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Abstract

For risky financial securities with given expected return vector and covariance matrix, we propose the concept of a robust
profit opportunity in single- and multiple-period settings. We show that the problem of finding the “most robust” profit
opportunity can be solved as a convex quadratic programming problem, and investigate its relation to the Sharpe ratio.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Financial securities; Arbitrage; Robust optimization; Sharpe ratio

1. Introduction and background most robust profit opportunities in single-period and
multi-period investment environments, and, (3) to re-
Existence and exclusion issue of arbitrage in finan- late these ideas to the maximum Sharpe ratio problem.
cial markets is a well-studied area of mathematical The main finance contribution of the paper is to
finance treated at different levels of detail in several re- propose a new investment concept strongly related to
search monographs and textbooks; see d.0,13] arbitrage using partial probabilistic information, and
The purpose of the present paper is (1) to introduce to show that the proposed model is computationally
a novel concept related to arbitrage which we call a tractable as itinvolves the solution of convex quadratic
robust profit opportunityfor risky financial contracts  programs that are routinely and efficiently solved by
(or, securities for short) when the investor has access polynomial-time interior point methods. In this sense,
to the expected return and standard deviation data (or,although we introduce a more general model than
perhaps an estimate thereof) of the securities, (2) to the classical discrete arbitrage model, computation-
develop simple optimization models that compute the ally, the new model is, in theory and practice, no more
difficult than the classical theory which involves the
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beginning of the period. Let = (v1,...,v,) € R" responds to a measure of risk-aversion of the investor.
denote the vector of end-of-period values. Treating It is also reminiscent of the 2-sigma or 3-sigma engi-
as a random vector, let us denote its expected valueneering approach—these would correspond to choices
by v and itsn x n (symmetric, positive semidefinite) of 0 =2 or 6 = 3. As we argue below, system (2) is
matrix of variance/covariances I§y. We assume that related to the robust optimization approach of Ben-
v is not a positive multiple ok, the n-dimensional Tal and Nemirovsk|3,2], and with this motivation we
vector of ones to avoid degenerate cases. We definecall portfolios satisfying (2yobust profit opportuni-
r=v—e to be the vector of returns ane-v —e denotes ties with 0 representing thdevel of robustness, and

its expected value. Next, we let € R” represent a  we call the problem (3) below th@aximumé robust
portfolio of the n securities where; corresponds to  profit opportunity problem

the amount (in dollars) invested in securityThen, We note that a weaker version of (2) is obtained by
for a givenx the total investment in this portfolio will  relaxing the strict inequality:
bee'x = >_;xi and the value of the portfolio at the There exists a portfoliox such that o'x —
end of the period is a random variable, namelyy . 0/xT0x>0, e'x<O0.

Let v be a particular realization of the random vari- This relaxation is meaningful only with additional

able v revealed to the investor at the end of the pe- constraints since = 0 is a feasible vector for these
riod. If the investor knewv at the beginning of the  inequalities forall values off.
period, she could make money if there exists a port-  To motivate the development of system (2) a§3ih
folio x such thati"x >0, e"x <O0. In other words, if let us assume that the future valugsvs, ..., v, fall
there is a portfolio that can be formed with a negative within the uncertainty intervald; =[v; — o;, 0; + 0;].
investment and that achieves a non-negative value atAssume, furthermore, that;’s are mutually inde-
the end of the period, the investor can make money. pendent and symmetrically distributed i; with
Of course, since the first inequality depends on ran- respect to the mean valug. For a fixed choice
dom quantities, such a portfolio does not represent an of portfolio holdingsx, the end-of-period portfolio
arbitrage opportunity. value can be expressed As=) " ;0;x; + ¢, where

In contrast, a portfolio that satisfies ¢=>" ,xi(vi — v;) has zero mean and variance
Var(g) = Z,’.‘leizE{(vi — 9;)°}. Since the variance of
v; is bounded above by;.’- one has Vag) <V(x) =
corresponds to an arbitrage opportunity since the con- Y_1—1x2c2.Therefore, one can say that typically the
dition Var(x) = xT Qx =0 indicates that the final port-  value ofP will differ from the mean value of"x by
folio value is actually non-random and equal to its a quantity proportional to,/Var(c) <+/V(x), varia-
non-negative expected value. If we assume that arbi- tions on both sides being equally probable. Therefore,
trage opportunities do not exist, we conclude that the choosing a reliability coefficient! and ignoring all
system (1) must be inconsistent. Now, let us act as a events where the random future value is less than
conservative investor who recognizes that a sure profit ' x — 0/V(x), one arrives at the robust profit op-
as in (1) is not possible but is seeking a highly likely portunity definitions introduced above. Notice that by
profit opportunity at the end of a single investment pe- ignoring the events where the future portfolio value
riod. Further assume that the investor believes that ais less thari"x — 0/V(x), one accepts the fact that
random number is “rarely” less than its mean minus Prohc < — 0/V (x)) <e—02/2 as shown inf4]. The
a positive scalafl times its standard deviation. In the  right-hand side is getting already quite small (in the
absence of arbitrage, such an investor may be satisfiedorder of 10 for =6) quickly with increasing values
if the following condition is satisfied. of 0. Therefore, the larger the scalarthe smaller the

There exists a portfolia such that risk. Therefore, in Section 2 we will be looking for

ortfolios x that satisfy (2) for the largest possilfe
5Tx —0y/xTQx>0, e'x<O. (2) P v (@) gestp

The quantitys "x — 0/xT Qx is related to the notion supd, stilx— H\/m>0 eTx <0. 3)
of risk-adjusted returrfor the portfoliox wheref cor- 0. ' -7

o' x >0, x! 0Ox =0, elx < 0, Q)
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Notice that, in addition to being nonlinear and not
differentiable everywhere, the first constraint in (3)
is non-convex inf and x when 0 is a variable and
therefore (3) is a non-convex optimization problem.
Consequently, at first glance it appears that our model
is intractable. Exploiting the homogeneity of the
constraints, we show below that this problem can
in fact be reduced to a convex quadratic program-
ming problem and obtain a closed form solution. We
also derive extensions of our results to multi-period
settings.

The rest of this paper is organized as follows. In the
next few paragraphs, we present some connections of
our robust profit opportunity (RPO) model to existing
literature. In Section 2, we formulate the maximuém-
RPO problem, establish a convex quadratic program-
ming equivalent of this problem and demonstrate its
solution. In Section 3, we relate the maximuhiRPO
problem to the maximum Sharpe ratio problem. In
Section 4 we develop a two-period RPO model with-
out a riskless asset. Finally, a two-period model in-
cluding a riskless asset is studied in Section 5.

1.1. Connections to previous work

The current paper is built on an earlier work of
the first authof12]. While this earlier paper focused
on the feasibility problem (2) for a fixed and ana-
lyzed the existence of its solutions using conic dual-
ity, our focus here is on the optimization problem (3)
and its reduction to a convex quadratic programming
problem.

An interesting connection exists between the con-

cepts we introduced above and the following well-
known concepts, the value-at-risk formul®,7],
chance constrained optimizati¢t4], and robust op-
timization paradigm of Ben-Tal and NemirovgRi2].
In fact, the present paper is motivated by the contri-
butions of Ben-Tal and Nemirovski. Let us begin by
briefly reviewing the robust optimization approach.
Our treatment in this section closely follows Section
2.6 of [11].

We want to find a vectorx € R” that satisfies
vTx >0. This, of course, is an easy task for any given
v € R". We consider a decision environment where
v is not known exactly, but is known to belong to an
uncertainty set. In this case, a “robust” version of
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the inequalityv"x >0 is the following system:
vTx>0, forallveé. (4)

Whend is an ellipsoidal uncertainty set, e.d.={v+

Lu : |lull2<1} with € R” andL ann x k matrix,
we have that (4) is equivalent to minv'x >0 =
MiN <10 % +u'LTx>0. It is easy to see that
the optimalu is given byu* = —LTx/||LTx||. Letting

0 = (1/0%)LLT, we see that the above inequality is
identical to the first inequality in (2).

Alternatively, we can consider the assumption that
the uncertain vector is actually a Gaussian random
vector, with mear and covarianc®. We may require
as in[14] that the inequality " x >0 should hold with
a confidence level exceedingfor some givem > 0.5,
i.e., Prolgv"x >0)>y. Definingu = v'x, it = v'x,
ands = /xT Qx one can normalize both sides of the
inequality as follows:

Prob(

Since(u — i) /o is a zero mean, unit variance Gaus-
sian random variable the above probability constraint
is simply equivalent te-it /o < @~ X(1—n)=—d (1),
where @(z) = (1/+/2m) [* e~"*/2dt is the CDF of

a zero mean, unit variance Gaussian random vari-
able. Now, constraint (5) is nothing other thahy —

& 1(1)/xTQx >0. Since we assumed that=0.5,

&~ 1(n) is a non-negative scalar. The close resem-
blance to the first inequality of (2) is now obvious. The
above tail probability concepts are also reminiscent of
the value-at-risk methodology used to limit the risk
exposure of financial institution®]. A recent study
on portfolio optimization with the worst-case value-
at-risk criterion using conic programming [i8].

We can go one step further and ask that the in-
equality v"x >0 should hold with the largest possi-
ble confidence levet, i.e., ask that the lower bound
on Prokiv"x >0) is maximized. Since the function
@~1(») is monotone increasing between 0 and 1, we
obtain a problem analogous to (3).

We note that there has been an intensive study of
robust optimization formulations for asset allocation
problems in recent years, see, e[@1,3,7,8] While
our approach shares the intuitive notion of robust-
ness with the models in these papers and is related
to value-at-risk and Sharpe ratio maximization (see

—u

u—i )>n. 5)
o

_2_
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Section 3), our model differs significantly from these lyengar in solving the robust maximum Sharpe ratio

approaches. Unlike the robust optimization models problem][8].

mentioned above, we do not consider the expected re-  Let us introduce the normalizing constrairity =1.

turn and covariance information to be uncertain. We Since we assumed thatis not a positive multiple of

take these values as given and certain and seek portfo-e, there exists vectopssuch that"x > 0 ande'x < 0

lios that provide a next best alternative to arbitrage op- and we can conclude that the optimal objective value

portunities. Our contributions lie in the conversion of of (7) is positive. There are three possibilities: (i) the

the resulting seemingly intractable problems into con- optimal value is positive, bounded, and is achieved

vex quadratic programs whose analytic solutions can on the feasible set, (ii) the optimal value is positive

be readily derived and, perhaps more importantly, in and bounded but is achieved only on the boundary

the extension of these results to multi-period settings. of the (open) feasible set, (iii) the objective function
is unbounded above. In all three cases, adding the
constrainti ' x = 1 does not alter the behavior of the

2. Minimum risk robust profit opportunities solutions, i.e., either there exists an optiméalsuch

thato"x* =1 in the feasible set or its closure, or there
Recall the maximunt*RPO problem we formulated  exists a sequence of point such thats"x* = 1 and

in the previous section: the objective function grows indefinitely @&s— oo.
sup. 0 Consequently, problem (7) is equivalent to
'x —0/xTQx > 0, (6) o' x
e'x < 0. SUp ———
x /xTQOx

Now, we will transform this non-convex optimization eTx <0,
problem into a convex quadratic programming prob- .
lem. For the remainder of this section, we assume that ¥ ¥ =1
the matrixQ is nonsingular, and hence is positive def-
inite. This is essentially equivalent to assuming that
there are no redundant assets (those that can be per-, D
fectly replicated by the remaining assets) or risk-free \/m ’
assets in the collection of securities we consider. T
. . L. . T e x <0,

Since Q is positive definite,x' Qx >0 for all T
nonzerox and thereforep™x — 0/xT Qx>0 if and va=1
only if 57x//xT Qx >0 for all nonzerox. Therefore, or
problem (6) is equivalent to the following problem:

. l_ T
T To o io1 (8)
e'x <0. @) S

This is an optimization problem with a nonlinear, Where we introduced the factérfor convenience. We
and possibly non-concave, objective function. We note formally state this equivalence in the next proposition.
that if x is feasible for (7), then so isx for anyx > 0,
and the objective function value is constant along such Proposition 1. The maximurt) RPO problem (6)
feasible rays. Since the objective function and the con- is equivalent to the convex quadratic optimiza-
straint are homogeneous xrintroducing a constraint  tion problem(8). When optimal solutions exjstor
that normalizes the variables will not affect the op- ~ any optimal solution(x*, 0*) of (6) we have that
timal value as long as the hyperplane defined by this [1/(27x*)1x* is optimal for(8), and for any optimal
constraint intersects the cone of optimal solutions. solution x* of (8) and for anyx >0 we have that
This is similar to the technique used by Goldfarb and (xx*, 7x*/v/(x*)T Qx*) is optimal for(6).
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Relaxing the strict inequalite™x <0 in (8) to
e"x <0, we obtain a standard convex quadratic pro-
gramming problem:

nlin %xT Ox,
eTx <0,
Tx =1 9)
Note that we are able to replace inf with min, since
the continuous objective function which tendstoas

llx]| — oo will necessarily achieve its minimal value
over the closed feasible set. The optimality conditions
of this problem are given nexk* is an optimal so-

lution for the relaxed problem (9) if and only if there
exists scalard >0 andy such that

Ox* 4+ e —yp =0,
e"x* <0,
Je"x*) =0,
T =1. (10)
SinceQ is positive definite, the objective function is

strictly convex and the optimal solution is unique.
Since, we converted the strict inequalifyx < 0in (8)

to a loose inequality, we are interested in characteriz-

ing the cases where the optimal solution to (9) actually
satisfy this inequality strictly. We have the following
simple result.

Proposition 2. The unique optimal solution* to (9)
satisfieseTx* < 0 if and only ifeT 015 < 0.

Proof. If ¢TQ 19 <0, we easily see that opti-
mality conditions (10) are satisfied whexn* =
[1/@"0 )10, A =0, andy = 1/(5T Q" 1D).
Therefore x* is the unique optimal solution and
e'x*=("0 1) /(@0 1) <0.

Conversely, if e"x* <0, from the complemen-
tarity equation in (10) we see that must equal
zero. Therefore, from the first equation we ob-
tain x* = yQ~19, and substituting this into the
last equation in (10), we obtaip = 1/(TQ~1%).
Then,e™x* = (e"Q~10) /(3T Q~1v) < 0 implies that
e'0 5 <0. O

In the alternative case, i.e., whehQ~15>0, we
must havee" x* =0. Using this equation, we solve the
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optimality system (10) and obtain:

=907 — 207" (11)
eT Q71

= (12)
"0

“ 1

yi V. (13)

where

A=E"07t) @07 ) — ("0 )?>0. (14)

The positivity of4 follows from the Cauchy—Schwartz
inequality and the assumption thatand v are not
collinear. Sinced is positive, bothy and 4 are non-
negative.

In the case whea' Q15 >0, the optimal value of

©) is
ol x* . _ (7O 1p)?
T ox f \/TQ 1 ol (15)

While this optimal value cannot be achieved in (6) we
can get a feasible solution to (6) whose objective value
is arbitrarily close to the expression in (15). Similar
statements hold for problem (8); its optimal value,
which is the same as that of (9) is not achieved but we
can get arbitrarily close to it. In fact, consider a vector
S that satisfieg "5 <0 andi' 6 = 0. Then, the vector
x(e) = x* + &0 is feasible for (8) for alk > 0 and its
objective value is9(e) = &' Qx* + 16267 05 away
from the optimal objective value obtained in (9).

We summarize our results in this section in the fol-
lowing proposition.

Proposition 3. Consider the maximwtt RPO prob-
lem given in(6). Assuming that Q is positive definite
and v is not a multiple of ethe optimal value of this
problem is given as follows

Vo1 if 'O 10 <0,
0 =
:\/ﬁTQ “TQQ 02 ir e To15>0.

In the first casgthis optimal value is achieved for any
positive multiple oft* = 0~1v. In the second case
the optimal value is not achieved but feasible pertur-
bations ofx* given in(11) come arbitrarily close to
this value
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3. Relation to the Sharpe ratio

In this section we treat the case where there is a risk- 0

less security with returm; > 0 available for invest-
ment in addition to the risky securities we considered
above. Letvy = 1+r; denote the end-of-period value
of $1 invested in the riskless security at the beginning
of the period. Since we are considering a riskless se-
curity, the full correlation matrix is no longer positive
definite but we still assume that the submatrix corre-
sponding to the risky securities is positive definite.
Let us assume that the current price of the riskless
security is $1. Then, zero-investment portfolios can
be constructed by purchasing the portfoliafter bor-
rowing e"x dollars at the riskless ratg: (or lending
—e'x dollars ife” x < 0). We can represent such zero-
investment portfolios a6, —e ' x). Recalling that =
v — e denotes the expected return vector for the risky
securities, we observe that the expected return of this
zero-investment portfolio i8"x —r s (T x). A classical
problem in finance is to find the zero-investment port-
folio with the highest expected return to standard de-
viation ratio (a scale invariant quantity)—the so-called
Sharpe ratio:

Ty — rf (eTx)

f
VxTOx

Let us call (16) the maximum Sharpe ratio problem.
Since the objective function of this problem is scale
invariant, the canonical representation of the problem
uses the normalizing constraintx = 1 and has

max

X

(16)

Flx — ry (r — rfe)Tx

VxTOx B VxTOx

e'x=1

max
X

Equivalently, this second representation can be ob-
tained by lettingr; denote the “proportion of the port-
folio invested in securityi” rather than “dollars in-
vested in security”. The vector(r — rre) represents
the “risk premium” vector for the risky securities.

Now we relate the maximuri-(RPO) problem
to the maximum Sharpe ratio problem. Consider the
maximum4$ RPO problem in this case. We have the
variable vectof = (x, x y), with expected value vector
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v = [v; vr] and covariance matrix
0

53

The maximumé RPO problem is
x4+ VX

7Ty
/57 Ox JxTox

eszeTx+Xf<0,

sup
X

which, after relaxing the strict inequality, can be
rewritten as

X +vpxy

JxTox

e'x + x5 <0.

max
a7

SinceQ is positive definite, we do not need to worry
about division by zero in (17). The problematic case of
xTQx =0 occurs only when = 0—all feasible solu-
tions withx =0 have non-positive objective values and
cannot be optimum and therefore can be ignored. Also
note that for a fixedk the objective function is max-
imized by maximizingx ;. Therefore, for an optimal
solution vectork = (x, x ) the constraing ' x +xr<0

will always be tight and we can replace this inequal-
ity with an equality. Now, substituting; = —e'x, we
obtaing "x + ViXp= vlx— vf(eTx) =F+e)x—(1+
rp)e’x)=7Tx —rs(e"x). Thus, (17) is equivalent to

=T T
rx—rrle' x
max¢,

x VxTOx
which is identical to (16). In other words, when the
universe of investment options includes a risk-free se-
curity, portfolios that are maximurti-RPOs coincide
with maximum Sharpe ratio portfolios. With this in-
terpretation, we also conclude that when there are
no risk-free investment options, our characterization
of “minimum risk” robust profit opportunities repre-
sent a generalization of the maximum Sharpe ratio
portfolios.

4. A two-period model

Our discussion on RPOs in the preceding sections
focused on single-period models. Here we extend the
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notion of RPOs to a two-period investment model. For
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Let % denote the set of all possible realizations

ease of exposition further extension of the ideas below of the random vectop!. Then, the ARO model for

in a setting with more than two periods is not included
here.

We consider the following setting. The investor will
form a portfolio at time 0 that she will hold until time
1 at which point she will be able to rebalance her
portfolio in a self-financing manner possibly incurring
transaction costs and hold this new portfolio until time
2. We use the following notation: Leul.l denote the
(random) time 1 value of $1 invested in securitgt
time 0. Similarly, Ietvl.2 denote the (random) time 2
value of $1 invested in securityat time 1. Letxl.0 and
x! denote the dollars invested in securityat times
0 and 1, respectively. Let' =[v}, ..., v}]T, define
v2, x0, x1 similarly. Then, the initial (time 0) value of
the portfolio formed at time 0 i8"x°. This portfolio
has value(v!)Tx? at time 1, before it is rebalanced.

problem (18) can be written as follows:

sup inf supfs.te'xt=@hHTxO,
x0:eTx0QUIEW 41

@) Txt — 0,/ xHT Qax1>0.

To be able to solve this problem, let us first focus on
the inner maximization problem. Given= (v1)"x°,
we want to solve

supf ste'xt=a, @)Txt =0y xHTQ2x1>0.

0,x1

(19)

Let us assume as before th@p is positive definite.
This assumption precludes the availability of a risk-

In the absence of transaction costs, the self-financing free security and will be removed in the next section.

constraint can be posed as
eTyl= (Ul)TxO.

Let 32 and Q2 denote the expected value vector and
the covariance matrix for the random vectdr Then,
a two-period analog of the maximuthrobust profit
opportunity problem can be posed as follows:

sup 0, s.t. e'x%<0, e'xt=@hHTx",

0,x0,x1
@) Txt — 0/ xHT Qxl>0.

Unlike (6) in Section 2, this problem is not a determin-
istic optimization problem because of the random
term in the equality constraint. However, at the time
we need to choose?, we will have already observed

(18)

this random quantity and therefore, the decision prob-

lem at time 1 is a deterministic problem. This two-

Given this assumption, we can rewrite the above prob-
lem as

) Tx!

(xHT Qoxt
e X = «.

Sup;1 (20)

P (o)

Unlike (6), the constraint of (20) is not homogeneous
in general. However, since the objective function is a
homogeneous function of we still can use the ap-
proach outlined in Section 2.

Let V() denote the optimal value of problem(a).
Consider an optimal solutiori*(«) of P (x), assuming
that it exists, for a fixed value of Now considerP (&)
with constraint right-hand-sidé = xo for any x > 0.
Since all feasible solutions foP(«) can be scaled
to obtain feasible solutions faP (%) and since these
(positively) scaled solutions will have identical objec-
tive values as the corresponding solution®i@), we
immediately conclude thatx*(«) is an optimal solu-

step decision process with a random constraint was tion for P(&). Furthermore, optimal valueg(«) and

addressed in thadjustable robust optimizatigiARO)
models of Ben-Tal et a[1,9]. These models intend to

V(&) of these two problems coincide and therefore
V (o) depends only on the sign ef not its magnitude.

choose the decision variables in such a way that the These statements continue to hold even whén) is
performance of the system under the worst-case real-not achieved.

ization of the uncertain input parameters is optimized.

Let us first consider the case when<0. From

They are called “adjustable” since some of the vari- the argument in the previous paragraph we conclude
ables can be chosen after the uncertain parameters ar¢hat if we are given am < 0, problem (20) is equiv-

observed.

alent to (7). Therefore, using the results of Section 2,
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we conclude that for <0, So, wher. > 0 the situation is reversed.df 05152 > 0,
V)= a positive multiple onz_lz')z—the optimal solution
e _ 1o to the unconstrained version of (20)—is feasible for
NICH O if eT 0592 <0, (20), and therefore is optimal. K' 0,32<0, then
T 15 07D o T 1-0 the optimal value is approached by solutions of the
\/(v ) Qo v" — engz—lg if e7 ;70" >0. form £ + px! wheree's = o, x1 is as in (11)—(14)
¢ 4T O-152 H imal soluti and with $§ tending to+oo.
If x <Oande’ Q,"v° <0, the optimal solution to (20) Finally, we note that whe#=0, the optimal solution
IS is given by Egs. (11)—(14) and the optimal value is
« -1-2
X = ———— 0, 7%
T 1,2 —1-2\2
<0z e G Mk
: . TO-
If «<0 bute’Q,'52>0, the optimal value is not e Qye

achieved but we can get arbitrarily close to this value . 1.0
by considering solutions of the forh+ fx where regardless of the sign of 0,72, _
¢T3 =o, xtis as in (11)=(14) and wittf tending To summarize, we have that the optimal
to +oo. To see this, one has to evaluate the limit value of (20) is either \/(¥2)70,%%2 (when

lim . oo (f5) where the sign of « and eTQ,'? coincide) or

@7 G+ B(y05 02 — 1.05%))
G+ G015 — 205N 02 + B(705 152 — 205 %))

After substituting the expressions fpand/ and some
algebraic manipulation the above limit simplifies to \/(z‘;z)Tlef;2 - (eTleﬁz)z/eTlee (otherwise).
the following: As mentioned above, other than determining which

lim )'5+ 5
B0 3T 023(eT 05 e 05 02— ((32)T 05 ) +(eT 05 Le(@2) 5 —2(52)T 05 tea)+2eT 05 e
€10 e @)1 05152 ((3)T 051e)?

h(p) =

from which the desired conclusion easily follows. “regime” we are in through its sign, the valuecohas
Next, we consider the case wher- 0. In this case,  no bearing on this optimal value. This counter-intuitive

problem (20) is equivalent to the following problem  conclusion appears to be an artifact of our assumption

obtained by flipping the direction of the constraint in  thatQis positive definite and hence risk-free securities

(7): are not available. We remove this assumption in the
T next section and obtain more intuitive conclusions.
vV X . .
SUp ——, Now, let us go back to the two-period problem in
xoVx0x (19). From the discussion above, we conclude that this
e'x>0. problem is equivalent to the following problem:
Using analogous arguments to those in Section 2, we  sup inf v(x%, vY), (22)

easily conclude that the optimal value of this problem x%:Tx0<0 v'e%
as well as of (20) is given as follows:

where
V(x)=
“ 2T H=—1-2 i To-152- o v(x vh=
I .
(U) Q2 v i e Q2 v >V, (ﬁZ)TQz_ll_)z if (‘lz};);rf;z >0’
—_ _2 2 e
@)Toy42 — L2 P i ,To 12<0. — 2
2 eT0; e 2 @) 05152 — £ 29" siherwise.
(22) 2 eTQ5%e
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Since the value function(x, v1) depends on?® and 1, and Ieb} >1 andvf, > 1 be the (deterministic)
andv? only through the sign of the expressiart) "x?, time 1 and time 2 values of a $1 invested in the riskless
we have the following conclusions: asset at times 0 and 1, respectively. The analog of

problem (19) in this setting is
e If ¢70,14%> 0, then the optimal value of (22) is

. . su |nf sup 0
J@)T 0512 if there exists an® such that €010 eTxf+x 0_quie g1 p}
e'x%<0 and (vl)TxO >0, Vol e . (23) s.i.

Otherwise, the choice of® is immaterial and the  ¢Tx! +x1. =@HTx0 + U}.x(},

optimal value is
@) Txt +v7xf — 04/ (DT Qax1>0. (25)

T 1y (1051127 : imizati
%' 05 0% — - — As before, we focus on the |nner maximization prob-
e Qy7e lem: Givena = (v1)Tx0 + o1 v f, we solve:

The tractability of the feasibility system (23) de-
pends on the uncertainty sgtfor v?. If we have an
ellipsoidal uncertainty se¥ ={v1+ Lu : ||u||2<1}
then (23) is equivalent te"x® < 0 and (1) Tx° @)t + v2xk — 0,/ (DT Qax1 >0, (26)
V@xOTLLTx0> 0. See Eq. (4) and the paragraph

following it in Section 1.1. This convex system can If >0, i.e., if we have a positive-valued portfolio at
be easily resolved. Note that a feasible solution for the end of period 1, then, the inner maximization prob-
(23) indicates a period 1 arbitrage opportunity and €M is unbounded as we can choose= 0, x} =«

sup Os.te'xt+ x} =q,
0,x1,x}

therefore is unlikely to exist. and all s will be feasible for the problem. In other
o If eTQ*1‘2 <0, then the optimal value of (22) is words, if our position (which had a negative value ini-
tially) reaches a positive value, we can quit gambling
[(52)T 52 0 ,
9" 07 107 if there exists an such that and put all our money in the riskless asset to guarantee

that we make money at the end.

Now consider the case when<O0. In this case,
If we have% = {31 + Lu : |ju]2<1} as above, there is no feasible solution to (26) witt = 0 and
then (24) is equivalent te"x° <0 and (1) Tx0 + 0> 0, therefore, we do not need to worry about divi-

V(x9TLLTXx0 < 0. This, again, is a convex system Sion by zero and rewrite (26) as
and can be solved easily. )Tl 4+ vj%x]lc

The second case we described a_lbove illustrates _the xsllir; \/m ’
anomaly caused by the lack of a riskless asset for in- _—

vestment in the second period.elf0;'9? <0,inor- € X" +xp=a.

der to maximize thé for period 2, we try to choose
an x such that the value of this portfolio at the end
of the first period is guaranteed to be negative! This
counter-intuitive situation does not arise when we in-

e'x%<0 and Hx%<0, wle aU.(24)

Using the constraint we eliminatel and obtain the
following unconstrained problem:

(v2 vfe)Tx +ocv§

troduce riskless assets. sup f(x1) := (27)
L VT 0oxt
5. With a riskless asset Observe that for any® and for anyp > 1,
2
We use the earlier notation and now et andx 1 *vy 1
= —1-= )| ——— .
denote our holdings in the risk-free asset at perlods 0 FBxD = f G ( [3) /DT Qo1 > /&)
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So, for any solutionc!, we can always improve the
solution by scaling it up, and therefore, the supremum
in (27) is never achieved. Note that

(172 — v?e)-r)cl

Vb Qoxt

Thus, the supremum value of (27) is the same
as the supremum value of the following prob-
lem with the homogeneous objective function:
sup1[(9? — v?e)Txl]/[ (xHT02x1]. We can solve
this problem by introducing a normalizing constraint
as we did before and obtain that the optimal solu-
tion ray is: x* = 0, (32 — v3e), f> 0. Note that
these are maximum-Sharpe ratio portfolios. The opti-

mal objective value along this ray i#?TQz‘lf with
F =12 —v2e.

Combining our conclusions, we have that (25) is
equivalent to

. 1y
ﬁlgnoo f(px7) =

sup inf v(x°, x?, b,
xo,x(}:eTxO+x(/) <o vie¥

where
v(xo, x?, vl)
400 if (v1)Tx0+ v}x? >0,

JiTO;7  otherwise.

From this, we immediately obtain the optimal solu-
tion for the two-period problem: If there is a period 1
arbitrage opportunity, i.e., if there exist§, x? such
that

ex%+ x?p <0 and HTx0+ vjlcx? >0,
volea,
then take this position at time O and move every-

thing to the risk-free asset at time 1. If not, then
x0, x? do not matter for the two-period maximum-

0 problem (but, of course, one may choose these

M.C. Pinar, R.H. Tltuncl / Operations Research Letters 33 (2005) 331-340

variables in order to maximize the probability that
HTx0 + v}x? > 0, provided that we have a proba-

bility distribution for v1). Once we reach time 1, if we
observe thatv)Tx0 + v}x(} >0, we again move ev-
erything to the risk-free asset. Otherwise, we can take a
position that comes arbitrarily close to the maximum-

0 value of /7T 05 7.

References

[1] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski,
Adjustable robust solutions of uncertain linear programs,
Math. Program. 99 (2) (2004) 351-376.

[2] A. Ben-Tal, A. Nemirovski, Robust convex optimization,
Math. Oper. Res. 23 (1998) 769-805.

[3] A. Ben-Tal, A. Nemirovski, Robust solutions to uncertain
linear programming problems, Oper. Res. Lett. 25 (1999) 1-
13.

[4] A. Ben-Tal, A. Nemirovski, Robust solutions of linear
programming problems contaminated with uncertain data,
Math. Program. 88 (2000) 411-424.

[5] D. Duffie, Dynamic Asset Pricing Theory, Princeton
University Press, Princeton, NJ, 1992.

[6] D. Duffie, J. Pan, An overview of value at risk, J. Derivatives
4 (1997) 7-49.

[7] L. EI Ghaoui, M. Oks, F. Oustry, Worst-case value-at-risk and
robust portfolio optimization: a conic programming approach,
Oper. Res. 51 (2003) 543-556.

[8] D. Goldfarb, G. lyengar, Robust portfolio selection problems,
Math. Oper. Res. 28 (1) (2003) 1-38.

[9] E. Guslitzer, Uncertainty-immunized solutions in linear
programming, Masters Thesis. Technion. Haifa, Israel, 2002.

[10] J. Ingersoll, Theory of Financial Decision Making, Rowman
& Littlefield, Savage, Maryland, 1987.

[11] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret,
Applications of second-order cone programming, Linear
Algebra Appl. 284 (1998) 193-228.

[12] M.C. Pinar, Minimum risk arbitrage with risky financial
contracts, Technical Report, Department of Industrial
Engineering, Bilkent University, Ankara, Turkey, 2003.

[13] S.R. Pliska, Introduction to Mathematical Finance, Blackwell
Publishers, Oxford, 1997.

[14] P. Whittle, Optimization under Constraints. Theory and
Applications of Nonlinear Programming, Wiley-Interscience,
New York, 1971.



	Robust profit opportunities in risky financial portfolios
	Introduction and background
	Connections to previous work

	Minimum risk robust profit opportunities
	Relation to the Sharpe ratio
	A two-period model
	With a riskless asset
	References


