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addition to the location and allocation decisions, we also study the decision on how the hub networks

with different possible transportation modes must be designed. In this multimodal hub location and
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a b s t r a c t

Through observations from real life hub networks, we introduce the multimodal hub location and hub

network design problem. We approach the hub location problem from a network design perspective. In

hub network design problem, we jointly consider transportation costs and travel times, which are

studied separately in most hub location problems presented in the literature. We allow different

transportation modes between hubs and different types of service time promises between origin–

destination pairs while designing the hub network in the multimodal problem. We first propose a linear

mixed integer programming model for this problem and then derive variants of the problem that might

arise in certain applications. The models are enhanced via a set of effective valid inequalities and an

efficient heuristic is developed. Computational analyses are presented on the various instances from the

Turkish network and CAB data set.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Hub facilities are present in many transportation and tele-
communication networks. In these networks, hubs usually act as
sorting, transshipment, and consolidation points. Instead of send-
ing flows directly between all origin–destination pairs, hub
facilities consolidate flow in order to take advantage from the
economies of scale.

Hub location problems arise in all network settings where
there is a hub. The aim in these problems is to find the location of
hub nodes and the allocation of demand nodes to these located
hub nodes. The quadratic nature of the objective functions in hub
location problems distinguishes them from the classical location
problems. In standard location problems when the locations of
the facilities are determined each demand node receives service
from its nearest facility. For hub location problems, when it comes
to allocation decisions, the nearest allocation strategy—assigning
each demand node to its nearest hub—does not necessarily give
optimal solutions. Thus the optimal allocations of demand centers
to the located hubs must also be determined.

The interest in hub location grew with the pioneering works of
O’Kelly [33,34]. The hub location literature is usually classified in
terms of the objective function of the presented mathematical
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models and the allocation structure. Single or multiple allocation
hub location problems with total transportation cost objectives
(median), min–max type objectives (center), and covering type
constraints are well studied in the literature. The interested
reader is referred to the reviews by Campbell et al. [11] and
Alumur and Kara [1].

In most of the studies in the hub location literature, the hub
network connecting the hub nodes is assumed to be complete
with a presence of a direct hub link between every hub pair. In
reality, many less-than truckload and telecommunication net-
works do not operate on a complete hub network structure
[19,29]. There are few studies taking into account hub network
design decisions in hub location problems. Perhaps, O’Kelly and
Miller [36] was first to mention the possibility of using different
hub network design protocols in the hub location literature.
Nickel et al. [32] presented a new hub location problem arising
in urban public transportation networks. They considered this
hub location problem as a network design problem and incurred a
fixed cost for locating hub links while minimizing the total
transportation costs plus the fixed costs of locating hubs and
building hub links. Podnar et al. [39] considered a new network
design problem where they do not locate hubs but they decide on
the links with reduced unit transportation costs. Yoon and
Current [46] studied the multiple allocation hub location and
hub network design problem with fixed and variable arc
costs. They also considered direct connections between non-hub
nodes and incurred variable arc costs associated with demand
on the arcs.
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Campbell et al. [12,13] proposed hub arc location problems to
the literature. Such problems locate hub arcs with reduced unit
costs, rather than locating hub facilities. A fixed number of hub
arcs is located while minimizing the total transportation costs.
Campbell et al. [13] presented integer programming formulations
for four special cases of the general multiple allocation hub arc
location model and presented an enumeration-based algorithm.
Campbell et al. [14] presented a parallel implementation of this
algorithm in an attempt to solve larger hub arc location problems.

A recent study by Alumur et al. [3] introduced the single
allocation incomplete hub network design problems to the
literature. The authors studied median, center, and covering type
single allocation hub location and hub network design problems
and proposed efficient mathematical formulations to all versions
of the problems. Alumur et al. [3] showed that building complete
hub networks may result in some hub links carrying low amounts
of flow yet employing economies of scale discount factor. In the
models considering travel time, they showed that, in most of the
instances, there is no need to establish a complete hub network to
provide a required service quality. Calik et al. [8] considered the
hub covering version of this network design problem. Alumur and
Kara [2] worked on a special case where the hub network has a
diameter of three. Another special case where the hub network is
an undirected tree is introduced as the tree of hubs location

problem to the literature by Contreras et al. [17,18].
Even though there is an inherent multicriteria nature under-

lying hub network design decisions arising in real life applica-
tions, the hub location literature customarily focuses on the single
objective problems. In an ideal setting, the hub network design
decisions should take into account both the transportation costs
and the service quality. For example for cargo delivery sector,
there is usually a given service time promise for origin–destina-
tion pairs. On the other hand, the cargo firms would like to
minimize both the fixed and operating costs of establishing the
hub network and the total costs of transportation for providing
service within the promised service times [7,42,43]. A recent
study by Campbell [10] addresses this deficiency in the hub
location literature. In this paper, the author proposed time
definite models for multiple allocation p-hub median and hub
arc location problems. For both of the problems, a constraint is
introduced on the maximum travel distance for each origin-
destination pair. Campbell [10] is the first study minimizing
transportation costs subject to a constraint on the service
level in hub location problems. A follow up study by Yaman
et al. [45] also addresses this issue and proposes models incor-
porating transportation costs and service levels for complete hub
networks.

Another important aspect in designing hub networks which
has been traditionally overlooked is the choice for mode of
transportation. It is assumed that there is only one hub type
and one type of transportation mode in most of the hub location
models presented in the literature. However, there is usually a
choice between air, ground, and water transportation systems.
For example, various cargo companies operating globally employ
two different transportation modes, mainly air and ground
transportation. There are various studies on the design of inter-
modal transportation networks. Reviews on intermodal transpor-
tation can be found in Bontekoning et al. [6] and Crainic and Kim
[20]. Since we are concerned with locating hub facilities, we will
focus on the studies considering hub location decisions in multi-
modal networks.

The concept of mode choice was first introduced to the hub
location literature by O’Kelly and Lao [35]. In this study, O’Kelly
and Lao consider two hubs (one master and one mini hub) at fixed
locations and analyze the allocation decisions for air and ground
transportation. More recently, there are some studies considering
hub location decisions in intermodal networks. Arnold et al. [4]
presented an integer programming model and a heuristic algo-
rithm for locating rail/road terminals for freight transportation.
Racunica and Wynter [40] used the uncapacitated hub location
problem with a non-linear concave cost function accounting for
the economies of scale to increase the share of rail in intermodal
transportation. Groothedde et al. [25] focused on designing a hub
based distribution network within a case study in the fast moving
consumer goods market. Limbourg and Jourquin [28] determined
the locations of rail–road transfer terminals using the single
allocation p-hub median model. Ishfaq and Sox [26] extended
the p-hub median model to include different modes of transpor-
tation, modal connectivity costs, and service time requirements.
In a parallel study, Ishfaq and Sox [27] used uncapacitated hub
location model with the inclusion of a service time constraint to
solve for the location of hubs within a rail–road intermodal
network. Meng and Wang [30] proposed a mathematical formu-
lation to design an intermodal hub network for multi-type
container transportation, which is suitable when there are
multiple stakeholders such as the network planner, carriers, hub
operators, and intermodal operators.

The inclusion of service level in the design phase brings along
the consideration of different service levels for different types of
customers. For example, most of the less-than truckload firms
offer different delivery schedules for their customers such as
overnight delivery and second day delivery, for different origin–
destination pairs. This issue has been considered in Yaman et al.
[45], and Ishfaq and Sox [26,27] only for complete hub networks.

Even though the previous studies in the literature consider
different types of hub facilities to be located or the inclusion of
different service levels, none of them is general enough to support
incomplete hub network design. The inclusion of hub network
design decisions adds on extra modeling challenges and brings
along the incorporation of operational costs for hub links.

In this paper, we introduce a problem that addresses the
multicriteria nature of hub location problems by considering cost
and service levels simultaneously, relaxes the complete hub
network assumption, allows multiple modes of transportation,
and considers different types of service levels for customers. To
the best of the authors’ knowledge, this is the most general form
of the hub location network design problems addressed in the
literature. This new problem decides on the location of different
types of hubs, the allocation of the non-hub nodes to the located
hubs, and which hub links to establish between hubs with which
type of transportation mode. There are given service time para-
meters which may differ for each origin–destination pair. The aim
is to minimize the total cost which is composed of the fixed costs
of establishing the hub network and the total costs of transporta-
tion. We name the problem with these specifications as the
multimodal hub location and hub network design problem.

The point of origin of this study is a small parcel delivery
application arising in a single firm where the firm is responsible
for the entire carriage. The firm operates its own fleet on the
network connections and makes the crucial decisions on which
links to operate its aircrafts and trucks.

The outline of this paper is as follows. In the next section,
mathematical formulations for the most general case and a
variant of the multimodal hub location and hub network design
problem are introduced. In the third section, we present formula-
tions for some of the classical hub location problems using the
notation and constraints from the generic mathematical model
that we propose. In the fourth section, we propose some valid
inequalities for enhancing the model. The fifth section presents an
application of the model on the Turkish network. In this section,
we also present computational analyses with the valid inequal-
ities, a heuristic algorithm for the problem, and solutions on the
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Turkish network and CAB data set. The paper ends with some
concluding remarks presented in the last section.
2. Mathematical model

In this section, we present mathematical formulations for the
single allocation multimodal hub location and hub network
design problem. The aim of the problem is to decide on the
location of the hub nodes, the allocation of the non-hub nodes to
these hub nodes, and which types of hub links to establish
between the hub nodes. We aim to design our network so that
the demand of each origin–destination pair receives service
within the given service time bounds. The objective is to mini-
mize the total costs which include the fixed costs of building and
operating the hub network and the transportation costs. Initially,
we provide a model for the most general case and subsequently,
we introduce a more compact formulation with two types of hubs
and hub links and two different service time promises motivated
from the small parcel delivery applications.

2.1. Generic model

For the mathematical model, we need a given node set N

consisting of n demand nodes and a potential hub set H such that
HDN with h nodes. There are different possible service types
(denoted by set S). Additionally, there are different types of
transportation modes (denoted by set M). Different types of hubs
and hub links can be established to facilitate these transportation
modes. The unit transportation costs and travel times are depen-
dent on the mode of transportation. It is assumed that different
transportation modes are allowed to be used only within the hub
network; that is, only for traveling between the hub nodes. For
the allocation decisions, only ground transportation (gAM) is
employed. There are no capacity restrictions. We assume
throughout our model that the triangle inequality is satisfied for
the parameters related to unit transportation cost and travel time
within the same mode of transportation.

The parameters required for the mathematical model are listed
as follows:

ws
ij demand between nodes iAN and jAN for service type

sAS.
cm

ij transportation cost of a unit of flow between nodes iAN

and jAN using transportation mode mAM.
ocm

k unit operational cost at hub kAH with transportation
mode mAM.

FHk
m fixed cost of establishing and operating a hub at node

kAH with transportation mode mAM.
FLm

kl fixed cost of operating a hub link between hubs kAH

and lAH with transportation mode mAM.
tm

ij travel time between nodes iAN and jAN using trans-
portation mode mAM.

otk
m operational time required at hub kAH with transporta-

tion mode mAM.
bs service time bound for service type sAS.
am

c hub-to-hub transportation cost discount factor using
transportation mode mAM.

am
t hub-to-hub transportation time discount factor using

transportation mode mAM.
p total number of hubs to be established.

The decision variables of the mathematical model are

Xik 1 if node iAN is allocated to hub at node kAH;
0 otherwise.
Hk
m 1 if a hub is established at node kAH using transporta-

tion mode mAM; 0 otherwise.
Yijkl

ms 1 if the flow originated at node iAN destined to node
jAN with service type sAS uses the hub link k,l

� �
from

hub kAH to hub lAH with transportation mode mAM;
0 otherwise.

Zm
kl 1 if a hub link is established between hubs kAH and

lAH using transportation mode mAM; 0 otherwise.
Ts

ij discounted travel time from node iAH to node jAH for
service type sAS on the designed hub network.

Cs
ij discounted unit transportation cost from node iAN to

node jAN for service type sAS on the designed hub
network.

The multimodal hub location and hub network design problem
is modeled as

ðP0Þ

Min:
X

mAM

X
kAH

FHm
k Hm

k þ
X

mAM

X
kAH

X
lAH:l4k

FLm
kl Z

m
klþ

X
sAS

X
iAN

X
jAN

ws
ijC

s
ij

ð1Þ

s:t:
X
kAH

Xik ¼ 1 8iAN ð2Þ

XikrXkk 8iAN, kAH ð3Þ

Hm
k rXkk 8kAH, mAM ð4Þ

X
kAH

Xkk ¼ p ð5Þ

Zm
kl rHm

k 8k,lAH : ko l, mAM\fgg ð6Þ

Zm
kl rHm

l 8k,lAH : ko l, mAM\fgg ð7Þ

Zg
klr

X
mAM

Hm
k 8k,lAH : ko l ð8Þ

Zg
klr

X
mAM

Hm
l 8k,lAH : ko l ð9Þ

X
mAM

X
lAH:lak

Yms
ijkl�

X
mAM

X
lAH:lak

Yms
ijlk ¼ Xik�Xjk

8i,jAN : ia j, kAH, sAS ð10Þ

Yms
ijklþYms

ijlkrZm
kl 8i,jAN : ia j,k,lAH : ko l, sAS ð11Þ

Cs
ij ¼

X
kAH:ka i

cg
ikXikþ

X
mAM

X
kAH

X
lAH:lak

ðocm
k þa

m
c cm

klþocm
l ÞY

ms
ijkl

þ
X

kAH:ka j

cg
kjXjk 8i,jAN : ia j, sAS ð12Þ

Ts
ij ¼

X
kAH:ka i

tg
ikXikþ

X
mAM

X
kAH

X
lAH:lak

ðotm
k þa

m
t tm

ij þotm
l ÞY

ms
ijkl

þ
X

kAH:ka j

tg
kjXjk 8i,jAN : ia j, sAS ð13Þ

Ts
ijrbs

8i,jAN, sAS ð14Þ

Cs
ijZ0 8i,jAN, sAS ð15Þ

Ts
ijZ0 8i,jAN, sAS ð16Þ

XikAf0;1g 8iAN, kAH ð17Þ

Hm
k Af0;1g 8kAH, mAM ð18Þ

Zm
kl Af0;1g 8k,lAH : ko l, mAM ð19Þ



S.A. Alumur et al. / Omega 40 (2012) 927–939930
Yms
ijklAf0;1g 8i,jAN : ia j, k,lAH : ka l, mAM, sAS ð20Þ

In the objective function (1), the first term calculates the fixed
costs of establishing and operating hubs, the second term calcu-
lates the fixed costs of operating hub links, and the last term
calculates the total cost of transportation. While calculating the
transportation costs, the demand to be routed between all pairs of
nodes for different service types are multiplied with the Cs

ij

variables. The values of the Cs
ij variables are calculated within

the model using the hub network to be designed.
By constraints (2) and (3) every demand node is allocated to a

hub node. These are the classical single allocation constraints in
hub location. Constraint (4) allows establishing and operating
different modes of transportation at a given hub node. By
constraint (5), the model establishes p hub nodes.

Constraints (6) and (7) ensure that a hub link of a certain
transportation mode can only be established if both of the end
nodes of that link are hubs established for that transportation
mode. On the other hand, ground hub links can be established
between all hub nodes via constraints (8) and (9). This distinction
is because transportation modes other than ground transporta-
tion can only be utilized with specific terminals and/or
equipment, whereas ground transportation is available between
every hub.

Constraint (10) is the flow conservation constraint. This con-
straint determines which hub links to be used to route the
demand for different service types between each origin-destina-
tion pair. Constraint (11) guarantees that the flow is routed only
on the established hub links.

Constraint (12) calculates the discounted unit transportation
cost between every node for each service type. Similarly, con-
straint (13) calculates the travel time between every node in the
hub network for each service type. Constraint (14) ensures that
the travel times between origin-destination pairs are less than the
given time limit for each service type.

The rest of the constraints of the model are the non-negativity
constraints and the constraints defining binary variables.

The proposed model (P0) allows operating different types of
hubs and multiple modes of transportation. Especially in small
parcel delivery, capacity is typically not an issue and strategic
level decisions usually consider determining which segments to
operate. Thus, at least in the design phase, at most one type of
hub link can be considered for each segment.

One other key issue for such service networks is to clarify
whether a VIP type service is feasible or not for certain origin-
destination pairs. In the strategic design phase, it is more crucial
to design the network where different service types are promised
to given set of customers. One may question the feasibility of a
service network where only certain origin-destination pairs
receive the VIP service. These assumptions also help in simplify-
ing (P0) towards a more tractable Oðn3Þ formulation which will be
detailed in the next section.

2.2. A more compact formulation with two transportation modes

and two service time promises

In this variant, we consider the problem with two types of
hubs and hub links and two different service time promises. The
developed model is readily extendible to more than two service
types and transportation modes as long as the assumptions
mentioned in the previous section are still valid.

More formally, there are two different types of transportation
modes: air (denoted by a) and ground (denoted by g), and there
are two types of hubs and hub links that can be established based
on these two transportation modes. At most one type of hub link
can be operated between two hub nodes. Additionally, there are
two different types of service time promises: tight (b1) and loose
(b2), such that b1rb2. A given set of nodes, say N0DN is to
pairwise receive tight or VIP service. Let Sb1

be the set of origin-
destination pairs of N0 and Sb2

be the remaining set of pairs to
receive the loose service time bound.

Note that since we assume only one type of service between
each origin-destination pair, there is no need for an index s in the
demand. Thus, wij denotes the total demand between nodes iAN

and jAN.
It is possible to model this special case of the multimodal hub

location and hub network design problem with Oðn3Þ variables
and Oðn3Þ constraints. For this, we employ some ideas from the
incomplete hub network design models introduced in Alumur
et al. [3]. For each established hub, we find a spanning tree rooted
at this hub that visits every other hub in the hub network using
only the established hub links. The connectivity of the hub
network is assured by employment of such spanning trees. We
then calculate the travel time and the transportation costs
between all pairs of hubs using these spanning trees. Since, there
are two types of service time parameters we introduce two radii
for each hub node to ensure that all origin-destination pairs
receive service within their service time bounds. The radius of a
hub can be defined as the maximum travel time from the non-hub
nodes allocated to this hub to the hub node.

Additional decision variables required for the mathematical
model are:

Yijk 1 if the spanning tree rooted at hub kAH uses the hub
link fi,jg from hub iAH to hub jAH; 0 otherwise.

R1
j radius of hub jAH for tight service time bound.

R2
j radius of hub jAH for loose service time bound.

Mathematical formulation for this variant of the multimodal
hub location and hub network design problem is as follows:

ðP1Þ

Min:
X
kAH

FHa
kHa

kþ
X
kAH

FHg
kHg

kþ
X
iAH

X
jAH:j4 i

FLa
ijZ

a
ij

þ
X
iAH

X
jAH:j4 i

FLg
ijZ

g
ijþ
X
iAN

X
jAN

wijCij ð21Þ

s.t. (2)–(9), (15)–(19)X
iAH:ia j

YijkZXkkþXjj�1 8j,kAH : jak ð22Þ

X
iAH:ia j

YijkrXkk 8j,kAH : jak ð23Þ

YijkþYjikrZa
ijþZg

ij 8i,j,kAH : io j ð24Þ

Za
ijþZg

ijr1 8i,jAH : io j ð25Þ

TkjZðTkiþðota
i þa

a
t ta

ijþota
j ÞðZ

a
ijþZa

jiÞþðotg
i þa

g
t tg

ijþotg
j ÞðZ

g
ijþZg

jiÞÞYijk

8i,j,kAH : ia j, jak ð26Þ

CkjZ ðCkiþðoca
i þa

a
c ca

ijþoca
j ÞðZ

a
ijþZa

jiÞþðocg
i þa

g
c cg

ijþocg
j ÞðZ

g
ijþZg

jiÞÞYijk

8i,j,kAH : ia j, jak ð27Þ

R1
j Ztg

ijXij�Mð1�XijÞ 8jAH, iAN : (k : ði,kÞASb1
ð28Þ

R1
j þTjkþR1

k rb1 8j,kAH ð29Þ

R2
j Ztg

ijXij 8iAN, jAH ð30Þ
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R2
j þTjkþR2

k rb2 8j,kAH ð31Þ

CijZ ðCikþcg
kjÞXjk 8i,jAN : ia j, kAH ð32Þ

Cij ¼ Cji 8i,jAN ð33Þ

YijkAf0;1g 8i,j,kAH : ia j, jak ð34Þ

In the objective function (21), the first two terms calculate the
fixed costs of establishing and operating air and ground hubs; the
next two terms calculate the fixed costs of operating hub links
with air and ground transportation modes. The last term in the
objective function calculates the total cost of transportation.

Constraints (22) and (23) establish the rooted spanning trees.
Constraint (24) guarantees that the spanning trees can only use
the established hub links. By constraint (25), only one type of hub
link can be established between two hub nodes.

Constraint (26) calculates the discounted travel time between
every hub node in the hub network using the spanning trees.
Similarly constraint (27) calculates the discounted unit transpor-
tation cost between every hub node in the hub network using the
spanning trees.

We defined two radii for each hub node to be established. The
first radius of a hub node calculates the maximum travel time
among all non-hub nodes that are allocated to this hub node and
which are an origin requiring service within b1 to any destination
node. Constraint (28) calculates the first radius of a hub. It suffices
to calculate the first radius of a hub node using only the origins of
the set Sb1

, since it is assumed that service levels are symmetric
for origin-destination pairs. If there is no node allocated to a hub
node requiring service within b1, then the tight radius associated
with that hub node is bounded below by a negative number. It
suffices to define M as b2�b1þmaxiAN,jAHtg

ij. Constraint (29)
ensures that the travel times between origin-destination pairs
requiring service within b1 are satisfied.

The second radius is calculated in Constraint (30) as the
maximum travel time from a non-hub node to its allocated hub.
We ensure by Constraint (31) that the travel time between any
two nodes in the network is less than b2 because all origin-
destination pairs must either receive service within b1 or b2, and
b1rb2.

Note that by the employment of the radii variables, R1
j and R2

j ,
it is sufficient to calculate the travel time only between the
hub nodes.

The discounted unit transportation costs are calculated within
all pairs of hub nodes in constraint (27). Constraints (32) and (33)
calculate the unit transportation costs between all pairs of non-
hub nodes in the network. We assumed that the flow costs are
symmetric. However, replacement of constraint (33) with
CijZ ðc

g
ikþCkjÞXik handles the non-symmetric case.

This is a non-linear programming model due to constraints
(26), (27), and (32). In the sequel, we provide tight Big-M type
linearizations for these non-linear constraints.

First, we propose the following constraint for the linearization
of constraint (26):

TkjZTkiþðota
i þa

a
t ta

ijþota
j ÞðZ

a
ijþZa

jiÞþðotg
i þa

g
t tg

ijþotg
j ÞðZ

g
ijþZg

jiÞ

�M1ð1�YijkÞ 8i,j,kAH : ia j, jak ð26*Þ

where M1 ¼ b2þmaxi,jAHðota
i þaa

t ta
ijþota

j ,otg
i þa

g
t tg

ijþotg
j Þ.

For the linearizations of constraints (28) and (33), let E be the
set of hub links that can be established. More formally,

E¼ fe¼ fi,jg : i,jAH : io jg ¼ e1,e2, . . . ,ehðh�1Þ=2

� �
We define

ge ¼maxfoca
i þa

a
c ca

ijþoca
j ,ocg

i þa
g
c cg

ijþocg
j g 8e¼ fi,jgAE
Assume without loss of generality that

ge1
Zge2

Z � � �Zgehðh�1Þ=2

We propose the following constraint for the linearization of
constraint (27):

CkjZCkiþðoca
i þa

a
c ca

ijþoca
j ÞðZ

a
ijþZa

jiÞþðocg
i þa

g
c cg

ijþocg
j ÞðZ

g
ijþZg

jiÞ

�M2ð1�YijkÞ

8i,j,kAH : ia j, jak ð27*Þ

where M2 ¼ 2ge1
þge2

þ � � � þgeðp�1Þ
.

Lastly, we propose the following constraint for the lineariza-
tion of constraint (32):

CijZCikþcg
kjXjk�M3ð1�XjkÞ 8i,jAN : ia j, kAH ð32*Þ

where M3 ¼maxiAN,jAHðc
g
ijÞþge1

þge2
þ � � � þgeðp�1Þ

.
A linear integer programming formulation of this special case

of the multimodal hub location and hub network design problem
consists of the objective function (21) and constraints (2)–(9),
(15)–(19), (22)–(25), (26n), (27n), (28)–(31), (32n), (33) and (34).
In the worst case h¼n and the linear integer programming
formulation of this variant of the problem has Oðn3Þ variables
and Oðn3Þ constraints.
3. Formulations for some other hub location problems

The multimodal hub location and hub network design problem
incorporates many of the aspects of the real life applications such
as incomplete hub network, multiple modes of transportation,
multiple service levels, and multicriteria nature of cost and
service quality. In its most general sense, (P0) answers all these
requirements simultaneously. In different real life situations,
different combinations of the above listed aspects may appear.
Some of these problems at least conceptually appear in the
existing hub location studies. However, most of them though
quite realistic in nature have not been even defined in the
literature. Perhaps, due to the challenging quadratic nature of
the most basic form of hub location models, the literature have
built and expanded on simplifying assumptions such as complete
hub network, single mode of transportation, and single objective.
The point of origin of this study is to tackle more real life
situations by relaxing all these assumptions. Multimodal hub
location and hub network design problem and the resulting
model (P0) answer this purpose.

In its most general form, the defined problem might be more
demanding than the particular application calls for. Some real life
applications might only require a subset of the aspects existing in
(P0) as in the case of model (P1). In the sequel, we show this
unifying property of (P0) by introducing several additional pro-
blems and models to the hub location literature by focusing on
different combinations of the mentioned real life aspects. In this
way, we contribute to the literature by defining and modeling
new hub location network design problems.

If there are no service level requirements in applications
where cost is the primary issue, the multicriteria nature of our
problem can be overlooked. We define the problem with only the
transportation cost objective, the multimodal p-hub median net-

work design problem, as follows:

ðP2ÞMin:
X
iAN

X
jAN

wijCij ð35Þ

s.t. (2)–(12), (15), (17)–(20)
In this formulation, objective function (35) is the last term in

the objective function (1) of (P0) that accounts for the total
transportation costs with a single service type. We simply discard
the constraints related to travel times from (P0) to obtain the
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constraints for the multimodal p-hub median network design
problem.

If one sets Zm
ij ¼ 0 8i,jAH,mAM\fgg and Hm

j ¼ 0 8jAH,mA
M\fgg in the above multimodal p-hub median network design
formulation, then the problem reduces to the incomplete p-hub
median problem with single mode of transportation introduced in
Alumur et al. [3].

In certain applications where the strategic decisions are
dominant, the transportation costs (which are usually considered
as operational costs) might be secondary. In such situations, the
main concern is whether a feasible design meeting certain service
level requirements exists or not and this naturally triggers the
covering objectives. Our multimodal hub location and hub net-
work design model readily includes multiple/single mode hub
covering network design problems with different service time
promises. We introduce the mathematical formulation for the
multimodal hub covering network design problem with different

service time promises:

ðP3Þ

Min:
X

mAM

X
kAH

FHm
k Hm

k þ
X

mAM

X
kAH

X
lAH:l4k

FLm
kl Z

m
kl ð36Þ

s.t. (2)–(4), (6)–(11), (13), (14), (16)–(20)
In this formulation, we have excluded the transportation costs

from the objective function and the constraints related to trans-
portation costs from (P0).

Similar to the p-hub median version, if we have a single service
type and if we set Zm

ij ¼ 0 8i,jAH,mAM\fgg and Hm
j ¼ 0 8jAH,

mAM\fgg in the above formulation, then the problem reduces to
the incomplete hub covering problem with single mode of
transportation studied in Alumur et al. [3] and Calik et al. [8].

In addition to the previously presented models, it is also
possible to model the classical single allocation p-hub median
problem introduced by O’Kelly [34] and the classical hub covering
problem introduced by Campbell [9] with complete hub networks
by using the multimodal hub location and hub network design
formulation. In this section, apart from the problem under the
scope of this study, we have introduced additional hub network
design problems with realistic features, namely, the multimodal
p-hub median network design problem (corresponding model P2),
the multimodal hub covering network design problem with single
and multiple (corresponding model P3) service time promises to
the literature. All of these new problems are generic in nature,
and different variants of them can be derived for specific applica-
tions. Moreover, the mathematical models for all of these
problems can also be derived from (P1) when the underlying
assumptions are valid.
4. Valid inequalities

In this section, we derive several families of valid inequalities.
For simplicity in presentation, the forthcoming valid inequality
derivations are presented for (P1). However, they can easily be
extended to the feasible region of (P0). The methodology borrows
ideas from Yaman et al. [45]. The proofs of the validity of all the
inequalities are presented in the Appendix.

Let F be the feasible set for (P1). That is, F is the set of solutions
satisfying the constraints (2)–(9), (15)–(19), (22)–(25), (26n),
(27n), (28)–(31), (32n), (33) and (34).

As already stated before, it is assumed that triangle inequality
is satisfied for both the unit transportation costs and the travel
times for the mathematical model. For the sets of valid inequal-
ities to be introduced, we additionally assume that ag

c cg
ijraa

c ca
ij

and aa
t ta

ijrag
t tg

ij 8i,jAN. That is, the unit discounted transportation
cost using air transportation is assumed to be higher than the unit
discounted transportation cost of using ground transportation
between any two nodes, and the discounted travel time using air
transportation is assumed to be lower than the discounted travel
time using ground transportation between any two nodes. We
expect the unit transportation costs associated with ground
transportation to be lower than the corresponding unit transpor-
tation costs of using air transportation cg

ijrca
ij 8i,jAN and the

travel times using air transportation to be lower than the travel
times using ground transportation ta

ijrtg
ij 8i,jAN. We observed

from cargo applications that the unit transportation costs of using
air transportation is order of magnitudes higher than that of using
ground transportation. Similarly, the transportation times of
using air transportation is order of magnitudes lower than that
of using ground transportation. Thus, the assumptions of having
ag

c cg
ijraa

c ca
ij and aa

t ta
ijrag

t tg
ij 8i,jAN are reasonable.

We first define some new parameters required for the defini-
tion of our valid inequalities. For the sake of simplicity, the unit
operational costs and operational times at hubs are assumed to be
embedded in the respective cost and time parameters. For iAN

and jAN\fig, let

l1
ij ¼ min

kAH\fjg
ðag

c cg
ikþcg

kjÞ

l2
ij ¼ min

kAH\fig
ðcg

ikþa
g
c cg

kjÞ

l3
ij ¼ min

kAH\fi,jg
min

lAH\fi,jg
ðcg

ikþa
g
c cg

klþcg
ljÞ

Since triangle inequality holds for unit transportation costs
and ag

c cg
ijraa

c ca
ij 8i,jAN by assumption, if node i is a hub and node

j is not a hub, then the minimum unit transportation cost from
node i to node j is l1

ij. (Note that, since node k may be equal to
node i in the minimum operator, the case when node j is allocated
to hub i is also covered.) Conversely, if node j is a hub and node i is
not a hub, then l2

ij is a lower bound on the unit transportation cost
from node i to node j. Finally, l3

ij provides a lower bound on the
unit transportation cost from node i to node j if neither of them
are hub nodes.

Proposition 1. For iAH and jAH\fig, inequalities

CijZag
c cg

ijþðl
1
ij�a

g
c cg

ijÞð1�XjjÞþminfl3
ij�l

1
ij ,l

2
ij�a

g
c cg

ijgð1�XiiÞ ðA:1Þ

and

CijZl3
ijþðl

2
ij�l

3
ijÞXjjþminfl1

ij�l
3
ij,a

g
c cg

ij�l
2
ijgXii ðA:2Þ

are valid for F.

For iAH and jAN\H, the inequality.

CijZl1
ijþðl

3
ij�l

1
ijÞð1�XiiÞ ðA:3Þ

is valid for F.

For iAN\H and jAH, the inequality.

CijZl2
ijþðl

3
ij�l

2
ijÞð1�XjjÞ ðA:4Þ

is valid for F.

For iAN\H and jAN\H, the inequality.

CijZl3
ij ðA:5Þ

is valid for F.

The inequalities (A.1)–(A.5) are derived based on the informa-
tion that a node becomes a hub or not, to obtain lower bounds on
the unit transportation costs. In the next set of valid inequalities,
we again obtain lower bounds for the unit transportation costs
but this time use the information that if a node is not a hub then it
must be allocated to a hub node.
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Proposition 2. For iAH and jAN\fig, the inequality

CijZ

X
hAH\fig

ðcg
ihþ min

kAH\fig
ðag

c cg
hkþcg

kjÞÞXihþmin
kAH
ðag

c cg
ikþcg

kjÞXii ðB:1Þ

is valid for F.

For iAN\H and jAN\fig, the inequality.

CijZ

X
hAH

ðcg
ihþmin

kAH
ðag

c cg
hkþcg

kjÞÞXih ðB:2Þ

is valid for F.

For iAN and jAH\fig, the inequality

CijZ

X
hAH\fjg

ð min
kAH\fjg

ðcg
ikþa

g
c cg

khÞþcg
hjÞXjhþmin

kAH
ðcg

ikþa
g
c cg

kjÞXjj ðB:3Þ

is valid for F.

For iAN and jAN\ðH [ figÞ, the inequality

CijZ

X
hAH

ðmin
kAH
ðcg

ikþa
g
c cg

khÞþcg
hjÞXjh ðB:4Þ

is valid for F.

Previous sets of valid inequalities, (A) and (B), are both derived
to obtain lower bounds for the unit transportation costs between
nodes. In the sequel, we introduce the valid inequalities related to
travel time. For iAN and jAN\fig, let

m1
ij ¼ min

kAH\fjg
ðaa

t ta
ikþtg

kjÞ

m2
ij ¼ min

kAH\fig
ðtg

ikþa
a
t ta

kjÞ

m3
ij ¼ min

kAH\fi,jg
min

lAH\fi,jg
ðtg

ikþa
a
t ta

klþtg
ljÞ

Since triangle inequality holds for travel times and

aa
t ta

ijrag
t tg

ij 8i,jAH by assumption, if node i is a hub and node j

is not a hub, then the minimum travel time from node i to node j

is m1
ij. Conversely, if node j is a hub and node i is not a hub, then m2

ij

is a lower bound on the travel time from node i to node j. Finally,

m3
ij provides a lower bound on the travel time from node i to node

j if none of these nodes is a hub.

Proposition 3. For iAH and jAH\fig, inequalities

TijZaa
t ta

ijþðm
1
ij�a

a
t ta

ijÞð1�XjjÞþminfm3
ij�m

1
ij ,m

2
ij�a

a
t ta

ijgð1�XiiÞ ðC:1Þ

TijZm3
ijþðm

2
ij�m

3
ijÞXjjþminfm1

ij�m
3
ij,a

a
t ta

ij�m
2
ijgXii ðC:2Þ

TijZ

X
hAH\fig

tg
ihþ min

kAH\fig
ðaa

t ta
hkþtg

kjÞ

� �
Xihþmin

kAH
ðaa

t ta
ikþtg

kjÞXii ðC:3Þ
Fig. 1. The 81 demand nodes and the 16 candid
TijZ

X
hAH\fjg

min
kAH\fjg

ðtg
ikþa

a
t ta

khÞþtg
hj

� �
Xjhþmin

kAH
ðtg

ikþa
a
t ta

kjÞXjj ðC:4Þ

are valid for F.

We tested the performance of these three sets of valid
inequalities, (A), (B), and (C), both individually and collectively.
Detailed results are provided in Section 5.1.
5. Application in Turkey

We applied our multimodal hub location and hub network
design model (P1) on the Turkish network. Turkish network data
set is used in various hub location studies [3,8,41,44] and is
available in OR Library [5]. There are 81 demand nodes in this
data set corresponding to 81 administrative districts of Turkey.
Among these 81 nodes, the most populated and industrialized 16
cities are listed as the candidate set of hub locations in Yaman
et al. [44] (n¼81, h¼16). Fig. 1 shows the locations and the
corresponding node numbers of the 81 demand centers and 16
candidate hub locations on a map of Turkey.

For the Turkish network, the values of the parameters wij, FHj
g,

FLg
ij, and cg

ij, comply with the values presented in Beasley [5],
where cg

ij is taken to be equal to the travel distances. To determine
the value of the economies of scale parameter associated with
ground transportation costs, several interviews are held with
representatives from different cargo companies operating in
Turkey. Based on these interviews ag

c is taken as 0.8. We observed
that the cost values associated with air hub and hub link usage is
higher than that of ground hub and hub link usage, as expected.
The costs of operating air hubs and air hub links are taken to be 10
times the corresponding values of using ground transportation.
Since we could not find approximate values for the unit trans-
portation costs using air transportation, we let ca

ij ¼ rcg
ij 8i,jAH

and varied the value of r in our experiments within the set
{2,4,6,8}. We assumed that the economies of scale is reflected
within these costs.

Travel times using ground transportation are calculated
assuming a travel speed of 80 km/h whereas travel times for
using air transportation are estimated by assuming that the
airplanes travel at a speed of 700 km/h. Since ground transporta-
tion can be used on the allocation links as well as on the hub links,
we take ag

t ¼ 0:9 as suggested by Tan and Kara [41]. On the other
hand, since air transportation is available only between hub
nodes, the air travel times correspond to their respective dis-
counted values. Moreover, the unit operational costs and opera-
tional times are assumed to be embedded in the respective cost
and time parameters.
ate hub locations on the Turkish network.
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We took the service time bounds, as b1 ¼ 12 and b2 ¼ 24 h,
where the first one corresponds to VIP service and the second to
next day delivery, respectively. The set of origin–destination pairs
requiring service within 12 h is taken as the same as the VIP
service set of a well-known cargo company operating in Turkey.
Based on their service promises, the demand centers Adana (1),
Ankara (6), Antalya (7), Bursa (16), Erzurum (25), Istanbul (34),
and Izmir (35) can mutually use the VIP service. So, all of these
demand centers are mutually origins and destinations to each
other in the set Sb1

. All of the remaining pairs from 81 demand
centers are included in the set Sb2

.
In order to analyze the effect of aircraft fleet size on the

resulting hub networks we define a new parameter q and set the
number of air hub links to be opened to q within our computa-
tional analysis.

We varied the values of the remaining parameters p, q, and r.
We took our runs on a server with 2.66 GHz Intel Xeon processor
and 8GB of RAM and we used the optimization software Gurobi
version 4.5.2.

In the next subsection, we present computational analysis
with the valid inequalities introduced in the previous section of
the paper. In Section 5.2, we introduce a simple heuristic for the
problem and test its performance on the Turkish network and the
CAB data set. Lastly, in Section 5.3, we report the solutions from
the Turkish network data set.
Table 1
The effect of valid inequalities.

p q r Statistics No v.i.’s A B

4 2 2 lb 2976.15 3234.67 3278.16

cpu 352.99 14.12 10.55

nodes 487,402 5675 2727

4 2 4 lb 2976.15 3234.67 3278.16

cpu 129.94 23.25 11.24

nodes 81,217 5659 3167

4 2 6 lb 2976.15 3234.67 3278.16

cpu 20.66 10.09 9.91

nodes 27,220 3102 2319

4 2 8 lb 2976.15 3234.67 3278.16

cpu 27.13 10.12 10.50

nodes 32,080 3204 3032

4 3 2 lb 3884.95 4143.26 4186.70

cpu 43.34 18.25 7.24
nodes 66,460 19,504 2690

4 3 4 lb 3884.95 4143.26 4186.70

cpu 33.38 14.55 10.16

nodes 56,005 5525 2417

4 3 6 lb 3884.95 4143.26 4186.70

cpu 21.24 16.77 10.00
nodes 24,520 10,572 3050

4 3 8 lb 3884.95 4143.26 4186.70

cpu 21.76 13.44 10.78

nodes 21,560 5076 2637

4 4 2 lb 4793.76 5051.85 5095.30

cpu 698.73 36.28 17.37

nodes 576,762 39722 6837

4 4 4 lb 4793.76 5051.85 5095.30

cpu 163.58 20.39 13.95
nodes 125,339 16,798 7039

4 4 6 lb 4793.76 5051.85 5095.30

cpu 51.38 23.08 14.70

nodes 87,191 22,510 6849

4 4 8 lb 4793.76 5051.85 5095.30

cpu 25.39 33.48 12.81
nodes 37,498 37,159 4554
5.1. Computational analysis with valid inequalities

For this analysis, we needed a smaller data set because the
results with the 81 node Turkish network turned out to be
inconclusive in reasonable times. Thus, we generated a smaller
data set from the Turkish network. We took 25 nodes from 81
demand centers and chose 8 candidate hub locations from 16
presented in the Turkish network (n¼25, h¼8). With this smaller
Turkish data set we ranged the values of p, q, and r.

We tested and compared the three sets of valid inequalities,
(A), (B), and (C), introduced in the fourth section, with (P1). We
compared the initial lower bound values reported by Gurobi, the
CPU time requirements, and the number of nodes in the branch
and bound tree. We provide the results in Table 1.

The first three columns in Table 1 report the instance para-
meters: number of hubs (p), number of air hub links (q), the ratio
of the unit cost of using air transportation to ground transporta-
tion (r), respectively. For each instance, the first row of column
five lists the initial lower bound value reported by Gurobi
(denoted by ‘lb’), the second row lists the CPU time requirement
in seconds by Gurobi (denoted by ‘cpu’), and the last row lists the
number of nodes in the branch and bound tree (denoted by
‘nodes’) reported by Gurobi. Columns 5–12 correspond to all
possible combinations of the three sets of valid inequalities. In
particular, the column indicated by ‘No v.i.’s’, corresponds to the
C AB AC BC ABC

2976.15 3278.50 3234.67 3278.16 3278.50

257.71 29.00 16.65 9.78 15.12

173,637 3047 6113 2098 2267

2976.15 3278.50 3234.67 3278.16 3278.50

113.01 6.99 19.72 13.11 11.97

106,582 2145 10,547 1969 2448

2976.15 3278.50 3234.67 3278.16 3278.50

66.93 10.66 13.22 9.42 14.57

85,729 2431 3328 2465 3012

2976.15 3278.50 3234.67 3278.16 3278.50

16.22 12.99 14.11 12.75 13.42

15,051 2476 4863 2380 2856

3884.95 4187.07 4143.26 4186.70 4187.07

55.80 23.25 10.06 9.29 9.31

61,499 3017 3565 2765 2795

3884.95 4187.07 4143.26 4186.70 4187.07

169.99 14.24 14.30 8.41 12.68

94,165 3573 5249 3453 3131

3884.95 4187.07 4143.26 4186.70 4187.07

22.31 11.53 13.08 16.10 13.64

23140 3029 4088 5264 2820

3884.95 4187.07 4143.26 4186.70 4187.07

23.13 10.24 12.71 10.36 18.11

13,626 3232 2756 2748 2769

4793.76 5095.72 5051.85 5095.30 5095.72

1003.00 15.25 51.62 18.01 15.19
833,480 6385 47,117 5761 6360

4793.76 5095.72 5051.85 5095.30 5095.72

159.15 16.87 28.06 18.09 15.95

213,272 9392 17,337 5662 6741

4793.76 5095.72 5051.85 5095.30 5095.72

35.40 14.98 24.09 12.92 16.29

45,214 6003 15,385 5333 5544

4793.76 5095.72 5051.85 5095.30 5095.72

24.96 14.60 23.52 16.42 19.75

28,016 5439 16,819 4436 5357
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linear integer formulation (P1) without any of the valid inequal-
ities, and the last column includes all the three sets of valid
inequalities in our formulation.

When we compare the initial lower bounds, we observe that
inequality set (C) does not have any effect on the lower bounds.
This is because these sets of inequalities are related to travel
times which do not have associated costs in the objective
function. The inequality set (B) always resulted in higher lower
bounds when compared with set (A). Observe from Table 1 that
the highest initial lower bounds at every instance were obtained
with inequality sets (AB) and (ABC).

In all of the instances Gurobi found the optimal solution
within at most 12 min. In Table 1, for each instance we high-
lighted the best CPU time requirement in bold. Observe that valid
inequality sets (B) and (BC) resulted in lower CPU times in
majority of the instances. When the CPU times were ranked for
each instance, set (ABC) was among the first three in 5 out of 12
instances. In terms of the number of nodes in the branch and
bound tree, on the average, set (BC) showed the best behavior,
whereas (ABC) was the second.

In light of these observations, since the behavior of (ABC) is
fairly satisfactory at each instance, we decided to include all sets
of valid inequalities for the rest of the computational analysis.

5.2. A heuristic algorithm

From our preliminary analysis with (P1), we observed that it is
very difficult to solve it to optimality even with the inclusion of
the valid inequalities. Thus, in this section, we introduce a simple
heuristic for the problem and test its performance.

Even though there are various studies proposing heuristics for
hub location problems with transportation cost objectives (for
example [15,16,21,22,24,38]) and few for the center problem
[23,31,37], to the best our knowledge, there is a single study
presenting a heuristic for the hub covering problem. In this study
by Calik et al. [8], the authors developed a tabu search based
heuristic for the incomplete hub covering problem. The main
challenge in the tabu search implementation was to find feasible
solutions for tight service time bounds. With this observation, we
believe it will be even harder to generate feasible solutions for our
problem since there are two service time bounds that have to be
taken into account instead of one.

In Alumur et al. [3], an efficient formulation for the incomplete
hub covering problem is introduced. The authors were able to
solve the largest incomplete hub network design problems with
their formulation within few seconds to optimality using the
optimization software CPLEX 11.2. This observation led us to
consider the solution potential of the multimodal hub covering
network design problem with two service time promises. The
difference of this problem from the incomplete hub covering
problem introduced in Alumur et al. [3] is that there are two
different service time promises, and two different types of hubs
and hub links to establish.

Since it is difficult to obtain feasible solutions for the problem,
initially transportation costs can be neglected and the emphasis
can be made on obtaining feasible hub networks in terms of
service time promises. Thus, we now define a new problem which
we refer to as the covering version of (P1), where we simply
remove the transportation costs from the objective function (21)
and constraints (27), (32) and (33) from (P1). With the prelimin-
ary experiments by using the Turkish network data set, we
observed that Gurobi is able to solve this covering version of
the multimodal problem optimally within reasonable CPU times.

Note that, since only the transportation costs and the related
variables are excluded, the solution from the covering version of
the problem will always be feasible to the original problem (P1).
Even though the optimal covering solution is feasible to the
original problem it may not be reasonable in terms of transporta-
tion costs. As long as a given origin–destination pair satisfies its
service time limit the allocation decisions are insignificant since
allocations do not have any effect on the objective function. Thus,
if the solution from the covering version is to be proposed for the
original problem an additional optimization for the allocations
considering the transportation costs will be necessary. Our simple
heuristic is based on this idea.

We propose the following iterative solution method as a
heuristic. In the first step of the algorithm, the covering version
of the problem is to be solved to optimality. Then, in the second
step, the original problem is solved by fixing the hub locations
and the air hub links obtained from the covering version to
optimize for the allocations and the transportation costs.

We expect to obtain good quality solutions especially for tight
service time bounds using our heuristic. This is because with tight
service time bounds, the number of feasible hub locations and
hub networks are typically limited. Thus, the optimal hub loca-
tions and the hub network for the covering version will most
likely be also optimal for the original version.

In order to comment on the performance of this heuristic
algorithm, we need to have optimal solutions. However, it is not
possible to obtain the optimal solutions of the problem on the
Turkish network data set with 81 demand centers. Thus, to test
the performance of the heuristic we use the smaller data set from
the Turkish network with 25 demand nodes and 8 candidate hub
locations, which is also used for testing the performance of the
valid inequalities in the previous section.

Initially, we solve the linear integer programming formulation
of (P1) at the instances listed in Table 2 by including all sets of
valid inequalities. Then, we run our heuristic algorithm for the
same instances. While solving the covering version of the pro-
blem, the first phase of the heuristic, we include the valid
inequality set (C) which is related to travel times only, and while
optimizing the allocations, the second phase of the heuristic, we
include the remaining sets of valid inequalities (A) and (B).

In Table 2, for each instance we list the CPU time requirements
in seconds and the percent gap of the heuristic from the optimal
solution. When listing the CPU times, the column denoted by ‘CPU
Cover’ provides the CPU time requirement by Gurobi for the first
phase of the heuristic where we solve the covering version of the
problem and the column denoted by ‘CPU Allocations’ for the
second phase of the heuristic where we solve for the optimal
allocations. The ‘CPU Total’ column, on the other hand, presents
the total CPU time requirement by the heuristic algorithm. The
last row in Table 2 lists the average values for each column.

Note that since the covering version of the problem does not
contain any variables related to transportation costs, the solutions
are independent from the cost ratio r. So, it suffices to solve the
covering version of the problem only once for each p and q

combination. Observe from the ‘CPU Cover’ column of Table 2 that
the CPU times corresponding to each p and q combination are the
same and independent from r.

The CPU performance of the heuristic is very promising. The
worst total CPU time in Table 2 is just above 12 s, whereas the
best is about 2 s. The covering version of the problem is solved
very efficiently on the average within 2 s, whereas the allocation
sub-problem is solved on the average within 3.41 s. On the
average the total CPU time requirement of the heuristic is 5.39 s.

Our heuristic is able to find the optimal solution in 12 out of
the 40 instances listed in Table 2. The highest gap of the heuristic
is 1.32% whereas the average gap is 0.22%.

In order to observe the performance of the heuristic algorithm
on a different data set, we generated a set of test instances from
the well-known CAB data set [5]. Since not all the parameter



Table 3
Performance of the heuristic algorithm with the 25-15 CAB data set.

p q r CPU cover (s) CPU allocations (s) CPU total (s) Gap (%)

4 2 2 7.23 0.53 7.76 0

4 2 4 7.23 0.51 7.74 0

4 2 6 7.23 0.49 7.72 0

4 2 8 7.23 0.54 7.77 0

4 3 2 2.46 0.58 3.04 0

4 3 4 2.46 0.58 3.04 0

4 3 6 2.46 0.57 3.03 0

4 3 8 2.46 0.73 3.19 0

4 4 2 2.65 3.03 5.68 1.56

4 4 4 2.65 2.59 5.24 2.85

4 4 6 2.65 2.89 5.54 5.80

4 4 8 2.65 2.04 4.69 7.84

5 2 2 39.69 0.66 40.35 0.36

5 2 4 39.69 0.68 40.37 1.28

5 2 6 39.69 0.98 40.67 1.97

5 2 8 39.69 0.97 40.66 2.54

5 3 2 17.93 0.79 18.72 0

5 3 4 17.93 0.93 18.86 0

5 3 6 17.93 1.00 18.93 0

5 3 8 17.93 1.11 19.04 0

5 4 2 15.52 1.22 16.74 2.23

5 4 4 15.52 1.28 16.80 4.45

5 4 6 15.52 1.19 16.71 6.33

5 4 8 15.52 1.34 16.86 8.11

5 5 2 8.75 1.78 10.53 1.92

5 5 4 8.75 2.28 11.03 4.17

5 5 6 8.75 2.34 11.09 6.06

5 5 8 8.75 2.12 10.87 8.70

Average 13.46 1.28 14.74 2.36

Table 2
Performance of the heuristic algorithm on the 25-8 Turkish network.

p q r CPU cover (s) CPU allocations (s) CPU total (s) Gap (%)

4 2 2 1.53 0.48 2.01 0.04

4 2 4 1.53 0.58 2.11 0.21

4 2 6 1.53 0.62 2.15 0.43

4 2 8 1.53 0.60 2.13 0.59

4 3 2 1.98 0.65 2.63 0

4 3 4 1.98 0.88 2.86 0

4 3 6 1.98 0.67 2.65 0

4 3 8 1.98 0.65 2.63 0

4 4 2 1.79 1.85 3.64 0.17

4 4 4 1.79 2.78 4.57 0.54

4 4 6 1.79 2.95 4.74 0.93

4 4 8 1.79 3.25 5.04 1.32

5 2 2 1.88 1.91 3.79 0.05

5 2 4 1.88 1.51 3.39 0.07

5 2 6 1.88 1.42 3.30 0.07

5 2 8 1.88 1.53 3.41 0.07

5 3 2 1.58 1.81 3.39 0

5 3 4 1.58 2.03 3.61 0

5 3 6 1.58 2.37 3.95 0

5 3 8 1.58 2.31 3.89 0

5 4 2 1.81 2.12 3.93 0.10

5 4 4 1.81 2.62 4.43 0.26

5 4 6 1.81 4.53 6.34 0.43

5 4 8 1.81 4.88 6.69 0.55

5 5 2 1.83 4.26 6.09 0.03

5 5 4 1.83 3.88 5.71 0.15

5 5 6 1.83 4.15 5.98 0.31

5 5 8 1.83 4.99 6.82 0.43

6 4 2 3.77 2.63 6.40 0.09

6 4 4 3.77 5.23 9.00 0.25

6 4 6 3.77 7.05 10.82 0.42

6 4 8 3.77 5.92 9.69 0.54

6 5 2 1.95 2.98 4.93 0.02

6 5 4 1.95 5.70 7.65 0.15

6 5 6 1.95 6.54 8.49 0.31

6 5 8 1.95 6.38 8.33 0.43

6 6 2 1.70 5.60 7.30 0

6 6 4 1.70 8.24 9.94 0

6 6 6 1.70 10.52 12.22 0

6 6 8 1.70 7.38 9.08 0

Average 1.98 3.41 5.39 0.22
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values are available on the CAB data set, we estimated the values
based on our observations from the Turkish network. There are 25
nodes in the CAB data set and we took the first 15 of them to be
the candidate hub set. We took the fixed hub costs to be inversely
proportional to the demand generated at the nodes so as to favor
high demand generating nodes. The fixed link costs, on the other
hand, are taken from Calik et al. [8]. We took the service bounds
as b1 ¼ 1000 and b2 ¼ 2000 miles [10]. We assumed that the first
seven nodes in the network mutually receive service in b1. The
other parameter values comply with the values generated for the
Turkish network. Note that we generated instances on the CAB
data set only for measuring the performance of the heuristic, not
for analyzing the resulting hub networks. The results with varying
values of p, q, and r with the CAB data set are presented in Table 3.

The CPU time requirement for the cover problem increases
with the CAB data set due to the increase on the candidate
number of hub locations. Allocation problem on the other hand is
solved more effectively in approximately one second. On the
average the total CPU time requirement of the heuristic is less
than 15 s with the CAB instances.

Our heuristic obtained optimal solutions in 12 out of the 28
instances presented in Table 3. The average gap of the heuristic is
2.36% and the maximum gap is 8.70% on these instances. At the
instances with relatively higher gaps, the locations of a few hub
nodes differ from the optimal solution. Observe from Table 3 that
the gaps of the heuristic get higher with higher r values. This is
because the magnitude of the transportation costs in the objective
function value is higher when the r value is higher. Thus, gaps
increase with increasing transportation costs.

When we compare Tables 2 and 3, we may conclude that the
heuristic algorithm performed better on the Turkish network
compared with the CAB data set. This may be because of the
spatial distribution of the demand nodes in the CAB data set.
Demand nodes are more evenly distributed in the Turkish net-
work compared with the CAB data set.

In conclusion, we believe that our heuristic algorithm obtains
good quality solutions in reasonable CPU times both with the
Turkish network and the CAB data set. We used this heuristic to
solve the multimodal hub location and hub network design
problem on the Turkish data set with 81 demand centers and
16 candidate hub locations. The results are provided in the next
section.

5.3. Turkish network solutions

With an efficient heuristic at hand, we are now able to solve
the problem on the original Turkish network data set with 81
demand centers and 16 candidate hub locations.

We solved the problem with the Turkish network on the
instances listed in Table 4. This table also reports the CPU time
requirement for the two phases of the heuristic algorithm, the
total CPU time requirement for the heuristic, and the locations of
the air and ground hub nodes.

The worst CPU time of the algorithm was about 13 min which
was observed at the instances locating five hubs and two air hub
links. On the average, the model is solved within 8 min. We
believe these CPU times are reasonable for such a strategic
problem.

Observe from Table 4 that the covering version of the problem
is harder to solve on sparse hub networks, whereas the allocation
sub-problem becomes harder when there are more hub links.



Table 4
Turkish network solutions.

p q r CPU cover (s) CPU allocations (s) CPU total (s) Air hub locations Ground hub locations

4 2 2 51.73 15.82 67.55 34,35,58 7

4 2 4 51.73 52.81 104.54 34,35,58 7

4 2 6 51.73 63.32 115.05 34,35,58 7

4 2 8 51.73 51.24 102.97 34,35,58 7

4 3 2 15.65 53.29 68.94 34,35,58 7

4 3 4 15.65 66.04 81.69 34,35,58 7

4 3 6 15.65 76.03 91.68 34,35,58 7

4 3 8 15.65 73.19 88.84 34,35,58 7

4 4 2 13.64 84.65 98.29 7,34,35,58 –

4 4 4 13.64 118.86 132.50 7,34,35,58 –

4 4 6 13.64 87.66 101.30 7,34,35,58 –

4 4 8 13.64 93.22 106.86 7,34,35,58 –

5 2 2 632.03 125.54 757.57 34,35,58 7,16

5 2 4 632.03 159.48 791.51 34,35,58 7,16

5 2 6 632.03 162.49 794.52 34,35,58 7,16

5 2 8 632.03 136.81 768.84 34,35,58 7,16

5 3 2 249.73 123.09 372.82 34,35,58 7,16

5 3 4 249.73 137.37 387.10 34,35,58 7,16

5 3 6 249.73 135.31 385.04 34,35,58 7,16

5 3 8 249.73 147.00 396.73 34,35,58 7,16

5 4 2 82.34 114.94 197.28 16,25,34,35 42

5 4 4 82.34 119.49 201.83 16,25,34,35 42

5 4 6 82.34 119.08 201.42 16,25,34,35 42

5 4 8 82.34 107.78 190.12 16,25,34,35 42

5 5 2 105.96 195.50 301.46 16,25,34,35 42

5 5 4 105.96 219.00 324.96 16,25,34,35 42

5 5 6 105.96 174.33 280.29 16,25,34,35 42

5 5 8 105.96 211.26 317.22 16,25,34,35 42

Average 361.95 119.41 481.36

(� 6:03 min) (� 1:99 min) (� 8:02 min)
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These outcomes are expected and can be explained as follows.
With less number of air hub links to establish, there are fewer
feasible solutions (especially with tight service time bounds) thus,
it takes more time to solve the covering problem. On the contrary,
when there are more hub links, there are more possible routing
alternatives while solving the allocation sub-problem and thus it
takes more time.

Fig. 2(a)–(f) depicts some examples of resulting hub network
solutions from the Turkish network with r¼6.

Air and ground hubs and hub links are explicitly indicated in
Fig. 2 (air hub links denoted by a double line and ground hub links
by a single line). For the sake of simplicity, we do not show the
allocations of the demand nodes to the hub nodes in these figures.

In our results with the Turkish network data set, there is an air
hub that is usually located in the eastern part of Turkey which is
connected to the hub network by an air hub link. Most of the
demand centers in the eastern part of the region are allocated to
this hub. In the solutions, there is a hub located at the demand
center Istanbul (34), since Istanbul generates the highest amount
of flow. Again, there is usually a hub located at Izmir (35), which
is the third highest demand generating node, serving the western
part of the region. In general, the locations of the hub nodes were
insensitive to the number of hub links to establish. Observe from
Fig. 2 that when the number of air hub links to be located is
increased by one, generally a new air hub link is added to the hub
network.

In the Turkish network solutions, once the feasibility of the
hub network is ensured in terms of service time promises,
additional hub nodes are established in the western part of the
region. This is expected since the demand is more or less
concentrated on the western part of Turkey. The most industria-
lized region of Turkey is the north-western part where Istanbul is
located in addition to some other most industrialized cities. Thus,
when we locate five hubs an additional hub is located in this
north-western region at Bursa (16). Note that the fixed costs of
operating hub links are dependent on the distances. Thus, addi-
tional air hub links are operated between relatively closer hubs.
From the analysis on the number of air hub links, the decision
maker can observe the trade-off between transportation costs and
operational costs.

Observe from Fig. 2 that none of the solutions employ
complete hub networks. The results show that there is no need
to establish a direct connection between every pair of hub nodes
in order to ensure low-cost service within the given service time
bounds.
6. Conclusion

In this paper, we introduced the multimodal hub location and
hub network design problem to the literature. The model includes
various observations from real life hub networks. We relaxed the
assumption of building complete hub networks, considered
transportation costs and travel times simultaneously, offered
different types of service time promises, and considered the
choice of different modes of transportation for hubs and hub
links. To the best of our knowledge, there is not any study in the
hub location literature including all of these stated observations
from real life hub networks.

We provided a linear mixed integer programming formulation
for the most general case of the multimodal hub location and hub
network design problem. We additionally proposed a more
compact formulation with two types of hubs and hub links and
two different service time parameters. We then proposed differ-
ent sets of effective valid inequalities, and a simple and efficient
heuristic algorithm for this special case of the problem. Detailed
computational analysis is presented using the Turkish network
data set.

The proposed multimodal hub location and hub network
design formulation inherently includes various hub location



Fig. 2. Resulting hub networks with the Turkish network data set: (a) p¼ 4,q¼ 2, (b) p¼ 4,q¼ 3, (c) p¼ 4,q¼ 4, (d) p¼ 5,q¼ 3, (e) p¼ 5,q¼ 4, and (f) p¼ 5,q¼ 5.
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models and it is a very comprehensive and a generic model. We
utilized this property and introduced additional problems with
respective mathematical models to the literature.

An extension to the multimodal hub location and hub network
design problem is to include capacity restrictions. The proposed
model is readily extendible to include capacity constraints. The
capacity constraints can be on the amount of flow processed at the
hubs as well as on the available number of trucks or airplanes to
employ on each hub link to be established. Naturally, the problem
will be harder to solve to optimality with the addition of these
capacity restrictions. Thus, there will be a need to develop efficient
exact solution algorithms or heuristics for the multimodal hub
location and hub network design problem in the future. One other
possible future research direction which will enhance the mathema-
tical model is to include pricing issues and market competition in
multimodal hub location and hub network design.
Appendix

We provide the proofs of Propositions 1–3.

Proof of Proposition 1. First we prove the validity of inequality
(A.1). Consider the inequality (A.1) associated with nodes
i,jAH : ia j. There are four cases depending on the values of Xii

and Xjj:

Case 1: Xii ¼ 1 and Xjj ¼ 1. Then, both of the nodes i and j are

hubs and inequality (A.1) reduces to CijZag
c cg

ij. Since triangle

inequality holds and ag
c cg

ijraa
c ca

ij 8i,jAN by assumption, the unit

transportation cost from hub i to hub j is at least ag
c cg

ij, and (A.1)

is valid.

Case 2: Xii ¼ 1 and Xjj ¼ 0. If node i is a hub and node j is not a

hub, then the inequality (A.1) simplifies to CijZl1
ij. It is then valid

by the definition of l1
ij.

Case 3: Xii ¼ 0 and Xjj ¼ 1. If node j is a hub and node i is not a

hub, then by the definition of l2
ij we know that CijZl2

ij. If

minfl3
ij�l

1
ij ,l

2
ij�a

g
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ijg ¼ l2
ij�a
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ij, then inequality (A.1) simplifies
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inequality (A.1) is valid.
Case 4: Xii ¼ 0 and Xjj ¼ 0. If neither node i nor node j is a hub,

then by the definition of l3
ij , CijZl3

ij. If minfl3
ij�l

1
ij,l

2
ij�a

g
c cg

ijg ¼

l3
ij�l

1
ij, then inequality (A.1) simplifies to CijZl3

ij and it is

satisfied. If minfl3
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1
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g
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Since inequality (A.1) is satisfied in all of the four possible cases,

we conclude that inequality (A.1) is valid.

We now prove the validity of inequality (A.2). Similarly, there

are four cases depending on the values of Xii and Xjj:

Case 1: Xii ¼ 0 and Xjj ¼ 0. If neither of the nodes i and j are hub,

the inequality (A.2) reduces to CijZl3
ij and it is satisfied by the

definition of l3
ij.

Case 2: Xii ¼ 0 and Xjj ¼ 1. If node i is not a hub and node j is a

hub, then the inequality simplifies to CijZl2
ij and it is again valid

by definition.

Case 3: Xii ¼ 1 and Xjj ¼ 0. If node i is a hub and node j is

not a hub, then we know that CijZl1
ij by definition. If
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3
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g
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3
ij, the inequality (A.2) simplifies to

CijZl1
ij and it is valid. If minfl1

ij�l
3
ij,a

g
c cg

ij�l
2
ijg ¼ a

g
c cg

ij�l
2
ij, then

l1
ij�l

3
ijZaccg

ij�l
2
ij and CijZl1

ijZl3
ijþaccg

ij�l
2
ij. Hence, inequality

(A.2) is valid.

Case 4: Xii ¼ 1 and Xjj ¼ 1. Then, inequality (A.2) reduces to

CijZl2
ijþminfl1

ij�l
3
ij,a

g
c cg

ij�l
2
ijg. If both of the nodes i and j are

hubs, we know that CijZag
c cg

ij by assumption. If minfl1
ij�l

3
ij,

ag
c cg

ij�l
2
ijg ¼ a

g
c cg

ij�l
2
ij , then inequality reduces to CijZag

c cg
ij and it

is satisfied. If minfl1
ij�l

3
ij,a

g
c cg

ij�l
2
ijg ¼ l1

ij�l
3
ij, then ag

c cg
ij�l

2
ijZl1

ij�

l3
ij. So, CijZag

c cg
ijZl2

ijþl
1
ij�l

3
ij and the inequality is satisfied.

Inequality (A.2) is satisfied in all of the four possible cases. So,

we conclude that inequality (A.2) is valid.

If node i is a hub, inequality (A.3) simplifies to CijZl1
ij and it is

valid by definition since jAN\H. If i is not a hub it reduces to

CijZl3
ij and it is valid again by definition. Similarly, inequality

(A.4) for iAN\H, reduces to CijZl2
ij when j is a hub, and to CijZl3

ij

when j is not a hub and valid for both of the cases. For inequality

(A.5), since i,jAN\H, CijZl3
ij by definition.

Hence, inequalities (A.1)–(A.5) are valid. &
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Proof of Proposition 2. Let iAH and jAN\ i
� �

. If Xii ¼ 1, thenP
hAH\figXih ¼ 0 and inequality (B.1) reduces to CijZminkAH

ðag
c cg

ikþcg
kjÞ. Independent of whether node j is a hub or not, since

node k may be equal to node j, minkAHða
g
c cg

ikþcg
kjÞ provides a

lower bound on the unit transportation cost from node i to node j,
by triangle inequality and by the assumption that ag

c cg
ijrca

ij 8i,
jAN. So, inequality (B.1) is satisfied. If Xii ¼ 0, then node i must be
allocated to a hub, say h, such that Xih ¼ 1 (node h is allowed to be
the same node as j), then the unit transportation cost from hub h

to node j is at least minkAH\figða
g
c cg

hkþcg
kjÞ. So, CijZcg

ihþminkAH\fig

ðag
c cg

hkþcg
kjÞ. Hence, inequality (B.1) is valid.

For (B.2), iAN\H and jAN\fig, and thus Xih ¼ 1 for some hub h.

Then from the above argument of the proof of inequality (B.1) the

unit transportation cost from hub h to node j is at least minkAH\fig

ðag
c cg

hkþcg
kjÞ. So, CijZ

P
hAHðc

g
ihþminkAHða

g
c cg

hkþcg
kjÞÞXih and (B.2)

is valid.

For iAN and jAH\fig, if Xjj ¼ 1, then
P

hAH\fjgXjh ¼ 0 and it takes

at least minkAHðc
g
ikþa

g
c cg

kjÞ units of transportation cost to travel

from node i to node j. Hence, CijZminkAHðc
g
ikþa

g
c cg

kjÞ and inequal-

ity (B.3) is satisfied. If Xjj ¼ 0, then it is allocated to a hub, say h,

and the unit transportation cost from node i to hub h is at least

minkAH\fjgðc
g
ikþa

g
c cg

khÞ. Hence, CijZminkAH\fjgðc
g
ikþa

g
c cg

khÞþcg
hj and

inequality (B.3) is valid. Similarly for (B.4), since Xjj ¼ 0,

CijZ
P

hAHðminkAHðc
g
ikþa

g
c cg

khÞþcg
hjÞXjh from the same argument.

Hence, (B.4) is also valid.

So, inequalities (B.1)–(B.4) are valid. &

Proof of Proposition 3. The inequalities (C.1) and (C.2) are very
similar in structure to the inequalities (A.1) and (A.2). The only
difference is that the unit transportation cost values are appro-
priately replaced with travel times. Thus, the proofs of the validity
of the inequalities (C.1) and (C.2) follow from the proofs of the
valid inequalities (A.1) and (A.2) from Proposition 1. Similarly, the
inequalities (C.3) and (C.4) are similar in structure with the
inequalities (B.1) and (B.3), and the validity of these inequalities
follow from the proofs of the valid inequalities (B.1) and (B.3)
from Proposition 2. &
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