
Pergamon
Ccmput. & Graphics, Vol. 20, No. 2, pp. 307-324, 1996

Copyright 0 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0097-8493/96 $15.00+0.00

0097-8493(95)00132-8
Technical Section

A PARALLEL PROGRESSIVE RADIOSITY ALGORITHM
BASED ON PATCH DATA CI:RCULATION

CEVDET AYKANAT,+ TOLGA K. CAPIN’ and BULENT 6ZGiiC

Computer Engineering Department, Bilkent University, 0’5533 Bilkent, Ankara, Turkey
e-mail: aykanat@cs.bilkent.eclu.tr

Abstract---Current research on radiosity has concentrated on increasing the accuracy and the speed of the
solution. Although algorithmic and meshing techniques decrea,se the execution time, still excessive
computational power is required for complex scenes. Hence, parallelism can be exploited for speeding up
the method further. This paper aims at providing a thorough examination of parallelism in the basic
progressive refinement radiosity, and investigates its parallelization on distributed-memory parallel
architectures. A synchronous scheme, based on static task assignment, is proposed to achieve better
coherence for shooting patch selections. An efficient global circulation scheme is proposed for the parallel
light distribution computations, which reduces the total volume of concurrent communication by an
asymptotical factor. The proposed parallel algorithm is implemented on an Intel’s iPSC/2 hypercube
multicomputer. Load balance qualities of the proposed static assignment schemes are evaluated
experimentally. The effect of coherence in the parallel light distribution computations on the shooting
patch selection sequence is also investigated. Theoretical and experimental evaluation is also presented to
verify that the proposed parallelization scheme yields equally good performance on multicomputers
implementing the simplest (e.g. ring) as well as the richest (e.g. hypercube) interconnection topologies. This
paper also proposes and presents a parallel load re-balancing scheme which enhances our basic parallel
radiosity algorithm to be usable in the parallelization of radiosity methods adopting adaptive subdivision
and meshing techniques. Copyright 0 1996 Elsevier Science Ltd

1. INTRODUCTION

Radiosity proposed by Goral et al. [I] is an
increasingly popular method for generating realistic
images of non-existing environments. The conven-
tional radiosity method is expensive in terms of
execution time and memory requirement, and the
final image cannot be viewed until the matrix
equation is solved. This reduces the usability of the
method for complex scenes consisting of a large
number of surfaces. The progressive refinement
radiosity proposed by Cohen et al. [2] allows viewing
of the approximated partial radiosity solutions
initially and approaches the correct solution itera-
tively. This new approach eliminates the construction
of the linear system of equations, and follows the
path the light travels in the environment. The initially
approximated solutions are provided quickly and the
final solution is approached iteratively. The following
operations are performed at each iteration of the
generic progressive refinement radiosity algorithm;

1. the most energetic surface is selected as the source
surface,

2. form-factors from this source surface are com-
puted,

+ Author for correspondence.
t Present address: Commuter Grauhics Lab (EPFL-LIG).

Swiss Federal Institute o;Technoldgy, CH-lOiS Lausannd:
Switzerland.

3. depending on these form-factors, light is distrib-
uted from source surface to environment.

Although. progressive refinement radiosity has
been successful at generating realistic-looking
images, it still has computation and modeling
requirements that limit the usage of the method for
complex scenis. Several methods have been proposed
in order to :speed up the solution by using preproces-
sing techniques for hierarchical representation of the
objects or by starting with coarse patches and
adaptively subdividing the necessary regions of the
environment during the course of the solution. The
initial work in adaptive subdivision is by Cohen et al.
[3]. In this work, they propose a subdivision method
called sub-structuring with hierarchical subdivision
of the input surfaces into subsurfaces, patches and
elements. Baum et al. [4] state the ultimate con-
straints required by the radiosity method and
propose an automatic subdivision method. Campbell
and Fussell [5] present the subdivision for elimination
of light leakage. Hanrahan et al. [6] propose a
hierarchical representation of the environment. In
their algorithm, the hierarchical radiosity is inspired
by the N-Ilody problem, and the patch-to-patch
visibility is computed and the form-factor computa-
tions are performed with required precision. Smits et
al. [7] propose a view-dependent solution based on
Hanrahan’s work. Lischinski et al. [8] propose an
accurate radiosity based on discontinuity meshing.
The mesh explicitly represents the discontinuities in

307

308 C. Aykanat, T. K. Capin and B. ozgiic

the radiance function as boundaries between mesh
elements. Piecewise quadratic interpolation is used to
approximate the radiance function. This solution is
fully automatic and view-independent, and is not
limited to constant-radiosity patches and produces a
lesser number of patch elements.

Although algorithmic and meshing techniques
decrease the execution time, still excessive computa-
tional power is required for complex scenes. Hence,
parallelism can be exploited for speeding up the
method further. This paper aims at providing a
thorough examination of parallelism in the basic
progressive refinement radiosity, and investigates its
parallelization on distributed-memory parallel archi-
tectures (multicomputers). By basic radiosity algo-
rithm we mean that the hierarchical and adaptive
meshing techniques mentioned in the previous para-
graph are not exploited during parallelization. The
parallel algorithms proposed for the basic radiosity
scheme depend on the static decomposition of the
scene geometry generated during the preprocessing
phase. However, we also propose and present a
simple, yet effective parallel load re-balancing scheme
to enhance our parallel algorithms to be usable in the
parallelization of the radiosity methods adopting
adaptive subdivision and meshing techniques. The
main ideas proposed and presented in this paper can
also be exploited in the parallelization of the
hierarchical radiosity method. For example, the
patch circulation and parallel light distribution
schemes proposed in this paper can be exploited in
the parallelization of the hierarchical radiosity
method.

The hemicube algorithm proposed by Cohen and
Greenberg [9] is used for form factor computations
because of its simplicity, efficiency and possibility of
its acceleration on current graphics hardware. The
hemicube algorithm is an approximation method and
the proximity, visibility and aliasing assumptions
exploited in this algorithm may result in incorrect
computation of the form-factors. In order to solve
the problems caused by the hemicube method
assumptions and compute more accurate form-
factors, a number of form-factor computation
techniques have been proposed. In Bu and Depret-
tere’s approach [lo], the form-factor vector is
computed by locating a hemisphere over the patch
and casting rays towards the hemisphere pixels.
Wallace et al. [ll] propose a source-to-vertex ray
tracing solution. Instead of shooting rays from the
source patch in the uniform directions of hemicube
pixels, their method samples the shooting patch from
the point of view of each other surface in the
environment. From each vertex in the environment,
rays are sampled towards different parts of the
shooting patch, and tested for occlusions by other
surfaces. Although the hemicube algorithm is used
and discussed in this paper, the proposed paralleliza-
tion approach is general enough to be valid for the
parallelization of other form-factor computation
schemes.

In a multicomputer, processors have only local
memories and there is no shared memory. In these
architectures, synchronization and coordination
among processors are achieved through explicit
message passing. Multicomputers have been popular
due to their nice scalability feature. Various inter-
connection topologies have been proposed and
implemented for connecting the processors of multi-
computers. Among them, ring topology is the
simplest topology which requires only two links per
processor. Ring topology can easily be embedded
onto almost all other interconnection topologies (e.g.
hypercube, 2-D mesh, 3-D mesh, etc.). Hypercube
topology has received considerable attention among
other topologies. The popularity of the hypercube
topology may be attributed to the following: (i) many
other widely used topologies such as rings, meshes
and trees can successfully be embedded onto a
hypercube; (ii) in a d-dimensional hypercube with
2d= P processors, there exists d= log2 P connections
per processor with a maximum distance of d between
any two processors; and (iii) hypercube topology is
completely symmetric and can be decomposed into
sub-hypercubes allowing the efficient implementation
of recursive divide-and-conquer algorithms. Hyper-
cube can be considered as the richest interconnection
topology adopted in the organization of commer-
cially available multicomputers.

There are various parallel progressive refinement
implementations proposed in the literature [12-181.
Most of these approaches utilize asynchronous
schemes based on demand-driven task assignment.
The parallel progressive refinement algorithms pro-
posed in this work utilize a synchronous scheme
based on static task assignment [19]. The synchro-
nous scheme is proposed in order to achieve better
coherence during parallel light distribution computa-
tions. The proposed algorithms are implemented on
an Intel’s iPSC/2 hypercube multicomputer. The
organization of the paper is as follows. Section 2
summarizes the progressive refinement radiosity.
Section 3 presents and discusses the proposed
parallelization schemes for the basic progressive
refinement radiosity algorithm. Section 4 presents a
parallel load re-balancing scheme which enhances
our basic parallel algorithms to be usable in the
parallelization of the radiosity methods adopting
adaptive subdivision and meshing techniques.
Finally, experimental results are presented and
discussed in Section 5.

2. PROGRESSIVE REFINEMENT RADIOSITY

Progressive refinement radiosity gives an initial
approximation to the illumination of the environ-
ment and approaches the correct light distribution
iteratively. Each iteration of the basic progressive
refinement radiosity algorithm adopting the hemi-
cube method for form-factor computations can be
considered as a four-phase process:

1. shooting patch selection,

A parallel progressive radiosity algorithm 309

2. production of hemicube item-buffers,
3. conversion of item-buffers to a form-factor vector,
4. light distribution using the form-factor vector.

In the first phase, the patch with maximum energy
is selected for faster convergence. In the second
phase, a hemicube [9] is placed onto this patch and all
other patches are projected onto the item-buffers of
the hemicube using the z-buffer algorithm for hidden
patch removal. The patches are passed through a
projection pipeline consisting of: visibility test,
clipping, perspective projection and scan-conversion.
In the third phase, the form-factor vector corres-
ponding to the selected shooting patch is constructed
from the hemicube item-buffers by scanning the
hemicube and adding the delta form-factors of the
pixels that belong to the same patch.

In the last phase, light energy of the shooting patch
is distributed to the environment, by adding the light
contributions from the shooting patch to the other
patches. Distribution of light energy necessitates the
use of the form-factor vector computed in Phase 3.
The contribution from the shooting patch s to any
other patch j is given by [2]:

j(r, g, b) = Bj(r, g, h) + Wr, g, b) (2)

ABAr, g b) = ABj(r, g, 6) + Wr, g, b) (3)

Here, AB,{r, g, 6) and r,{r, g, b) denote the delta
radiosity and the reflectivity values, respectively, of
patch j (for 3 color-bands), Aj denotes the area of
patch i, and Fsj denotes the j ” element of the form-
factor vector constructed in Phase 3 for the shooting
patch s. During the execution of the algorithm, a
patch may be selected as the shooting patch more
than once. Therefore, the delta radiosity value (AB) is
stored in addition to the radiosity (B) for each patch,
which gives the difference between the current energy
and the last estimate distributed from the patch. That
is, it represents the amount of light the patch has
gathered since the last shooting from the patch. The
delta radiosity values are used for shooting patch
selection. The iterative process is halted when the
maximum or sum of ABiAi values of all patches
reduce below a user-specified tolerance value.

3. PARALLELIZATION

As mentioned earlier, progressive refinement
radiosity is an iterative algorithm. Hence, computa-
tions involved in an individual iteration should be
investigated for parallelization while considering a
proper interface between successive iterations. In this
algorithm, strong computational and data dependen-
cies exist between successive phases such that each
phase requires the computational results of the
previous phase in an iteration. Hence, parallelism at
each phase should be investigated individually while

considering the dependencies between successive
phases. Furthermore, strong computational and data
dependencies also exist within each computational
phase. T:lese intra-phase dependencies necessitate
global interaction which may result in global inter-
processor communication at each phase on a
distributed-memory architecture. Considering the
crucial gmnularity issue in parallel algorithm devel-
opment for medium-to-coarse grain multicomputers,
we have investigated a parallelization scheme which
slightly modifies the original sequential algorithm. In
the modified algorithm, instead of choosing a single
patch, P shooting patches are selected at a time on a
multicomputer with P processors. The modified
algorithm is still an iterative algorithm where each
iteration involves the following phases:

selection of P shooting patches,
production of P hemicube item-buffers,
conversion of P hemicubes to P form-factor
vectors,
distribution of light energy from P shooting
patche:, using these P form-factor vectors.

Note that the structure of the modified algorithm is
very similar to that of the original algorithm.
However, the computations involved in P successive
iterations of the original algorithm are performed
simultaneously in a single iteration of the modified
algorithm. This modification increases the granular-
ity of the computational phases since the amount of
computation involved in each phase is duplicated P
times. Furthermore, it simplifies the parallelization
since production of P hemicube buffers (Phase 2) and
production of P form-factor vectors (F’hase 3) can be
performed simultaneously and independently. Hence,
processors can concurrently construct P form-factor
vectors corresponding to P different shooting patches
without any communication.

The modified algorithm is an approximation to the
original progressive refinement method. The coher-
ence of the shooting patch selection sequence is
disturbed in the modified algorithm. The selection of
P shooting patches at a time ignores the effect of the
mutual light distributions between these patches and
the light d.istributions of these patches onto other
patches during this selection. Thus, the sequence of
shooting patches selected in the modified algorithm
may deviate from the sequence to be selected in the
original algorithm. This deviation may result in a
greater number of shooting patch selections for
convergence. Hence, the modification introduced
for the sake of parallelization may degrade the
performance of the original algorithm. This perfoxm-
ante degradation is likely to increase with the
increasing number of processors. This paper presents
an experimental investigation of this issue.

This paper is based on this algorithmic modifica-
tion of the sequential algorithm like some other
parallel im:plementations proposed in the literature.
However, these parallel implementations utilize

310 C. Aykanat, T. K. Capin and B. OzgiiG

asynchronous schemes. These asynchronous schemes
have the advantage of minimizing the processors’ idle
time since form-factor and light distribution compu-
tations proceed concurrently in an asynchronous
manner. However, in these schemes, a processor,
upon completing a form-factor vector computation
for a shooting patch, selects a new shooting patch for
a new form-factor computation. Hence, this asyn-
chronous shooting patch selection by an individual
processor does not consider the light contributions of
the form-factor computations concurrently per-
formed by other processors. Furthermore, large
numbers of asynchronous communications with large
volumes create congestion on the interconnection
network, especially in simple topologies such as ring
[131. In this work, we propose a synchronous scheme
which is expected to achieve better coherence in the
distributed shooting patch selections and eliminate
message congestion. The proposed parallelization
scheme is discussed in the following sections.

3.1. Phase I: shooting patch selection
There are two alternative schemes for performing

this phase: local shooting patch selection and global
shooting patch selection. In the local selection
scheme, each processor selects the patch with
maximum ABiAi value among its local patches. In
the global selection scheme, each processor selects the
first P patches with the greatest ABjAi values among
its local patches in sorted order and interprocessor
communication is performed in order to obtain the
first P patches with maximum energy among these
patches. Then, each processor selects a distinct
shooting patch among these maximal patches. As
will be discussed later, each processor is assumed to
hold only a subset of the overall scene description.
Thus, the local patches of an individual processor
refers to N/P patches assigned to and stored by that
processor assuming an even decomposition of a scene
with N patches to P processors.

The number of shooting patch selections required
for convergence of the parallel algorithm to the user-
specified tolerance depends on the shooting patch
selection scheme. Global scheme is expected to
converge faster because the patches with globally
maximum energy are selected. However, in the local
scheme, the shooting patches that are selected may
deviate largely, if maximum energy holding patches
are gathered in some of the processors, while the
other processors hold less energy holding patches.
Hence, the global scheme is expected to achieve
better coherence in distributed shooting patch selec-
tion. However, the global scheme requires circulation
and comparison of P buffers, hence necessitating
global communication overhead. Therefore, the
global communication scheme should be designed
efficiently considering the interconnection topology
of the processors in order to minimize this overhead.
In this work, we present efficient global patch
selection schemes for the ring and hypercube
topologies.

3.1.1. Ring topology. First, each processor selects
the first P patches with the greatest ABiAi values
among its local patches in sorted order and puts
these patches (together with their geometry and
color data) into a local buffer in decreasing order
according to their ABiAi values. Then, these local
buffers (each of size P) are circulated in P- 1
concurrent communication steps as follows. In each
concurrent step, each processor merges its local
sorted buffer of size P with the received sorted
buffer of size P, discarding P patches with the
lowest ABjAi values. Then, each processor sends its
resulting buffer (of size P) to the next processor in
the ring. Note that each processor keeps its original
local sorted buffer intact during the circulation. At
the end of P- 1 communication steps, each
processor holds a copy of the same sequence of
P patches with globally maximum ABiA< values in
decreasing order. Then, processor q selects the qfh
patch in its final patch list, for q = 0, 1, . , P- 1.
Hence, processor q effectively selects the patch with
the qfh largest ABiAi value as its shooting patch.

3.1.2. Hypercube topology. The parallel algorithm
for the hypercube topology is slightly different from
the algorithm for the ring topology. The hypercube
algorithm for global shooting patch selection uses the
communication protocol generally used for global
operations such as global sum, global maximum, etc.
[20]. This scheme involves d=loglP concurrent
exchange steps over channels i= 0, 1, , d- 1.
Here, channel i refers to the set of P/2 communica-
tion links which connect processor pairs whose d-bit
binary representations differ only in the ifh bit. In the
1 ‘I’ step, processors concurrently exchange their
current sorted buffers (each of size P) with those of
their neighbors over channel i. Then, processors
concurrently merge the received sorted buffers with
their current local sorted buffers discarding the P
patches with lowest ABiAi values. The resulting local
buffers become the current sorted buffers for the
following step of the algorithm. At the end of this
procedure, each processor holds a copy of the same
sequence of P patches with globally maximum ABiAi
values in decreasing order. Then, processor q selects
the qth patch in its local sorted patch list, for q = 0, 1,
“‘, P-l.

3.1.3. Performance analysis of Phase I. The parallel
complexity of the communication phase for shooting
patch selection on the ring topology is:

TyG ‘(P -- l)tsr, + (P - l)PTTR

+ (P - l)PTCOMP
(4)

where tsa is the message set-up time overhead, TTR is
the transmission time for a single shooting patch
data, T,o,, is the time to compare two patch entries
of the arrays. Note that only P comparisons are
enough to select the maximum P entries of two sorted
arrays, each of size P.

A parallel progressive radiosity algorithm 311

On the hypercube topology, the algorithm given in
Section 3.1.2 decreases the total complexity by
decreasing both the number and the volume of
concurrent communications, and the number of
comparison operations. The parallel complexity of
the hypercube algorithm for this phase is,

TypER = dtsu + dPTTR + dPTCoMp. (5)

Thus, the hypercube topology performs better than
the ring topology. However, computation time
required by the shooting patch selection phase is
negligible compared to the other phases discussed in
the following sections. It will be shown that the other
phases require O(N) time complexity, whereas the
shooting patch selection phase requires O(p) com-
plexity for the ring and O(P logzP) complexity for the
hypercube topology. In general, N$P for complex
scenes, and hidden constant factors in the asymptotic
notations are substantially larger in other phases
(especially in Phase 2). Hence, the performance
increase introduced by the hypercube topology over
the ring topology in this phase does not affect the
performance of the overall parallel algorithm sig-
nihcantly

3.2. Phase 2: hemicube production
In this phase, each processor needs to maintain a

hemicube for constructing the form-factor vector
corresponding to its local shooting patch. Further-
more, each processor needs to access the entire scene
description in order to fill its local hemicube item-
buffers corresponding to its local shooting patch.
One approach is to replicate the entire patch
geometry data in each processor, hence avoiding
interprocessor communication. However, this ap-
proach is not suitable for complex scenes with large
numbers of patches because of the excessive local
memory requirement of size O(N) per processor.
Hence, a more valid approach is to evenly decompose
the scene description into P patch data subsets and
map each data subset to a distinct processor of the
multicomputer, thus decreasing the local memory
requirement per processor to O(N/P).

However, the decomposition of the scene data
necessitates global interprocessor communication in
this phase since each processor owns only a portion (of
size N/P) of the patch database and needs to access the
entire database. This requires circulating the patch
subsets of the processors so that each patch data subset
visits each of the P processors exactly once. Note that
only geometry data of the patches are needed for
projecting the patches in this phase and communica-
tion of the color information is unnecessary. Since
messages can only be sent/received from/into con-
tiguous memory locations in most of the commercially
available multicomputers (e.g. iPSC/Z), the local patch
data of each processor is divided into geometry and
color parts. So, in Phase 2, only the local patch
geometry data of the processors are circulated.

For a triangular meshing of the scene, geometry
data of each triangular patch involves 3 floating-
point words for each of its 3 vertices, 3 floating-point
words for its normal, and one integer word for the
patch-id. Hence, the geometry data for each patch
requires .13 4-byte words (52 bytes in total) of
storage. The color data of each patch involves one
floating-point word for its area, 3 floating-point
words for its (r, g, b) reflectivity values, and 6
floating-point words for its (r, g, b) radiosity and
delta-radiosity values. Hence, the color data for each
patch requires 10 4-byte words (40 bytes in total) of
storage. Thus the proposed scheme, decreases the
communication volume per triangular patch from 92
bytes to 52 bytes, thus achieving a ~43.5% decrease
in the total volume of communication in Phase 2. The
following subsections present the patch circulation
algorithm:: for ring-connected and hypercube-con-
netted multicomputers.

3.2.1. Ring topology. Patch circulation needed in
this phase can be achieved in P concurrent commu-
nication sieps as follows. In each step, processors
concurrently project their current patch data subsets
onto their local hemicubes. Then, they concurrently
send these patch data subsets to their next processors
on the ring. Patch data subsets received from the
previous processors on the ring become the current
patch data subsets for the next step. At the end of P
concurrent communication steps, each processor
completes the projection of all patches onto its local
hemicube. Although P- 1 communications would be
enough for this operation, one more communication
is required in order to return all geometry data
subsets to their home processors for maintaining the
storage consistency of geometry and color data
subsets for subsequent iterations and rendering.

Figure 1 illustrates the execution of the algorithm
on a ring with 4 processors. In this figure, P4 denotes
the qfh subset of the patch geometry data which
corresponds to the original local patch data subset of
processor (I, and Hi denotes that the local hemicube
of processor q has been filled by the local patch data
subsets of the set J of processors.

We present two interprocessor communication
schemes for the implementation of the synchronous
patch data circulation in this phase: tightly-coupled
and loosely-coupled. In the tightly-coupled scheme,
each processor delays sending its current patch
data subset until it completes the projection
computations associated with those patches. This
scheme introduces processor idle time if the
projection computations associated with the current
patch subset of the destination processor are less
than those of the sending processor. The loosely-
coupled scheme is introduced to reduce the
processor idle time. In this scheme, processors
divide their current patch data subsets into two
halves. Each processor sends the appropriate half
as soon as it completes the projection operations
associated with that half. Then, it proceeds to
process the: other half after issuing a non-blocking

312 C. Aykanat, T. K. Capm and B. Ozgiiq

Local hemicube
of processors

Local patch slice

Fill with local slice

Send slice

Receive slice

Fill with local slice

Send slice

Receive slice

Fill with local slice

Send slice

Receive slice

Fill with local slice

Send slice

Receive slice

Processor

0 1 2 3

P P P P
0 1 2 3

H (01 H(Il H (21 H (3)

0 1 2 3

P
0---__

P
1---

p L-- -I:,,---
-z--e---

_ -p2-_y~- - - - -P 3

-.
P --A P -i p

3 0 1 2

“(0.3) H{o.ll H 11.2) H (2.31

0 1 2 3

P P P _---- p
3- - _ o--,~~~~---t--~;~ 2 -_ .---- - - - - -._ -.

p&--- +P -A p --A p
2 3 0 1

H 10.2.3) “(0,1,3) H to.1.21 H (1.2.3)

0 I 2 3

P2-- P P -----p
-.

--_ 3~--~=_- _ - --a-=;-- 1

p 4--- ---a--- -__ -.
P AP --A p

I 2 3 0

Hto,1.2,3) “(0,1,2,3) H to.1 v2.3) H {0,1,2,3)

0 I 2 3

P P P
I-__ 2‘ _ _

-P 0

-.
-:a<---

--.J>-:--
_ ,3----,= - - - -

-.
P L- - *P -* p --Ap

0 1 2 3

Fig. 1. Patch circulation on a ring with 4 processors

receive into the memory area corresponding to the
former half (that is already processed and sent).
Thus, messages arriving to the destination pro-
cessors usually find pending non-blocking receives,
hence enabling the overlapping of receive opera-
tions with local computations on a cycle-stealing
basis. However, blocking send mode should be
used in order to prevent the arriving message to
contaminate the message being sent. Note that
both schemes use in-place communications since
they do not necessitate any extra send/receive
buffer.

Xd = Xd-l(d - I)&-, , ford> 1, whereXr =0

(6)

3.2.2. Hypercube ropology. For MIMD hyper-
cubes, patch circulation can be achieved by embed-
ding the ring onto the hypercube using Gray Code
ordering scheme. However, this embedding utilizes
different channels of the hypercube for the commu-
nication between successive processors of the em-
bedded ring. This necessitates d successive
communication steps to achieve a single concurrent
shift in the ring embedded on SIMD hypercubes. An
efficient circulation scheme for a d-dimensional
SIMD hypercube can be achieved with the use of
exchange sequence X, [21]:

For example, X2= (0, 1, 0) and XJ = {0, 1, 0, 2, 0,
1, 0) are the exchange sequences for 2-D and 3-D
SIMD hypercubes, respectively. The exchange
sequence X, specifies the sequence of bidirectional
channels to be used for interprocessor commu-
nications in successive concurrent exchange
communication steps. The recursive definition of
the exchange sequence X, states that the d-
dimensional hypercube is divided into two d- 1
sub-hypercubes over channel d- 1 (represented by
the X,-r subsequences). In the first phase corre-
sponding to the prefix subsequence Xd- r, patch
data circulation is performed independently and
concurrently in these two d- 1 dimensional sub-
cubes using the exchange sequence X,- ,. Then, in
the second phase, processors of these two sub-
cubes exchange their current patch data subsets
with each other over channel d- 1. In the last
phase corresponding to the postfix subsequence
X,-r, patch data circulation is performed inde-

A parallel progressive radiosity algorithm 313

Processor

0 1 2 3 4 5 6 7

Local hemicube H H H H H H H H
of processors 0 2 3 4 5 6 7 x3

Local patch slice P P P P P P P P
0 2 3 4 5 Ii 7

Project & send slice
P

u:=:”
-P

I
“A

Receive new slice ‘T’ ‘o

P . P. P . P ,P .P
2 ..,,I 3 4‘. ,’ 5 h *. I’ 7

,a

PA’
,’ .‘A I-\

PA’
.A ,

P P P
L’ .~ 0

P
3 2 5 4 1 6

Project s(send slice P.;. ,‘pq P . ,P P \ ,P P \ ,P
‘.,’ I \. ,’ II 7 ‘.*,’ 6 5 -. I’ 4

,’ -. ,I.

PK aP pK’ ‘Ap
.’ -\

pkx’ *p
,,l-.A 0

Receive new slice P
4’

P
2 3 (I I 6 7 4 5

Project Rr send slice
P

6‘. -*‘7
P

4‘.. ,’
.P P. ,P

5 2‘. ,’ 3
,‘-‘. .%. ;z

Receive new slice ‘7’
0

2

Project Kr send slice
P _ P _ P -P

7 --. 4 3 --_ _.z<2-- -.;=--P ;_>.y- (1
-. - LT-- &-- ;/-- -. I

Receive new slice ’ P P %P -P
5 4 7 6 0 3 2

Project Kr send slice
P. ,P P. ,P P. P

5‘. ,’ 4 I’.\ ,T’ 0 P.;. ,,-p 7 -. *’ h 2
=: :>r ,

Receive new slice
‘2’ ‘A ,*4‘.4

P P
L’ 6 7 Pfi 0 ,‘^\A fl 2 .4 3 0

P P P P
5

Fig. 2. Patch circulation on a 3-D hypercube.

pendently and concurrently in these two d- 1 3.2.3. Performance analysis of Phase 2. The parallel
dimensional subcubes using the exchange sequence algorithms given for the ring and the hypercube
Xd- i. Note that P- 1 communication steps are topologies both require P concurrent communica-
enough for circulating all the patches so that each tions and a communication volume of N/P patch
patch subset visits all the processors. One more geometry data in each concurrent communication.
exchange communication over channel d- 1 is Hence, the efficiency of this phase is independent of
required to return all patch data subsets to their the interconnection topology of the processors, so the
home processors for maintaining patch data storage performance of this phase does not degrade with
consistency. Figure 2 illustrates this patch circula- simple topologies. It follows that the parallel com-
tion scheme on a 3-D hypercube with 8 processors. plexity of Phase 2 is:

314 C. Aykanat, T. K. Capm and B. Ozgiic

Tp2 = Pku + W/f') T$-,q + W/P) TPROJ

= Ptsu t NT& t NTPROJ
(7)

Here, T”TR is the time taken for the transmission of
the geometry data of a single patch, T~ROJ is the
average time taken to project and scan-convert one
patch onto a hemicube.

There are two crucial factors that affect the
efficiency of the parallelization in this phase: load
imbalance and communication overhead. Note that
the parallel complexity given in Eq. (7) assumes a
perfect load balance among processors. Mapping
equal number of patches to each processor achieves
balanced communication volume at each concurrent
communication step. Furthermore, as will be dis-
cussed later, it achieves perfect load balance among
processors in the parallel light distribution phase
(Phase 4). However, this mapping may not achieve
computational balance in the parallel hemicube
production phase (Phase 2).

The complexity of the projection of an individual
patch onto a hemicube depends on several geometric
factors. Recall that each patch passes through a
projection pipeline consisting of visibility test, clip-
ping, perspective projection and scan-conversion. A
patch which is not visible by the shooting patch
requires much less computation compared to a visible
patch since it leaves the projection pipeline in a very
early stage. The complexity of the scan-conversion
stage for a particular patch depends strongly on the
distance and the orientation of that patch with
respect to the shooting patch. That is, a patch with
larger projection area on a hemicube requires more
scan-conversion computations than a patch with a
smaller projection area. As mentioned earlier, each
iteration of the proposed algorithm consists of P
concurrent steps. At each step, different processors
concurrently perform the projection of different
patch subsets onto different hemicubes. Hence, the
decomposition scheme should be carefully selected in

order to maintain the computational load balance in
this phase of the algorithm.

Two possible decomposition schemes are tiled and
scattered decompositions. In the tiled decomposition,
the neighboring patches are assigned to the same
processors. This type of decomposition can be
achieved in the following way: assuming that the
patches that belong to the same surface are supplied
consecutively, the first N/P patches are allocated to
processor 0, the next N/P patches are allocated to
processor 1, and etc. At the end of the decomposition,
each processor stores almost equal number of patches
in its local memory. In the scattered decomposition,
the neighboring patches are stored in different
processors, therefore the patches that belong to a
surface are shared by different processors. Scattered
decomposition can be achieved in the following way:
again assuming that the neighbor patches belonging
to the same surface are supplied consecutively, the
incoming patches are allocated to the processors in a
round-robin fashion. That is, the first patch is
allocated to processor 0, the next to processor 1, etc.
When P patches are allocated, the next incoming
patch is allocated to processor 0, and this process
continues. When the decomposition is completed, first
N mod P processors store [N/P] patches, while the
remaining processors store LN/P] patches in their
local memories. Figure 3 illustrates the scattered and
tiled decompositions of a simple scene consisting of
four faces of a room. The numbers shown inside the
patches indicate their processor assignments for a 4
processor multicomputer.

Assuming that neighbor patches require an almost
equal amount of computation for projection on
different hemicubes, the scattered decomposition is
expected to produce patch partitions requiring an
almost equal amount of computations in Phase 2. So,
it can be expected that the scattered decomposition
achieves a much better load balance than the tiled
decomposition in Phase 2.

Scattered decomposition Tiled decomposition

Fig. 3. Scattered and tiled decomposition schemes

A parallel progressive radiosity algorithm 315

Communication overhead in this phase consists of
two components: number of communications and
volume of communications. Each concurrent com-
munication step adds a fixed message set-up time
overhead tSu to the parallel algorithm. In medium
grain multicomputers (e.g. Intel’s iPSC/2 hypercube)
tSU is substantially greater than the transmission time
tTR where tTR denotes the time taken for the
transmission of a single word. For example,
tsuz 550 p, where ~TR z 1.44 ps per 4-byte word in
iPSC/2. Note that T gTR = 13tTR in Eq. (7), since the
communication of an individual patch geometry
involves the transmission 13 4-byte words.

However, as seen in Eq. (7), the total number of
concurrent communications at each iteration is equal
to the number of processors P, whereas the total
volume of concurrent communication is equal to the
number of patches N. Hence, the set-up time over-
head is negligible for complex scenes (NFP). Then,
assuming a perfect load balance, efficiency of Phase 2
can be expressed as:

&=1 PNTPROJ

p PNTPRoJ+P~sL,+ NT”rR

NTPROJ

NN NTPRoJ+NT&

TPROJ 1 =- =
TPROJ+ T$R 1 -+%~TPRoJ

since one iteration of the parallel algorithm is
computationally equivalent to P iterations of the
sequential algorithm. Equation 8 means that projec-
tion of an individual patch onto a hemicube involves
the communication of its geometry data as an
overhead. As seen in Eq. (8), the overall efficiency
of this phase only depends on the ratio TtR/TpRoJ
for sufficiently large N/P. For example, efficiency is
expected to increase with increasing patch areas and
increasing hemicube resolution, since the granularity
of a projection computation increases with these
factors.

In this work, we have also developed and
implemented a demand-driven (asynchronous) patch
circulation scheme for the experimental performance
evaluation of the proposed loosely-coupled synchro-
nous scheme with scattered decomposition. The
proposed demand-driven implementation exploits
both the rich hypercube topology and the direct-
routing feature of iPSC/2 architecture. The direct-
routing hardware of iPSC/2 almost achieves single-
hop communication performance on multi-hop com-
munications by avoiding the interception of inter-
mediate processors. In this scheme, as soon as a
processor completes the projection of its current
patch subset it makes a request to another processor
(in a deterministic order). When a processor receives
a request, it sends its initially assigned local patch
subset to the requesting processor. Processors reply
requests in interrupt-driven mode in order to mini-

mize the idle time of the requesting processor. Non-
blocking sends are used during these replies in order
to overlap send operations with the local computa-
tions. Ths scheme necessitates an extra local memory
space of size @N/P) in each processor to hold the
current patch subset to be received upon request in
addition to the initially assigned patch subset. Note
that extra memory space will be needed in the
processors of a hypercube multicomputer which
utilizes store-and-forward type software routing for
handling multi-hop messages since intermediate
processors are intercepted in such routing schemes.
Hence, this scheme is not efficient for multicomputer
architectures which do not implement the direct
routing scheme. This demand-driven scheme is also
not efficient for parallel architectures implementing
simple interconnection topologies (e.g. ring) due to
network congestion.

3.3. Phase 3: form-factor vector computation
In this phase, each processor can concurrently

compute the form-factor vector corresponding to its
shooting patch using its local hemicube item-buffers
constructed in the previous phase. This phase
requires no interprocessor communication. Local
form-fact’or vector computations involved in this
phase require scanning all hemicube item-buffer
entries. Hence, perfect load balance is easily achieved
since each processor maintains a hemicube of equal
resolution.

3.4. Phase 4: light distribution
At the end of Phase 3, each processor holds a local

form-factor vector corresponding to its shooting
patch. In this phase, each processor should compute
the light contributions from all P shooting patches to
its local Ipatches. Hence, each processor needs all
form-factor vectors. Thus, this phase necessitates
global interprocessor communication.

We introduce a vector notation for the sake of
clarity of the presentation of the algorithms
discussed in this section. Let X, denote the qth slice
of a global vector X assigned to processor q. For
example, each processor q can be considered as
storing the qth slice of the global array of records
representing the entire patch geometry data. In this
notation, each processor q is responsible for
computing the qrh slice AB, of the global contribu-
tion vector AB in order to update the qfh slices B,
and AB, of the global radiosity and delta radiosity
vectors B and AB, respectively. The notation used to
label the i3 distinct form-factor vectors computed by
P processors is slightly different. In this case, Fp
denotes the form-factor vector computed by pro-
cessor p and F; denotes the qth slice of the local
form-factor of processor p. In other words, F:
denotes th.e form-factors from the shooting patch of
processor p to the local patches of processor q.

As seen in Eq. (I), red, green and blue reflectivity
values and the area of each patch i are needed as
three ratios r,ir, g, b)/Ai in the contribution computa-

316 C. Aykanat, T. K. Capin and B. bgiiq

tions. Hence, each processor q computes these three
ratios for each local patch and stores them into a
local vector rq(r, g, b) (of size N/P) during
preprocessing. That is, each processor q can be
considered as holding the qth slice r&r, g, b) of the
global vector r(r, g, b) which contains these constants
for all patches. Hence, in vector notation, each
processor q, for q = 0, 1, , P- 1, is responsible for
computing

P-l

&(r, g, b) = c W(r, g, b)A:(q(r, g, b) x F$)
p=o

(9)

%(r, g, b) = B,(r, g, b) +bR,(r, g, b) (10)

&(r, g, b) = AB,(r, g, b) +&(r, g, b) (11)

where Aq(r, g, b) and A! denote the delta radiosity
values for three color-bands and the area of the
shooting patch of processor p. In Eq. (9) “x”
denotes the element-by-element multiplication of two
column vectors. As seen in Eqs (10) and (1 l),
radiosity and delta-radiosity update computations
are local vector additions which do not require any
interprocessor communication. It is the contribution
computation phase (Eq. 9), which requires global
interaction. Equation (9) can be rewritten by factor-
ing out the r4 vector as

UP,(r, g, b) = Aq(r, g, b)4’F:

forp=O, 1, P- 1 (12)

P-l

U,(r, g, b) = C Up,(r, g, b) (13)
pal

%(r, g, b) = dr, g, b) x U,(r, g, b) (14)

Note that the notation used to label the U vectors is
similar to that of the F vectors. That is, U:(r, g, b) (of
size N/P) represents the contribution vector of the
shooting patch of processor p to the local patches of
processor q omitting the multiplications with the
respective local r,{r, g, b)/Aj coefficients. Hence, U,(r,
g, b) (of size N/P) represents the total contribution
vector of all P shooting patches to the local patches
of processor q, omitting the multiplications with the
respective local r,{r, g, b)/Aj coefficients. The follow-
ing sections present the ring and hypercube algo-
rithms for performing this phase.

3.4.1. Ring topology. The first approach discussed
in this work is very similar to the implementation
proposed by Chalmers et al. [13]. In their implemen-
tation, each processor p broadcasts a packet consist-
ing of the delta radiosities, area and the form-factor
vector of its shooting patch. Each processor q, upon
receiving a packet {Aq, A:, Fp}, computes a local
contribution vector U$(r, g, b) by performing a local

scalar vector product for each color (Eq. 12) and
accumulates this vector to its local U&r, g, b) vector
by performing a local vector addition operation (Eq.
13). However, multiple broadcast operations with
high volumes are expensive and may cause excessive
congestion even in rich interconnection topologies. In
this work, indicated packets are circulated in a
synchronous manner, similar to the patch circulation
scheme discussed for Phase 2. This circulation
operation requires P- 1 concurrent communication
steps. Between each successive communication step,
each processor concurrently performs the contribu-
tion vector accumulation computations (Eqs 12 and
13) corresponding to its current packet. At the end of
P- 1 concurrent communication steps, each proces-
sor q accumulates its total contribution vector U,(r,
g, b). Then, each processor q can concurrently
compute its local AR,(r, g, b) vector by performing
a local element-by-element vector multiplication for
each color (Eq. 14).

It is obvious that perfect load balance in this phase
can easily be achieved by mapping an equal number
of patches to each processor. Hence, the parallel
complexity of Phase 4 using the form-factor vector
circulation scheme is,

Tp4 = (P- l)tsu + (P - l)Ntl, + P(N/P)TCoNrR

+ (NIP) TLIPD

= (p - lhu + (p - l)Ntl, + NTcaNrR

+ (N/f’) TC/PD

Here, tt, is the time taken to transmit a single floating
point word, TCON~R is the time taken to compute and
accumulate a single contribution value, and TUpD is
the time taken to update a single radiosity and delta
radiosity value using the corresponding entry of a
local U, vector.

Note that, in this scheme, processors accumulate the
contributions for their local patches during the
circulation of form-factor vectors. Hence, as also seen
in Eq. (15), this scheme necessitates high volume of
communication ((P- l)N words) since entire form-
factor vectors, each of size N, are concurrently
communicated at each communication step. However,
as also seen in Eqs (12) and (13), each processor q
needs only the qfh slices (each of size N/P) of the form-
factor vectors it receives during the circulation. That
is, the form-factor circulation scheme involves the
circulation of redundant information. In this work, we
propose an efficient scheme which avoids this redun-
dancy in the interprocessor communication. In the
proposed scheme, partial contribution computation
results, Uz(r, g, b) vectors (each of size N/P), are
circulated instead of the form-factor vectors (each of
size N). Hence, each processor effectively accumulates
the contributions of its local shooting patch to all
other processors’ local patches during the circulation
of the partial contribution computation results.

A parallel progressive radiosity algorithm 317

In a straightforward implementation of the pro-
posed scheme, each processor q first constructs the
contribution vector Ui(r, g, b) of its shooting patch
to its local patches, and initiates the circulation of
contribution vectors. After the ith concurrent com-
munication step in the circulation, processor q

;;;:y the uyq-l”odP (r, g, b) vector using the

(q-i)modP of its ocal form-factor vector Fq, and
accumulates this vector to the current partial
contribution vector. At the end of P- 1 concurrent
communication steps, each processor q holds the final
contribution vector U~q+t)mo&r, g, b) of the next
processor in the ring. Hence, one more communica-
tion is needed in order to return the final contribution
vectors to their home processors. However, this final
communication step can be avoided by each pro-
cessor q constructing U~q~~dOJr. g, b) vector in ;k;
initialization phase accumulating

yq-i- 1)modP(r’ g, b) vector at step i. Figure 4
illustrates the node program (in pseudocode) of the
proposed contribution vector circulation scheme for
the ring topology. In this pseudocode, the local
variable mynode is assumed to contain the index of
the respective node processor. Note that U, AR, B,
and AB represent local arrays, each of size N/P, in the
pseudocode in contrary to the global vector notation
used in the texl..

3.4.2. Hypercube topology. The algorithm pro-
posed for the SIMD hypercubes is similar to that for
the ring topology. This phase again requires the
exchange sequence introduced for Phase 2 in order to
circulate the partial contribution computation
results. Figure 5 illustrates the node program (in
pseudocode) of the proposed contribution vector
circulation scheme for the hypercube topology. In

Fig. 5, Xdij denotes the ifh channel in the exchange
sequence & defined in Eq. (6).

3.4.3. Performance analysis of Phase 4. As seen in
Figs 4 and 5, the contribution vector circulation
schemes proposed for ring and hypercube topologies
both require P- 1 concurrent communications and a
communication volume of 3N/P floating point words
at each concurrent communication. Both schemes
preserve the perfect load balance, if exactly equal
number of patches are mapped to each processor.
Hence, tke efficiency of this phase is also independent
of the interconnection topology of the processors.
Thus, the performance of this phase does not degrade
with simple topologies. It follows that the parallel
complexi;:y of Phase 4 is:

Tp4 =: (p - l)tsu + 3(P - 1) (N/P)t,,

l P(NIP)TCONTR + (N/ P)T”~D

=: (P- l)tsr,+3 y Nto t NTCONTR

N
fp TUPD

Note thal: the constant 3 appears as a coefficient in
the “t(,” term since each entry of an individual U:
vector consists of 3 contribution values for 3 color-
bands. Comparison of Eq. (16) with Eq. (15)
confirms that the proposed contribution vector
circulation scheme reduces the total concurrent
communication volume in Phase 4 by an asympto-
tical factor of P/3, for P>3, compared to the form-
factor vector circulation scheme.

As seen in the for-loops of Figs 4 and 5,

/* AB, : delta radiosity of the local shooting patch

‘4, : area of the local shooting patch
F : local form-factor array, of size N

U, AR, B, AB : local arrays, each of size NIP */
nextn,ode = (mynode •t 1)modP;
p-evn.ode = (mynode - 1)nrodP;
y = mynode;
iMr,g,b) = ABs(T,g,bMs;
U(T, g, b) = b’s(r, g, ~)Fpreunode;
for p:= 1 to P-l do

send U(r,g,b) to processor neztnode;
receive into U(r,g,b) from processor prevnodc;
U(T,g,b)= U(T,g,b)+p,(T,g,b)F(q--p--l)modP;

endfor

AR(r,g,b) = r(r,g,b) x U(r,g,b);

Wr,g,b) = B(r,g,b)t AR(r,g,b);
.4B(~.g,b) = AB(T,g,b)+ AR(r,g,b);

Fig. 4. The contribution vector circulation scheme for the ring topology

318 C. Aykanat, T. K. Capm and B. Ozgiig

/* AB, : delta radiosity of the local shooting patch
A, : area of the local shooting patch
F : local form-factor array, of size N
U, AR, B, AB : local arrays, each of size N/P */
d = log,P;
q = mynode $ 2d-1 ;
Ps(r,g,b) = AB.dT,g,b)As;
U(r,g,b) = Ps(T,g,bP’,;
for i=O to P-l do

dnode = mynode $ 2Xd[i] ;
send U(r,g, b) to processor dnode;
receive into U(r,g, b) from processor dnode;
9 = * @ ‘p&l ;

U(r,g,b) = U(r,g,b)+ Bs(r,g,b)F,;
endfor
ANT, 9, b) = r(T,g, b) x U(r, g, b);
B(r,g,b) = B(r,g,b)+ AR(r,g,b);
AB(~,g,bj = AB(r,g,b) t AR(r,g,b);

Fig. 5. The contribution vector circulation scheme for the hypercube topology.

computation and accumulation of a single con-
tribution val;e (except the initialization) require 1
multiplication and 1 addition operation, for each
color-band, at each step. Hence, TCoNTR = (3 x 2)t,,/,
= 6tcnro where tcalc denotes the time taken by
floating-point multiplication and addition opera-
tions. As also seen in these two figures (after the

for-loops), updating a single radiosity and delta-
radiosity value using the respective entry of the local
U array requires 1 multiplication and 2 addition
operations for each color-band. Hence,

Similar to the efficiency analysis of Phase 2, the set-
up time overhead becomes negligible for sufficiently
large granularity values (N/P&-). Then, the efficiency
of Phase 4 can be expressed as:

1
Ep4 =- PWCONTR + TUPD)

P NTCONTR +(N/P)TuPD+P~s~+~N~,,

TcONTR+ TUPD
52

TCONTR + TuPD/~+ 3trr

1 %dc

= 6tcarc + %czdP + %

1

= 0.4 + 0.6/P + 0.2(trr/tcalc)
(17)

since one iteration of the parallel algorithm is
computationally equivalent to P iterations of the
sequential algorithm. Note that rj(r, g, b)/Aj values,
for all patches, are also assumed to be computed and
stored during the preprocessing phase of the sequen-

tial algorithm. As seen in Eq. (17), the efficiency of the
proposed contribution vector circulation scheme
increases with increasing number of processors for a
fixed granularity (N/P). Furthermore, this scheme will
yield superlinear speedup (efficiency value greater
than 1) for a wide range of machine specific ttr/tcalc
values. For example, even for P=2, superlinear
speedup can be obtained for t,,/tcalc< 1.5 (e.g.
t,r/tCo~cz 1.44 pet/5.8 psecw0.25 in iPSC/2). The
superlinear speedup in this phase may appear to be
controversial since the conventional algorithm per-
forms P radiosity and delta-radio&y update compu-
tation phases, whereas the modified algorithm
performs only one update computation phase, for P
shooting patch selections. However, this analysis is
still valid since it is not rational to use the modified
algorithm on sequential computers and the per-
formance degradation of the parallel algorithm due
to this modification is also included in its experi-
mental performance evaluation.

4. LOAD REBALANCING FOR ADAPTIVE SUBDIVISION

In this section, we propose a simple, yet effective
parallel load re-balancing scheme to enhance our
parallel algorithms to be usable in the parallelization
of the radiosity methods adopting adaptive subdivi-
sion and meshing techniques.

Assume that at the beginning of a particular
iteration k first Qk = Nk mod P processors, 0, 1, . . . ,
Qk- 1, store [Nk/P’J patches, while the remaining
processors, Qk, Qk+], . . , P- 1, store INk/P]
patches in their local memories. Here, Nk denotes
the total number of patches to be processed in the
current iteration k including the subpatches obtained

326 J. C. Sprott

320 C. Aykanat, T. K. Capm and B. Ozgiiq

beginning of the next iteration k+ 1. Here,
Nk+, = Nk + Mk denotes the total number of patches
to be processed at iteration k+ 1. Hence, the
proposed scheme restores the even distribution of
the patches while maintaining the nice scattered
decomposition at the beginning of each iteration.
Note that each processor should know Qk+ 1 for the
load re-balancing operation to be performed at the
end of iteration k + 1. It is sufficient to have processor
P- 1 compute and broadcast Qk+ I= (Qk + Mk) mod
P since it already has spW1 =Mk. This broadcast
operation requires P- 1 left or right shift operations
on the successive processors of the ring starting from
processor P- 1.

Communication overhead introduced during the
circulation of patch radiosity values is negligible since
only two words (one integer and one floating-point
word) are circulated for each patch. Communication
overhead introduced during the subpatch circulation
operation can also be considered as negligible if
Mk < Nk during the iterations. Hence, calculations
and communication operations (circulation, prefix-
sum and broadcast) performed for computing the
vertex radiosities and re-assignments for the gener-
ated subpatches introduce negligible overhead to the
overall parallel algorithm. Thus, the advantage of
hypercube topology over ring topology does not
matter although both prefix-sum and broadcast
operations can be performed in d= log, P concurrent
communication steps in hypercubes [21]. However,
all-to-all personalized communication schemes pro-
posed in the literature [22] can be exploited to reduce
the communication volume overhead in the re-
assignment phase on MIMD type hypercubes im-
plementing direct routing (circuit-switching).

5. EXPERIMENTAL RESULTS

The proposed parallel algorithms are implemented
and tested on rings embedded on an Intel’s iPSC/2
hypercube multicomputer. Only the demand-driven
scheme discussed for Phase 2 is implemented and
tested on the hypercube topology using the direct-
routing feature of iPSC/2.

The form-factors are computed using hemicubes of
constant resolution 50 x 100 x 100. The proposed
parallel algorithms are experimented for six different
scenes with 522, 856, 1412, 3424, 5648 and 8352
patches. The test scenes are selected as house interiors
consisting of objects such as chairs, tables, etc. in
order to represent a realistic 3-D environment.

Table 1 illustrates the effect of the local and global
shooting patch selection (in Phase 1) on the
convergence of the parallel algorithm. As seen in
Table 1, global selection scheme decreases both the
total number of shooting patch selections and the
parallel execution time significantly. As seen in this
table, percent decrease in the parallel execution time
is slightly smaller than the percent decrease in the
total number shooting patch selections for each
instance due to the small computational and com-
munication overhead of the global scheme compared
to the local scheme.

Table 2 shows the effect of the decomposition
scheme on the performance of the hemicube produc-
tion phase (Phase 2) of the parallel algorithm.
Efficiency values in Table 2 are computed using:

Ej”ciency = TsEQ/(PT~AR) (18)

Parallel timing (TPAR) in Eq. (18) denotes the average
parallel hemicube production time per shooting
patch. These timings are computed as the execution
time of P concurrent hemicube productions divided
by P since P hemicubes are concurrently produced
for P shooting patches in a single iteration of Phase
2. Sequential timing (TsEQ) in Eq. (18) denotes the
average sequential execution time of a single hemi-
cube production. Hence, in Table 2, an efficiency
value denotes the quality of a decomposition scheme
on the load balance. .4s seen in Table 2, scattered
decomposition always achieves better load balance
than the tiled decomposition. Note that as the
number of processors increases, load balance quality
of the scattered decomposition increases in compar-
ison with that of the tiled decomposition. Further-
more, the performance of the loosely-coupled
approach is almost always better than the tightly-

Table 1. Effect of the shooting patch selection scheme (in Phase 1) on the performance

Number of shooting
patch selections Total execution time (s)

Percent Percent
N P Local Global decrease Local Global decrease

522 4 280 256 8.57 313 288 7.99
8 320 280 12.50 184 167 9.23

16 400 304 24.00 120 96 20.00
1412 4 412 316 8.74 790 725 8.22

8 488 316 22.95 417 374 21.59
16 592 464 21.62 295 241 18.30

5648 4 464 432 6.90 2618 2450 6.41
8 592 448 24.32 1692 1289 23.81

16 688 496 27.91 990 721 27.17

A parallel progressive radiosity algorithm 321

Table 2. Effect of the decomposition scheme on the performance (in terms of efficiency)
of the hemicube production phase (Phase 2)

Synchronous (ring)

Tiled Scattered Asynchronous
demand

Tightly Tightly Loosely driven
N P coupled coupled coupled (hypercube)

856 4 0.696 0.888 0.884 0.893
8 0.631 0.872 0.885 0.895

16 0.508 0.821 0.880 0.888
1412 4 0.848 0.865 0.875 0.890

8 0.575 0.854 0.885 0.888
16 0.483 0.839 0.869 0.876

3424 4 0.717 0.769 0.887 0.892
8 0.658 0.756 0.887 0.887

16 0.587 0.745 0.871 0.867
5648 4 0.774 0.797 0.839 0.867

8 0.690 0.784 0.870 0.864
16 0.568 0.77s 0.865 0.860

coupled approach for communication because of the
reduced processor idle time. As is also seen in Table
2, the scattered decomposition together with the
loosely-coupled synchronous circulation scheme on
simple ring topology achieves almost the same high
efficiency values as the asynchronous demand-driven
scheme in spite of the fact that the demand-driven
scheme exploits the rich hypercub_e topology and the
direct-routing feature of iPSC/2.

Table 3 illustrates the execution times of the
distributed light contribution computations (Phase 4)
during a single iteration of the parallel algorithm. The
last column of Table 3 illustrates the percent decrease
in the parallel execution time obtained by using the
contribution vector circulation scheme instead of the
form-factor vector circulation scheme. Note that the
advantage of the contribution vector circulation
scheme over the form-factor vector circulation scheme
increases with increasing P as is expected.

Figure 6 illustrates the overall efficiency curves for
the patch circulation approach. In Fig. 6, the
efficiency curves are constructed using Eq. (18).
Here, TSEQ and TPAR denote the execution time
taken for the sequential algorithm and the parallel
algorithm on P processors, respectively, to converge
to the same tolerance value. Note that global
shooting patch selection, loosely-coupled synchro-
nous patch circulation with scattered decomposition,
and contribution vector circulation schemes are used
in Phases 1, 2 and 4, respectively, in order to obtain
utmost parallel performance on the ring topology. As
seen in Fig. 6, efficiency decreases with increasing P
for a fixed N in general. There are two main reasons
for this decrease in the efficiency. The first one is the
slight increase in the load imbalance of the parallel
hemicube production phase with increasing P. The
second, and the more crucial reason is the modifica-
tion introduced to the original sequential algorithm

Table 3. Effect of the circulation scheme on the performance of the light contribution computation (Phase 4)

Contribution computation time (s)

Form-factor vector Contributionvector Percent
N P circulation circulation decrease

856 4 0.0604 0.0576 4.64
8 0.0762 0.0664 12.63

16 0.1072 0.0784 26.87
1412 4 0.1012 0.0962 4.94

8 0.1232 0.1064 13.64
16 0.1680 0.1184 29.52

3424 4 0.2305 0.2202 4.46
8 0.2872 0.2456 14.48

16 0.3840 0.2640 31.25
5648 4 0.3920 0.3680 6.12

8 0.4760 0.4072 14.45
16 0.6385 0.4303 32.61

8352 4 0.5405 0.5081 6.00
8 0.6552 0.5608 14.41

16 0.8832 0.5888 33.33

322 C. Aykanat, T. K. Capm and B. Ozgii$

06
0”
5 -= 05

E

04

O3 t
0.2 /

0 2000 4000 6000 8000
Number of patches (N)

Fig. 6. Overall efficiency.

for the sake of parallelization. As discussed earlier,
this modification increases the total number of
shooting patch selections required for convergence
in comparison with the sequential algorithm. Figure
7, which illustrates the normalized efficiency values
per single shooting patch computation, is presented
in order to confirm the latter reason. Figure 7
eliminates the effect of the increase in the number
of shooting patch selections. Greater efficiency values
in Fig. 7 than those in Fig. 6 reveal the performance
degradation in the proposed parallel algorithm due
to the increase in the number of shooting patch
selections. As seen in Fig. 7, the efficiency of the
parallel algorithm, per shooting patch computation,
remains almost constant as is expected.

Table 4 illustrates the variation of the increase in
the total number of shooting patch selections for
different tolerance values and number of processors.
In Table 4, 8% tolerance for convergence means that
shooting patch selections continue until the total
energy (i.e. the sum CL, ABiAi) reduces below E

percent of the initial energy (i.e. the initial sum). As
seen in this table, the modification introduced for the

0.6
6
5 .= 0.5

E
w

0.4

0.1 ‘-

0.0 - I /
0 2000 4000 6000 8000

Number of patches (N)

Fig. 7. Efficiency per shooting patch.

sake of efficient parallelization increases the total
number of shooting patch selections. The percent
increase in the total number of shooting patch
selections increases with increasing number of
processors as is expected. However, for a fixed
number of processors, this percent increase decreases
with decreasing tolerance values. As seen in Table 4,
the percent increase in the number of shooting patch
selections remains below 12% for tolerence values
<60% for P< 128 processors. Hence, this paralleli-
zation scheme is highly recommended for medium
number of processors and medium tolerance values.

Figure 8 illustrates two different views from the
test scene data, and their tiled (upper right) and
scattered (lower right) decompositions. Different
colors (red, green, blue and yellow) denote patch
assignments to four processors in the respective
decompositions.

6. CONCLUSIONS

An efficient synchronous parallel progressive
radiosity algorithm based on patch data circulation
was proposed and discussed. The proposed scheme

Table 4. Total number of shooting patch selections of the parallel algorithm normalized with respect to
those of the sequential algorithm

Final delta radiosity percentage (tolerance)

P 70 65 60 55 50 45 40

1 1.00 1.00 1 .oo
2 0.99 1.00 1 .oo
4 1.01 1.00 1.00
8 1.00 1.01 1 .oo
16 1.20 1.11 1.03
32 1.30 1.25 1.04
64 1.50 1.23 1.12
128 1.95 1.29 1.12

1.00
1 .oo
1 .oo
1 .oo
1.01
1.02
1 .Oh
1.11

1 .oo 1.00
1 .oo 1.00
1 .oo 1.00
1.00 1.01
1.01 1.01
1.02 1.03
1.05 1.05
1.11 1.08

1 .oo
1.00
1.00
1 .oo
1.01
1.02
1 .a4
1.07

A parallel progressive radiosity algorithm 323

Fig. 8. Two views from the test scene data with 3424 patches, and their tiled (upper right) and scattered
(lower right) decompositions. Different colors in the decomposit-.on views denote processor assignments

for the patches.

324 C. Aykanat, T. K. Capm and B. Gzgiip

performs P concurrent shooting patch computa-
tions at a time for efficient parallelization on
medium-to-coarse grain multi-computers with P 10.
processors. Theoretical and experimental analysis
shows that using simple interconnection topologies
(such as ring) instead of rich topologies (such as
hypercube) does not degrade the efficiency of the 11.

parallel algorithm. The synchronous parallelism
was proposed in order to obtain better coherence
hence increasing the convergence rate. As expected, 12.
the proposed parallel algorithm yields good per-
formance for medium number of processors and
medium tolerance values. 13.

Acknowledgements-This work is partially supported by
Intel Supercomputer Systems Division grant no.
SSD100791-2 and Turkish Science and Research Council 14.

grant no. EEEAGJ.

1.

2.

3.

4.

5.

6.

REFERENCES 15.
C. M. Goral, K. E. Torrance, D. P. Greenberg and B.
Battaile, Modeling the interaction of light between
diffuse surfaces. Computer Graphics (Proceedings of
SIGGRAPH’84) 18, 213-222 (1984).
M. F. Cohen, S. E. Chen, J. R. Wallace and D. P.
Greenberg, A progressive refinement approach to fast
radiosity image generation. Computer Graphics (Pro-
ceedings of SIGGRAPH’M) 22, 75-84 (1988).
M. F. Cohen, D. P. Greenberg, D. S. Immel and P. J.
Brock, An efficient radiosity approach for realistic
image synthesis. IEEE Computer Graphics and Appiica-
Cons 6, 26-35 (1986).
D. R. Baum, S. Mann, K. P. Smith and J. M. Winget,
Making radiosity usable: automatic preprocessing and
meshing techniques for the generation of accurate
radiosity solutions. Computer Grahics (Proceedings of
SIGGRAPHPI) 25, 5140 (1991).
A. T. Campbell and D. S. Fussell, Adaptive mesh
generation for global diffuse illumination. Computer
Graphics (Proceedings of SIGGRAPH’90) 24, 155-164
(1990).
P. Hanrahan, D. Salzman and L. Auperle, A rapid
hierarchical radiosity algorithm. Computer Graphics
(Proceedings of SIGGRAPHPI) 25, 197-206 (1991).
B. E. Smits, J. R. Arvo and D. H. Salesin, An
importance-driven radiosity algorithm. Computer Gra-
phics (Proceedings of SIGGRAPH’92) 26, 273-282
(1992).
D. F. T. Lischinski and D. P. Greenberg, Discontinuity
meshing for accurate radiosity. IEEE Computer Gra-
phics and Applications 12, 25-39 (1992).
M. F. Cohen and D. P. Greenberg, The Hemi-Cube: a

16.

17.

18.

19.

20.

21.

22.

radiosity solution for complex environments. Computer
Graphics (Proceedings of SIGGRAPH’85) 19(3), 3140
(1985).
J. Bu and E. F. Deprette, A VLSI system architecture
for high speed radiative transfer in threedimensional
image synthesis. The Visual Computer 5, 131-133
(1989).
J. R. Wallace, K. A. Elmquist and E. A. Haines, A ray
tracing algorithm for progressive radiosity. Computer
Graphics (Proceedings of SIGGRAPH’89) 23, 3 15-324
(1989).
D. R. Baum and J. M. Winget, Real time radiosity
through parallel processing and hardware acceleration.
Computer Graphics (Proceedings of the 1990 Symposium
on Interactive 30 Computer Graphics) 24, 67-75 (1990).
G. A. Chalmers and D. J. Paddon, Parallel processing
of progressive refinement radiosity methods. In Pro-
ceedings of the Second Eurographics Workshop on
Rendering, Barcelona, Spain (1991).
M. Feda and W. Purgathofer, Progressive refinement
radiosity on a transputer network. In Proceedings of the
Second Eurographics Workshop on Rendering, Barce-
lona, Spain (1991).
C. Puech, F. Sillion and C. Vedel, Improving
interaction with radiosity-based lighting simulation
programs. Computer Graphics (Proceedings of the
1990 Symposium on Interactive 3Ll Computer
Graphics) 24, 51-57 (1990).
R. J. Reeker, D. W. George and D. P. Greenberg,
Acceleration techniques for progressive refinement
radiosity. Computer Graphics (Proceedings of the 1990
Symposium on Interactive 30 Computer Graphics) 24,
5866 (1990).
S. M. Drucker and I’. Schroder, Fast radiosity using a
data parallel architecture. In Proceedings of the Third
Eurographics Workshop on Rendering, Bristol, England,
247-258 (1992).
A. Varshney and J. F. Prins, An environment projection
approach to radiosity for mesh-connected computers.
In Proceedings of the Third Eurographics Workshop on
Rendering, Bristol, England, 271-281 (1992).
T. Capin, C. Aykanat and B. Ozgiic, Progressive
refinement radiosity on ring-connected multicomputers.
In Proceedings of IEER 1993 Parallel Rendering
Svmuosium, ACMISIGGRAPH Press. San Jose. 71-76
(i99j).
C. Aykanat, F. Gzgiiner, F. Ercal and P. Sadayappan,
Iterative algorithms for solution of large sparse systems
of linear equations on hypercubes. IEEE Transactions
on Computers 37, 15541568 (1988).
S. Ranka and S. Sahni, Hypercube Algorithms. Springer
Verlag (Bilkent University Lecture Series) (1990).
S. R. Seidel. Circuit-switched vs. store-and-forward
solutions to symmetric communication problems. In
Proceedings of The Fourth Conference on Hypercube.
Concurrent Computers, and Applications, 253-255 (1989).

