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Abstract---Current research on radiosity has concentrated on increasing the accuracy and the speed of the 
solution. Although algorithmic and meshing techniques decrea,se the execution time, still excessive 
computational power is required for complex scenes. Hence, parallelism can be exploited for speeding up 
the method further. This paper aims at providing a thorough examination of parallelism in the basic 
progressive refinement radiosity, and investigates its parallelization on distributed-memory parallel 
architectures. A synchronous scheme, based on static task assignment, is proposed to achieve better 
coherence for shooting patch selections. An efficient global circulation scheme is proposed for the parallel 
light distribution computations, which reduces the total volume of concurrent communication by an 
asymptotical factor. The proposed parallel algorithm is implemented on an Intel’s iPSC/2 hypercube 
multicomputer. Load balance qualities of the proposed static assignment schemes are evaluated 
experimentally. The effect of coherence in the parallel light distribution computations on the shooting 
patch selection sequence is also investigated. Theoretical and experimental evaluation is also presented to 
verify that the proposed parallelization scheme yields equally good performance on multicomputers 
implementing the simplest (e.g. ring) as well as the richest (e.g. hypercube) interconnection topologies. This 
paper also proposes and presents a parallel load re-balancing scheme which enhances our basic parallel 
radiosity algorithm to be usable in the parallelization of radiosity methods adopting adaptive subdivision 
and meshing techniques. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

Radiosity proposed by Goral et al. [I] is an 
increasingly popular method for generating realistic 
images of non-existing environments. The conven- 
tional radiosity method is expensive in terms of 
execution time and memory requirement, and the 
final image cannot be viewed until the matrix 
equation is solved. This reduces the usability of the 
method for complex scenes consisting of a large 
number of surfaces. The progressive refinement 
radiosity proposed by Cohen et al. [2] allows viewing 
of the approximated partial radiosity solutions 
initially and approaches the correct solution itera- 
tively. This new approach eliminates the construction 
of the linear system of equations, and follows the 
path the light travels in the environment. The initially 
approximated solutions are provided quickly and the 
final solution is approached iteratively. The following 
operations are performed at each iteration of the 
generic progressive refinement radiosity algorithm; 

1. the most energetic surface is selected as the source 
surface, 

2. form-factors from this source surface are com- 
puted, 
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3. depending on these form-factors, light is distrib- 
uted from source surface to environment. 

Although. progressive refinement radiosity has 
been successful at generating realistic-looking 
images, it still has computation and modeling 
requirements that limit the usage of the method for 
complex scenis. Several methods have been proposed 
in order to :speed up the solution by using preproces- 
sing techniques for hierarchical representation of the 
objects or by starting with coarse patches and 
adaptively subdividing the necessary regions of the 
environment during the course of the solution. The 
initial work in adaptive subdivision is by Cohen et al. 
[3]. In this work, they propose a subdivision method 
called sub-structuring with hierarchical subdivision 
of the input surfaces into subsurfaces, patches and 
elements. Baum et al. [4] state the ultimate con- 
straints required by the radiosity method and 
propose an automatic subdivision method. Campbell 
and Fussell [5] present the subdivision for elimination 
of light leakage. Hanrahan et al. [6] propose a 
hierarchical representation of the environment. In 
their algorithm, the hierarchical radiosity is inspired 
by the N-Ilody problem, and the patch-to-patch 
visibility is computed and the form-factor computa- 
tions are performed with required precision. Smits et 
al. [7] propose a view-dependent solution based on 
Hanrahan’s work. Lischinski et al. [8] propose an 
accurate radiosity based on discontinuity meshing. 
The mesh explicitly represents the discontinuities in 
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the radiance function as boundaries between mesh 
elements. Piecewise quadratic interpolation is used to 
approximate the radiance function. This solution is 
fully automatic and view-independent, and is not 
limited to constant-radiosity patches and produces a 
lesser number of patch elements. 

Although algorithmic and meshing techniques 
decrease the execution time, still excessive computa- 
tional power is required for complex scenes. Hence, 
parallelism can be exploited for speeding up the 
method further. This paper aims at providing a 
thorough examination of parallelism in the basic 
progressive refinement radiosity, and investigates its 
parallelization on distributed-memory parallel archi- 
tectures (multicomputers). By basic radiosity algo- 
rithm we mean that the hierarchical and adaptive 
meshing techniques mentioned in the previous para- 
graph are not exploited during parallelization. The 
parallel algorithms proposed for the basic radiosity 
scheme depend on the static decomposition of the 
scene geometry generated during the preprocessing 
phase. However, we also propose and present a 
simple, yet effective parallel load re-balancing scheme 
to enhance our parallel algorithms to be usable in the 
parallelization of the radiosity methods adopting 
adaptive subdivision and meshing techniques. The 
main ideas proposed and presented in this paper can 
also be exploited in the parallelization of the 
hierarchical radiosity method. For example, the 
patch circulation and parallel light distribution 
schemes proposed in this paper can be exploited in 
the parallelization of the hierarchical radiosity 
method. 

The hemicube algorithm proposed by Cohen and 
Greenberg [9] is used for form factor computations 
because of its simplicity, efficiency and possibility of 
its acceleration on current graphics hardware. The 
hemicube algorithm is an approximation method and 
the proximity, visibility and aliasing assumptions 
exploited in this algorithm may result in incorrect 
computation of the form-factors. In order to solve 
the problems caused by the hemicube method 
assumptions and compute more accurate form- 
factors, a number of form-factor computation 
techniques have been proposed. In Bu and Depret- 
tere’s approach [lo], the form-factor vector is 
computed by locating a hemisphere over the patch 
and casting rays towards the hemisphere pixels. 
Wallace et al. [ll] propose a source-to-vertex ray 
tracing solution. Instead of shooting rays from the 
source patch in the uniform directions of hemicube 
pixels, their method samples the shooting patch from 
the point of view of each other surface in the 
environment. From each vertex in the environment, 
rays are sampled towards different parts of the 
shooting patch, and tested for occlusions by other 
surfaces. Although the hemicube algorithm is used 
and discussed in this paper, the proposed paralleliza- 
tion approach is general enough to be valid for the 
parallelization of other form-factor computation 
schemes. 

In a multicomputer, processors have only local 
memories and there is no shared memory. In these 
architectures, synchronization and coordination 
among processors are achieved through explicit 
message passing. Multicomputers have been popular 
due to their nice scalability feature. Various inter- 
connection topologies have been proposed and 
implemented for connecting the processors of multi- 
computers. Among them, ring topology is the 
simplest topology which requires only two links per 
processor. Ring topology can easily be embedded 
onto almost all other interconnection topologies (e.g. 
hypercube, 2-D mesh, 3-D mesh, etc.). Hypercube 
topology has received considerable attention among 
other topologies. The popularity of the hypercube 
topology may be attributed to the following: (i) many 
other widely used topologies such as rings, meshes 
and trees can successfully be embedded onto a 
hypercube; (ii) in a d-dimensional hypercube with 
2d= P processors, there exists d= log2 P connections 
per processor with a maximum distance of d between 
any two processors; and (iii) hypercube topology is 
completely symmetric and can be decomposed into 
sub-hypercubes allowing the efficient implementation 
of recursive divide-and-conquer algorithms. Hyper- 
cube can be considered as the richest interconnection 
topology adopted in the organization of commer- 
cially available multicomputers. 

There are various parallel progressive refinement 
implementations proposed in the literature [12-181. 
Most of these approaches utilize asynchronous 
schemes based on demand-driven task assignment. 
The parallel progressive refinement algorithms pro- 
posed in this work utilize a synchronous scheme 
based on static task assignment [19]. The synchro- 
nous scheme is proposed in order to achieve better 
coherence during parallel light distribution computa- 
tions. The proposed algorithms are implemented on 
an Intel’s iPSC/2 hypercube multicomputer. The 
organization of the paper is as follows. Section 2 
summarizes the progressive refinement radiosity. 
Section 3 presents and discusses the proposed 
parallelization schemes for the basic progressive 
refinement radiosity algorithm. Section 4 presents a 
parallel load re-balancing scheme which enhances 
our basic parallel algorithms to be usable in the 
parallelization of the radiosity methods adopting 
adaptive subdivision and meshing techniques. 
Finally, experimental results are presented and 
discussed in Section 5. 

2. PROGRESSIVE REFINEMENT RADIOSITY 

Progressive refinement radiosity gives an initial 
approximation to the illumination of the environ- 
ment and approaches the correct light distribution 
iteratively. Each iteration of the basic progressive 
refinement radiosity algorithm adopting the hemi- 
cube method for form-factor computations can be 
considered as a four-phase process: 

1. shooting patch selection, 
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2. production of hemicube item-buffers, 
3. conversion of item-buffers to a form-factor vector, 
4. light distribution using the form-factor vector. 

In the first phase, the patch with maximum energy 
is selected for faster convergence. In the second 
phase, a hemicube [9] is placed onto this patch and all 
other patches are projected onto the item-buffers of 
the hemicube using the z-buffer algorithm for hidden 
patch removal. The patches are passed through a 
projection pipeline consisting of: visibility test, 
clipping, perspective projection and scan-conversion. 
In the third phase, the form-factor vector corres- 
ponding to the selected shooting patch is constructed 
from the hemicube item-buffers by scanning the 
hemicube and adding the delta form-factors of the 
pixels that belong to the same patch. 

In the last phase, light energy of the shooting patch 
is distributed to the environment, by adding the light 
contributions from the shooting patch to the other 
patches. Distribution of light energy necessitates the 
use of the form-factor vector computed in Phase 3. 
The contribution from the shooting patch s to any 
other patch j is given by [2]: 

j(r, g, b) = Bj(r, g, h) + Wr, g, b) (2) 

ABAr, g b) = ABj(r, g, 6) + Wr, g, b) (3) 

Here, AB,{r, g, 6) and r,{r, g, b) denote the delta 
radiosity and the reflectivity values, respectively, of 
patch j (for 3 color-bands), Aj denotes the area of 
patch i, and Fsj denotes the j ” element of the form- 
factor vector constructed in Phase 3 for the shooting 
patch s. During the execution of the algorithm, a 
patch may be selected as the shooting patch more 
than once. Therefore, the delta radiosity value (AB) is 
stored in addition to the radiosity (B) for each patch, 
which gives the difference between the current energy 
and the last estimate distributed from the patch. That 
is, it represents the amount of light the patch has 
gathered since the last shooting from the patch. The 
delta radiosity values are used for shooting patch 
selection. The iterative process is halted when the 
maximum or sum of ABiAi values of all patches 
reduce below a user-specified tolerance value. 

3. PARALLELIZATION 

As mentioned earlier, progressive refinement 
radiosity is an iterative algorithm. Hence, computa- 
tions involved in an individual iteration should be 
investigated for parallelization while considering a 
proper interface between successive iterations. In this 
algorithm, strong computational and data dependen- 
cies exist between successive phases such that each 
phase requires the computational results of the 
previous phase in an iteration. Hence, parallelism at 
each phase should be investigated individually while 

considering the dependencies between successive 
phases. Furthermore, strong computational and data 
dependencies also exist within each computational 
phase. T:lese intra-phase dependencies necessitate 
global interaction which may result in global inter- 
processor communication at each phase on a 
distributed-memory architecture. Considering the 
crucial gmnularity issue in parallel algorithm devel- 
opment for medium-to-coarse grain multicomputers, 
we have investigated a parallelization scheme which 
slightly modifies the original sequential algorithm. In 
the modified algorithm, instead of choosing a single 
patch, P shooting patches are selected at a time on a 
multicomputer with P processors. The modified 
algorithm is still an iterative algorithm where each 
iteration involves the following phases: 

selection of P shooting patches, 
production of P hemicube item-buffers, 
conversion of P hemicubes to P form-factor 
vectors, 
distribution of light energy from P shooting 
patche:, using these P form-factor vectors. 

Note that the structure of the modified algorithm is 
very similar to that of the original algorithm. 
However, the computations involved in P successive 
iterations of the original algorithm are performed 
simultaneously in a single iteration of the modified 
algorithm. This modification increases the granular- 
ity of the computational phases since the amount of 
computation involved in each phase is duplicated P 
times. Furthermore, it simplifies the parallelization 
since production of P hemicube buffers (Phase 2) and 
production of P form-factor vectors (F’hase 3) can be 
performed simultaneously and independently. Hence, 
processors can concurrently construct P form-factor 
vectors corresponding to P different shooting patches 
without any communication. 

The modified algorithm is an approximation to the 
original progressive refinement method. The coher- 
ence of the shooting patch selection sequence is 
disturbed in the modified algorithm. The selection of 
P shooting patches at a time ignores the effect of the 
mutual light distributions between these patches and 
the light d.istributions of these patches onto other 
patches during this selection. Thus, the sequence of 
shooting patches selected in the modified algorithm 
may deviate from the sequence to be selected in the 
original algorithm. This deviation may result in a 
greater number of shooting patch selections for 
convergence. Hence, the modification introduced 
for the sake of parallelization may degrade the 
performance of the original algorithm. This perfoxm- 
ante degradation is likely to increase with the 
increasing number of processors. This paper presents 
an experimental investigation of this issue. 

This paper is based on this algorithmic modifica- 
tion of the sequential algorithm like some other 
parallel im:plementations proposed in the literature. 
However, these parallel implementations utilize 
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asynchronous schemes. These asynchronous schemes 
have the advantage of minimizing the processors’ idle 
time since form-factor and light distribution compu- 
tations proceed concurrently in an asynchronous 
manner. However, in these schemes, a processor, 
upon completing a form-factor vector computation 
for a shooting patch, selects a new shooting patch for 
a new form-factor computation. Hence, this asyn- 
chronous shooting patch selection by an individual 
processor does not consider the light contributions of 
the form-factor computations concurrently per- 
formed by other processors. Furthermore, large 
numbers of asynchronous communications with large 
volumes create congestion on the interconnection 
network, especially in simple topologies such as ring 
[ 131. In this work, we propose a synchronous scheme 
which is expected to achieve better coherence in the 
distributed shooting patch selections and eliminate 
message congestion. The proposed parallelization 
scheme is discussed in the following sections. 

3.1. Phase I: shooting patch selection 
There are two alternative schemes for performing 

this phase: local shooting patch selection and global 
shooting patch selection. In the local selection 
scheme, each processor selects the patch with 
maximum ABiAi value among its local patches. In 
the global selection scheme, each processor selects the 
first P patches with the greatest ABjAi values among 
its local patches in sorted order and interprocessor 
communication is performed in order to obtain the 
first P patches with maximum energy among these 
patches. Then, each processor selects a distinct 
shooting patch among these maximal patches. As 
will be discussed later, each processor is assumed to 
hold only a subset of the overall scene description. 
Thus, the local patches of an individual processor 
refers to N/P patches assigned to and stored by that 
processor assuming an even decomposition of a scene 
with N patches to P processors. 

The number of shooting patch selections required 
for convergence of the parallel algorithm to the user- 
specified tolerance depends on the shooting patch 
selection scheme. Global scheme is expected to 
converge faster because the patches with globally 
maximum energy are selected. However, in the local 
scheme, the shooting patches that are selected may 
deviate largely, if maximum energy holding patches 
are gathered in some of the processors, while the 
other processors hold less energy holding patches. 
Hence, the global scheme is expected to achieve 
better coherence in distributed shooting patch selec- 
tion. However, the global scheme requires circulation 
and comparison of P buffers, hence necessitating 
global communication overhead. Therefore, the 
global communication scheme should be designed 
efficiently considering the interconnection topology 
of the processors in order to minimize this overhead. 
In this work, we present efficient global patch 
selection schemes for the ring and hypercube 
topologies. 

3.1.1. Ring topology. First, each processor selects 
the first P patches with the greatest ABiAi values 
among its local patches in sorted order and puts 
these patches (together with their geometry and 
color data) into a local buffer in decreasing order 
according to their ABiAi values. Then, these local 
buffers (each of size P) are circulated in P- 1 
concurrent communication steps as follows. In each 
concurrent step, each processor merges its local 
sorted buffer of size P with the received sorted 
buffer of size P, discarding P patches with the 
lowest ABjAi values. Then, each processor sends its 
resulting buffer (of size P) to the next processor in 
the ring. Note that each processor keeps its original 
local sorted buffer intact during the circulation. At 
the end of P- 1 communication steps, each 
processor holds a copy of the same sequence of 
P patches with globally maximum ABiA< values in 
decreasing order. Then, processor q selects the qfh 
patch in its final patch list, for q = 0, 1, . , P- 1. 
Hence, processor q effectively selects the patch with 
the qfh largest ABiAi value as its shooting patch. 

3.1.2. Hypercube topology. The parallel algorithm 
for the hypercube topology is slightly different from 
the algorithm for the ring topology. The hypercube 
algorithm for global shooting patch selection uses the 
communication protocol generally used for global 
operations such as global sum, global maximum, etc. 
[20]. This scheme involves d=loglP concurrent 
exchange steps over channels i= 0, 1, , d- 1. 
Here, channel i refers to the set of P/2 communica- 
tion links which connect processor pairs whose d-bit 
binary representations differ only in the ifh bit. In the 
1 ‘I’ step, processors concurrently exchange their 
current sorted buffers (each of size P) with those of 
their neighbors over channel i. Then, processors 
concurrently merge the received sorted buffers with 
their current local sorted buffers discarding the P 
patches with lowest ABiAi values. The resulting local 
buffers become the current sorted buffers for the 
following step of the algorithm. At the end of this 
procedure, each processor holds a copy of the same 
sequence of P patches with globally maximum ABiAi 
values in decreasing order. Then, processor q selects 
the qth patch in its local sorted patch list, for q = 0, 1, 
“‘, P-l. 

3.1.3. Performance analysis of Phase I. The parallel 
complexity of the communication phase for shooting 
patch selection on the ring topology is: 

TyG ‘(P -- l)tsr, + (P - l)PTTR 

+ (P - l)PTCOMP 
(4) 

where tsa is the message set-up time overhead, TTR is 
the transmission time for a single shooting patch 
data, T,o,, is the time to compare two patch entries 
of the arrays. Note that only P comparisons are 
enough to select the maximum P entries of two sorted 
arrays, each of size P. 



A parallel progressive radiosity algorithm 311 

On the hypercube topology, the algorithm given in 
Section 3.1.2 decreases the total complexity by 
decreasing both the number and the volume of 
concurrent communications, and the number of 
comparison operations. The parallel complexity of 
the hypercube algorithm for this phase is, 

TypER = dtsu + dPTTR + dPTCoMp. (5) 

Thus, the hypercube topology performs better than 
the ring topology. However, computation time 
required by the shooting patch selection phase is 
negligible compared to the other phases discussed in 
the following sections. It will be shown that the other 
phases require O(N) time complexity, whereas the 
shooting patch selection phase requires O(p) com- 
plexity for the ring and O(P logzP) complexity for the 
hypercube topology. In general, N$P for complex 
scenes, and hidden constant factors in the asymptotic 
notations are substantially larger in other phases 
(especially in Phase 2). Hence, the performance 
increase introduced by the hypercube topology over 
the ring topology in this phase does not affect the 
performance of the overall parallel algorithm sig- 
nihcantly 

3.2. Phase 2: hemicube production 
In this phase, each processor needs to maintain a 

hemicube for constructing the form-factor vector 
corresponding to its local shooting patch. Further- 
more, each processor needs to access the entire scene 
description in order to fill its local hemicube item- 
buffers corresponding to its local shooting patch. 
One approach is to replicate the entire patch 
geometry data in each processor, hence avoiding 
interprocessor communication. However, this ap- 
proach is not suitable for complex scenes with large 
numbers of patches because of the excessive local 
memory requirement of size O(N) per processor. 
Hence, a more valid approach is to evenly decompose 
the scene description into P patch data subsets and 
map each data subset to a distinct processor of the 
multicomputer, thus decreasing the local memory 
requirement per processor to O(N/P). 

However, the decomposition of the scene data 
necessitates global interprocessor communication in 
this phase since each processor owns only a portion (of 
size N/P) of the patch database and needs to access the 
entire database. This requires circulating the patch 
subsets of the processors so that each patch data subset 
visits each of the P processors exactly once. Note that 
only geometry data of the patches are needed for 
projecting the patches in this phase and communica- 
tion of the color information is unnecessary. Since 
messages can only be sent/received from/into con- 
tiguous memory locations in most of the commercially 
available multicomputers (e.g. iPSC/Z), the local patch 
data of each processor is divided into geometry and 
color parts. So, in Phase 2, only the local patch 
geometry data of the processors are circulated. 

For a triangular meshing of the scene, geometry 
data of each triangular patch involves 3 floating- 
point words for each of its 3 vertices, 3 floating-point 
words for its normal, and one integer word for the 
patch-id. Hence, the geometry data for each patch 
requires .13 4-byte words (52 bytes in total) of 
storage. The color data of each patch involves one 
floating-point word for its area, 3 floating-point 
words for its (r, g, b) reflectivity values, and 6 
floating-point words for its (r, g, b) radiosity and 
delta-radiosity values. Hence, the color data for each 
patch requires 10 4-byte words (40 bytes in total) of 
storage. Thus the proposed scheme, decreases the 
communication volume per triangular patch from 92 
bytes to 52 bytes, thus achieving a ~43.5% decrease 
in the total volume of communication in Phase 2. The 
following subsections present the patch circulation 
algorithm:: for ring-connected and hypercube-con- 
netted multicomputers. 

3.2.1. Ring topology. Patch circulation needed in 
this phase can be achieved in P concurrent commu- 
nication sieps as follows. In each step, processors 
concurrently project their current patch data subsets 
onto their local hemicubes. Then, they concurrently 
send these patch data subsets to their next processors 
on the ring. Patch data subsets received from the 
previous processors on the ring become the current 
patch data subsets for the next step. At the end of P 
concurrent communication steps, each processor 
completes the projection of all patches onto its local 
hemicube. Although P- 1 communications would be 
enough for this operation, one more communication 
is required in order to return all geometry data 
subsets to their home processors for maintaining the 
storage consistency of geometry and color data 
subsets for subsequent iterations and rendering. 

Figure 1 illustrates the execution of the algorithm 
on a ring with 4 processors. In this figure, P4 denotes 
the qfh subset of the patch geometry data which 
corresponds to the original local patch data subset of 
processor (I, and Hi denotes that the local hemicube 
of processor q has been filled by the local patch data 
subsets of the set J of processors. 

We present two interprocessor communication 
schemes for the implementation of the synchronous 
patch data circulation in this phase: tightly-coupled 
and loosely-coupled. In the tightly-coupled scheme, 
each processor delays sending its current patch 
data subset until it completes the projection 
computations associated with those patches. This 
scheme introduces processor idle time if the 
projection computations associated with the current 
patch subset of the destination processor are less 
than those of the sending processor. The loosely- 
coupled scheme is introduced to reduce the 
processor idle time. In this scheme, processors 
divide their current patch data subsets into two 
halves. Each processor sends the appropriate half 
as soon as it completes the projection operations 
associated with that half. Then, it proceeds to 
process the: other half after issuing a non-blocking 
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Fig. 1. Patch circulation on a ring with 4 processors 

receive into the memory area corresponding to the 
former half (that is already processed and sent). 
Thus, messages arriving to the destination pro- 
cessors usually find pending non-blocking receives, 
hence enabling the overlapping of receive opera- 
tions with local computations on a cycle-stealing 
basis. However, blocking send mode should be 
used in order to prevent the arriving message to 
contaminate the message being sent. Note that 
both schemes use in-place communications since 
they do not necessitate any extra send/receive 
buffer. 

Xd = Xd-l(d - I)&-, , ford> 1, whereXr =0 

(6) 

3.2.2. Hypercube ropology. For MIMD hyper- 
cubes, patch circulation can be achieved by embed- 
ding the ring onto the hypercube using Gray Code 
ordering scheme. However, this embedding utilizes 
different channels of the hypercube for the commu- 
nication between successive processors of the em- 
bedded ring. This necessitates d successive 
communication steps to achieve a single concurrent 
shift in the ring embedded on SIMD hypercubes. An 
efficient circulation scheme for a d-dimensional 
SIMD hypercube can be achieved with the use of 
exchange sequence X, [21]: 

For example, X2= (0, 1, 0) and XJ = {0, 1, 0, 2, 0, 
1, 0) are the exchange sequences for 2-D and 3-D 
SIMD hypercubes, respectively. The exchange 
sequence X, specifies the sequence of bidirectional 
channels to be used for interprocessor commu- 
nications in successive concurrent exchange 
communication steps. The recursive definition of 
the exchange sequence X, states that the d- 
dimensional hypercube is divided into two d- 1 
sub-hypercubes over channel d- 1 (represented by 
the X,-r subsequences). In the first phase corre- 
sponding to the prefix subsequence Xd- r, patch 
data circulation is performed independently and 
concurrently in these two d- 1 dimensional sub- 
cubes using the exchange sequence X,- ,. Then, in 
the second phase, processors of these two sub- 
cubes exchange their current patch data subsets 
with each other over channel d- 1. In the last 
phase corresponding to the postfix subsequence 
X,-r, patch data circulation is performed inde- 
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Fig. 2. Patch circulation on a 3-D hypercube. 

pendently and concurrently in these two d- 1 3.2.3. Performance analysis of Phase 2. The parallel 
dimensional subcubes using the exchange sequence algorithms given for the ring and the hypercube 
Xd- i. Note that P- 1 communication steps are topologies both require P concurrent communica- 
enough for circulating all the patches so that each tions and a communication volume of N/P patch 
patch subset visits all the processors. One more geometry data in each concurrent communication. 
exchange communication over channel d- 1 is Hence, the efficiency of this phase is independent of 
required to return all patch data subsets to their the interconnection topology of the processors, so the 
home processors for maintaining patch data storage performance of this phase does not degrade with 
consistency. Figure 2 illustrates this patch circula- simple topologies. It follows that the parallel com- 
tion scheme on a 3-D hypercube with 8 processors. plexity of Phase 2 is: 
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Tp2 = Pku + W/f') T$-,q + W/P) TPROJ 

= Ptsu t NT& t NTPROJ 
(7) 

Here, T”TR is the time taken for the transmission of 
the geometry data of a single patch, T~ROJ is the 
average time taken to project and scan-convert one 
patch onto a hemicube. 

There are two crucial factors that affect the 
efficiency of the parallelization in this phase: load 
imbalance and communication overhead. Note that 
the parallel complexity given in Eq. (7) assumes a 
perfect load balance among processors. Mapping 
equal number of patches to each processor achieves 
balanced communication volume at each concurrent 
communication step. Furthermore, as will be dis- 
cussed later, it achieves perfect load balance among 
processors in the parallel light distribution phase 
(Phase 4). However, this mapping may not achieve 
computational balance in the parallel hemicube 
production phase (Phase 2). 

The complexity of the projection of an individual 
patch onto a hemicube depends on several geometric 
factors. Recall that each patch passes through a 
projection pipeline consisting of visibility test, clip- 
ping, perspective projection and scan-conversion. A 
patch which is not visible by the shooting patch 
requires much less computation compared to a visible 
patch since it leaves the projection pipeline in a very 
early stage. The complexity of the scan-conversion 
stage for a particular patch depends strongly on the 
distance and the orientation of that patch with 
respect to the shooting patch. That is, a patch with 
larger projection area on a hemicube requires more 
scan-conversion computations than a patch with a 
smaller projection area. As mentioned earlier, each 
iteration of the proposed algorithm consists of P 
concurrent steps. At each step, different processors 
concurrently perform the projection of different 
patch subsets onto different hemicubes. Hence, the 
decomposition scheme should be carefully selected in 

order to maintain the computational load balance in 
this phase of the algorithm. 

Two possible decomposition schemes are tiled and 
scattered decompositions. In the tiled decomposition, 
the neighboring patches are assigned to the same 
processors. This type of decomposition can be 
achieved in the following way: assuming that the 
patches that belong to the same surface are supplied 
consecutively, the first N/P patches are allocated to 
processor 0, the next N/P patches are allocated to 
processor 1, and etc. At the end of the decomposition, 
each processor stores almost equal number of patches 
in its local memory. In the scattered decomposition, 
the neighboring patches are stored in different 
processors, therefore the patches that belong to a 
surface are shared by different processors. Scattered 
decomposition can be achieved in the following way: 
again assuming that the neighbor patches belonging 
to the same surface are supplied consecutively, the 
incoming patches are allocated to the processors in a 
round-robin fashion. That is, the first patch is 
allocated to processor 0, the next to processor 1, etc. 
When P patches are allocated, the next incoming 
patch is allocated to processor 0, and this process 
continues. When the decomposition is completed, first 
N mod P processors store [N/P] patches, while the 
remaining processors store LN/P] patches in their 
local memories. Figure 3 illustrates the scattered and 
tiled decompositions of a simple scene consisting of 
four faces of a room. The numbers shown inside the 
patches indicate their processor assignments for a 4 
processor multicomputer. 

Assuming that neighbor patches require an almost 
equal amount of computation for projection on 
different hemicubes, the scattered decomposition is 
expected to produce patch partitions requiring an 
almost equal amount of computations in Phase 2. So, 
it can be expected that the scattered decomposition 
achieves a much better load balance than the tiled 
decomposition in Phase 2. 

Scattered decomposition Tiled decomposition 

Fig. 3. Scattered and tiled decomposition schemes 
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Communication overhead in this phase consists of 
two components: number of communications and 
volume of communications. Each concurrent com- 
munication step adds a fixed message set-up time 
overhead tSu to the parallel algorithm. In medium 
grain multicomputers (e.g. Intel’s iPSC/2 hypercube) 
tSU is substantially greater than the transmission time 
tTR where tTR denotes the time taken for the 
transmission of a single word. For example, 
tsuz 550 p, where ~TR z 1.44 ps per 4-byte word in 
iPSC/2. Note that T gTR = 13tTR in Eq. (7), since the 
communication of an individual patch geometry 
involves the transmission 13 4-byte words. 

However, as seen in Eq. (7), the total number of 
concurrent communications at each iteration is equal 
to the number of processors P, whereas the total 
volume of concurrent communication is equal to the 
number of patches N. Hence, the set-up time over- 
head is negligible for complex scenes (NFP). Then, 
assuming a perfect load balance, efficiency of Phase 2 
can be expressed as: 

&=1 PNTPROJ 

p PNTPRoJ+P~sL,+ NT”rR 

NTPROJ 

NN NTPRoJ+NT& 

TPROJ 1 =- = 
TPROJ+ T$R 1 -+%~TPRoJ 

since one iteration of the parallel algorithm is 
computationally equivalent to P iterations of the 
sequential algorithm. Equation 8 means that projec- 
tion of an individual patch onto a hemicube involves 
the communication of its geometry data as an 
overhead. As seen in Eq. (8), the overall efficiency 
of this phase only depends on the ratio TtR/TpRoJ 
for sufficiently large N/P. For example, efficiency is 
expected to increase with increasing patch areas and 
increasing hemicube resolution, since the granularity 
of a projection computation increases with these 
factors. 

In this work, we have also developed and 
implemented a demand-driven (asynchronous) patch 
circulation scheme for the experimental performance 
evaluation of the proposed loosely-coupled synchro- 
nous scheme with scattered decomposition. The 
proposed demand-driven implementation exploits 
both the rich hypercube topology and the direct- 
routing feature of iPSC/2 architecture. The direct- 
routing hardware of iPSC/2 almost achieves single- 
hop communication performance on multi-hop com- 
munications by avoiding the interception of inter- 
mediate processors. In this scheme, as soon as a 
processor completes the projection of its current 
patch subset it makes a request to another processor 
(in a deterministic order). When a processor receives 
a request, it sends its initially assigned local patch 
subset to the requesting processor. Processors reply 
requests in interrupt-driven mode in order to mini- 

mize the idle time of the requesting processor. Non- 
blocking sends are used during these replies in order 
to overlap send operations with the local computa- 
tions. Ths scheme necessitates an extra local memory 
space of size @N/P) in each processor to hold the 
current patch subset to be received upon request in 
addition to the initially assigned patch subset. Note 
that extra memory space will be needed in the 
processors of a hypercube multicomputer which 
utilizes store-and-forward type software routing for 
handling multi-hop messages since intermediate 
processors are intercepted in such routing schemes. 
Hence, this scheme is not efficient for multicomputer 
architectures which do not implement the direct 
routing scheme. This demand-driven scheme is also 
not efficient for parallel architectures implementing 
simple interconnection topologies (e.g. ring) due to 
network congestion. 

3.3. Phase 3: form-factor vector computation 
In this phase, each processor can concurrently 

compute the form-factor vector corresponding to its 
shooting patch using its local hemicube item-buffers 
constructed in the previous phase. This phase 
requires no interprocessor communication. Local 
form-fact’or vector computations involved in this 
phase require scanning all hemicube item-buffer 
entries. Hence, perfect load balance is easily achieved 
since each processor maintains a hemicube of equal 
resolution. 

3.4. Phase 4: light distribution 
At the end of Phase 3, each processor holds a local 

form-factor vector corresponding to its shooting 
patch. In this phase, each processor should compute 
the light contributions from all P shooting patches to 
its local Ipatches. Hence, each processor needs all 
form-factor vectors. Thus, this phase necessitates 
global interprocessor communication. 

We introduce a vector notation for the sake of 
clarity of the presentation of the algorithms 
discussed in this section. Let X, denote the qth slice 
of a global vector X assigned to processor q. For 
example, each processor q can be considered as 
storing the qth slice of the global array of records 
representing the entire patch geometry data. In this 
notation, each processor q is responsible for 
computing the qrh slice AB, of the global contribu- 
tion vector AB in order to update the qfh slices B, 
and AB, of the global radiosity and delta radiosity 
vectors B and AB, respectively. The notation used to 
label the i3 distinct form-factor vectors computed by 
P processors is slightly different. In this case, Fp 
denotes the form-factor vector computed by pro- 
cessor p and F; denotes the qth slice of the local 
form-factor of processor p. In other words, F: 
denotes th.e form-factors from the shooting patch of 
processor p to the local patches of processor q. 

As seen in Eq. (I), red, green and blue reflectivity 
values and the area of each patch i are needed as 
three ratios r,ir, g, b)/Ai in the contribution computa- 
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tions. Hence, each processor q computes these three 
ratios for each local patch and stores them into a 
local vector rq(r, g, b) (of size N/P) during 
preprocessing. That is, each processor q can be 
considered as holding the qth slice r&r, g, b) of the 
global vector r(r, g, b) which contains these constants 
for all patches. Hence, in vector notation, each 
processor q, for q = 0, 1, , P- 1, is responsible for 
computing 

P-l 

&(r, g, b) = c W(r, g, b)A:(q(r, g, b) x F$) 
p=o 

(9) 

%(r, g, b) = B,(r, g, b) +bR,(r, g, b) (10) 

&(r, g, b) = AB,(r, g, b) +&(r, g, b) (11) 

where Aq(r, g, b) and A! denote the delta radiosity 
values for three color-bands and the area of the 
shooting patch of processor p. In Eq. (9) “x” 
denotes the element-by-element multiplication of two 
column vectors. As seen in Eqs (10) and (1 l), 
radiosity and delta-radiosity update computations 
are local vector additions which do not require any 
interprocessor communication. It is the contribution 
computation phase (Eq. 9), which requires global 
interaction. Equation (9) can be rewritten by factor- 
ing out the r4 vector as 

UP,(r, g, b) = Aq(r, g, b)4’F: 

forp=O, 1, . . . . P- 1 (12) 

P-l 

U,(r, g, b) = C Up,(r, g, b) (13) 
pal 

%(r, g, b) = dr, g, b) x U,(r, g, b) (14) 

Note that the notation used to label the U vectors is 
similar to that of the F vectors. That is, U:(r, g, b) (of 
size N/P) represents the contribution vector of the 
shooting patch of processor p to the local patches of 
processor q omitting the multiplications with the 
respective local r,{r, g, b)/Aj coefficients. Hence, U,(r, 
g, b) (of size N/P) represents the total contribution 
vector of all P shooting patches to the local patches 
of processor q, omitting the multiplications with the 
respective local r,{r, g, b)/Aj coefficients. The follow- 
ing sections present the ring and hypercube algo- 
rithms for performing this phase. 

3.4.1. Ring topology. The first approach discussed 
in this work is very similar to the implementation 
proposed by Chalmers et al. [13]. In their implemen- 
tation, each processor p broadcasts a packet consist- 
ing of the delta radiosities, area and the form-factor 
vector of its shooting patch. Each processor q, upon 
receiving a packet {Aq, A:, Fp}, computes a local 
contribution vector U$(r, g, b) by performing a local 

scalar vector product for each color (Eq. 12) and 
accumulates this vector to its local U&r, g, b) vector 
by performing a local vector addition operation (Eq. 
13). However, multiple broadcast operations with 
high volumes are expensive and may cause excessive 
congestion even in rich interconnection topologies. In 
this work, indicated packets are circulated in a 
synchronous manner, similar to the patch circulation 
scheme discussed for Phase 2. This circulation 
operation requires P- 1 concurrent communication 
steps. Between each successive communication step, 
each processor concurrently performs the contribu- 
tion vector accumulation computations (Eqs 12 and 
13) corresponding to its current packet. At the end of 
P- 1 concurrent communication steps, each proces- 
sor q accumulates its total contribution vector U,(r, 
g, b). Then, each processor q can concurrently 
compute its local AR,(r, g, b) vector by performing 
a local element-by-element vector multiplication for 
each color (Eq. 14). 

It is obvious that perfect load balance in this phase 
can easily be achieved by mapping an equal number 
of patches to each processor. Hence, the parallel 
complexity of Phase 4 using the form-factor vector 
circulation scheme is, 

Tp4 = (P- l)tsu + (P - l)Ntl, + P(N/P)TCoNrR 

+ (NIP) TLIPD 

= (p - lhu + (p - l)Ntl, + NTcaNrR 

+ (N/f’) TC/PD 

Here, tt, is the time taken to transmit a single floating 
point word, TCON~R is the time taken to compute and 
accumulate a single contribution value, and TUpD is 
the time taken to update a single radiosity and delta 
radiosity value using the corresponding entry of a 
local U, vector. 

Note that, in this scheme, processors accumulate the 
contributions for their local patches during the 
circulation of form-factor vectors. Hence, as also seen 
in Eq. (15), this scheme necessitates high volume of 
communication ((P- l)N words) since entire form- 
factor vectors, each of size N, are concurrently 
communicated at each communication step. However, 
as also seen in Eqs (12) and (13), each processor q 
needs only the qfh slices (each of size N/P) of the form- 
factor vectors it receives during the circulation. That 
is, the form-factor circulation scheme involves the 
circulation of redundant information. In this work, we 
propose an efficient scheme which avoids this redun- 
dancy in the interprocessor communication. In the 
proposed scheme, partial contribution computation 
results, Uz(r, g, b) vectors (each of size N/P), are 
circulated instead of the form-factor vectors (each of 
size N). Hence, each processor effectively accumulates 
the contributions of its local shooting patch to all 
other processors’ local patches during the circulation 
of the partial contribution computation results. 
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In a straightforward implementation of the pro- 
posed scheme, each processor q first constructs the 
contribution vector Ui(r, g, b) of its shooting patch 
to its local patches, and initiates the circulation of 
contribution vectors. After the ith concurrent com- 
munication step in the circulation, processor q 

;;;:y the uyq-l”odP (r, g, b) vector using the 

(q-i)modP of its ocal form-factor vector Fq, and 
accumulates this vector to the current partial 
contribution vector. At the end of P- 1 concurrent 
communication steps, each processor q holds the final 
contribution vector U~q+t)mo&r, g, b) of the next 
processor in the ring. Hence, one more communica- 
tion is needed in order to return the final contribution 
vectors to their home processors. However, this final 
communication step can be avoided by each pro- 
cessor q constructing U~q~~dOJr. g, b) vector in ;k; 
initialization phase accumulating 

yq-i- 1 )modP(r’ g, b) vector at step i. Figure 4 
illustrates the node program (in pseudocode) of the 
proposed contribution vector circulation scheme for 
the ring topology. In this pseudocode, the local 
variable mynode is assumed to contain the index of 
the respective node processor. Note that U, AR, B, 
and AB represent local arrays, each of size N/P, in the 
pseudocode in contrary to the global vector notation 
used in the texl.. 

3.4.2. Hypercube topology. The algorithm pro- 
posed for the SIMD hypercubes is similar to that for 
the ring topology. This phase again requires the 
exchange sequence introduced for Phase 2 in order to 
circulate the partial contribution computation 
results. Figure 5 illustrates the node program (in 
pseudocode) of the proposed contribution vector 
circulation scheme for the hypercube topology. In 

Fig. 5, Xdij denotes the ifh channel in the exchange 
sequence & defined in Eq. (6). 

3.4.3. Performance analysis of Phase 4. As seen in 
Figs 4 and 5, the contribution vector circulation 
schemes proposed for ring and hypercube topologies 
both require P- 1 concurrent communications and a 
communication volume of 3N/P floating point words 
at each concurrent communication. Both schemes 
preserve the perfect load balance, if exactly equal 
number of patches are mapped to each processor. 
Hence, tke efficiency of this phase is also independent 
of the interconnection topology of the processors. 
Thus, the performance of this phase does not degrade 
with simple topologies. It follows that the parallel 
complexi;:y of Phase 4 is: 

Tp4 =: (p - l)tsu + 3(P - 1) (N/P)t,, 

l P(NIP)TCONTR + (N/ P)T”~D 

=: (P- l)tsr,+3 y  Nto t NTCONTR 

N 
fp TUPD 

Note thal: the constant 3 appears as a coefficient in 
the “t(,” term since each entry of an individual U: 
vector consists of 3 contribution values for 3 color- 
bands. Comparison of Eq. (16) with Eq. (15) 
confirms that the proposed contribution vector 
circulation scheme reduces the total concurrent 
communication volume in Phase 4 by an asympto- 
tical factor of P/3, for P>3, compared to the form- 
factor vector circulation scheme. 

As seen in the for-loops of Figs 4 and 5, 

/* AB, : delta radiosity of the local shooting patch 

‘4, : area of the local shooting patch 
F : local form-factor array, of size N 

U, AR, B, AB : local arrays, each of size NIP */ 
nextn,ode = (mynode •t 1)modP; 
p-evn.ode = (mynode - 1)nrodP; 
y  = mynode; 
iMr,g,b) = ABs(T,g,bMs; 
U(T, g, b) = b’s(r, g, ~)Fpreunode; 
for p:= 1 to P-l do 

send U(r,g,b) to processor neztnode; 
receive into U(r,g,b) from processor prevnodc; 
U(T,g,b)= U(T,g,b)+p,(T,g,b)F(q--p--l)modP; 

endfor 

AR(r,g,b) = r(r,g,b) x U(r,g,b); 

Wr,g,b) = B(r,g,b)t AR(r,g,b); 
.4B(~.g,b) = AB(T,g,b)+ AR(r,g,b); 

Fig. 4. The contribution vector circulation scheme for the ring topology 



318 C. Aykanat, T. K. Capm and B. Ozgiig 

/* AB, : delta radiosity of the local shooting patch 
A, : area of the local shooting patch 
F : local form-factor array, of size N 
U, AR, B, AB : local arrays, each of size N/P */ 
d = log,P; 
q = mynode $ 2d-1 ; 
Ps(r,g,b) = AB.dT,g,b)As; 
U(r,g,b) = Ps(T,g,bP’,; 
for i=O to P-l do 

dnode = mynode $ 2Xd[i] ; 
send U(r,g, b) to processor dnode; 
receive into U(r,g, b) from processor dnode; 
9 = * @ ‘p&l ; 

U(r,g,b) = U(r,g,b)+ Bs(r,g,b)F,; 
endfor 
ANT, 9, b) = r(T,g, b) x U(r, g, b); 
B(r,g,b) = B(r,g,b)+ AR(r,g,b); 
AB(~,g,bj = AB(r,g,b) t AR(r,g,b); 

Fig. 5. The contribution vector circulation scheme for the hypercube topology. 

computation and accumulation of a single con- 
tribution val;e (except the initialization) require 1 
multiplication and 1 addition operation, for each 
color-band, at each step. Hence, TCoNTR = (3 x 2)t,,/, 
= 6tcnro where tcalc denotes the time taken by 
floating-point multiplication and addition opera- 
tions. As also seen in these two figures (after the 

for-loops), updating a single radiosity and delta- 
radiosity value using the respective entry of the local 
U array requires 1 multiplication and 2 addition 
operations for each color-band. Hence, 

Similar to the efficiency analysis of Phase 2, the set- 
up time overhead becomes negligible for sufficiently 
large granularity values (N/P&-). Then, the efficiency 
of Phase 4 can be expressed as: 

1 
Ep4 =- PWCONTR + TUPD) 

P NTCONTR +(N/P)TuPD+P~s~+~N~,, 

TcONTR+ TUPD 
52 

TCONTR + TuPD/~+ 3trr 

1 %dc 

= 6tcarc + %czdP + % 

1 

= 0.4 + 0.6/P + 0.2(trr/tcalc) 
(17) 

since one iteration of the parallel algorithm is 
computationally equivalent to P iterations of the 
sequential algorithm. Note that rj(r, g, b)/Aj values, 
for all patches, are also assumed to be computed and 
stored during the preprocessing phase of the sequen- 

tial algorithm. As seen in Eq. (17), the efficiency of the 
proposed contribution vector circulation scheme 
increases with increasing number of processors for a 
fixed granularity (N/P). Furthermore, this scheme will 
yield superlinear speedup (efficiency value greater 
than 1) for a wide range of machine specific ttr/tcalc 
values. For example, even for P=2, superlinear 
speedup can be obtained for t,,/tcalc< 1.5 (e.g. 
t,r/tCo~cz 1.44 pet/5.8 psecw0.25 in iPSC/2). The 
superlinear speedup in this phase may appear to be 
controversial since the conventional algorithm per- 
forms P radiosity and delta-radio&y update compu- 
tation phases, whereas the modified algorithm 
performs only one update computation phase, for P 
shooting patch selections. However, this analysis is 
still valid since it is not rational to use the modified 
algorithm on sequential computers and the per- 
formance degradation of the parallel algorithm due 
to this modification is also included in its experi- 
mental performance evaluation. 

4. LOAD REBALANCING FOR ADAPTIVE SUBDIVISION 

In this section, we propose a simple, yet effective 
parallel load re-balancing scheme to enhance our 
parallel algorithms to be usable in the parallelization 
of the radiosity methods adopting adaptive subdivi- 
sion and meshing techniques. 

Assume that at the beginning of a particular 
iteration k first Qk = Nk mod P processors, 0, 1, . . . , 
Qk- 1, store [Nk/P’J patches, while the remaining 
processors, Qk, Qk+], . . , P- 1, store INk/P] 
patches in their local memories. Here, Nk denotes 
the total number of patches to be processed in the 
current iteration k including the subpatches obtained 
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beginning of the next iteration k+ 1. Here, 
Nk+, = Nk + Mk denotes the total number of patches 
to be processed at iteration k+ 1. Hence, the 
proposed scheme restores the even distribution of 
the patches while maintaining the nice scattered 
decomposition at the beginning of each iteration. 
Note that each processor should know Qk+ 1 for the 
load re-balancing operation to be performed at the 
end of iteration k + 1. It is sufficient to have processor 
P- 1 compute and broadcast Qk+ I= (Qk + Mk) mod 
P since it already has spW1 =Mk. This broadcast 
operation requires P- 1 left or right shift operations 
on the successive processors of the ring starting from 
processor P- 1. 

Communication overhead introduced during the 
circulation of patch radiosity values is negligible since 
only two words (one integer and one floating-point 
word) are circulated for each patch. Communication 
overhead introduced during the subpatch circulation 
operation can also be considered as negligible if 
Mk < Nk during the iterations. Hence, calculations 
and communication operations (circulation, prefix- 
sum and broadcast) performed for computing the 
vertex radiosities and re-assignments for the gener- 
ated subpatches introduce negligible overhead to the 
overall parallel algorithm. Thus, the advantage of 
hypercube topology over ring topology does not 
matter although both prefix-sum and broadcast 
operations can be performed in d= log, P concurrent 
communication steps in hypercubes [21]. However, 
all-to-all personalized communication schemes pro- 
posed in the literature [22] can be exploited to reduce 
the communication volume overhead in the re- 
assignment phase on MIMD type hypercubes im- 
plementing direct routing (circuit-switching). 

5. EXPERIMENTAL RESULTS 

The proposed parallel algorithms are implemented 
and tested on rings embedded on an Intel’s iPSC/2 
hypercube multicomputer. Only the demand-driven 
scheme discussed for Phase 2 is implemented and 
tested on the hypercube topology using the direct- 
routing feature of iPSC/2. 

The form-factors are computed using hemicubes of 
constant resolution 50 x 100 x 100. The proposed 
parallel algorithms are experimented for six different 
scenes with 522, 856, 1412, 3424, 5648 and 8352 
patches. The test scenes are selected as house interiors 
consisting of objects such as chairs, tables, etc. in 
order to represent a realistic 3-D environment. 

Table 1 illustrates the effect of the local and global 
shooting patch selection (in Phase 1) on the 
convergence of the parallel algorithm. As seen in 
Table 1, global selection scheme decreases both the 
total number of shooting patch selections and the 
parallel execution time significantly. As seen in this 
table, percent decrease in the parallel execution time 
is slightly smaller than the percent decrease in the 
total number shooting patch selections for each 
instance due to the small computational and com- 
munication overhead of the global scheme compared 
to the local scheme. 

Table 2 shows the effect of the decomposition 
scheme on the performance of the hemicube produc- 
tion phase (Phase 2) of the parallel algorithm. 
Efficiency values in Table 2 are computed using: 

Ej”ciency = TsEQ/(PT~AR) (18) 

Parallel timing ( TPAR) in Eq. (18) denotes the average 
parallel hemicube production time per shooting 
patch. These timings are computed as the execution 
time of P concurrent hemicube productions divided 
by P since P hemicubes are concurrently produced 
for P shooting patches in a single iteration of Phase 
2. Sequential timing (TsEQ) in Eq. (18) denotes the 
average sequential execution time of a single hemi- 
cube production. Hence, in Table 2, an efficiency 
value denotes the quality of a decomposition scheme 
on the load balance. .4s seen in Table 2, scattered 
decomposition always achieves better load balance 
than the tiled decomposition. Note that as the 
number of processors increases, load balance quality 
of the scattered decomposition increases in compar- 
ison with that of the tiled decomposition. Further- 
more, the performance of the loosely-coupled 
approach is almost always better than the tightly- 

Table 1. Effect of the shooting patch selection scheme (in Phase 1) on the performance 

Number of shooting 
patch selections Total execution time (s) 

Percent Percent 
N P Local Global decrease Local Global decrease 

522 4 280 256 8.57 313 288 7.99 
8 320 280 12.50 184 167 9.23 

16 400 304 24.00 120 96 20.00 
1412 4 412 316 8.74 790 725 8.22 

8 488 316 22.95 417 374 21.59 
16 592 464 21.62 295 241 18.30 

5648 4 464 432 6.90 2618 2450 6.41 
8 592 448 24.32 1692 1289 23.81 

16 688 496 27.91 990 721 27.17 
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Table 2. Effect of the decomposition scheme on the performance (in terms of efficiency) 
of the hemicube production phase (Phase 2) 

Synchronous (ring) 

Tiled Scattered Asynchronous 
demand 

Tightly Tightly Loosely driven 
N P coupled coupled coupled (hypercube) 

856 4 0.696 0.888 0.884 0.893 
8 0.631 0.872 0.885 0.895 

16 0.508 0.821 0.880 0.888 
1412 4 0.848 0.865 0.875 0.890 

8 0.575 0.854 0.885 0.888 
16 0.483 0.839 0.869 0.876 

3424 4 0.717 0.769 0.887 0.892 
8 0.658 0.756 0.887 0.887 

16 0.587 0.745 0.871 0.867 
5648 4 0.774 0.797 0.839 0.867 

8 0.690 0.784 0.870 0.864 
16 0.568 0.77s 0.865 0.860 

coupled approach for communication because of the 
reduced processor idle time. As is also seen in Table 
2, the scattered decomposition together with the 
loosely-coupled synchronous circulation scheme on 
simple ring topology achieves almost the same high 
efficiency values as the asynchronous demand-driven 
scheme in spite of the fact that the demand-driven 
scheme exploits the rich hypercub_e topology and the 
direct-routing feature of iPSC/2. 

Table 3 illustrates the execution times of the 
distributed light contribution computations (Phase 4) 
during a single iteration of the parallel algorithm. The 
last column of Table 3 illustrates the percent decrease 
in the parallel execution time obtained by using the 
contribution vector circulation scheme instead of the 
form-factor vector circulation scheme. Note that the 
advantage of the contribution vector circulation 
scheme over the form-factor vector circulation scheme 
increases with increasing P as is expected. 

Figure 6 illustrates the overall efficiency curves for 
the patch circulation approach. In Fig. 6, the 
efficiency curves are constructed using Eq. (18). 
Here, TSEQ and TPAR denote the execution time 
taken for the sequential algorithm and the parallel 
algorithm on P processors, respectively, to converge 
to the same tolerance value. Note that global 
shooting patch selection, loosely-coupled synchro- 
nous patch circulation with scattered decomposition, 
and contribution vector circulation schemes are used 
in Phases 1, 2 and 4, respectively, in order to obtain 
utmost parallel performance on the ring topology. As 
seen in Fig. 6, efficiency decreases with increasing P 
for a fixed N in general. There are two main reasons 
for this decrease in the efficiency. The first one is the 
slight increase in the load imbalance of the parallel 
hemicube production phase with increasing P. The 
second, and the more crucial reason is the modifica- 
tion introduced to the original sequential algorithm 

Table 3. Effect of the circulation scheme on the performance of the light contribution computation (Phase 4) 

Contribution computation time (s) 

Form-factor vector Contributionvector Percent 
N P circulation circulation decrease 

856 4 0.0604 0.0576 4.64 
8 0.0762 0.0664 12.63 

16 0.1072 0.0784 26.87 
1412 4 0.1012 0.0962 4.94 

8 0.1232 0.1064 13.64 
16 0.1680 0.1184 29.52 

3424 4 0.2305 0.2202 4.46 
8 0.2872 0.2456 14.48 

16 0.3840 0.2640 31.25 
5648 4 0.3920 0.3680 6.12 

8 0.4760 0.4072 14.45 
16 0.6385 0.4303 32.61 

8352 4 0.5405 0.5081 6.00 
8 0.6552 0.5608 14.41 

16 0.8832 0.5888 33.33 
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Fig. 6. Overall efficiency. 

for the sake of parallelization. As discussed earlier, 
this modification increases the total number of 
shooting patch selections required for convergence 
in comparison with the sequential algorithm. Figure 
7, which illustrates the normalized efficiency values 
per single shooting patch computation, is presented 
in order to confirm the latter reason. Figure 7 
eliminates the effect of the increase in the number 
of shooting patch selections. Greater efficiency values 
in Fig. 7 than those in Fig. 6 reveal the performance 
degradation in the proposed parallel algorithm due 
to the increase in the number of shooting patch 
selections. As seen in Fig. 7, the efficiency of the 
parallel algorithm, per shooting patch computation, 
remains almost constant as is expected. 

Table 4 illustrates the variation of the increase in 
the total number of shooting patch selections for 
different tolerance values and number of processors. 
In Table 4, 8% tolerance for convergence means that 
shooting patch selections continue until the total 
energy (i.e. the sum CL, ABiAi) reduces below E 

percent of the initial energy (i.e. the initial sum). As 
seen in this table, the modification introduced for the 

0.6 
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Fig. 7. Efficiency per shooting patch. 

sake of efficient parallelization increases the total 
number of shooting patch selections. The percent 
increase in the total number of shooting patch 
selections increases with increasing number of 
processors as is expected. However, for a fixed 
number of processors, this percent increase decreases 
with decreasing tolerance values. As seen in Table 4, 
the percent increase in the number of shooting patch 
selections remains below 12% for tolerence values 
<60% for P< 128 processors. Hence, this paralleli- 
zation scheme is highly recommended for medium 
number of processors and medium tolerance values. 

Figure 8 illustrates two different views from the 
test scene data, and their tiled (upper right) and 
scattered (lower right) decompositions. Different 
colors (red, green, blue and yellow) denote patch 
assignments to four processors in the respective 
decompositions. 

6. CONCLUSIONS 

An efficient synchronous parallel progressive 
radiosity algorithm based on patch data circulation 
was proposed and discussed. The proposed scheme 

Table 4. Total number of shooting patch selections of the parallel algorithm normalized with respect to 
those of the sequential algorithm 

Final delta radiosity percentage (tolerance) 

P 70 65 60 55 50 45 40 

1 1.00 1.00 1 .oo 
2 0.99 1.00 1 .oo 
4 1.01 1.00 1.00 
8 1.00 1.01 1 .oo 
16 1.20 1.11 1.03 
32 1.30 1.25 1.04 
64 1.50 1.23 1.12 
128 1.95 1.29 1.12 

1.00 
1 .oo 
1 .oo 
1 .oo 
1.01 
1.02 
1 .Oh 
1.11 

1 .oo 1.00 
1 .oo 1.00 
1 .oo 1.00 
1.00 1.01 
1.01 1.01 
1.02 1.03 
1.05 1.05 
1.11 1.08 

1 .oo 
1.00 
1.00 
1 .oo 
1.01 
1.02 
1 .a4 
1.07 
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Fig. 8. Two views from the test scene data with 3424 patches, and their tiled (upper right) and scattered 
(lower right) decompositions. Different colors in the decomposit-.on views denote processor assignments 

for the patches. 
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performs P concurrent shooting patch computa- 
tions at a time for efficient parallelization on 
medium-to-coarse grain multi-computers with P 10. 
processors. Theoretical and experimental analysis 
shows that using simple interconnection topologies 
(such as ring) instead of rich topologies (such as 
hypercube) does not degrade the efficiency of the 11. 

parallel algorithm. The synchronous parallelism 
was proposed in order to obtain better coherence 
hence increasing the convergence rate. As expected, 12. 
the proposed parallel algorithm yields good per- 
formance for medium number of processors and 
medium tolerance values. 13. 
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