reach to a state that was observed before.
If we can find such a point at the end of Algorithm 1, algorithm
stops without repeating the given number of MPS’s; but if we
could not find such a steady state solution even after a given
number of MPS sets, algorithm does not search any more and
takes the resulting state as the starting one. As can be guessed,
the state that we look for reaching for the second time is the load
of the first part on the same machine; since load of it is the
starting point of each set.

End-up policy can be understood better using Fig. 7. In chart
‘a’, the system returns to its initial state after loading only one
MPS, whereas in chart ‘b’ the initial state is reached after two
loads of the same MPS. In chart ‘b’, if we take 1 as the maximum
MPS number, i.e. we assume that we cannot load the set more
than once, our system would stop at point ‘1’ and we would
obtain the solution given by chart ‘c’ instead of the one in ‘b’.
In consequence of this policy, we obtain solutions producing
either 1 or higher number of MPS’s (mostly 2�MPS). However,
in our solutions, a 2�MPS solution does not refer to a solution of
two times the part number in 1�MPS; we use this term when we
load a second MPS after the first one is completed while these two
sets do not necessarily use the same sequences. This means that
our choice of 2�MPS does not cause any need for extra inventory.
A step-by-step detailed explanation of the construction algorithm
is given on a numerical example in Appendix A. We will now give
the complexity of this method.

Lemma 1. The time complexity of the Construction Algorithm is O(n2).

Proof. Throughout the algorithm, we assign the parts on
machines as defined above. Starting from the second part, we

Fig. 8. Part selection policy for Stage 2.

Fig. 7. End-up policy.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740734
check all the remaining parts for this decision. In other words; we
consider n�1 possibilities for the second part, n�2 possibilities
for the third one, yand 2 possibilities for the ðn�1Þ th part. Since
the sum of these values ðn�1,n�2, . . .2Þ equals to n2=2�n=2�1,
complexity equals to O(n2). &
4.2. Stage 2: allocation algorithm

Allocation is a primary issue with this study. Although, for the
first stage, we assume the parts to be processed on only one of the
machines; for this second stage, we try to find better solutions by
letting one part to be processed on both machines. In order to reach
our goal, we first decide on the part to allocate and then determine
the processing time values on each machine for this allocated part.
For the first decision, looking at the total blocked time values of
machines (Bm) from the solution obtained in Stage 1, we select the
machine that has larger blocked time as the one that extra proces-
sing time will be added (machine x). The part to allocate (part i) will
be the one that causes the largest blocked time value on machine x

among the parts processed on the other machine (machine y in the
initial solution, where yax). Letting bn

jm
be the blocked time values

observed on machine m in the same time interval with the proces-
sing and unload of part j, we pick part a to allocate where
Ba ¼maxfbn

jm
g, max. This part selection policy is depicted in Fig. 8.

In the first chart of the figure, part C is the one causing the
largest blocked time (which is also the only blocked time) on the
first machine, thus it is chosen to be allocated. After loading the part
on the second machine and unloading the first machine as before,
we unload part C without waiting for all the processing to complete
and load it on the first machine to perform the rest of its processing.
As can be seen, the allocation shortened the cycle time value while
filling the blocked time observed in the initial solution.

After choosing the part, we should determine how we allocate
the processing times on each machine. We know that the total
processing time of part i is Pi and need to calculate Px which
determines the processing time to be allocated on machine x.

4Eþ4d is the extra time for machine x since the machine was
not supposed to work for that part in the solution obtained by
Stage 1. When we allocate a part, following movements will be
performed immediately after the unload of machine x: go to
machine y from the output buffer (d or 2d, for x¼1 or x¼2
respectively), unload the part to be allocated from machine y (E),
go to machine x (d), load the part on machine x (E), unload the
part (E), go to the output buffer (2d or d, for x¼1 or x¼2
respectively), and load the part on output buffer(E).

2Eþ4d is a twofold important value. First, it represents the time
that passes between the load of the allocated part on machine y and
the time that robot comes back to unload it after unloading the
previous assigned part on machine x which means to get machine x

ready for the allocated part [travel time to machine x from machine
y (d), unload of part from machine x (E), travel time to output buffer
(2d if machine x is the first one or d if machine x is the second one),
load of part on output buffer (E), and travel time to machine y (2d if
machine y is the first one or d if machine y is the second one)].
Secondly, it corresponds to the time that passes between the load of
the allocated part on machine x and the time that robot comes back
to unload it after loading the next assigned part on machine y

[travel time to input buffer from machine x (d if machine x is the
first one or 2d if machine x is the second one), unload of part from
input buffer (E), travel time to machine y (d if machine y is the first
one or 2d if machine y is the second one), load of part on machine y

ðEÞ, and travel time back to machine x (d)].
The following result is imperative in the choice of allocation.

Lemma 2. Allocation is useful if and only if there exists a Px value

satisfying the following conditions:

ðaÞ PxrBd�ð4Eþ4dÞ,

ðbÞ maxf0,Pi�Px�2E�4dgþmaxf0;2Eþ4d�PxgrBa�Px,

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 735
ðcÞ 0rPxrPi: ð18Þ

Where Pi is total processing time of the chosen part, Px is the time
we need to determine, Bd is the difference of total blocked times
of the machines, and Ba is the blocked time on machine x that is
caused by the chosen part.

Proof. For the first relation, the significance of 4Eþ4d arises from
the fact that it is a newly added time for machine x which can be
seen as the fixed cost of allocation for machine x. The sum of this
value and the allocated processing time on machine x (Px) should
not be more than the blocked time difference (i.e. the excess of
blocked time on machine x). Otherwise, the new cycle time will
become worse. This value can be traced from Fig. 8, as the sum of
2Eþ3d and 2Eþd. We observe from the same figure that this
condition needs to be considered when determining Px values as
the cycle time can be shortened only if the sum Pxþ4Eþ4d is less
than the blocked time value.

For the second relation, it was mentioned before that 2Eþ4d is

the time needed for unload of machine x and travel to machine y

for the allocated part. If the process left on machine y is not

completed by the time the robot arrives at the machine, in other

words, if processing time value is larger than 2Eþ4d; waiting

time will occur for machine y which is equivalent to blocked time

for machine x. In a similar manner, 2Eþ4d also represents the

time needed for taking the allocated part from machine y to

machine x and coming back to this machine after loading a new

part on machine y. If the process assigned to machine x is already

completed by the time the robot arrives at the machine, in other

words, if processing time value is smaller than 2Eþ4d; blocked

time will occur for machine x. In particular, the left hand side of

the inequality gives us the total blocked time value observed on

machine x for the allocated part after allocation is performed. We

know that Ba is the blocked time caused by the chosen (to be

allocated) part and Px is the allocated time value. So, the right

hand side of the inequality gives us the available time that can be

used for other movements after the part is assigned. These

observations can be seen in Fig. 9. In essence, the blocked times

occurring after allocation is performed should not be more than

the initial solution. &

By the conditions defined in Lemma 2, we obtain a range for the
Px value. We consider two values among the ones satisfying the
above conditions to select the Px value; (i) we could take the one in
the middle of the range obtained, or (ii) we could take the one closest
to 2Eþ4d, in order to obtain minimum blocked time value for
machine x. In most cases, both of these two choices gave the same
result; however, since we obtained better results by the second one
for the remaining cases, we use the value closest to 2Eþ4d.

If there does not exist any part that satisfies the conditions of
Lemma 1, there is no need to perform an allocation. Else, we
follow the same assignments obtained in Stage 1 until part j is
Fig. 9. Effect of the value 2Eþ3d on allocation.
loaded on machine y. Once part j is loaded (with a processing time
value of (Pj�Px) instead of Pj); we go to machine x, get prepared
for part j by unloading the machine and without loading the next
assigned part, we go to machine y, wait if necessary, unload this
machine and take the allocated part to machine x (with a
processing time value of Px). After this point, we go back to the
assignments of Stage 1 again; go to the input buffer, take the next
assigned part for machine y, go to the machine and load the part.
Using the same machine selection policy described for Stage 1,
and following the assignments obtained in Stage 1; we perform
load/unload activities for all the parts. In order to find a steady
state solution, the sequences determined so far are repeated until
two successive results are found to be the same.

Lemma 3. The time complexity of the allocation algorithm is O(n).

Proof. We determine the part to allocate according to the condi-
tions in Lemma 2. Since the necessary calculations are performed
once for each of the n parts, they take a total of O(n) time. &

One of the main points for this stage is that; we are not
guaranteed that we will be able to find a better solution with
allocation. Besides, the success of this method depends mostly on
the choice of assignments and sequence of the previous stage.
Similar to Stage 1, a detailed explanation of the allocation
algorithm is given on a numerical example in Appendix B.
5. Computational experiments

In this section, the algorithms described so far are compared
with the LPT approach. In order for our results to be conclusive, we
have run the algorithm on a wide range of instances. Performing the
solution procedures over preliminary experiments, we first
observed that five factors, which are the five basic parameters of
this study, play important roles on the solutions obtained. In order
to set appropriate values for each factor, we run further extensive
trials for each of the criteria. As a result of these studies, we
obtained the factors and factor levels shown in Table 2.

Throughout this study, we use the following equation in order
to calculate the improvements:

% improvement over LPT¼
CðLPTÞ�CðStage1Þ

CðLPTÞ
� 100, ð19Þ

where ‘C(LPT)’ is the cycle time obtained by the LPT approach and
‘C(Stage1)’ is the one obtained by the Stage1 approach.

We have taken 10 replications for each factor combination,
resulting in 1620 randomly generated runs. All of these instances
are generated uniformly in the respective intervals. When we
compare the Stage1 solutions (no allocation) with the LPT
approach, we see that only 3 out of 1620 give better results with
LPT. Average gain of our algorithm is 2.67%, where this value is up
to 28.3% for a case with high part number, high mean, medium
range, low epsilon, and low delta levels. Improvements for the
factor levels are given in Table 3.
Table 2
Factor and factor levels.

Factor Number of

levels

Low Medium High

Number of parts 3 r10 11r � � �r99 100r � � �r800

Average processing

times

2 r50 – 51r � � �r4800

Range of processing

times

3 r139 140r � � �r149 150r � � �r640

Epsilon 3 1,2,3 4,5,6 7,8,9

Delta 3 1,2,3 4,5,6 7,8,9

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740736
In the problem that is considered throughout this study, we have
three basic time elements: processing times, load/unload times, and
travel times. Different from the LPT approach, our construction
algorithm takes the robot movements, i.e. load/unload and especially
travel times, into account. As a result of this fact, our algorithm gives
better solutions for almost all cases considered. Looking at the factors
and factor levels in a more detailed manner, we can make more
specific comments over the effectiveness of our algorithm. As can be
seen from Table 3, range is one of the critical factors. It has turned
out that for a high range factor setting our gain is 4.49% on the
average. We attribute this to the increase in the number of
alternative solutions. When the range of processing times is low,
LPT is able to work well; however when the range gets higher, LPT
gets weak and our construction algorithm performs better as it takes
the relationship between the processing times and the robot move-
ments into consideration. For those with small number of parts, we
also get better solutions than the LPT approach, since the solution
quality is more vulnerable to the myopic decisions.

During comparisons with Stage 2 solutions, we used the same
factors and factor levels. One of the basic points here is that, not
Table 3
Improvement for Stage 1.

Factor Factor level Average (%) Minimum (%) Maximum (%)

Part # Low 4.32 0.60 24.30

Medium 2.16 0.00 14.50

High 1..54 0.00 28.30

Mean Low 2.12 0.00 19.40

High 3.23 0.00 28.30

Range Low 0.80 0.00 10.30

Medium 2.72 0.00 28.30

High 4.49 2.00 24.30

Epsilon Low 2.62 0.10 28.30

Medium 2.78 0.00 24.30

High 2.62 0.00 18.20

Delta Low 2.82 0.20 28.30

Medium 3.05 0.20 17.90

High 2.14 0.00 19.40

Table 4
Observations for Stage 2.

Factor Factor level Over LPT

Numbera Improvementb

Average (%) Minimum (%) Max

Part # Low 42 3.39 0.30 9.90

Medium 131 1.03 0.00 5.10

High 62 0.20 0.00 0.50

Mean Low 76 1.58 0.00 7.20

High 159 1.07 0.00 9.90

Range Low 20 0.82 0.00 3.70

Medium 87 0.50 0.00 2.50

High 128 1.80 0.10 9.90

Epsilon Low 78 1.30 0.00 9.90

Medium 77 1.15 0.00 8.30

High 80 1.25 0.00 8.40

Delta Low 50 0.88 0.00 4.30

Medium 74 1.26 0.00 8.40

High 111 1.38 0.00 9.90

a Number of improved solutions out of 1620 / (number of levels of the factor) inst
b Average/minimum/maximum improvement percentages for the given number of
every solution could be improved by allocation. As a result of this
fact, out of 1620 runs, only 235 of LPT solutions and 35 of
heuristic solutions can be improved. Average improvements
observed for these two approaches are 1.23% and 1.62%, respec-
tively, as summarized in Table 4. Although improvement percen-
tages are higher when Stage 2 is applied over Stage 1, the number
of improved solutions are significantly higher for LPT results. This
situation arises from the effectiveness of Stage 1 results; as we
have obtained already better solutions applying Stage 1 rather
than the LPT approach, improvement chance is lower in this case.

In a similar manner to the previous observations, we search for
the most effective factors and factor levels for the problem. As can
be seen from Table 4, the gain of the algorithm is up to 9.90% over
an LPT solution for a case with low part number, high mean, high
range, low epsilon and high delta levels. Low number of parts is
able to react better to allocation for both LPT and heuristic
approaches. As the part number increases, the positive effect of
allocation fades away since the allocation makes the already high
number of robot movements even higher. The range of processing
times also plays an important role in Stage 2, similar to Stage 1.
As is mentioned before, LPT solutions are worse especially for
high ranges. Observing mean and range factors together, we
found out that for high average processing time and high range
levels, allocation is a preferable option on 72 out of 270 instances
and the average gain for these trials is 1.7%. Considering alloca-
tion possibility as an improvement algorithm, we are able to
increase the quality of the weaker solutions. Although there is a
slight difference between the three levels, lower epsilon values
are more preferable for the allocation decisions since the dis-
advantage of loading/unloading the allocated part twice gets
smaller as the epsilon values are small. Furthermore, as expected
due to the conditions stated in Lemma 2, allocation decisions are
affected by the delta values. When activities of the robot are
ignored in a schedule, it becomes bottleneck leading to higher
percentages for higher delta values. Performing allocation, the
robot movements are spread out over the total cycle time in a
more effective way and better solutions are easily obtained.

For the same problem, we checked the possibility of allocating
two parts instead of one. We tried to allocate a second part after
Over Stage1

Numbera Improvementb

imum (%) Average (%) Minimum (%) Maximum (%)

4 6.65 6.00 7.20

22 1.21 0.20 2.20

9 0.37 0.20 0.50

16 2.02 0.20 7.20

19 1.28 0.20 6.00

6 2.40 1.40 6.00

24 1.67 0.20 7.20

5 0.44 0.20 0.70

5 2.50 0.50 7.20

11 1.41 0.20 7.10

19 1.51 0.30 6.30

1 0.30 0.30 0.30

3 3.03 0.30 6.30

31 1.52 0.20 7.20

ances.

improved solutions.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 737
the first one is allocated but could not find any Px value satisfying
the conditions defined by Lemma 3 for any of the 1620 solutions.
This was also an expected result, since we define the constraints
trying to take the advantage of blocked times and to balance the
work-loads on the machines as much as possible.

We also checked the results obtained by choosing the part
causing the second largest blocked time value on machine x among
the ones processed on machine y, to allocate. For the LPT solutions,
85 out of 1620 changed; 41 of them gave the same result with
different parts and processing time values and 44 of them could not
perform allocation while they did before. Similarly, for the initial
algorithm’s solutions, 38 out of 1620 changed; 23 of them gave the
same result with different parts and processing time values, 14 of
them could not perform allocation while they did before and only
1 of them gave a smaller solution with a percentage of 18%. This
was another expected result in light of the second condition given
in Lemma 1. By selecting a part with a smaller blocked time value,
we decrease the right hand side of this inequality, while other
conditions remain the same, and obtain a smaller range for Px value.
Therefore, it becomes less likely to find such a solution.
6. Conclusion

In this study, our primary focus is on an NP-hard scheduling
problem arising in two-machine manufacturing cells which repeat-
edly produce a set of multiple part-types, and where transportation of
the parts between the machines is performed by a robot. Since the
Fig. 10. Part selection for
parts considered are not identical, we need to solve both the
problems of sequencing the parts and the robot moves for robotic
cells. Taking the advantage of the flexibility property, processing
times of parts on each machine are not assumed to be constant as is
typically done in the existing literature. Due to this, allocation
becomes our third problem. We first modeled this problem as a
traveling salesman problem (TSP) in which the distance matrix
consists of decision variables as well as parameters. The formulation
obtained is more general than the classical TSP formulation and
requires a great amount of computational effort even if the number of
machines in the cell is small. Consequently, we focused our attention
on heuristic approaches. We first constructed an algorithm which
does not allow allocation for parts. We compared the results obtained
with this algorithm with the well-known LPT approach, and noticed
that our algorithm outperformed for almost all the examples in our
experimental design. We then considered the case of allocation and
let the robot load a selected part on both of the machines consecu-
tively. Although there would be extra load/unload and travel times,
decreasing the waiting times and using the machine capacities more
effectively, allocation gave better results for some specific cases.
As far as the authors know, this is the first study to consider allocation
possibility in multiple part-type robotic cell scheduling literature.
Appendix A. Numerical example for construction algorithm

We will use Example 2 to describe the construction algorithm. The
algorithm starts by loading the first part on the first machine; thus
Example 1 in Stage 1.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740738
robot loads P1 on the first machine, which will take a total of
2Eþd¼ 2ð4Þþ4¼ 12 units of time. Time of the system is 12 and
robot position is pos¼ 1. Since the second machine is empty, it is
chosen to be the machine to load and robot goes to the input buffer
(posd). Time of the system is tnowþposd¼ 12þ1ð4Þ ¼ 16 and robot
position is pos¼ 0. Start and finish times of the part are as follows:
sim ¼ s11

¼ tnow ¼ 12, and Fm ¼ F1 ¼ simþPi ¼ s11
þP1 ¼ 12þ97¼

109.
Now we need to determine which part to load, thus we will

calculate possible blocked and waiting time values for the
remaining parts (i.e. parts 2 and 3). These observations can also
be followed from Fig. 10.
(a)
 If we select part 2 (P2 ¼ 123), following situations will be
observed:

Robot will take the part from input buffer (E), go to the
second machine (90�29¼ 2d), load the machine (E). Robot
position is pos¼ 2 and system time will be
tnowþ2Eþmd¼ tnowþ2Eþ2d¼ 16þ2ð4Þþ2ð4Þ ¼ 32. Start
and finish times of the part are as follows: sim ¼ s22

¼ tnow ¼ 32, and Fm ¼ F2 ¼ simþPi ¼ s22
þP2 ¼ 32þ123

¼ 155.
Fig. 11. Gantt-chart of Stage 1 for
Since both machines are loaded and F1rF2, unload will
be performed for the first machine. Robot will go to the
machine ð92�19d¼ dÞ, wait until processing of the part is
completed (i.e. until F1 ¼ 109, meaning 73 time units of
wait), take the part (E), go to the output buffer
ð91�39d¼ 2dÞ, and leave the part ðEÞ; these will make a
total of w11

þ2Eþ3d¼ 73þ2ð4Þþ3ð4Þ ¼ 93 and system
time will be 32þ93¼ 125. Robot position will be
pos¼ 3. Robot will then go to the input buffer
ð93�09d¼ 3dÞ, take a new part (which has not been
determined yet) ðEÞ, go to the first machine ð90�19d¼ dÞ,
load the part ðEÞ. System time will increase by
2Eþ4d¼ 2ð4Þþ4ð4Þ ¼ 24 and will be 125þ24¼ 149.
Although we do not know the processing time of the
newly loaded part, we check at this point if there is any
waiting or blocked time for machine 2. Robot goes to the
second machine which will make system time
149þ91�29d¼ 149þ1ð4Þ ¼ 153 and this time is com-
pared with the finish time of the already loaded part. F2

is known to be 155, so we have maxf0,F2�tnowg

¼maxf0;155�153g ¼ 2 units of waiting time at this
moment.
Example 2.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740 739
As a result, this choice will cause 75 units of waiting and
0 units of blocked time.
With the help of similar observations for all the remaining
parts, we obtain the following results:
(b)
 If we select part 3 ðP3 ¼ 4Þ, this choice will cause 4þ29¼ 33
units of waiting and 0 units of blocked times.
(c)
 If we select part 4 ðP4 ¼ 18Þ, this choice will cause 18þ15¼ 33
units of waiting and 0 units of blocked times.
(d)
 If we select part 5 ðP5 ¼ 20Þ, this choice will cause 20þ13¼ 33
units of waiting and 0 units of blocked times.
(e)
 If we select part 6 ðP6 ¼ 26Þ, this choice will cause 26þ7¼ 33
units of waiting and 0 units of blocked times.
Since all the possible blocked and waiting time values are
determined to be the same, robot will select part 3 arbitrarily
and take the part from input buffer, go to the second machine,
load the machine, wait until processing of the part is completed,
take the part, go to the output buffer, leave the part and go to the
input buffer for the new part. This point is again a decision point
for the algorithm. According to the possible blocked and waiting
Fig. 12. Gantt-chart of Stage
time values again, this time robot picks part 2 and loads on the
second machine. These part selection steps continue until all the
parts are assigned. By the time we have finished the assignments
of all the parts in the first MPS, we have also reached to a state
that was observed before; so we end-up the algorithm having
obtained the sequence and the schedule. Now we will determine
the cycle time value of this result by repeating the assignments
and the order until we reach to a steady state solution. All the
movements and processes of this example can be seen from
Fig. 11.

The time that passed until the end-up point is 295�12¼ 283.
We repeat the determined sequence and scheduled movements
and reach the same state at time 590, for which 590�295¼ 295
units of time have passed. Third repetition finished at time 885,
by which we have counted again 885�590¼ 295 units of time.
Thus, the solution is reported as 295.
Appendix B. Numerical example for allocation algorithm

We again consider Example 2, for which Gantt-charts of LPT
and Stage1 solutions are given in Section 4 by Figs. 6 and 11,
2 on LPT for Example 2.

G.D. Batur et al. / Int. J. Production Economics 135 (2012) 726–740740
respectively. Considering Stage 1 of the example, total blocked
time value of machine 1 is 34 and of machine 2 is 28. Since the
difference between the machines equals to 6 and ð4Eþ4dÞ equals
to 32, due to the first condition in Lemma 2, allocation is
impossible. Therefore, we use the LPT solution of Example 2.
As can be determined from Fig. 6, total blocked time value of
machine 1 is 98 and of machine 2 is 52. Since the first one has
more blocked time than the second, we set the first machine as
machine x and the other one as machine y. As is mentioned, part
to be loaded is determined according to the longest blocked time
value on machine x, which is part 4 causing 44 units of blocked
time with processing time of 18. Now we can start the calcula-
tions. Bd value equals to 998�529¼ 46 and the first condition in
Lemma 3 is determined as follows:

PxrBd�ð4Eþ4dÞ ¼ 46�ð4ð4Þþ4ð4ÞÞ ¼ 14: ð20Þ

We have obtained our first condition as Pxr14.
For the second condition, we will consider Pi�Px�2E�4d and

2Eþ4d�Px values. We solve this equation as follows:

maxf0,Pi�Px�2E�4dgþmaxf0;2Eþ4d�PxgrBa�Px, ð21Þ

maxf0;18�Px�2ð4Þ�4ð4Þgþmaxf0;2ð4Þþ4ð4Þ�Pxgr44�Px, ð22Þ

maxf0,�6�Pxgþmaxf0;24�Pxgr44�Px: ð23Þ

Since the two ‘max’ values in Eq. (23) give different results for
different values of the allocated time, we will check for the
following ranges on Px value: For the first part;
�
 maxf0,�6�Pxg gives the solution 0 for all Px values.
For the second part:
�
 If Pxr24; then 0þ24�Pxr44�Px, which gives 24r44 and
since this is true, our second possibly valid interval is Pxr24.

�
 If PxZ25; then 0þ0r44�Px, which gives 25rPxr44 as our

third possibly valid interval.

We know that Pxr14 from the first equation of Lemma 1,
combining this one with the newly obtained intervals, we get
the following interval: 0rPxr14. After obtaining the interval,
we will take the value closest to 2Eþ4d which is equal to 24, as Px.
We have obtained Px value as 14. We can follow the next steps
from the Gantt-chart given by Fig. 12.

As can be seen from the figure, we start the system as was
determined by the LPT solution of assigning parts 1, 3 and 5 on
machine 1, and 2, 6 on machine 2. For part 4, the one to be
allocated, after loading it on its already assigned machine
(machine 2), robot unloads the other machine (machine 1) and
comes back to take the part for loading on the other machine.
From now on, part 4’s processing continues on this machine and
robot goes to input buffer for the next assigned part. End-up
policy used in this approach is also the same as previous; for this
example, steady state is obtained at time 291. The time passed
until that moment is 291�0¼291. Repeating the same move-
ments once more, the system arrives to the same state at time
616, and 325 units of time passed until this point. On the third
repetition, the same state is reached at time 941, which needed
325 units of time again. Since the last two results are the same,
the algorithm ends with the solution of 325, where it was 339
in LPT.

References

Abdekhodaee, A.H., Wirth, A., Gan, H.S., 2006. Scheduling two parallel machines
with a single server: the general case. Computers and Operations Research 33,
994–1009.

Akturk, M.S., Gultekin, H., Karasan, O.E., 2005. Robotic cell scheduling with
operational flexibility. Discrete Applied Mathematics 145 (3), 334–348.

Aneja, Y.P., Kamoun, H., 1999. Scheduling of parts and robot activities in two-
machine robotic cell. Computers & Operations Research 26, 297–312.

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J., 2001. Scheduling
Computer and Manufacturing Process, second ed. Springer.

Brauner, N., Finke, G., 2001. Optimal moves of the material handling system in a
robotic cell. International Journal of Production Economics 74, 269–277.

Dawande, M., Geismar, N., Sethi, S.P., 2005. Dominance of cyclic solutions and
challenges in the scheduling of robotic cells. SIAM Review 47 (4), 709–721.

Gilmore, P.C., Gomory, R.E., 1964. Sequencing in one state-variable machine:
a solvable case of the traveling salesman problem. Operations Research 12,
655–679.

Hall, N.G., Kamoun, H., Sriskandarajah, C., 1997. Scheduling in robotic cells:
classification, two and three machine cells. Operations Research 45 (3),
421–439.

Hall, N.G., Potts, C.N., Sriskandarajah, C., 2000. Parallel machine scheduling with a
common server. Discrete Applied Mathematics 102, 223–243.

Kise, H., Shioyama, T., Ibaraki, T., 1993. Automated two machine flowshop
scheduling: a solvable case. IIE Transactions 23, 80–87.

Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P., 1977. Complexity of machine
scheduling problems. Annals of Discrete Mathematics 1, 343–362.

Miller, C., Tucker, A., Zemlin, R., 1960. Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM) 7 (4), 326–329.

Paul, H.J., Bierwirth, C., Kopfer, H., 2007. A heuristic scheduling procedure for
multi-item hoist production lines. International Journal of Production Eco-
nomics 105, 54–69.

Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., Kubiak, W., 1992. Sequencing
of parts and robot moves in a robotic cell. International Journal of Flexible
Manufacturing Systems 4, 331–358.

Wen, C., Eksioglu, S.D., Greenwood, S., 2010. Crane scheduling in a shipbuilding
environment. International Journal of Production Economics 124, 40–50.

	Multiple part-type scheduling in flexible robotic cells
	Introduction
	Notation and assumptions
	Mathematical model
	Heuristic solution methodology
	Stage 1: construction algorithm
	Stage 2: allocation algorithm

	Computational experiments
	Conclusion
	Numerical example for construction algorithm
	Numerical example for allocation algorithm
	References

