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Abs t rad- -We consider a flexible beam clamped to a rigid 
base at one end and free at the other end. We assume that 
the rigid base rotates with a constant angular velocity and 
that the motion of the flexible beam takes place on a plane. 
To suppress the beam vibrations, we propose dynamic 
control laws for boundary control force and torque, both 
applied to the free end of the beam. We show that, under 
some conditions, one of which is the strict positive realness 
of the actuator transfer functions which generate the 
boundary control force and torque, the beam vibrations 
asymptotically decay to zero if the rigid base angular 
frequency is sufficiently small. Moreover, if the transfer 
functions are proper but not strictly proper, we show that the 
decay is exponential. We also give a bound on the constant 
angular velocity above which the system becomes unstable. 

1. Introduction 
MANY MECHANICAL SYSTEMS, such as spacecraft with flexible 
appendages or robot arms with flexible links, can be modeled 
as coupled elastic and rigid parts. Many future space 
applications rely on lightweight materials and high 
performance control systems for high precision pointing, 
tracking, etc. To achieve high precision demands for such 
systems, one has to take the dynamic effect of flexible parts 
into account. Thus, over the last decade there has been a 
growing interest in obtaining new methods for the design, 
analysis and control of the systems which have flexible parts. 

Stability of systems which have elastic parts, particularly 
flexible space structures, has been studied in the past. More 
recently, Baiilieul and Levi (1987) considered the dynamics 
and the stability of a rotating flexible structure from a 
Lagrangian point of view and studied the asymptotic 
dynamics. 

In recent years, the boundary control of flexible systems 
(i.e. controls applied to the boundaries of the flexible parts as 
opposed to the controls distributed over the flexible parts) 
has become an important research area. This idea was first 
applied to systems described by the wave equation (e.g. 
strings), Chen (1979) and recently has been extended to the 
Euler-Bernoulli beam equation, Chen et al. (1987). In 
particular, in Chen et al. (1987), it has been proven that, in a 
cantilever beam, a single actuator applied at the free end of 
the beam is sufficient to uniformly stabilize the beam 
deflections. Recently, the boundary control techniques has 
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been applied to the stabilization of rotating flexible 
structures, see Morgiil (1990, 1991). 

In this paper, we study the motion of a flexible beam, 
which may model a flexible robot arm, clamped to a rigid 
body at one end and free at the other end. We assume that 
the center of mass of the rigid body is f ixed in an inertial 
frame and that the rigid body rotates in that frame with 
constant angular velocity. We also assume that the motion 
takes place on a plane. To suppress the beam vibrations, we 
apply a dynamic boundary control at the free end of the 
beam. With some assumptions on the actuator which 
generates this boundary control, we prove that the beam 
vibrations decay asymptotically to zero. We give a 
characterization of the greatest angular velocity above which 
the rotating flexible beam becomes unstable. 
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2. Equations o f  motion 
We consider a flexible structure which consists of a rigid 

body with a flexible beam clamped to it at one end, the other 
end of the beam is free. We assume that the center of mass 
of the rigid body is fixed in an inertial frame and that the 
whole structure performs planar motion with a constant 
angular frequency Q. We assume that at rest the flexible 
beam is straight. Let P be a point of the beam whose 
distance from the clamped end at rest is x and let u be the 
displacement of P when the beam vibrates. 

Neglecting gravitation, surface loads and the rotatory 
inertia of the beam cross-sections and using the Euler- 
Bernoulli beam model, the equations of motion of the system 
are: for t -> 0, 

Elu  . . . .  + pUu - p Q2u = O, O < x < L ,  (1) 

u(O, t) = O, u~(O, t) = O, (2) 

Eluxxx(L, t) = a'lft(t), - E l u x x ( L  , t) = tr2f2(t), (3) 

where a subscript denotes the partial differential with respect 
to the corresponding variable. In equations (1)-(3), E1 and/9 
are the flexurai rigidity and the mass per unit length of the 
beam, respectively, which are constants by assumption, fl is 
the constant angular velocity of the rigid body, and L is the 
length of the beam. Equation (1) is the balance of forces at x 
along the vertical axis, equation (2) gives the boundary 
conditions at the clamped end, equation (3) is the boundary 
conditions at the free end, ft(t) and f2(t) are the boundary 
control force and the boundary control moment applied to 
the free end of the beam, respectively, and 0 h and o~ 2 are 
either 0 or 1. Note that, for i = 1, 2, tr i = 0 means that the 
corresponding boundary control fi(t) is not  applied. 

We note that the rigid body angular momentum equation 
is omitted here. We assume that appropriate forces and 
torques applied to the rigid body to maintain the constant 
angular velocity f2 and to keep the center of mass O fixed. 
For more details of this model, as well as for some control 
applications, see Morgiil (1991). 

The problems we want to solve are: 
(i) Find control laws for the boundary controls f l ( t )  and 

f2(t) so that, for If2[ sufficiently small, the solutions of 
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equations (1)-(3)  satisfy the following asymptotic relations: 
for all 0-<x -< L 

lim u(x, t) = 0, lim u,(x, t) = 0. (4) 

(ii) Find relations between the constant angular velocity g2 
and the stability of the solutions of equations (11-(3). [] 

To stabilize the system given by equations (1)-(3) ,  for 
i = 1, 2 when a i :#0 ,  we propose the following feedback 
control law: 

¢v i = Aiw , + bir,(t ), (5) 

fi(t) = cri wi + diri(t) + ki ~' ri(r) dr,  (6) 

where, for i = 1, 2, wl • R "~ is the actuator state, A~ • R ni×'~ 
is a constant matrix, b~, c~ • R "~ are constant column vectors, 
d~ and k i are constant real numbers ,  and the superscript T 
stands for transpose. Note that when tr~ = 0, the correspond- 
ing boundary condition in equation (3) is homogeneous,  
hence the corresponding controller given by equations 
(5)-(6)  is absent.  As an application of this type of control 
laws to the stabilization of flexible beams,  see Morgiil 
(1992a, b). 

The controller input r~(t) is defined as: 

r,(t) = u,(L, t), rz(t ) = u,t(L , t). (7) 

Note that because of the boundary conditions equat ion (2) 
we have: 

I i  r , ( r )  d r = u ( L , t ) ,  f~ r z (* )dr=ux(L , t ) .  (8) 

When o 6 :#0 ,  we assume the following throughout  the 
paper: for i = 1, 2. 

Assumption 1. All eigenvalues of A~ • R "~×'~ have negative 
real parts. 

Assumption 2. (Ai, bi) is controllable and (A~,c~) is 
observable. 

Assumption 3. di>-O, k~--0;  moreover  there exists a 
constant ~,~, such that d~-) ,~->0,  and that the following 
holds: 

d i+~e{c l r ( j co l -A i ) -~b~}>7 , ,  w • R .  [] (9) 

If we take the Laplace transform in equations (5) and (6) 
and use zero initial conditions, we obtain: 

~ ( s ) =  [ d i +  c f ( s l -  Z~)-tb, + ~ ] ~ ( s ) =  g~(s)~(s) 

i =  1,2,  (10) 

where a hat denotes the Laplace transform of the 
corresponding variable. This, together  with equation (9) 
implies that the transfer function in equation (10) is a strictly 
positive real function. 

3. Stability results 
3.1 Existence, uniqueness and stabi6ty. Let the Assump- 

tions (1-3) ,  or equivalently the Assumptions (i-i i)  stated in 
the previous section hold. Then,  for i = 1, 2 it follows from 
the Kalman-Yakubovich  Lemma that given any symmetric 
positive definite matrix Q~ • R"~×% there exists a symmetric 
positive definite matrix P i e r  "~×~ and a vector q ~ • R  ~' 
satisfying: 

ATPi + PiAi = -q iqi  r -  eiQ i, (11) 

Pibi - ½ci = V ~ / -  ~', q, (12) 

provided that e i > 0  is sufficiently small, see Vidyasagar 
(1978, p. 201). 

To analyze the system given by equations (1)-(3) ,  (5), (6), 
which will be referred to as the system 5 ¢, we first define the 

function space ~f as follows: 

~ : = { ( u  v w, w z ) T I u • H 2 ,  v • L Z ,  w , • R " ' , w ~ • R " 2 ) ,  

(13) 

where the spaces L ~ and l ~  are defined as follows: 

L2= { f  :[O, L ] -  R loLl2 dx < ~},  (14) 

1~ = {f  • L 2 If '  f ' ,  f",  . . . .  f(k) • L z, f (0)  = f ' ( 0 )  = 0). 

(15) 

The equations of the system 9° can be written in the 
following abstract form: 

~ = A z ,  z(O)•Y~, (16) 

where z = ( u  u, w I w2) T • ~ ,  the operator  A:.~e---~,~ is a 
linear unbounded operator  defined as 

()I ~22U Uxxxx 
a = (17) 

w, ] A'w'+btv(L) I 
we LA2w2+bzvx(L)_ I 

The domain D(A) of the operator A is defined as: 

O(X ) = { (u v w, w2) r I u • H4, v • H20, wI • R"' , wz • R"2; 

- Ela~xx(L) + ~[crw~ + d~ v(L)  + k ,u(L)]  = O, 

Elu,~(L) + ol2[c'ffw 2 + d2v,(L ) + kzux(L)] = 0}. 

(18) 

Remark 1. We note that when o 6 = 0  for i =  1 or i = 2 ,  the 
terms corresponding to w i in equations (13) and (18) and the 
corresponding row in equation (17) will be absent.  [] 

Let the Assumptions (1-3)  hold, for i = 1, 2 let Qi • R"~×" 
be an arbitrary symmetric positive definite matrix and let 
P / •  Rni×"~, qi • Rni be the solutions of equations (11) and 
(12) where P/is also a symmetric and positive definite matrix. 
In ~ we define the following 'energy'  function: 

E(t) = ~ pu 2 dx + ~ Jo Etu~x dx - ½ta~ 2 u z dx 

+ ½ ~,k, ~(~) d~ + ~ ~,~i'ew,. (19) 
i = l  - ~  i = 1  

In the sequel, we need the following inequalities: 

f? f' uZ(s, t) <- L u 2 dx <- L 2 2 Uxx dx,  
) J 

fo L (20/ u~(s, t) <- L U~xx ax s • [0, L], 

where equation (20) follows from boundary conditions 
equation (2) and Jensen's  inequality, Royden (1968, p. 110). 
Assume that f2 is sufficiently small, so that EI>2f~2L 3. 
Then, 

(1) It follows from equation (20) that E(t) given by 
equation (19) is always positive. 

(2) E(t) = 0 for t • [a, b] iff u(x, t) = O, ut(x, t) = 0 almost 
everywhere on [0, L] for all t • [ a ,  b] and w ( t ) = 0  for 
t • [a, b]. This follows from equations (19) and (2). 

(3) One can define an 'energy'  inner product in ~ for 
which the energy E(t) given by equation (19) becomes a 
norm on ~ .  Also, with this inner  product,  ~ becomes a 
Hilbert  space. 

Lemma 1. Consider the system given by equation (16). Let 
the Assumptions (1-3)  hold. If trt + o l2>0  then,  for 1ff21 
sufficiently small, we have: 

(i) the operator  A generates a Co semigroup T(t) in ~ ,  
moreover if z(0) e D(A),  then z(t) = T(t)z(O), t >-0, is the 
unique classical solution of equation (16) and z ( t ) e  D(A),  



Brief Paper 353 

t >- 0 (for the terminology on semigroup theory, the reader  is 
referred to Pazy (1983)); 

(ii) the energy E(t) given by equation (19) asymptotically 
decays to zero along the classical solutions of equat ion (16). 

Remark 2. Note that the condition ott + 0{ 2 > 0 means that  at 
least one of the boundary controllers given by equations (3), 
(5) and (6) is applied. [] 

Proof. (i) By using equation (19), we obtain: 

dE L L 
~ = - E l  fo u . . . .  u, dt + E l  fo UxxU,,tdt 

+ ~ teikiri(t ) ri(r ) dr 
i = 1  - -~  

+ 2 °6wir(AfPi + PiAi)wi 
i = 1  

i = 2  

+ 2 ~ o6wfPiblri(t ) 
i = 1  

= -  ~ o~ifi(t)ri(t)- ~ o6eiwirQiw, 
i = 1  i = 1  

+ ~ o6kiri(t (r) dr + 2 trlwfP~b,r,(t) 
i = 1  u = l  
2 2 

= - E  triyir2i(t) - Z ~ri'iwriQiwi 
i = l  i = 1  

2 

- Y~ ~iIX/di - yi r~(t) - w T q , L  (21) 
i = 1  

where to obtain the first equation,  we differentiated equation 
(19) with respect to time, used equat ion (5); to obtain the 
second equation we integrated by parts twice, used equations 
(2), (3) and (11); and to obtain the last equation we used 
equations (6) and (12). S ince/~  -< 0, it follows that E(t) is a 
nonincreasing function of t ime along the solutions of the 
system ow. From equation (21) it follows that A is dissipative 
on ~.  It can also be shown that  the operator  3.1 - A : ~---~ 
is onto for all 3. > 0 (see Morgiil, 1991 for similar proofs). 
Therefore,  it follows that D(A) is dense in ~ (see Pazy, 
1983, p. 16). Hence from Lumer-Phi l l ips  theorem,  Pazy 
(1983, p. 14), we conclude that A generates a Co semigroup 
T(t) on ~.  That  z(t)= T(t)z(O), t>-O is the unique classical 
solution of equations (1)-(4) ,  equations (7)-(9)  when 
z(0) e D(A), and that z(t) e D(A), t >- 0 follows from the 
semigroup property (see Pazy, 1983). 

(ii) It can be shown that the operator  (3 .1-  A)-~:~---~ 
is compact for 3.-> 0 (see Morgiil, 1991 for similar proofs). 
This implies that the spectrum of the operator  A consists 
entirely of countably many) isolated eigenvalues (see Kato, 
1980, p. 187). Since by equation (21) the classical solutions of 
equation (16) are bounded in ~ ,  it follows from the standard 
results in the semigroup theory that the trajectories 
corresponding to the classical solutions of equation (16) are 
precompact in ~ (see e.g. Saperstone,  1981, p. 241). 
Therefore,  from LaSaUe's invariance principle (see Saper- 
stone, 1981, p. 78), it follows that  the trajectories of equat ion 
(16) asymptotically approach the maximal invariant set 

~ ~ ,  where c¢ is defined as: 

: = { ( u  u, w I w2) r ~ l d E / d t = O }  

and dE/dt is given by equation (21). 
We claim that,  for 121 sufficiently small, the only possible 

classical solution of equation (16) which lies in ~ is the zero 
solution (later we show that 121 should be smaller than the 
first critical frequency of the uncontrolled,  nonrotat ing 
beam). 

From equation (21), it follows that  the solutions of 
equation (16), which lie in ~ must satisfy the following: for 
i = 1 , 2  

otiwi(t ) = O, triri(t ) = 0 t >- O, (22) 

Elux~(L, t) = ollklu(L, t), -Elude(L, t) = otzkzUx(L, t). 
(23) 

Hence,  to find the solutions of equat ion (16) which lie in ~,  
we must solve equations (1), (2), (22) and (23). Since all of 
the boundary conditions are separable,  to find such a 
solution, we use the method of separation of variables, that  
is we express the solutions of equat ion (1) as follows: 

u(x , t )=r(x )B( t )  O<-x<-L, t>-O, (24) 

where Y: [0, L]--* R and B : R+ --, R are smooth functions. In 
the sequel, we suppress the dependency of Y and B on x and 
t, and write u = YB. 

Using equation (24) in (1) and then dividing by YB, we 
obtain: 

Y .... B 2 E I - - ~ - + p ~ - p ~  = 0 0 < - x < - L  t>-O. (25) 

Since Y depends only on x and B depends only on t, we must  
have the following for some 3. e R: 

- - = - 3 .  2 t ->0,  (26) 
B 

El--y- Y .... = '1~ 4 r 4 = ~ / ( Z  2 -t- ~'~2) 0 -< X --< L. (27) 

Using equation (24) in (2) and equat ion (23), we conclude 
that in order to have a nontrivial solution Y(.) must satisfy 
the following boundary conditions: 

Y(O) = 0 ,  Y'(O) = O, (28) 

EIY"(L) = t~k~Y(L), -EIY"(L)  = o~2k2Y'(L ). (29) 

We consider the following cases: 
Case 1. 3. = 0, 2 = 0. In this case, it can easily be shown that 
the solution of equat ion (27) which satisfies equations (28) 
and (29) is the zero solution, which implies that  u(x, t) = O, 
for 0-<x_< L, t->0.  
Case 2. 3. = 0, 2 4: 0. In this case, the solution of equat ion 
(27) which satisfies equation (28) is given as follows: 

Y(x) = ct(cosh rL - cos rL)  + c2(sinh rL - sin rL)  

O-<x-<L, (30) 

where cosh(.) and sinh(.) are hyperbolic cosine and 
hyperbolic sine functions, respectively, cl and c2 are 
constants to be determined from equat ion (29). Using 
equation (30) in (29), we conclude that in order  to have a 
nontrivial solution, r must satisfy the following: 

(El)2rS(l  + coshy cosy)  + Elot2k2r 4 

x (sinh y cos y + cosh y sin y) 

+ glot I k 1 r2( cOsh Y sin y - sinh y cos y) 

+ aqa'2klk2r(1 - cosh y cosy)  = 0, (31) 

where y = rL. Since the spectrum of the system ,90 consists of 
countably many isolated eigenvalues, it can be shown that 
equation (31) has countably many solutions r > 0. Let r~ > 0 
be the smallest of such solutions (e.g. when or2=0, 
1.875-< rl  L -< 3. 927, and when oq = 0 ,  1 . 8 7 5 -  < r l L  -< 2.365). 
Then,  it is clear that for IQI < ~ r 2, equat ion (31) does 
not have a solution, hence we must have c~ = c 2 = 0  in 
equation (30), and consequently the only possible solution is 
the zero solution (see equations (30) and (24)). 
Case 3. 3. 4: 0. In this case, it follows from equat ion (22) that  
we have Y(L)=O, or Y'(L)=O, depending on o 0 = 1  or 
32 = 1, respectively; for otherwise we must have B(t)-~O, 
which contradicts with equation (26). It can be easily shown 
that there does not exist a • > 0 given by equat ion (27) such 
that equation (30) satisfy both equat ion (29) and the 
boundary conditions stated above. Hence we must have 
c~ = c 2 = 0  in equation (30), and consequently the only 
possible solution is the zero solution (see equations (30) and 
(24)). 

From the Cases 1, 2 and 3, we conclude that the only 
possible solution which lie in ~ is the zero solution. Hence,  
from LaSalle's invariance principle, both  the energy E(t) and 
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the solutions z(t) of equation (16) asymptotically decay to 
zero. [] 

Remark 3. Let o6= 1 for i = 1 ,  2, and consider the 
corresponding controller transfer function given by equation 
(10). The conclusions of the Lemma 1 still hold if d i = 0, in 
which case the corresponding transfer function becomes 
strictly proper. Hence the class of stabilizing controllers given 
by equations (5) and (6) include some strictly proper 
controllers, which is important  for practical reasons since 
physical devices show strictly proper  behaviour,  see 
Horowitz (1963). El 

In the sequel, first we show that in certain cases the decay 
of the energy is in fact exponential.  Later we obtain some 
bounds on Q to ensure stability. 

Theorem 1. Consider the system S e. Assume that oq = 1 and 
that Yl > 0  (see equation (9)). Let the Assumptions (1-3)  
hold. Then for k~ and k2 sufficiently small, there exists an 
angular velocity fl~, such that ,  for all 2 ,  Jf2J < ~ c , ,  the 
energy given by equation (19) decays exponentially to zero 
along the solutions of the system 5< 

Proof. First, we assume that Ifll is sufficiently small so that 
the energy given by equation (19) is non-negative. We define 
the following function V(t): 

V(t) = 2(1 - e) tE( t )  + 2 pxu,u~ dx, (32) 

where e • (0, 1) is an arbitrary constant. 
In the sequel, we need the following inequality: 

ab<-b2a2+b2/62, a,b,  6 e R ,  64:0. (33) 

It follows from equations (32), (19), (20) and (33) that 
there exists a constant C > 0 such that: for t-> 0 

[2(1 - ~)t - C]E(t) <- V(t) <- [2(1 - e)t + C]E(t). (34) 

Differentiating equation (32) with respect to time, using 
integration by parts, equation (33), the boundary conditions 
(2), (3) and (20), we obtain: 

V(t) = 2(1 - e)E(t) + 2(1 - e)t[~(t) - 2El 

f? f, f L x xu . . . .  u~ dx + 2 pxUtUxt dx + 2pf~ 2 xuu~ dx 

<- - e  fot-pu~ dx - [2(1 - e) te ,w~O, w, 

/ r 2 - 2 ( 1 -  e)wTiPlWl- ~ ) ( c ,  Wl) ] 

f 4Ld2 ] 2 
- [ 2 ( 1  - ~ ) t ~ , ,  - 6 ~  - p L J u , ( L ,  t) 

- 2(1 - e)t ~ [Vdii - Yi ri(t) - wfql] 2 
i--I 

- a'212(1 - e)ty2 
2d 2 4dZ L ] 
b] ~ jUxt(L , 2  t) 

L 
[ 

- tr212(1 - e)tE2w~Qzw 2 

[ 2 4L \  r 2 q 
- 2 ( 1 -  e)wr2P2wz - I ~ + ~ ) ( c z w 2 )  J 

- [ (e  + 2 ) E l -  2L6~ 4L3k~ - 2o~2L6~ 

20t2d262L 4k22LZ R~2L3(1 + L) 2 - Uxx dx. 
E1 

(35) 

where 6 ~ 4: 0, 62 4: 0, b 3 4:0 are arbitrary constants. 
By choosing 61, 62, 63 and then k~, k2 and 121 sufficiently 

small, the last line in equation (35) can be made negative. 
Hence,  from equation (35), it follows that there exists a 
T > 0 such that the following holds 

¢(t)<-O, t>-T. (36) 

This, together with equation (34) implies that 

V(T)  
E ( t ) < - ( 2 ( l _ e ) t _ C ,  t ->T.  (37) 

By equation (21), E(t) <- E(O), hence equation (34) implies 
that V ( T ) <  o0. Let ff2c, be the maximum number  for which 
E(t) ~ 0 and equation (36) holds. Then,  from equations (21) 
and (37) we conclude that for If21 < Qc,, the following holds: 

f ~E2(t) ~. (38) dt < 

Exponential  decay follows from a result due to Pazy (see 
Pazy, 1983, p. 116), that is there exists positive constants M, 
6 such that the following holds: 

E( t )<-Me-% t>-O. [] (39) 

Remark 4. Although in the Theorem 1 we only prove that 
the exponential decay of the energy holds for k I and k 2 
sufficiently small, we conjecture that  the same result holds 
for arbitrary positive k t and k2. Main motivation for this 
conjecture stems from the asymptotic decay of energy (see 
Lemma 1) and from the proof of the Theorem 3 in the work 
of Chen (1979). [] 
(ii) Stability bound for f2. For simplicity in the subsequent  
calculations, we assume that oq = 1, d, > 0  and that oc 2 = 0. 
As stated in the Lemma 1, the spectrum of A given by 
equation (17) consists entirely of isolated eigenvalues with 
finite multiplicities. By the Theorem 1, the energy E(t) 
decays exponentially to zero for small if2, hence all 
eigenvalues must be in the open left half of the complex 
plane. Since these eigenvalues depend continuously on t2 
(see equations (27) and (31)), as we increase IQI these 
eigenvalues change continuously. Hence,  if we can find the 
least value Qc, for Q for which at least one eigenvalue of A 
crosses the imaginary axis, then because of continuity we can 
say that for If~l < fie, all eigenvalues of A have negative real 
parts. In the sequel we will find such a bound. 

Taking the Laplace transform of equations (1)-(3) ,  
replacing equations (5) and (6) by (10), we obtain the 
following equation which gives the eigenvalues of the system 
52: 

fl3X (fl) - (sg l(s)/ El)  Y (fl) = O, ~4 = _ ( p  / El)(s 2 _ ~22), 

(40) 

where X( . )  and Y(.) are given by the following: 

X ( r )  = 1 + cosh rL cos rL, 
(41) 

Y(r)  = sinh rL cos rL - cosh rL sin rL. 

Putting s = j to  in equation (40), we obtain: 

= ae j2"~/4, n = 0, 1, 2, 3, (42) 

where a = ~/p/El(¢o 2 + ff~2). 
Putting fl = a (other choices of n in equation (42) will yield 

the same result) and gl ( jw)  = R(~o) +jl(~o) in equation (40), 
we obtain: 

[a3g(a) + (~ol(~o)/El)Y(a)] - j (ogR(~o)/EI)Y(a)  = O. 

(43) 

By equation (9), R(¢o) > 0 for all ~o e R, and by equation 
(10) R(co) does not have any singularity at 60 = 0. Hence,  
from equation (43) we conclude that oJY(a) = 0. If Y(a) = O, 
equation (43) implies that a3X(a)= 0; but since a 4:0 (see 
equation (42)), and since X(a)  and Y(a) do not have any 
common zero, this is impossible. Hence the only relevant 
case is to = 0; that is the root loci of the eigenvalues of the 
system 5 e with respect to the parameter  fl  may cross the 
imaginary axis only at the origin. 

Let 0q be the smallest positive real number  satisfying 
X ( 0 q ) = 0  (oqL=1 .875) ,  and let, for n--->2, o6, be the 
smallest positive real number  satisfying both X(oc,)= 0 and 

z ol, > o~,_ t. Let ~o,c F be defined as ~o,ct~= o l , ~ 7 - ~ ,  which 
is the nth  critical frequency of a clamped-free beam. Let /3, 
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be the smallest positive real number satisfying Y(f l t )=0  
(ill L = 3.927), and let, for n -> 2, fin be the smallest positive 
real number satisfying both Y ( ~ . n ~  and fin > fin l- Let 
tonCH be defined as tO,,cH= f l~ /El /p ,  which is the nth 
critical frequency of a clamped-hinged beam. 
Fact 1. Consider the equations given by equations (40) and 
(43), where gl(s) is given by equation (10). We have the 
following: 

(i) If kl = 0, then for If~l < totcF, all solutions of equation 
(43) have negative real parts. 

(ii) If kt >0 ,  then there exists a ~c~, tolCF < Q~, < WlCH 
such that for IQI < Q~r, all solutions of equation (43) have 
negative real parts. 

Proof. 
(i) In this case, l(to) does not have any singularity at 

to = 0, and consequently we have X(a )=  0. Therefore we 
conclude that for If~l < to~CF, all eigenvalues of the system 
5¢, which are the solutions of equations (40), have negative 
real parts. 

(ii) Let k~ > 0  be a given fixed number. Noting that the 
only relevant case is to = 0, equation (43) can be written as: 

X(a) k t 
Y(a) Ela 3" (44) 

The left-hand side of equation (44) is an increasing 
function of a, with zeroes at tr~ and with discontinuities at 
fin, n -> l .  Also we have o:n<f l~<o: .+l ,  see Hurty and 
Rubinstein (1964). Since the right-hand side of equation (44) 
is a decreasing function of a and k~ > 0, there exist countably 
many solutions to equation (44). Let Yl be the smallest 
positive number which solves equation (44) and let ),~ be the 
smallest positive number satisfying both equation (44) and 
7n>Yn_~. Obviously we have o q < y l < f l l .  Let tour be 
defined as to~, = 7 2 ~ .  It follows then that for If~l < to~, 
all solutions of equation (44), hence equation (43), have 
negative real part. [] 

Moreover, as in Baillieul and Levi (1987), we have the 
following: 

Fact 2. Consider the equations given by equations (40) and 
(43), where gl(s) is given by equation (10). We have the 
following: 

(i) If k l = 0  , then for to,cF<lf~l<to~n+l)cr,  equation 
(40) has at least n positive solutions. 

(ii) If kl >0 ,  then for to,CH < I~1 < wc,+t)cr, equation 
(40) has at least n solutions with positive real parts. 

Proof. In these cases we seek positive solutions of equation 
(40), (i.e. s >0).  From equation (40) we obtain: 

x(~) ~g,(s) 
y(fl) Elfl3 , (45) 

where fl is as given in equation (40). Note that s ceases to 
exist as a real number when f l 2 > X / ~ p Q  and that 
sgl(s)=k I when f l Z = V ~ / p Q .  The right-hand side of 
equation (45) is a decreasing function of fl whereas the 
left-hand side is an increasing function of fl, see the Fact 1. 
Then the conclusions of the cases (i) and (ii) can be easily 
shown by using simple graphs. [] 

Remark 5. Fact 1 gives us an upper bound for Q below 
which all solutions of equation (40), hence all eigenvalues of 
the operator A have negative real parts. From a 
mathematical point of view, this information on the 
eigenvalues is not enough to conclude the stability of the 
solutions, since the system in question is an infinite 
dimensional system, see e.g. Pazy (1983). Nevertheless from 
the Fact 2 we can safely conclude that for f~ greater than 
these bounds, the system is unstable, and from an 
engineering point of view, one expects that the system 
remains stable for fl smaller than these bounds. Note that 
this engineering intuition can be mathematically justified if 
an appropriate damping is present in the system. [] 

Remark 6. In the Theorem 1 we show that when [fll 

sufficiently small, the rate of decay of the associated energy is 
exponential, i.e. equation (39) holds. This result still holds in 
the static feedback case (i.e. when cl = 0, i = 1, 2 in equation 
(6)), provided that d~ > 0, d 2 -  0. This can easily be shown 
by using the Lemma 1 and the Theorem 1 with appropriate 
modifications. An estimate of the decay rate (i.e. 6 in 
equation (39)) is not obtained, due to the difficulties in 
estimating this quantity. Note that, from an engineering 
point of view, one expects that 6 is equal to the minimum of 
the real part of all eigenvalues. However, this equality is not 
always true unless some conditions hold, e.g. if the 
eigenvectors form a Riezs basis in ~. We note that such an 
estimate, for the static case with nonlinear boundary 
feedback is obtained in Conrad and Pierre (1990). [] 

4. Conclusion 
In this paper, we studied the motion of a flexible beam 

clamped to a rigid base at one end and free at the other end 
and we assumed that the rigid base is rotating with constant 
angular velocity. We have shown that, by applying suitable 
boundary control force and torque at the free end of the 
beam, one can stabilize the beam vibrations provided that 
the constant angular velocity of the rigid base is sufficiently 
small. The class of stabilizing controllers proposed here 
contains some strictly proper controllers, in which case the 
closed-loop system is asymptotically stable. If the stabilizing 
controller generating boundary control force is proper but 
not strictly proper, then we proved exponential stability. We 
also have shown that, when position feedback is not used 
(i.e. k~ =0) ,  the critical angular velocity below which all 
eigenvalues of the system have negative real part is equal to 
the to~CF, the first critical frequency of the clamped-free 
beam, and that when position feedback is used (i.e. kt >0) ,  
depending on kt, the critical angular velocity can be placed 
between to~CF and to~CH, the first critical frequency of the 
clamped-free beam and the clamped-hinged beam, respec- 
tively. Since to~cn is approximately four times greater than 
to~cF, with position feedback it is possible to rotate the 
system faster without endangering stability. 

An interesting point is, the dynamic boundary control 
presented in this paper can be used to change the spectrum 
of the uncontrolled beam (see equation (40)). This change in 
the spectrum, although limited, can be exploited for some 
control applications, such as eigenvalue assignment, distur- 
bance rejection, etc. 
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