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Abstract

The purpose of this note is to give a probability bound on symmetric matrices to improve an error bound in the Approximate
S-Lemma used in establishing levels of conservatism results for approximate robust counterparts.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this note is to prove the following
result:

Lemma 1. Let B denote a symmetric n × n matrix
and � = {�1, . . . , �n} ∈ Rn. If the coordinates �i of �
are independently identically distributed random vari-
ables with

Pr(�i = 1) = Pr(�i = −1) = 1/2 (1)

then one has

Pr(�TB��Tr B)� 1

2�log2(n)� >
1

2n
. (2)
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The above result improves Lemma A.4 by Ben-Tal
et al. [1] which stated

Pr(�TB��Tr B)� 1

8n2 ,

and where the authors conjectured that the right-hand
side could be improved to 1

4 . Ben-Tal et al. [1] used
Lemma A.4 to give the Approximate S-Lemma used
in levels of conservatism results for approximate ro-
bust counterparts of uncertain convex programs. Our
Lemma 1 above improves the error bound in the Ap-
proximate S-Lemma of [1] to

� :=
(

2 log

(
4n

K∑
k=1

rank Rk

))1/2

(3)

from

� :=
(

2 log

(
16n2

K∑
k=1

rank Rk

))1/2

. (4)
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2. Proof of the main result

Our proof, which is based on contradiction, recur-
sively eliminates the non-zero entries of a symmetric
matrix while the proof of [1] uses moments. We arrive
at the proof of Lemma 1 after giving three intermedi-
ate results.

First, since Tr B = �T diag B� for any � ∈ {−1, 1}n
it follows that

Pr(�TB��Tr B) = Pr(�TB� − Tr B �0)

= Pr(�T(B − diagB)��0).

This enables us to restrict ourselves to the case that
the matrix under consideration is a symmetric matrix
with zero diagonal since B − diag B is a matrix with
this property. Therefore, in order to prove Lemma 1
we need to show that for any symmetric matrix B with
zero diagonal, and for � as defined in Lemma 1 we
have

Pr(�TB��0)� 1

2�log2(n)� . (5)

Now, we will give three intermediate results which
lead to the proof of Lemma 1.

Lemma 2. Let X be a finite set. Then for any pair of
subsets U and V of X, one has

|U ∩ V |� |U | + |V | − |X|.

Proof. Using the inclusion–exclusion principle we
have |U | + |V | − |U ∩ V | = |U ∪ V |� |X|. After
rearranging the right and left sides of the inequality
we get the desired result. �

Lemma 3. Let f : N → N be a function such
that f (n) = �n/2�. If k = �log2(n)�, then f k(n) =
f (f (. . . (f (n)) . . .))�1.

Proof. By the definition of k we have k −1 < log2(n)

�k, which implies n�2k . Since f is a non-decreasing
function, we have f k(n)�f k(2k). It can be seen that
f k(2k) = 1. Therefore the result holds. �

In the remaining part of the paper for any q ∈ Rn

such that q(i) ∈ {−1, 1} for any i ∈ {1, . . . , n} we
denote diag(q) by Q. Here, q(i) is the ith entry of
vector q. For any such Q and any symmetric matrix B

having zero diagonal entries we define

Bq = 1
2 (B + QBQ).

The matrix QBQ is a symmetric matrix with zero di-
agonal. Hence, Bq is a symmetric matrix with zero di-
agonal. Since q(i)q(j) ∈ {−1, 1} and the (i, j) entry
of QBQ is given by q(i)q(j)Bij we have

B
q
ij =

{
Bij if q(i)q(j) = 1,

0 if q(i)q(j) = −1.

Lemma 4. Let � and B defined as in Lemma 1. More-
over, let Q = diag(q), with q ∈ Rn such that qi ∈
{−1, 1} and Bq as defined above. Then one has

Pr(�TB� > 0) = Pr(�TQBQ� > 0), (6)

and

Pr(�TBq� > 0)�2 Pr(�TB� > 0) − 1. (7)

Proof. We have

(Q�)T · QBQ · Q� = �TQ2BQ2� = �TB�,

since Q2 = In, where In is the n × n identity matrix.
Hence

Pr(�TB� > 0) = Pr((Q�)T · QBQ · Q� > 0).

Since � and Q� occur with the same probability this
implies (6). To prove (7) we use the fact

Pr(�TBq� > 0) = Pr(�T(B + QBQ)� > 0)

� Pr(�TB� > 0 & �TQBQ� > 0).

Then using Lemma 2 we get

Pr(�TB� > 0 & �TQBQ� > 0)

� Pr(�TB� > 0) + Pr(�TQBQ� > 0) − 1

= 2 Pr(�TB� > 0) − 1,

where the last equality follows from (6). Therefore we
get inequality (7). �

At this point, using our result in Lemma 4, we are
ready to prove Lemma 1.
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Proof of Lemma 1. Assume to the contrary that
Lemma 1 is false. Then, one can see from the deriva-
tion of inequality (5) that there exists a symmetric
n × n matrix B having zero diagonal such that

Pr(�TB��0) <
1

2�log2(n)� (8)

which is equivalent to

Pr(�TB� > 0) > 1 − 1

2�log2(n)� . (9)

We construct a sequence of block diagonal matrices
Bi having zero diagonal such that

B1 = B, Bi+1 = B
qi

i , i = 1, 2, . . . , k.

We have k =�log2(n)�, and qi’s are chosen according
to the following process. For q1 we take the first �n/2�
entries as 1’s and the remaining entries as −1’s. Let
us call these two parts of q1 as segments of q1. We
illustrate this for n = 13 with two segments separated
by the symbol “ | ”.

q1=[1 1 1 1 1 1 1 | −1 −1 −1 −1 −1 −1].
For qi+1, consider each segment of qi . If the length of
a segment is l we take the first �l/2� entries as 1’s and
the remaining entries in the segment as −1’s. Let us
call these two parts segments again. Note that if l = 1
for a segment the process will produce only one part
of length 1 out of the segment. The resulting vector is
qi+1 with its segments defined as above. To illustrate
it for n = 13, we show q2 obtained from q1. Here, q2
has four segments separated by the symbol “ | ” again:

q2=[1 1 1 1 | −1 −1 −1 | 1 1 1 | −1 −1 −1].
Now, let S denote the first principal submatrix of B
with size �n/2� × �n/2�, and let T denote the last
principal submatrix of B with size 	n/2
 × 	n/2
.
Denote the remaining matrix at the upper right corner
of B by R, and the remaining matrix at the lower left
corner of B becomes RT since B is symmetric. Then
Bq1 is obtained from B by replacing all entries of R
and RT by zeros. In other words

B1 = B =
[

S R

RT T

]
⇒ Q1B1Q1 =

[
S −R

−RT T

]

⇒ B2 = Bq1 =
[
S 0

0 T

]
,

where Q1 is the diagonal matrix with the vector q1 as
the diagonal. Now using Lemma 4 and (9) we obtain

Pr(�TB2� > 0) > 2

(
1 − 1

2�log2(n)�

)
− 1

= 1 − 2

2�log2(n)� . (10)

Note that the block matrices along the diagonal of
B2 have sizes �n/2� and 	n/2
. Hence, the sizes do
not exceed f (n) of Lemma 3 which was defined as
f (n) = �n/2�. We repeat the above procedure using
q2 which was shown before. Thus we obtain B3 =B

q2
2

which has the form

B3 =

⎡
⎢⎢⎢⎢⎣

D1

D2

D3

D4

⎤
⎥⎥⎥⎥⎦ ,

where D1, D2, D3 and D4 constitute the sym-
metric, zero-diagonal blocks of the block diago-
nal matrix B3. These block matrices have dimen-
sions � 1

2�n/2�� × � 1
2�n/2��, 	 1

2�n/2�
 × 	 1
2�n/2�
,

� 1
2	n/2
�×� 1

2	n/2
�, 	 1
2	n/2

×	 1

2	n/2

, respec-
tively.

Now, again by Lemma 4 and (10) B3 satisfies

Pr(�TB3� > 0) > 2

(
1 − 2

2�log2(n)�

)
− 1

= 1 − 22

2�log2(n)� . (11)

Note that the sizes of the block diagonal matrices along
the diagonal of B3 can be at most � 1

2�n/2�� which
does not exceed f 2(n). We construct q3 in the same
way as before. For n = 13 this gives

q3 = [1 1 | − 1 − 1 | 1 1 | − 1 | 1 1 |
− 1 | 1 1 | − 1].

Again by using Lemma 4 and (11) we obtain for B4
that

Pr(�TB4� > 0) > 2

(
1 − 22

2�log2(n)�

)
− 1

= 1 − 23

2�log2(n)� . (12)
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This time the sizes of the block diagonal matrices
along the diagonal of B4 do not exceed f 3(n). Then,
q4 is constructed in the same manner, and for n = 13
we have

q4 = [1 | − 1 | 1 | − 1 | 1 | − 1 | 1 | 1 |
− 1 | 1 | − 1 | 1 | − 1].

Hence, at the next step we get

Pr(�TB5� > 0) > 2

(
1 − 23

2�log2(n)�

)
− 1

= 1 − 24

2�log2(n)� , (13)

and the sizes of the block diagonal matrices along the
diagonal of B5 do not exceed f 4(n). Note that for
n = 13 these block matrices all have size 1. In the
general case we proceed in the same way and after k
steps we obtain

Pr(�TBk+1� > 0) > 1 − 2k

2�log2(n)� , (14)

and the block diagonal matrices along the diagonal
of Bk+1 have sizes that do not exceed f k(n). Now
Lemma 3 implies that if k=�log2(n)�, then f k(n)�1.
In that case the right hand side of (14) is equal to 0.
Also, the block diagonal matrices along the diagonal
of Bk+1 have sizes at most 1. We know from the con-
struction procedure of Bk+1 that it has zero diagonal.
Hence, Bk+1 becomes a matrix of zeros. But then the
left-hand side of (14) is also equal to 0. Therefore, we
arrive at the contradiction 0 > 0. This completes the
proof of Lemma 1. �

Now, it suffices to observe that equipped with
the result of the previous lemma, one has to solve
Eq. (A.38) pp. 559 of [1] using the probability bound
1/2n to obtain the improved bound (3).

Although we were not able to prove the conjecture
of Ben-Tal et al. in [1] that would help us remove the
factor n under the logarithm altogether, we offered an
improvement from n2 to n under the logarithm. While
this paper was under review, we learned of a recent
result [2] where it is shown that

Pr(�TB��Tr B)� 1
87 .

Our result in Lemma 1 remains better in the range
3�n�64.
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