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Abstract

For risky financial securities with given expected return vector and covariance matrix, we propose the concept of a robust
profit opportunity in single- and multiple-period settings. We show that the problem of finding the “most robust” profit
opportunity can be solved as a convex quadratic programming problem, and investigate its relation to the Sharpe ratio.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and background

Existence and exclusion issue of arbitrage in finan-
cial markets is a well-studied area of mathematical
finance treated at different levels of detail in several re-
search monographs and textbooks; see e.g.,[5,10,13].
The purpose of the present paper is (1) to introduce

a novel concept related to arbitrage which we call a
robust profit opportunityfor risky financial contracts
(or, securities for short) when the investor has access
to the expected return and standard deviation data (or,
perhaps an estimate thereof) of the securities, (2) to
develop simple optimization models that compute the
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most robust profit opportunities in single-period and
multi-period investment environments, and, (3) to re-
late these ideas to the maximum Sharpe ratio problem.
The main finance contribution of the paper is to

propose a new investment concept strongly related to
arbitrage using partial probabilistic information, and
to show that the proposed model is computationally
tractable as it involves the solution of convex quadratic
programs that are routinely and efficiently solved by
polynomial-time interior point methods. In this sense,
although we introduce a more general model than
the classical discrete arbitrage model, computation-
ally, the new model is, in theory and practice, no more
difficult than the classical theory which involves the
use of linear programming duality.
Consider a single-period decision environment with

a set ofn risky financial securities. Letvi denote the
period-end value of $1 invested in securityi at the
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beginning of the period. Letv = (v1, . . . , vn) ∈ Rn

denote the vector of end-of-period values. Treatingv

as a random vector, let us denote its expected value
by v̄ and itsn × n (symmetric, positive semidefinite)
matrix of variance/covariances byQ. We assume that
v̄ is not a positive multiple ofe, the n-dimensional
vector of ones to avoid degenerate cases. We define
r=v−e to be the vector of returns andr̄=v̄−e denotes
its expected value. Next, we letx ∈ Rn represent a
portfolio of then securities wherexi corresponds to
the amount (in dollars) invested in securityi. Then,
for a givenx the total investment in this portfolio will
be eTx = ∑

ixi and the value of the portfolio at the
end of the period is a random variable, namely,vTx.
Let ṽ be a particular realization of the random vari-

able v revealed to the investor at the end of the pe-
riod. If the investor knewṽ at the beginning of the
period, she could make money if there exists a port-
folio x such thatṽTx�0, eTx <0. In other words, if
there is a portfolio that can be formed with a negative
investment and that achieves a non-negative value at
the end of the period, the investor can make money.
Of course, since the first inequality depends on ran-
dom quantities, such a portfolio does not represent an
arbitrage opportunity.
In contrast, a portfoliox that satisfies

v̄Tx�0, xTQx = 0, eTx <0, (1)

corresponds to an arbitrage opportunity since the con-
dition Var(x)=xTQx =0 indicates that the final port-
folio value is actually non-random and equal to its
non-negative expected value. If we assume that arbi-
trage opportunities do not exist, we conclude that the
system (1) must be inconsistent. Now, let us act as a
conservative investor who recognizes that a sure profit
as in (1) is not possible but is seeking a highly likely
profit opportunity at the end of a single investment pe-
riod. Further assume that the investor believes that a
random number is “rarely” less than its mean minus
a positive scalar� times its standard deviation. In the
absence of arbitrage, such an investor may be satisfied
if the following condition is satisfied.
There exists a portfoliox such that

v̄Tx − �
√

xTQx�0, eTx <0. (2)

The quantityv̄Tx − �
√

xTQx is related to the notion
of risk-adjusted returnfor the portfolioxwhere� cor-

responds to a measure of risk-aversion of the investor.
It is also reminiscent of the 2-sigma or 3-sigma engi-
neering approach—these would correspond to choices
of � = 2 or � = 3. As we argue below, system (2) is
related to the robust optimization approach of Ben-
Tal and Nemirovski[3,2], and with this motivation we
call portfolios satisfying (2)robust profit opportuni-
ties with � representing thelevel of robustness, and
we call the problem (3) below themaximum-� robust
profit opportunity problem.
We note that a weaker version of (2) is obtained by

relaxing the strict inequality:
There exists a portfoliox such that v̄Tx −

�
√

xTQx�0, eTx�0.
This relaxation is meaningful only with additional

constraints sincex = 0 is a feasible vector for these
inequalities forall values of�.
To motivate the development of system (2) as in[3]

let us assume that the future valuesv1, v2, . . . , vn fall
within the uncertainty intervals�i =[v̄i −�i , v̄i +�i].
Assume, furthermore, thatvi ’s are mutually inde-
pendent and symmetrically distributed in�i with
respect to the mean valuēvi . For a fixed choice
of portfolio holdingsx, the end-of-period portfolio
value can be expressed asP = ∑n

i=1v̄ixi + �, where
� = ∑n

i=1xi(vi − v̄i ) has zero mean and variance
Var(�) = ∑n

i=1x
2
i E{(vi − v̄i )

2}. Since the variance of
vi is bounded above by�2i one has Var(�)�V (x) ≡∑n

i=1x
2
i �2i .Therefore, one can say that typically the

value ofP will differ from the mean value of̄vTx by
a quantity proportional to

√
Var(�)�

√
V (x), varia-

tions on both sides being equally probable. Therefore,
choosing a reliability coefficient� and ignoring all
events where the random future value is less than
v̄Tx − �

√
V (x), one arrives at the robust profit op-

portunity definitions introduced above. Notice that by
ignoring the events where the future portfolio value
is less than̄vTx − �

√
V (x), one accepts the fact that

Prob(�< − �
√

V (x)) <e−�2/2 as shown in[4]. The
right-hand side is getting already quite small (in the
order of 10−7 for �=6) quickly with increasing values
of �. Therefore, the larger the scalar�, the smaller the
risk. Therefore, in Section 2 we will be looking for
portfoliosx that satisfy (2) for the largest possible�:

sup
�,x

�, s.t. v̄Tx − �
√

xTQx�0, eTx <0. (3)
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Notice that, in addition to being nonlinear and not
differentiable everywhere, the first constraint in (3)
is non-convex in� and x when � is a variable and
therefore (3) is a non-convex optimization problem.
Consequently, at first glance it appears that our model
is intractable. Exploiting the homogeneity of the
constraints, we show below that this problem can
in fact be reduced to a convex quadratic program-
ming problem and obtain a closed form solution. We
also derive extensions of our results to multi-period
settings.
The rest of this paper is organized as follows. In the

next few paragraphs, we present some connections of
our robust profit opportunity (RPO) model to existing
literature. In Section 2, we formulate the maximum-�
RPO problem, establish a convex quadratic program-
ming equivalent of this problem and demonstrate its
solution. In Section 3, we relate the maximum-� RPO
problem to the maximum Sharpe ratio problem. In
Section 4 we develop a two-period RPO model with-
out a riskless asset. Finally, a two-period model in-
cluding a riskless asset is studied in Section 5.

1.1. Connections to previous work

The current paper is built on an earlier work of
the first author[12]. While this earlier paper focused
on the feasibility problem (2) for a fixed� and ana-
lyzed the existence of its solutions using conic dual-
ity, our focus here is on the optimization problem (3)
and its reduction to a convex quadratic programming
problem.
An interesting connection exists between the con-

cepts we introduced above and the following well-
known concepts, the value-at-risk formula[6,7],
chance constrained optimization[14], and robust op-
timization paradigm of Ben-Tal and Nemirovski[3,2].
In fact, the present paper is motivated by the contri-
butions of Ben-Tal and Nemirovski. Let us begin by
briefly reviewing the robust optimization approach.
Our treatment in this section closely follows Section
2.6 of [11].
We want to find a vectorx ∈ Rn that satisfies

vTx�0. This, of course, is an easy task for any given
v ∈ Rn. We consider a decision environment where
v is not known exactly, but is known to belong to an
uncertainty setE. In this case, a “robust” version of

the inequalityvTx�0 is the following system:

vTx�0, for all v ∈ E. (4)

WhenE is an ellipsoidal uncertainty set, e.g.,E={v̄+
L̄u : ‖u‖2�1} with v̄ ∈ Rn and L̄ an n × k matrix,
we have that (4) is equivalent to minv∈EvTx�0 =
minu:‖u‖2�1v̄

Tx + uTL̄Tx�0. It is easy to see that
the optimalu is given byu∗ = −L̄Tx/‖L̄Tx‖. Letting
Q = (1/�2)L̄L̄T, we see that the above inequality is
identical to the first inequality in (2).
Alternatively, we can consider the assumption that

the uncertain vectorv is actually a Gaussian random
vector, with mean̄v and covarianceQ.Wemay require
as in[14] that the inequalityvTx�0 should hold with
a confidence level exceeding�, for some given��0.5,
i.e., Prob(vTx�0)��. Defining u = vTx, ū = v̄Tx,
and� = √

xTQx one can normalize both sides of the
inequality as follows:

Prob

(
u − ū

�
� −ū

�

)
��. (5)

Since(u − ū)/� is a zero mean, unit variance Gaus-
sian random variable the above probability constraint
is simply equivalent to−ū/���−1(1−�)=−�−1(�),
where�(z) = (1/

√
2�)

∫ z

−∞ e−t2/2dt is the CDF of
a zero mean, unit variance Gaussian random vari-
able. Now, constraint (5) is nothing other thanv̄Tx −
�−1(�)

√
xTQx�0. Since we assumed that��0.5,

�−1(�) is a non-negative scalar. The close resem-
blance to the first inequality of (2) is now obvious. The
above tail probability concepts are also reminiscent of
the value-at-risk methodology used to limit the risk
exposure of financial institutions[6]. A recent study
on portfolio optimization with the worst-case value-
at-risk criterion using conic programming is[7].
We can go one step further and ask that the in-

equality vTx�0 should hold with the largest possi-
ble confidence level�, i.e., ask that the lower bound
on Prob(vTx�0) is maximized. Since the function
�−1(�) is monotone increasing between 0 and 1, we
obtain a problem analogous to (3).
We note that there has been an intensive study of

robust optimization formulations for asset allocation
problems in recent years, see, e.g.,[11,3,7,8]. While
our approach shares the intuitive notion of robust-
ness with the models in these papers and is related
to value-at-risk and Sharpe ratio maximization (see
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Section 3), our model differs significantly from these
approaches. Unlike the robust optimization models
mentioned above, we do not consider the expected re-
turn and covariance information to be uncertain. We
take these values as given and certain and seek portfo-
lios that provide a next best alternative to arbitrage op-
portunities. Our contributions lie in the conversion of
the resulting seemingly intractable problems into con-
vex quadratic programs whose analytic solutions can
be readily derived and, perhaps more importantly, in
the extension of these results to multi-period settings.

2. Minimum risk robust profit opportunities

Recall themaximum-�RPOproblemwe formulated
in the previous section:

sup�,x �

v̄Tx − �
√

xTQx � 0,
eTx < 0.

(6)

Now, we will transform this non-convex optimization
problem into a convex quadratic programming prob-
lem. For the remainder of this section, we assume that
the matrixQ is nonsingular, and hence is positive def-
inite. This is essentially equivalent to assuming that
there are no redundant assets (those that can be per-
fectly replicated by the remaining assets) or risk-free
assets in the collection of securities we consider.
Since Q is positive definite,xTQx >0 for all

nonzerox and therefore,̄vTx − �
√

xTQx�0 if and
only if v̄Tx/

√
xTQx�� for all nonzerox. Therefore,

problem (6) is equivalent to the following problem:

sup
x

v̄Tx√
xTQx

eTx <0. (7)

This is an optimization problem with a nonlinear,
and possibly non-concave, objective function.We note
that if x is feasible for (7), then so is�x for any�>0,
and the objective function value is constant along such
feasible rays. Since the objective function and the con-
straint are homogeneous inx introducing a constraint
that normalizes thex variables will not affect the op-
timal value as long as the hyperplane defined by this
constraint intersects the cone of optimal solutions.
This is similar to the technique used by Goldfarb and

Iyengar in solving the robust maximum Sharpe ratio
problem[8].
Let us introduce the normalizing constraintv̄Tx=1.

Since we assumed thatv̄ is not a positive multiple of
e, there exists vectorsx such that̄vTx >0 andeTx <0
and we can conclude that the optimal objective value
of (7) is positive. There are three possibilities: (i) the
optimal value is positive, bounded, and is achieved
on the feasible set, (ii) the optimal value is positive
and bounded but is achieved only on the boundary
of the (open) feasible set, (iii) the objective function
is unbounded above. In all three cases, adding the
constraintv̄Tx = 1 does not alter the behavior of the
solutions, i.e., either there exists an optimalx∗ such
that v̄Tx∗ =1 in the feasible set or its closure, or there
exists a sequence of pointsxk such that̄vTxk = 1 and
the objective function grows indefinitely ask → ∞.
Consequently, problem (7) is equivalent to

sup
x

v̄Tx√
xTQx

eTx <0,

v̄Tx = 1

or

sup
x

1√
xTQx

,

eTx <0,

v̄Tx = 1

or

inf
x

1
2x

TQx,

eTx <0,

v̄Tx = 1, (8)

where we introduced the factor12 for convenience. We
formally state this equivalence in the next proposition.

Proposition 1. The maximum-� RPO problem (6)
is equivalent to the convex quadratic optimiza-
tion problem (8). When optimal solutions exist, for
any optimal solution(x∗, �∗) of (6) we have that
[1/(v̄Tx∗)]x∗ is optimal for (8), and for any optimal
solution x∗ of (8) and for any�>0 we have that
(�x∗, v̄Tx∗/

√
(x∗)TQx∗) is optimal for(6).
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Relaxing the strict inequalityeTx <0 in (8) to
eTx�0, we obtain a standard convex quadratic pro-
gramming problem:

min
x

1
2x

TQx,

eTx�0,

v̄Tx = 1. (9)

Note that we are able to replace inf with min, since
the continuous objective function which tends to∞ as
‖x‖ → ∞ will necessarily achieve its minimal value
over the closed feasible set. The optimality conditions
of this problem are given next:x∗ is an optimal so-
lution for the relaxed problem (9) if and only if there
exists scalars	�0 and
 such that

Qx∗ + 	e − 
v̄ = 0,

eTx∗ �0,

	(eTx∗) = 0,

v̄Tx∗ = 1. (10)

SinceQ is positive definite, the objective function is
strictly convex and the optimal solution is unique.
Since, we converted the strict inequalityeTx <0 in (8)
to a loose inequality, we are interested in characteriz-
ing the cases where the optimal solution to (9) actually
satisfy this inequality strictly. We have the following
simple result.

Proposition 2. The unique optimal solutionx∗ to (9)
satisfieseTx∗ <0 if and only ifeTQ−1v̄ <0.

Proof. If eTQ−1v̄ <0, we easily see that opti-
mality conditions (10) are satisfied whenx∗ =
[1/(v̄TQ−1v̄)]Q−1v̄, 	 = 0, and 
 = 1/(v̄TQ−1v̄).
Therefore, x∗ is the unique optimal solution and
eTx∗ = (eTQ−1v̄)/(v̄TQ−1v̄) <0.
Conversely, if eTx∗ <0, from the complemen-

tarity equation in (10) we see that	 must equal
zero. Therefore, from the first equation we ob-
tain x∗ = 
Q−1v̄, and substituting this into the
last equation in (10), we obtain
 = 1/(v̄TQ−1v̄).
Then,eTx∗ = (eTQ−1v̄)/(v̄TQ−1v̄) <0 implies that
eTQ−1v̄ <0. �

In the alternative case, i.e., wheneTQ−1v̄�0, we
must haveeTx∗ =0. Using this equation, we solve the

optimality system (10) and obtain:

x∗ = 
Q−1v̄ − 	Q−1e, (11)


 = eTQ−1e

�
, (12)

	 = eTQ−1v̄

�
, (13)

where

� = (eTQ−1e)(v̄TQ−1v̄) − (eTQ−1v̄)2>0. (14)

The positivity of� follows from the Cauchy–Schwartz
inequality and the assumption thate and v̄ are not
collinear. Since� is positive, both
 and	 are non-
negative.
In the case wheneTQ−1v̄�0, the optimal value of

(6) is

v̄Tx∗

(x∗)TQx∗ = 1√



=
√

v̄TQ−1v̄ − (eTQ−1v̄)2

eTQ−1e
. (15)

While this optimal value cannot be achieved in (6) we
can get a feasible solution to (6) whose objective value
is arbitrarily close to the expression in (15). Similar
statements hold for problem (8); its optimal value,
which is the same as that of (9) is not achieved but we
can get arbitrarily close to it. In fact, consider a vector
� that satisfieseT�<0 andv̄T� = 0. Then, the vector
x(�) = x∗ + �� is feasible for (8) for all�>0 and its
objective value is
(�) = ��TQx∗ + 1

2�
2�TQ� away

from the optimal objective value obtained in (9).
We summarize our results in this section in the fol-

lowing proposition.

Proposition 3. Consider the maximum-� RPO prob-
lem given in(6). Assuming that Q is positive definite
and v̄ is not a multiple of e, the optimal value of this
problem is given as follows:

�∗ =
{√

v̄TQ−1v̄ if eTQ−1v̄ <0,√
v̄TQ−1v̄ − (eTQ−1v̄)2

eTQ−1e
if eTQ−1v̄�0.

In the first case, this optimal value is achieved for any
positive multiple ofx∗ = Q−1v̄. In the second case,
the optimal value is not achieved but feasible pertur-
bations ofx∗ given in (11) come arbitrarily close to
this value.



336 M.Ç. Pınar, R.H. Tütüncü / Operations Research Letters 33 (2005) 331–340

3. Relation to the Sharpe ratio

In this section we treat the case where there is a risk-
less security with returnrf >0 available for invest-
ment in addition to then risky securities we considered
above. Letvf =1+ rf denote the end-of-period value
of $1 invested in the riskless security at the beginning
of the period. Since we are considering a riskless se-
curity, the full correlation matrix is no longer positive
definite but we still assume that the submatrix corre-
sponding to the risky securities is positive definite.
Let us assume that the current price of the riskless

security is $1. Then, zero-investment portfolios can
be constructed by purchasing the portfoliox after bor-
rowing eTx dollars at the riskless raterf (or lending
−eTx dollars if eTx <0). We can represent such zero-
investment portfolios as(x, −eTx). Recalling that̄r =
v̄ − e denotes the expected return vector for the risky
securities, we observe that the expected return of this
zero-investment portfolio is̄rTx−rf (eTx). A classical
problem in finance is to find the zero-investment port-
folio with the highest expected return to standard de-
viation ratio (a scale invariant quantity)—the so-called
Sharpe ratio:

max
x

r̄Tx − rf (eTx)√
xTQx

. (16)

Let us call (16) the maximum Sharpe ratio problem.
Since the objective function of this problem is scale
invariant, the canonical representation of the problem
uses the normalizing constrainteTx = 1 and has

max
x

r̄Tx − rf√
xTQx

= (r̄ − rf e)Tx√
xTQx

eTx = 1.

Equivalently, this second representation can be ob-
tained by lettingxi denote the “proportion of the port-
folio invested in securityi” rather than “dollars in-
vested in securityi”. The vector(r̄ − rf e) represents
the “risk premium” vector for the risky securities.
Now we relate the maximum-� (RPO) problem

to the maximum Sharpe ratio problem. Consider the
maximum-� RPO problem in this case. We have the
variable vector̃x=(x, xf ), with expected value vector

ṽ = [v̄; vf ] and covariance matrix

Q̃ =
[
Q 0
0 0

]
.

The maximum-� RPO problem is

sup
x

ṽTx̃√
x̃TQ̃x̃

= v̄Tx + vf xf√
xTQx

,

eTx̃ = eTx + xf <0,

which, after relaxing the strict inequality, can be
rewritten as

max
x

v̄Tx + vf xf√
xTQx

,

eTx + xf �0. (17)

SinceQ is positive definite, we do not need to worry
about division by zero in (17). The problematic case of
xTQx = 0 occurs only whenx = 0—all feasible solu-
tions withx=0 have non-positive objective values and
cannot be optimum and therefore can be ignored. Also
note that for a fixedx the objective function is max-
imized by maximizingxf . Therefore, for an optimal
solution vector̃x=(x, xf ) the constrainteTx+xf �0
will always be tight and we can replace this inequal-
ity with an equality. Now, substitutingxf =−eTx, we
obtainv̄Tx+vf xf = v̄Tx−vf (eTx)=(r̄+e)Tx−(1+
rf )(eTx)= r̄Tx − rf (eTx). Thus, (17) is equivalent to

max
x

r̄Tx − rf (eTx)√
xTQx

,

which is identical to (16). In other words, when the
universe of investment options includes a risk-free se-
curity, portfolios that are maximum-� RPOs coincide
with maximum Sharpe ratio portfolios. With this in-
terpretation, we also conclude that when there are
no risk-free investment options, our characterization
of “minimum risk” robust profit opportunities repre-
sent a generalization of the maximum Sharpe ratio
portfolios.

4. A two-period model

Our discussion on RPOs in the preceding sections
focused on single-period models. Here we extend the
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notion of RPOs to a two-period investment model. For
ease of exposition further extension of the ideas below
in a setting with more than two periods is not included
here.
We consider the following setting. The investor will

form a portfolio at time 0 that she will hold until time
1 at which point she will be able to rebalance her
portfolio in a self-financing manner possibly incurring
transaction costs and hold this new portfolio until time
2. We use the following notation: Letv1i denote the
(random) time 1 value of $1 invested in securityi at
time 0. Similarly, letv2i denote the (random) time 2
value of $1 invested in securityi at time 1. Letx0i and
x1i denote the dollars invested in securityi at times
0 and 1, respectively. Letv1 = [v11, . . . , v1n]T, define
v2, x0, x1 similarly. Then, the initial (time 0) value of
the portfolio formed at time 0 iseTx0. This portfolio
has value(v1)Tx0 at time 1, before it is rebalanced.
In the absence of transaction costs, the self-financing
constraint can be posed as

eTx1 = (v1)Tx0.

Let v̄2 andQ2 denote the expected value vector and
the covariance matrix for the random vectorv2. Then,
a two-period analog of the maximum-� robust profit
opportunity problem can be posed as follows:

sup
�,x0,x1

�, s.t. eTx0<0, eTx1 = (v1)Tx0,

(v̄2)Tx1 − �
√

(x1)TQ2x1�0. (18)

Unlike (6) in Section 2, this problem is not a determin-
istic optimization problem because of the randomv1

term in the equality constraint. However, at the time
we need to choosex1, we will have already observed
this random quantity and therefore, the decision prob-
lem at time 1 is a deterministic problem. This two-
step decision process with a random constraint was
addressed in theadjustable robust optimization(ARO)
models of Ben-Tal et al.[1,9]. These models intend to
choose the decision variables in such a way that the
performance of the system under the worst-case real-
ization of the uncertain input parameters is optimized.
They are called “adjustable” since some of the vari-
ables can be chosen after the uncertain parameters are
observed.

Let U denote the set of all possible realizations
of the random vectorv1. Then, the ARO model for
problem (18) can be written as follows:

sup
x0:eTx0<0

inf
v1∈U

sup
�,x1

� s.t. eTx1 = (v1)Tx0,

(v̄2)Tx1 − �
√

(x1)TQ2x1�0. (19)

To be able to solve this problem, let us first focus on
the inner maximization problem. Given� = (v1)Tx0,
we want to solve

sup
�,x1

� s.t. eTx1 = �, (v̄2)Tx1 − �
√

(x1)TQ2x1�0.

Let us assume as before thatQ2 is positive definite.
This assumption precludes the availability of a risk-
free security and will be removed in the next section.
Given this assumption, we can rewrite the above prob-
lem as

supx1
(v̄2)Tx1√
(x1)TQ2x1

P(�) eTx1 = �.
(20)

Unlike (6), the constraint of (20) is not homogeneous
in general. However, since the objective function is a
homogeneous function ofx we still can use the ap-
proach outlined in Section 2.
LetV (�) denote the optimal value of problemP(�).

Consider an optimal solutionx∗(�) of P(�), assuming
that it exists, for a fixed value of�. Now considerP(�̂)

with constraint right-hand-sidê� = �� for any�>0.
Since all feasible solutions forP(�) can be scaled
to obtain feasible solutions forP(�̂) and since these
(positively) scaled solutions will have identical objec-
tive values as the corresponding solutions toP(�), we
immediately conclude that�x∗(�) is an optimal solu-
tion for P(�̂). Furthermore, optimal valuesV (�) and
V (�̂) of these two problems coincide and therefore
V (�) depends only on the sign of�, not its magnitude.
These statements continue to hold even whenV (�) is
not achieved.
Let us first consider the case when�<0. From

the argument in the previous paragraph we conclude
that if we are given an�<0, problem (20) is equiv-
alent to (7). Therefore, using the results of Section 2,
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we conclude that for�<0,

V (�)=


√
(v̄2)TQ−1

2 v̄2 if eTQ−1
2 v̄2<0,√

(v̄2)TQ−1
2 v̄2 − (eTQ−1

2 v̄2)2

eTQ−1
2 e

if eTQ−1
2 v̄2�0.

If �<0 andeTQ−1
2 v̄2<0, the optimal solution to (20)

is

x∗ = �

eTQ−1
2 v̄2

Q−1
2 v̄2.

If �<0 but eTQ−1
2 v̄2�0, the optimal value is not

achieved but we can get arbitrarily close to this value
by considering solutions of the form̂x + �x1 where
eTx̂ = �, x1 is as in (11)–(14) and with� tending
to +∞. To see this, one has to evaluate the limit
lim�→∞h(�) where

h(�) = (v̄2)T(x̂ + �(
Q−1
2 v̄2 − 	Q−1

2 e))√
(x̂ + �(
Q−1

2 v̄2 − 	Q−1
2 e))TQ2(x̂ + �(
Q−1

2 v̄2 − 	Q−1
2 e))

.

After substituting the expressions for
 and	 and some
algebraic manipulation the above limit simplifies to
the following:

lim
�→∞

(v̄2)Tx̂ + �√
x̂TQ2x̂(eTQ−1

2 e(v̄2)TQ−1
2 v̄2−((v̄2)TQ−1

2 e)2)+�(eTQ−1
2 e(v̄2)T x̂−2(v̄2)TQ−1

2 e�)+�2eTQ−1
2 e

eTQ−1
2 e(v̄2)TQ−1

2 v̄2−((v̄2)TQ−1
2 e)2

from which the desired conclusion easily follows.
Next, we consider the case when�>0. In this case,

problem (20) is equivalent to the following problem
obtained by flipping the direction of the constraint in
(7):

sup
x

v̄Tx√
xTQx

,

eTx >0.

Using analogous arguments to those in Section 2, we
easily conclude that the optimal value of this problem
as well as of (20) is given as follows:

V (�)=


√
(v̄2)TQ−1

2 v̄2 if eTQ−1
2 v̄2>0,√

(v̄2)TQ−1
2 v̄2 − (eTQ−1

2 v̄2)2

eTQ−1
2 e

if eTQ−1
2 v̄2�0.

(21)

So, when�>0 the situation is reversed. IfeTQ−1
2 v̄2>0,

a positive multiple ofQ−1
2 v̄2—the optimal solution

to the unconstrained version of (20)—is feasible for
(20), and therefore is optimal. IfeTQ−1

2 v̄2�0, then
the optimal value is approached by solutions of the
form x̂ + �x1 whereeTx̂ = �, x1 is as in (11)–(14)
and with� tending to+∞.
Finally, we note that when�=0, the optimal solution

is given by Eqs. (11)–(14) and the optimal value is√√√√(v̄2)TQ−1
2 v̄2 − (eTQ−1

2 v̄2)2

eTQ−1
2 e

regardless of the sign ofeTQ−1
2 v̄2.

To summarize, we have that the optimal

value of (20) is either
√

(v̄2)TQ−1
2 v̄2 (when

the sign of � and eTQ−1
2 v̄2 coincide) or

√
(v̄2)TQ−1

2 v̄2 − (eTQ−1
2 v̄2)2/eTQ−1

2 e (otherwise).
As mentioned above, other than determining which

“regime” we are in through its sign, the value of� has
no bearing on this optimal value. This counter-intuitive
conclusion appears to be an artifact of our assumption
thatQ is positive definite and hence risk-free securities
are not available. We remove this assumption in the
next section and obtain more intuitive conclusions.
Now, let us go back to the two-period problem in

(19). From the discussion above, we conclude that this
problem is equivalent to the following problem:

sup
x0:eTx0<0

inf
v1∈U

v(x0, v1), (22)

where

v(x0, v1)=


√
(v̄2)TQ−1

2 v̄2 if (v1)Tx0

eTQ−1
2 v̄2

>0,√
(v̄2)TQ−1

2 v̄2 − (eTQ−1
2 v̄2)2

eTQ−1
2 e

otherwise.
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Since the value functionv(x0, v1) depends onx0

andv1 only through the sign of the expression(v1)Tx0,
we have the following conclusions:

• If eTQ−1
2 v̄2>0, then the optimal value of (22) is√

(v̄2)TQ−1
2 v̄2 if there exists anx0 such that

eTx0<0 and (v1)Tx0>0, ∀v1 ∈ U. (23)

Otherwise, the choice ofx0 is immaterial and the
optimal value is√√√√(v̄2)TQ−1

2 v̄2 − (eTQ−1
2 v̄2)2

eTQ−1
2 e

.

The tractability of the feasibility system (23) de-
pends on the uncertainty setU for v1. If we have an
ellipsoidal uncertainty setU={v̄1+Lu : ‖u‖2�1},
then (23) is equivalent toeTx0<0 and(v̄1)Tx0 −√

(x0)TLLTx0>0. See Eq. (4) and the paragraph
following it in Section 1.1. This convex system can
be easily resolved. Note that a feasible solution for
(23) indicates a period 1 arbitrage opportunity and
therefore is unlikely to exist.

• If eTQ−1
2 v̄2<0, then the optimal value of (22) is√

(v̄2)TQ−1
2 v̄2 if there exists anx0 such that

eTx0<0 and (v1)Tx0<0, ∀v1 ∈ U.(24)

If we haveU = {v̄1 + Lu : ‖u‖2�1} as above,
then (24) is equivalent toeTx0<0 and(v̄1)Tx0 +√

(x0)TLLTx0<0. This, again, is a convex system
and can be solved easily.

The second case we described above illustrates the
anomaly caused by the lack of a riskless asset for in-
vestment in the second period. IfeTQ−1

2 v̄2<0, in or-
der to maximize the� for period 2, we try to choose
an x0 such that the value of this portfolio at the end
of the first period is guaranteed to be negative! This
counter-intuitive situation does not arise when we in-
troduce riskless assets.

5. With a riskless asset

We use the earlier notation and now letx0f andx1f
denote our holdings in the risk-free asset at periods 0

and 1, and letv1f �1 andv2f �1 be the (deterministic)
time 1 and time 2 values of a $1 invested in the riskless
asset at times 0 and 1, respectively. The analog of
problem (19) in this setting is

sup
x0,x0f :eTx0+x0f <0

inf
v1∈U

sup
�,x1,x1f

�

s.t.

eTx1 + x1f = (v1)Tx0 + v1f x0f ,

(v̄2)Tx1 + v2f x1f − �
√

(x1)TQ2x1�0. (25)

As before, we focus on the inner maximization prob-
lem: Given� = (v1)Tx0 + v1f x0f , we solve:

sup
�,x1,x1f

� s.t. eTx1 + x1f = �,

(v̄2)Tx1 + v2f x1f − �
√

(x1)TQ2x1�0. (26)

If �>0, i.e., if we have a positive-valued portfolio at
the end of period 1, then, the inner maximization prob-
lem is unbounded as we can choosex1 = 0, x1f = �
and all�’s will be feasible for the problem. In other
words, if our position (which had a negative value ini-
tially) reaches a positive value, we can quit gambling
and put all our money in the riskless asset to guarantee
that we make money at the end.
Now consider the case when�<0. In this case,

there is no feasible solution to (26) withx1 = 0 and
�>0, therefore, we do not need to worry about divi-
sion by zero and rewrite (26) as

sup
x1,x1f

(v̄2)Tx1 + v2f x1f√
(x1)TQ2x1

,

eTx1 + x1f = �.

Using the constraint we eliminatex1f and obtain the
following unconstrained problem:

sup
x1

f (x1) := (v̄2 − v2f e)Tx1 + �v2f√
(x1)TQ2x1

. (27)

Observe that for anyx1 and for any�>1,

f (�x1) = f (x1) −
(
1− 1

�

) �v2f√
(x1)TQ2x1

> f (x1).
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So, for any solutionx1, we can always improve the
solution by scaling it up, and therefore, the supremum
in (27) is never achieved. Note that

lim
�→∞

f (�x1) = (v̄2 − v2f e)Tx1√
(x1)TQ2x1

.

Thus, the supremum value of (27) is the same
as the supremum value of the following prob-
lem with the homogeneous objective function:
supx1[(v̄2 − v2f e)Tx1]/[

√
(x1)TQ2x1]. We can solve

this problem by introducing a normalizing constraint
as we did before and obtain that the optimal solu-
tion ray is: x1 = �Q−1

2 (v̄2 − v2f e),�>0. Note that
these are maximum-Sharpe ratio portfolios. The opti-

mal objective value along this ray is
√

r̂TQ−1
2 r̂ with

r̂ = v̄2 − v2f e.

Combining our conclusions, we have that (25) is
equivalent to

sup
x0,x0f :eTx0+x0f <0

inf
v1∈U

v(x0, x0f , v1),

where

v(x0, x0f , v1)

=
{+∞ if (v1)Tx0 + v1f x0f >0,√

r̂TQ−1
2 r̂ otherwise.

From this, we immediately obtain the optimal solu-
tion for the two-period problem: If there is a period 1
arbitrage opportunity, i.e., if there existsx0, x0f such
that

eTx0 + x0f <0 and (v1)Tx0 + v1f x0f >0,

∀v1 ∈ U,

then take this position at time 0 and move every-
thing to the risk-free asset at time 1. If not, then
x0, x0f do not matter for the two-period maximum-
� problem (but, of course, one may choose these

variables in order to maximize the probability that
(v1)Tx0 + v1f x0f >0, provided that we have a proba-

bility distribution forv1). Once we reach time 1, if we
observe that(v1)Tx0 + v1f x0f >0, we again move ev-
erything to the risk-free asset. Otherwise, we can take a
position that comes arbitrarily close to the maximum-

� value of
√

r̂TQ−1
2 r̂.

References

[1] A. Ben-Tal, A. Goryashko, E. Guslitzer, A. Nemirovski,
Adjustable robust solutions of uncertain linear programs,
Math. Program. 99 (2) (2004) 351–376.

[2] A. Ben-Tal, A. Nemirovski, Robust convex optimization,
Math. Oper. Res. 23 (1998) 769–805.

[3] A. Ben-Tal, A. Nemirovski, Robust solutions to uncertain
linear programming problems, Oper. Res. Lett. 25 (1999) 1–
13.

[4] A. Ben-Tal, A. Nemirovski, Robust solutions of linear
programming problems contaminated with uncertain data,
Math. Program. 88 (2000) 411–424.

[5] D. Duffie, Dynamic Asset Pricing Theory, Princeton
University Press, Princeton, NJ, 1992.

[6] D. Duffie, J. Pan, An overview of value at risk, J. Derivatives
4 (1997) 7–49.

[7] L. El Ghaoui, M. Oks, F. Oustry, Worst-case value-at-risk and
robust portfolio optimization: a conic programming approach,
Oper. Res. 51 (2003) 543–556.

[8] D. Goldfarb, G. Iyengar, Robust portfolio selection problems,
Math. Oper. Res. 28 (1) (2003) 1–38.

[9] E. Guslitzer, Uncertainty-immunized solutions in linear
programming, Masters Thesis. Technion. Haifa, Israel, 2002.

[10] J. Ingersoll, Theory of Financial Decision Making, Rowman
& Littlefield, Savage, Maryland, 1987.

[11] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret,
Applications of second-order cone programming, Linear
Algebra Appl. 284 (1998) 193–228.

[12] M.Ç. Pınar, Minimum risk arbitrage with risky financial
contracts, Technical Report, Department of Industrial
Engineering, Bilkent University, Ankara, Turkey, 2003.

[13] S.R. Pliska, Introduction to Mathematical Finance, Blackwell
Publishers, Oxford, 1997.

[14] P. Whittle, Optimization under Constraints. Theory and
Applications of Nonlinear Programming, Wiley-Interscience,
New York, 1971.


	Robust profit opportunities in risky financial portfolios
	Introduction and background
	Connections to previous work

	Minimum risk robust profit opportunities
	Relation to the Sharpe ratio
	A two-period model
	With a riskless asset
	References


